
“Uncertainty and expectation are the joys of life. 
Security is an insipid thing.” William Congreve, 
1670–1729, playwright.

Nothing is perfect and everything we sense, think and 
do is imbued with imprecision. Imprecision impedes us 
reaching our goals, but if we can estimate this impreci-
sion we can use it to improve the success of our actions: 
we open our arms wider to pick up a faltering toddler 
than one who is sitting still, we look more carefully 
for other cars when driving in fog, and when secur-
ing our pensions we avoid shares that have a history of  
excessively large gains and losses.

Another term for imprecision is uncertainty. We 
can be uncertain about many different things and, as a 
consequence, uncertainty has been studied from many 
perspectives in the neurosciences, often utilizing diver-
gent theoretical assumptions and empirical approaches. 
This Review unravels various strands of thinking relat-
ing to the concept of uncertainty and integrates them 
within an organized terminological and theoretical 
framework, in which our aim is to highlight possible 
common mechanisms of neural encoding and reveal 
areas that are in need of greater theoretical or empirical 
refinement.

We discuss studies of uncertainty in a framework 
that proposes four different processing levels that per-
tain to decision making and action planning (FIG. 1): 
sensory processing, state evaluation, rule identification 

and outcome prediction. This framework reflects dif-
ferent types of variables about which we can be uncer-
tain (BOX 1) rather than different sources of uncertainty 
(for example, environmental or internal). This provides 
a simplifying heuristic, although we acknowledge that 
these four levels do not necessarily form exclusive or 
coherent processing levels. To add to the complexity, 
within each of these levels uncertainty is often concep-
tualized in several distinct ways.

For each of these levels, we address three questions. 
The first is whether uncertainty guides behaviour. In 
many areas of behaviour and decision making, nor-
mative models prescribe the utilization of uncertainty 
estimates1–6. But behaviour of biological agents is not 
always optimal, and we can construe several situations in  
which optimal behaviour might mandate that uncer-
tainty be ignored7. Thus, although there is good reason 
to expect that uncertainty influences behaviour, this 
needs to be empirically demonstrated in detail.

Second, if uncertainty guides behaviour, is there 
a distinct neural encoding of uncertainty? Again, the 
answer is not obvious from theoretical considerations 
alone. For example, behavioural phenomena that seem-
ingly relate to uncertainty (for example, risk prefer-
ences) can be explained by divergent mechanisms8,9. 
Any investigation into neural representations of uncer-
tainty has to take into account that noise is inherent 
in complex systems and can be greatly amplified by 
suboptimal inference10. Noise is not necessarily used 
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Abstract | How we estimate uncertainty is important in decision neuroscience and has 
wide-ranging implications in basic and clinical neuroscience, from computational models 
of optimality to ideas on psychopathological disorders including anxiety, depression and 
schizophrenia. Empirical research in neuroscience, which has been based on divergent 
theoretical assumptions, has focused on the fundamental question of how uncertainty is 
encoded in the brain and how it influences behaviour. Here, we integrate several 
theoretical concepts about uncertainty into a decision-making framework. We conclude 
that the currently available evidence indicates that distinct neural encoding (including 
summary statistic-type representations) of uncertainty occurs in distinct neural systems.
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to guide behaviour and hence a key aim is to identify 
neural representations of uncertainty over and above 
incidental noise that influence further neural com-
putations and, indeed, behaviour. Although there are 
several theoretical proposals on how uncertainty might 
be encoded at a neuronal level2,11, empirical investiga-
tions often assume that uncertainty is encoded in the 
firing rate of specific neuronal populations. We call this 
a summary-statistic encoding of uncertainty, as it sum-
marizes uncertainty into a single number. The focus on 

summary-statistic encoding is not driven by theoretical 
considerations alone (indeed, it is perhaps not the most 
plausible option from a theoretical viewpoint), it also 
reflects an assumption that such an encoding is prob-
ably not due to incidental noise.

The third question we address concerns the topo-
graphical distribution of uncertainty representations in 
the brain. For example, is there a distinct uncertainty 
representation about line orientation in the visual sys-
tem and a distinct uncertainty representation about 

Summary statistic
A concise way of describing a 
set of observations without 
having to refer to each 
individual observation. Hence, 
the set of observations can be 
described with just a few 
values. For example, one for 
the location (for example, 
mean) and another for the 
dispersion, that is, uncertainty, 
(for example, variance).

Figure 1 | Processing levels in decision making and action planning. A real-life situation is used here to illustrate 
four processing levels in an action episode: a driver sees a yellow light while approaching a crossing. The first level 
concerns sensory processing: incoming information needs to be quantified or categorized. In this example, it needs to be 
determined whether the yellow light comes from the traffic light or is just a reflection of the sun. Sensory uncertainty 
refers to the fact that the driver knows only his noisy sensory input and not the actual status of the traffic light. The second 
level concerns state evaluation. In this example, the state of the environment (that is, the distance from the crossing) 
determines the chance of making it over the crossing before the light turns red. State uncertainty refers to the fact that 
inferring the distance to the crossing from a moving car is imprecise. The third level concerns rule identification. In this 
case, the driver will not make it over the crossing in time and plans to accelerate anyway, and the chances of having an 
accident constitute an example of a rule. Rule uncertainty in this example could arise from the driver having little 
experience of such a situation and receiving conflicting advice from two passengers (‘don’t worry’ versus ‘you’ll kill all of 
us’). The fourth level concerns outcome prediction. Even if the driver knows the precise odds of having an accident, it is 
uncertain whether this possible accident will happen or not.
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decision outcomes in a decision-making network? Or 
is there a unified representation for different forms of 
uncertainty — a de facto canonical uncertainty repre-
sentation? It has been suggested that uncertainty on a 
number of distinct decision-making variables is pro-
cessed by a single brain area and is employed to elicit a 
common behavioural response12. Indeed, within com-
putational models of decision making one can envis-
age collapsing different sources of uncertainty into a 
single quantity, and this might in principle occur in an 

‘uncertainty area’. However, theories that posit a hierar-
chically organized brain1,2,6 usually assume that uncer-
tainty about the value of a particular variable is bound 
to a representation of the value of that variable, thereby 
arguing against such a canonical uncertainty represen-
tation. A less strong version of a canonical uncertainty 
proposition is that common principles underlie the 
neural encoding of different forms of uncertainty, 
albeit organized in different locations within a neural 
hierarchy11.

Box 1 | Measures of uncertainty

Uncertainty about a variable means that its true state or, for a quantitative variable, its magnitude is unknown. In 
other words, the variable in question can express one of several possible values. For each of these possible values, 
we can assign a probability to our degree of belief that it is the true value (see the figure). Loosely speaking, the 
most likely value of this variable forms our expectation of the value (for example, a value of 0 in the figure, panel b), 
and the dispersion in the distribution of possible values is one way of expressing our uncertainty on this 
expectation. Probabilistic computations can be performed using the complete distribution of possibilities, without 
an explicit measure of uncertainty. However, given a situation in which there are many possible values, a measure of 
uncertainty can greatly simplify such computations.

How can we quantify, or measure, uncertainty? In neuroscience, two principal approaches are used. The first 
approach is used when the variable in question takes several discrete states that are treated as nominal. That is, 
there is no scalar quantity associated with the states (for example, the colour of an object that can be red, blue or 
green) or when the scalar quantity is disregarded. Here, one can quantify uncertainty as the Shannon entropy113 of  
a discrete probability distribution (that is, probability mass function), which quantifies how much information is 
gained if the true state of the variable is revealed (that is, the more uncertain the true value of the variable is, the 
more information is gained by knowing it).

The other principal approach, which is mainly used in economic theory, is to take a scalar quantity into account. For 
example, when we want to express that our uncertainty about winning either £40 or £60 from a toss of a coin is much 
lower than winning £0 or £100, even though the Shannon entropies of these lotteries are the same. In these cases, we 
can define uncertainty as dispersion of the probability distribution; for example, as variance or coefficient of 
variation114. This approach extends to continuous random variables that are governed by probability density functions.

A third, and more principled, approach is to measure uncertainty in continuous variables as their differential or 
relative entropy (Kullback–Leibler divergence) with respect to a reference distribution. Similar to dispersion 
measures, these entropy measures naturally take the scalar value of the variable into account. However, they have 
rarely been used in experimental research on the neural representation of uncertainty.

The figure illustrates several examples of probability functions and how to measure their associated uncertainty. 
The first example (a) shows a flip of a fair coin with probabilities of 0.5 and a win of £5 or £15 from heads or tails, 
respectively (Shannon entropy: 1 bit; variance 25 £2). The second example (b) shows a toss of a fair dice with a win of 
£60 from a six and nothing for the numbers one to five (Shannon entropy: 0.65 bit; variance 500 £2). Shannon 
entropy, which does not take into account outcome magnitude, is larger in panel a, but the variance of possible 
outcomes is larger in panel b. The third example (c) shows a toss of a fair dice, winning the amount of money shown 
by the number on the dice in £, plus £6.50 (Shannon entropy: 2.59 bit; variance 2.9 £2). This example has high 
Shannon entropy because the actual outcome is more unpredictable than in panels a and b, but there is little 
variance because possible outcomes are more similar than in the other examples. The final example (d) shows a 
probability density function for an unspecified example of continuous outcome possibilities. Here, uncertainty can, 
for example, be quantified as dispersion of the distribution.

A measure of uncertainty provides a basis for probing its behavioural and neural correlates. This is different from 
using a categorical approach, in which uncertainty is contrasted with certainty, to investigate behavioural and 
neural correlates of uncertainty. Such a categorical approach is related to theories which posit that uncertainty and 
certainty induce particular states of mind115–117. Hence, contrasting uncertainty with (near) certainty might highlight 
neural activity changes that are unrelated to uncertainty coding per se118. Attempts to disambiguate this 
confounding feature from a quantifiable encoding of uncertainty encoding are rare119. This Review therefore 
focuses on studies that continuously varied uncertainty on some variable.
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Uncertainty about sensory information
Imagine trying to negotiate an unfamiliar street in dark 
and misty weather. Incoming visual information needs 
to be quantitatively measured (for example, to gauge dis-
tances) and categorized (for example, to decipher letters 
on a street sign). Such sensory information is imbued 
with imprecision, and access to this imprecision might 
be beneficial (for example, equipped with this knowl-
edge one might drive more carefully than usual). Studies 
have investigated sensory uncertainty mainly in three 
dominant, partially overlapping, domains: multisensory 
integration, sensorimotor control and unimodal sen-
sory decision-making. To quantify sensory uncertainty, 
one approach is to infer the overall uncertainty due to  
stimulus uncertainty and internal noise from overt behav-
iour. Another is to use a measure of stimulus uncertainty 
alone; this is often implemented as a semi-quantitative 
measure termed task difficulty.

Sensory uncertainty guides behaviour. Multisensory 
integration experiments build on the idea that when 
we combine conflicting information (or cues), more 
uncertain information deserves less weight13,14. Indeed, 
humans and monkeys weight information sources 
according to their individual overall uncertainty in a 
near-optimal manner (that is, close to minimizing the 
error of the combined estimate). This has been demon-
strated for a wide range of cue combinations from vari-
ous modalities and under different response conditions, 
both when cue uncertainty is stationary15–21 or experi-
mentally varied22–29. Previous experience is an additional 
source of information (often termed prior information) 
that can be weighted and integrated with current sen-
sory cues according to Bayes’ theorem. Indeed, this is 
what humans appear to do, both under stationary condi-
tions30, and when sensory uncertainty31,32 or prior uncer-
tainty33,34 are experimentally varied. Note that in these 
and other experiments35–37, information integration is 
sometimes suboptimal, but, even in these cases, most of 
the time uncertainty does influence behaviour.

Behavioural sensitivity to sensory uncertainty is also 
evident in studies of sensorimotor control13. Optimal 
motor planning takes into account uncertainty in sen-
sory information. For example, grip aperture should be 
wider when we are more uncertain about the position 
of an object to grip. This has been shown to occur for 
objects imbued with visual uncertainty38 and for objects 
for which its position is uncertain owing to an impre-
cise coordinate transform between body and eye refer-
ence39. Furthermore, when humans are asked to point 
to a target, they are quicker to adjust their movement 
upon target change when the initial target has a higher 
position uncertainty, and they are also quicker when the 
final target has a lower position uncertainty40. In addi-
tion, a motor task such as catching a ball involves setting 
the optimal time point for starting the movement: if we 
do not observe the ball for long enough, sensory infor-
mation is more uncertain; but if we start moving too 
late, the movement will be imbued with greater motor 
uncertainty (see below). Across different tasks, humans 
integrate visual and motor uncertainty in a near-optimal 

manner, therefore showing that both visual and motor 
uncertainty guide behaviour under stationary condi-
tions41,42. In another paradigm, human subjects com-
bine estimates of their hand position based on previous 
proprioceptive and visual feedback with current visual 
feedback to adapt their hand movements. When cur-
rent visual feedback is more uncertain, adaptation takes 
longer43, and if previous feedback is more uncertain, 
adaptation is faster43, as predicted by optimal integration.

A third strand of evidence for an effect of sensory 
uncertainty on behaviour comes from experiments on 
unimodal sensory decisions. Take an experiment in 
which monkeys perform a random-dot task (BOX 2) and  
saccade to indicate the direction of net dot motion, 
and they receive a reward for a correct response44. For 
half the trials, the animals can opt out of the ‘bet’ and 
instead saccade to a third target that yields a smaller, 
fixed reward. Opting out is advantageous when  
the fixed reward exceeds the expected reward from the  
random-dot task. This enables one to measure a mon-
key’s estimate of expected reward — an estimate cor-
responding to the monkey’s confidence that a decision 
would be correct. Crucially, monkeys learn to opt out 
more often when there is more uncertainty about net 
dot motion, indicating that the level of uncertainty 
guides sensory decision-making. Note that the stimu-
lus configuration depends on the number of consist-
ently moving dots, and the monkey brain might simply 
associate this configuration with a level of reward, 
rather than encode the uncertainty. To shed light on 
this point, recording of neural activity can be utilized 
(see below). Similar to findings from this study44, when 
humans make sensory decisions regarding two noisy 
stimuli — one with high and one with low uncertainty 
— the difference in uncertainty between these two 
stimuli correlates with the probability of choosing the 
less noisy stimulus45.

In summary, there is compelling evidence from a 
range of experimental contexts and tasks to suggest that 
sensory uncertainty, which is inherent in the environ-
ment or due to internal noise, influences behaviour, thus 
often leading to a more optimal response.

Encoding of sensory uncertainty. If sensory uncer-
tainty guides behaviour, how is this uncertainty neu-
rally encoded? This question has been explored mainly 
within experiments on unimodal sensory decisions. 
One study in rats46 varied the ratio of two odours in an 
odour mixture and the animals had to correctly catego-
rize the resulting odour in order to receive a reward. 
An increased certainty (that is, at a high ratio of one 
odour over another) increased the animals’ willing-
ness to wait for the reward and was associated with 
increased/decreased firing in two distinct populations 
of orbitofrontal cortex (OFC) neurons, respectively. 
Note that the expected reward in this task depended 
on stimulus uncertainty because, on average, animals 
received less reward for decisions imbued with more 
uncertainty. Hence, changes in OFC firing might reflect 
expected reward rather than uncertainty. However, on a 
trial-by-trial basis, neural firing was not well-explained 

Stimulus uncertainty
Environmental uncertainty in 
the controlled conditions of a 
sensory experiment is usually 
due to uncertainty in the 
stimulus. This could be noise in 
the stimulus, but also other 
factors, such as when needing 
to classify a mixed stimulus 
into one of two categories.

Internal noise
Fluctuations in a measured 
signal that arise from 
imprecision in the observing 
system. For example, from 
imprecision in sensor organs,  
in neural circuits or from 
suboptimal algorithms.
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by learning history as would be required by this  
alternative explanation.

In another example, the coherence of motion dis-
plays (BOX 2) is encoded in firing rates of neurons in the 
macaque visual system (for example, the middle tempo-
ral47 and medial superior temporal48 visual cortex), and 
this could represent an uncertainty signal. However, it 

could also simply reflect an encoding of the number of 
consistently moving dots — unless a precise relationship 
with behaviour is demonstrated. To establish such a rela-
tionship, many studies rely on temporal integrator models 
(BOX 2), which posit a neural mechanism that accumu-
lates sensory evidence over time. The speed of evidence 
accumulation in these models is inversely correlated to 
the degree of uncertainty. In the aforementioned study 
in monkeys44, neurons in the lateral intraparietal cortex 
(area LIP) encoded evidence accumulation in a man-
ner that was predicted by a temporal integrator model, 
with neuronal activity in this brain region drifting more 
slowly when stimulus uncertainty was high. Importantly, 
variations in drift rate over and above the impact of 
stimulus uncertainty were most likely to be caused by 
internal noise in the sensors or in the neural circuits. 
These variations in drift-rate predicted whether or not 
the monkey opted out of making a decision. This sug-
gests that opting out reflects the resulting uncertainty 
in a neural system that accumulates evidence for a 
decision, and is not due to a simple association of the 
stimulus configuration with lower reward (see above). 
It also suggests that a change over time in the pattern of  
LIP firing rates is not merely an incidental reflection  
of environmental noise but is crucial for using uncertainty 
to guide behaviour. However, it leaves unanswered the 
question of how precisely a change of neuronal firing 
rates is translated into behaviour.

In principle, electroencephalography recordings in 
human subjects provide a good method to assess uncer-
tainty encoding in temporal integrator models, but 
its application has proven difficult. Temporal integra-
tor models predict that stimulus uncertainty, response 
timing and response accuracy are related variables. 
However, an event-related potential (ERP) study in 
humans in which blended images of cars and faces had 
to be categorized (as either car or face) showed sepa-
rate ERP components that reflected these supposedly 
related variables49. Furthermore, in another ERP study 
using morphed images of males and females that were 
noise-free, the uncertainty component did not increase 
when the male:female ratio was more ambiguous (which 
is one form of stimulus uncertainty); it only increased 
when noise (another form of stimulus uncertainty) was 
added50. This result suggests that these ERP components 
cannot be taken to be informative about sensory uncer-
tainty in a broad sense, but are specific to processes that 
are induced by sensory uncertainty.

BOLD fMRI (blood oxygenation-level dependent  
functional MRI) responses to uncertainty can be 
ambiguous too. Temporal integrator models predict  
that when there is enough time to make a decision,  
neural firing should increase over time up to a 
threshold, and then cease. BOLD responses reflect 
integrated neuronal firing over time, and because 
the decision threshold is constant, this integral will 
be larger when the integration takes longer51. BOLD 
responses might therefore reflect the rate of change in 
firing of neurons in an integrator. 

However, if there are distinct neural populations 
that fire more when there is more uncertainty (that 
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Box 2 | Temporal integrator models in sensory decision-making

Sensory decision-making is often modelled by temporal integrator models (also termed 
sequential sampling, drift diffusion or bounded integrator models), which assume that 
sensory information is accumulated over time120–122 and usually in the context of a 
two-alternative forced choice task. For example, imagine an array of orange dots in 
which 80% are moving randomly, and the remaining 20% are consistently moving to the 
right (see the figure, panel a). A subject’s task is to decide whether the net movement of 
the dots is to the left or to the right. At each moment, the majority of dots could be —  
just by chance — moving to the right or to the left.

Temporal integrator models assume that we gather evidence over time: at each 
moment, the number of dots we see moving to the right side causes a signal. This could 
be a neuronal signal that results from summing up input from all neurons that are 
sensitive to a dot moving to the left, minus the signal from all neurons that are sensitive to  
a dot moving to the right. The random dot motion causes this signal to fluctuate, but it 
will slowly increase over time owing to the majority of dots moving consistently in one 
direction (see the figure, panel b). When this integrated signal reaches a certain bound 
(criterion), the subject is able to decide that the true movement direction is to the right.

The more random dots are added in this task, the shallower the slope of the evidence 
curve (that is, the lower the so-called drift rate), and the longer it takes to make a 
decision. At the same time, if the subject is forced to make a quick decision he/she will be 
less accurate as there is more noise122,123. Hence, within a single experimental context and 
up to a constant, the drift rate can be estimated from the reaction times and the accuracy 
of the response. Note that this constant can differ between experimental contexts owing 
to unknown properties of the putative neural integrator (for example, the bound), 
thereby rendering a comparison between the drift rate in two experiments impossible.

One might wonder why one would estimate the drift rate and not use response time or 
response accuracy as a proxy for uncertainty. Subjects tend to respond quickly both 
when there is near-zero sensory evidence and when there is near-complete sensory 
evidence124. Also, neural activity that is associated with response times, accuracy and task 
difficulty can dissociate49,52. On this basis, we suggest that it is problematic to use 
reaction times or accuracy alone as indicators of uncertainty. Estimates of the drift rate 
that are derived from both measures are more precise and can therefore serve as a useful 
means of inferring uncertainty, especially in cases of spontaneous fluctuations of 
uncertainty due to internal noise.

Of course, estimation of drift rates from reaction times and response accuracy crucially 
depends on the validity of the temporal integrator model, and the possible presence of a 
recently proposed urgency gating signal needs to be taken into account120. Furthermore, 
recent evidence from a study of decisions on taste stimuli in rats points to an integration 
of evidence over inputs rather than over time107, and, in such cases, a temporal integrator 
model would be uninformative.

Urgency gating
In temporal integrator models, 
a decision is made when the 
integrator reaches a certain 
fixed threshold. Urgency gating 
describes the idea that this 
threshold changes over time 
to enforce a decision.
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is, as a summary-statistic encoding of uncertainty), 
these would also exhibit a greater BOLD signal. This 
distinction is important because, as mentioned before, 
a change over time in firing rate within a neural inte-
grator is a reflection of environmental noise, but it is 
not necessarily used for further neural computations. 
Hence, it is important to investigate whether there is 
a relationship between BOLD responses and behav-
iour — or, indeed, a relationship with other neural 
computations. 

BOLD correlates of sensory uncertainty have been 
reported in intraparietal sulcus, middle temporal 
visual cortex, frontal eye field, middle frontal gyrus, 
anterior cingulate cortex (ACC), supplementary motor 
areas and anterior insula51. Responses in most of these 
areas correlate with reaction times51, which possi-
bly reflects trial-by-trial fluctuations in sensory evi-
dence accumulation, as in the aforementioned study 
in monkeys44. In a different study, BOLD responses 
were reported in supplementary eye fields, frontal eye 
fields, dorsolateral prefrontal cortex (Brodmann areas 
9 and 46) and anterior insula52, but they did not cor-
relate with behaviour. Another study used a perceptual 
category learning task in which subjects had to assign 
distorted patterns of dots into one of two categories, 
each defined by a prototype53. The degree of distor-
tion, which induces sensory uncertainty, correlated 
with BOLD responses in parietal cortex, cerebellum, 
dorsal ACC and supplementary motor cortex, inferior 
occipital/temporal gyrus, anterior insula and inferior 
frontal gyrus, frontal eye fields and precentral gyrus.

Another type of sensory uncertainty is uncertainty 
in perceptual categorization. This occurs not only if 
the sensory evidence is uncertain, but also if category 
boundaries are diffuse. This type of uncertainty has been 
investigated in a human neuroimaging experiment54. 
Here, categorization uncertainty was linked to enhanced 
BOLD responses in medial frontal gyrus, anterior insula, 
ventral striatum and dorsomedial thalamus54.

Finally, two recent experiments have addressed the 
neural encoding of sensory uncertainty in multisen-
sory integration. During the combination of tactile 
and visual information, increasing uncertainty in one 
modality suppresses primary sensory BOLD responses 
in the other modality. This suggests that sensory 
uncertainty influences neural computations, but does 
not reveal how uncertainty estimates are represented 
or used55. However, in the dorsal medial superior tem-
poral cortex — a brain area that encodes the integra-
tion of vestibular and visual cues — uncertainty of 
cues from individual modalities and uncertainty from 
combined cues is represented in the slope of a neural 
population tuning curve36. This study36 addressed cue 
integration and varied sensory uncertainty only on 
two levels, and so extending this approach to continu-
ously varied uncertainty would be of great interest.

To summarize, neural representations of different 
forms of sensory uncertainty have been shown in sev-
eral brain areas but, as yet, we lack a precise picture as 
to how these neural representations emerge. In part, 
this is due to methodological issues. Nevertheless, 

experiments that demonstrate a relationship between 
putative neural uncertainty encoding and trial-to-trial 
behaviour have established important findings. First, 
for visual decisions, the slope of a neural evidence 
accumulator in parietal cortex seems to encode sen-
sory uncertainty and is translated into behaviour44. 
Second, BOLD responses relating to sensory uncer-
tainty and to behaviour have been demonstrated 
in frontal eye fields, primary motor cortex, middle 
frontal gyrus, anterior insula and anterior cingulate/
supplementary eye fields51. These observations could 
reflect the slope of neural evidence accumulation or a 
summary-statistic encoding of sensory uncertainty. In 
multisensory cue combination, it is possible that the 
slope of neural tuning curves for individual stimuli 
encodes individual uncertainty and is used for cue 
integration, which is a possibility that needs fur-
ther investigation. The evidence indicates a specific 
neuronal encoding of sensory uncertainty in several 
brain areas; however, it remains to be shown how such  
coding is translated into behaviour.

Uncertainty about state
Navigating an unknown street looking for a friend’s 
house, we might wonder whether we have arrived in 
the correct borough. This is an example of uncertainty 
about the present state of the environment, over and 
above uncertainty in relation to sensory information. 
Such state uncertainty arises in a number of situations. 
First, in perception, in multisensory integration and in 
sensorimotor control, uncertainty regarding the physical 
state of our limbs or of objects in the environment often 
arises from previous or current sensory uncertainty (this 
is discussed in the section on sensory uncertainty).

Second, uncertainty on inferring the present context 
arises during reinforcement learning, which is often 
dependent on context or state56. This type of state uncer-
tainty has not been theoretically or experimentally inves-
tigated. A closely related example of state uncertainty is 
provided in the framework of hierarchical defence sys-
tems57–59. An uncertain threat (for example, a predator 
odour) induces specific defensive behaviours in animals 
(for example, risk assessment and inhibition of ongoing 
behaviour). Uncertain threat can be re-conceptualized 
as uncertainty about the state of the environment (for 
example, is this an environment in which to expect a 
looming predator, or not?). In this context, state uncer-
tainty can be thought of as inducing particular defensive 
behaviours in order to resolve this very uncertainty. As 
yet, uncertain threat in an ethological sense has not been 
quantitatively defined.

Third, computational neuroscience often models the 
environment as a series of discrete states. In many appli-
cations it is assumed that the present state is known, but 
one can construe situations in which it has to be explic-
itly inferred from incomplete information. This has 
been investigated in maze navigation, whereby the pre-
cise position is not known to the subject60. In addition, 
there is often uncertainty about the transition between 
the present and the next state, which may be governed 
by transition rules. Uncertainty on transition rules is 

Temporal integrator models
Models that describe the 
accumulation of sensory 
evidence over time; for 
example, when viewing a noisy 
stimulus and having to decide 
on its identity.

Environmental noise
Random fluctuations in a 
measured signal that arises 
from the outside world. In the 
context of a sensory 
decision-making experiment, 
for example, this could be from 
noise in the stimulus.
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conceptualized in the section on rule uncertainty, and 
uncertainty on an upcoming state is discussed in the  
section on outcome uncertainty.

We are not aware of studies investigating whether 
uncertainty about the present state of the environment 
(over and above sensory uncertainty) guides behaviour. 
Neural representations have been investigated in a neu-
roimaging study that continuously varied state uncer-
tainty60. This study addressed the problem of estimating 
one’s position in a maze (that is, the current state of the 
environment) in order to reach a target position. BOLD 
responses correlating with this type of state uncertainty 
were observed in anterior prefrontal cortex (bilateral 
medial and superior frontal gyrus, and Brodmann areas 
9 and 10).

In summary, it remains unclear how uncertainty on 
state inference is represented in the brain, and whether 
and how it informs behaviour. In particular, studies 
have so far mainly addressed state uncertainty result-
ing directly from sensory uncertainty. Few theoretical 
or empirical studies have focused on estimating uncer-
tainty on discrete states of the world under conditions of  
precise (but incomplete) sensory information.

Uncertainty about rules
Let us return to the scenario in which we are looking for 
our friend’s house. We have concluded that we are in the 

correct street, but we do not know the house numbering 
system and, therefore, our chances of finding the correct 
house if we turn left. We can simplify and formalize this 
situation by defining the left turn as present state, and 
finding or not finding the house on this side of the street 
as the two possible successive states. The transition rule 
between the present and next state (that is, our chances 
of finding the house on this side of the street) depends 
on the house numbering system and is therefore uncer-
tain. Such rule uncertainty is usually distinguished 
from uncertainty about which of the possible next states 
will actually occur (which is referred to as outcome  
uncertainty in this Review, see below).

Transition rules come in different flavours. Rules 
about the transition to a state with explicit value might 
be described as stimulus–outcome rules in classical 
(Pavlovian) conditioning, as action–outcome rules 
in instrumental (operant) conditioning or as lotteries 
(gambles or bets) in economic decision-making. There 
are also transition rules between discrete environmen-
tal states in many formal computational models and in 
other forms of associative learning. In addition to tran-
sition rules, co-occurrence rules between two events in 
associative learning can be uncertain.

Associative learning involves uncertainty about rules 
(until we have learned them), but there is little formalism 
to quantify rule uncertainty in this context. The con-
cepts of unexpected uncertainty or risk prediction error 
(BOX 3) describe situations in which surprise leads to rule 
uncertainty, but these concepts do not include a quanti-
fication of the ensuing uncertainty. In a Bayesian frame-
work, rule uncertainty can be quantified as the posterior 
uncertainty of rule prediction61,62, but we are not aware 
of empirical studies that have examined the behavioural 
consequences, or representation, of such uncertainty.

An economic perspective deals with propositional 
situations that embody uncertainty about transition 
rules (BOX 4), namely the transition to a state with higher 
economic value. In such situations, a probability can be 
assigned to the degree of belief that a certain rule will 
be correct. The entropy (BOX 1) over these probabilities 
quantifies rule uncertainty in this case63. This is analo-
gous to the posterior uncertainty of rule predictions in 
the aforementioned Bayesian framework, and consti-
tutes a useful approach to experimentally control rule 
uncertainty.

Rule uncertainty guides behaviour. Several economic 
investigations have contrasted rule uncertainty with 
rule certainty, and this contrast probably confounds rule 
uncertainty with other features (BOX 4). In an attempt to 
continuously vary rule uncertainty, a combined behav-
ioural and neuroimaging experiment used an economic 
decision-making paradigm63 in which subjects made 
economic gambles on the likely occurrence of electric 
shocks. In each trial there were two possible action– 
outcome rules, and the probability that either of the 
two rules would be realized was varied continuously. 
This design embodies varying rule uncertainty: uncer-
tainty is high when both rules are equally probable and 
is lower when it is likely that one of the two rules will be 

Box 3 | Uncertainty and prediction errors in reinforcement learning

Rule uncertainty and outcome uncertainty are important in reinforcement learning. 
Classical reinforcement learning theories (for example, the Rescorla–Wagner125 theory or 
the Pearce–Hall126 theory) assume that an association between two consecutive events 
can be altered by the difference between our prediction and the occurrence of the 
second event (that is, by the prediction error). Thus, if we predict a low probability of 
electric shock after a tone and do receive one, the tone–shock association strengthens. 
Conversely, if we predict a high probability of electric shock after a tone and do not 
receive one, the association weakens125–127.

This assumption can explain that when a shock always follows a tone, the association 
will, after some time, precisely describe the transition rule so that there are no longer any 
prediction errors. By contrast, in the case of probabilistic reinforcement (for example, 
receiving a shock only 50% of the time), there will be a prediction error after each event, 
even if our predictions are correct on average and the 50% schedule never changes. In 
such cases, a prediction error does not mean that the rule has changed, and it would not 
be useful to update the association upon every prediction error. To account for this 
situation, one can quantify the expectation for the prediction error, and assume that 
there is a neural representation of this expected prediction error. Rule change should 
only be inferred if the actual prediction error is larger than expected.

This idea has been formalized as ‘expected and unexpected uncertainty’61, which 
represent outcome uncertainty and an unexpectedly large surprise that gives rise to  
rule uncertainty, respectively. A heuristic that could explain how an estimate of outcome 
uncertainty (that is, expected uncertainty) is acquired during reinforcement learning 
builds on prediction errors: estimates of outcome variance are updated by comparing  
the variance estimate and the instantaneous squared prediction error, normalized by the 
mean outcome128. This has been termed risk prediction error.

A re-analysis of data from an earlier study89 on outcome uncertainty suggested that 
there was a neural representation of risk prediction error in the anterior insula97. 
However, the task design in this study did not provide an incentive for learning, such  
that risk predictions need not be updated. A recent study that provided an incentive for 
learning found that the risk prediction error was represented in inferior frontal gyrus, 
insula, anterior cingulate cortex, ventral striatum and amygdala129. Demonstrating such 
risk prediction errors argues for a reinforcement learning-type acquisition of outcome 
uncertainty estimates. How unexpected uncertainty, that is, a larger-than-expected 
prediction error, translates into rule uncertainty, still awaits formalization.

Bayesian
A subfield of statistics whereby 
inference of the true state of 
the world is represented as a 
degree of belief in different 
states, rather than as the most 
likely state only. This implies 
knowing the uncertainty 
associated with the estimation.

Entropy
A measure for informational 
content that can, for example, 
be used to summarize a 
probability distribution.
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realized. Subjects over-weighted the probability of the 
worse possible rule when rule uncertainty was high and 
under-weighted it when rule uncertainty was low, and this 
biased their choices63. Thus, rule uncertainty can influence 
behaviour, even though under these particular (labora-
tory) circumstances this did not lead to minimization of 
electric shocks (that is, it did not elicit optimal behaviour). 
More research is needed in this area to specify under 
which circumstances rule uncertainty affects behaviour, 
and whether or not this leads to optimal outcomes.

Encoding of rule uncertainty. In the aforementioned neu-
roimaging study63, BOLD responses to rule uncertainty 
were expressed in posterior midline areas extending into 
posterior cingulate, parietal and occipital cortices. It turns 
out that high rule uncertainty in this task might also imply 
lower subjective value for an expected outcome as well 
as higher processing demands, both of which could pos-
sibly explain the activation seen in the posterior cingulate 
cortex. In a reinforcement learning context, a correlate of 
the belief about rule change per time unit (termed vola-
tility in this study) has been reported in the ACC64. Note 
that volatility is not equal to rule uncertainty, such as in 
the case of an unknown but stationary rule, in which rule 
uncertainty is high in the face of zero volatility.

A study using a visual discrimination paradigm 
showed that the speed of learning of rule changes can be 
improved with the noradrenaline agonist idazoxan65. This 
has been taken to suggest that noradrenaline has a role in 
the detection of unexpected uncertainty61 and, indirectly, 
in the estimation of rule uncertainty. However, it could 
also suggest that noradrenaline has a role in learning new 
rules after a rule change has been detected, or in the aboli-
tion of old learning rules, and, so far, there are no empiri-
cal data that can distinguish between these possibilities.

Overall, few studies have investigated the effect of rule 
uncertainty on behaviour and its neural representation, 
although a number of interesting approaches to character-
ize and quantify rule uncertainty exist in reinforcement 
learning and economic decision-making. To complicate 
things, rule uncertainty naturally arises in learning situ-
ations. If one assumes that there are different learning 
systems for different problems66, then it is plausible that 
rule uncertainty might be represented in different brain 
areas, depending on the learning system that is optimal 
to the task at hand62.

Uncertainty about outcomes
Imagine having arrived at our friend’s house. We then 
recall that he might be going out for dinner tonight. Even 
if we know the precise odds that he is at home, we will 
be uncertain about whether he really is at home or not. 
For our purposes, uncertainty in relation to what is going 
to happen in the future is termed outcome uncertainty 
and this can be quantified. If we think about the world as 
being composed of discrete states, then outcome uncer-
tainty describes the uncertainty about which state will be 
realized next. This uncertainty can be quantified if we 
(almost) precisely know the rule that governs the tran-
sition to an upcoming state. Experiments on outcome 
uncertainty described so far mainly deal with states that 
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Urn A Urn B

Box 4 | Rule uncertainty and ambiguity in economic gambles

Imagine the following lottery: there is an urn (urn A) with 22 balls and half of these 
are black and the other half white, and so the winning chances for each colour are 
50% (see the figure). Another urn (urn B) has the same number of balls, but the 
proportion of black and white balls is unknown (represented as grey balls in the 
figure). Would you rather bet on white from urn A or urn B? If your answer is urn A, 
classical economic theories would deduce that you think that the winning chances 
of white in urn B are lower than white in urn A (that is, lower than 50%).

Second question: would you rather bet on black in urn A or urn B? You might 
again answer urn A, and classical economic theories would conclude that you also 
think that black in urn B has winning chances lower than 50%. But that means that 
the probabilities in urn B add up to less than 100% — the famous Ellsberg paradox7. 
This thought experiment, building on earlier ideas130, was among the first to 
illustrate the distinction between classical economic theory, which describes 
normative models of optimal behaviour, and findings from studies of real economic 
behaviour (later termed behavioural economics). Urn A constitutes a single-stage 
lottery, in which there is uncertainty about the two individual outcomes but the 
rules, that is, the probabilities of the two outcomes, are known. By contrast, urn B 
can be understood as a two-stage lottery, whereby the probabilities of the 
individual outcomes are governed by a distribution of probabilities, that is, by 
second-order probabilities.

There are 23 possibilities for the distribution of black and white balls in urn B. 
Classical economic theory posits that in the absence of further information, one 
should assume a uniform second-order probability distribution (that is, all 23 
possible ball distributions in urn B have probability P = 1/23). For each possible ball 
distribution, one should multiply the ensuing first-order probabilities of a black or 
white draw, multiply them with its second-order probability and finally add up all 
probabilities for black and white across all ball distributions in order to derive 
expected first-order probabilities and make a decision. It turns out that for both 
urns, the expected outcome probabilities are the same (50% black, 50% white).

The situation in urn B has been termed ambiguity7. Empirical investigations have 
demonstrated that most people do not simply collapse the two stages of this bet 
(as prescribed by classical economic theory), but instead avoid ambiguity, even 
when this does not lead to (mathematically) optimal outcomes (for example, if one 
has to pay extra money to bet on urn A)131–137.

Ambiguous and non-ambiguous gambles differ with respect to rule uncertainty, 
and restricting the range of possible outcome probabilities (that is, reducing rule 
uncertainty but keeping the outcome probabilities of the collapsed lottery 
constant) reduces ambiguity aversion135,138. However, they also differ across other 
factors, and these can explain ambiguity aversion under some circumstances. For 
example, ambiguity avoidance is stronger when decisions are made in public as 
opposed to in private133,139, and this cannot be explained by aversion to rule 
uncertainty alone. Furthermore, both ambiguity aversion140 and neural responses 
to ambiguity141 are greatest when missing information about outcome 
probabilities is potentially knowable (that is, known to the experimenter, and 
usable in order to infer the conditional first-order probabilities), and not when rule 
uncertainty is highest. Consequently, BOLD (blood oxygen-level dependent) 
functional MRI responses to ambiguity and to continuously varied rule uncertainty 
differ markedly63. Hence, a categorical contrast of ambiguity versus no ambiguity 
is probably not a good model for rule uncertainty.
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are imbued with some economic, reinforcing or pun-
ishing value. In a more general perspective, any kind of 
uncertainty about the future can be thought of as out-
come uncertainty, and four distinct literatures dominate 
in this field.

First, economic theory refers to outcome uncertainty 
as ‘risk’ in situations in which all possible outcomes 
and their associated probabilities are explicitly known. 
Accounts of outcome uncertainty in classical economic 
theories (most prominently, expected utility theory9, sub-
jective utility theory67 and prospect theory68) posit that 
the internal utility of an outcome is a nonlinear function 
of the value of that outcome (BOX 5). Such nonlinearity can 
explain aversion to, or preference for, variable outcomes 
on the basis of utility maximization, without invoking a 
specific role for outcome uncertainty8. An alternative per-
spective, which is based on risk–return models in finance 
theory69, posits that choice options can be represented in 
summary-statistic measures (that is, statistical moments) 
of their possible return with outcome uncertainty quan-
tified as variance. A neural system implementing such 
an algorithm would require a specific representation of 

outcome uncertainty70,71. Below, we review studies that 
have attempted to determine which of the two theories 
can better capture human behaviour, as well as those that 
seek to identify neural encoding of outcome uncertainty 
in an economic context.

Second, recent developments in reinforcement- 
learning theory posit that a representation of outcome 
uncertainty (also termed expected uncertainty (BOX 3)) is 
needed to guide learning. Although there is little empirical 
data on the behavioural consequences of outcome uncer-
tainty in this context, reinforcement-learning paradigms 
are sometimes used to investigate neural representation of 
outcome uncertainty72–75.

Third, any framework that models discrete states of the 
world assumes that future states are uncertain to a variable 
degree. Some empirical work has drawn on such models 
without explicit value75.

Finally, in motor control it is recognized that we can 
implement motor commands only with a degree of impre-
cision4,13. Such motor uncertainty constitutes outcome 
uncertainty and outcome uncertainty estimates in this con-
text are key concepts in the field of sensorimotor control13.

In the theoretical and empirical body of literature, dif-
ferent quantifications of outcome uncertainty have been 
proposed (BOX 1). We are not aware of studies seeking to 
determine which of these quantifications is best supported 
by neural or behavioural evidence.

Outcome uncertainty guides behaviour. A literature 
search on behavioural economics studies shows that, in 
humans and other animals, variability in gamble out-
comes influences choice behaviour76. This phenomenon 
can be explained by utility maximization9,67,68. Under the 
assumption that the algorithms posited by these theories 
are indeed implemented, then no neural representation 
of uncertainty is needed even if it appears to guide behav-
iour (BOX 5). However, these algorithms imply, as a cor-
ollary, that every individual possible outcome is neurally 
encoded, and this would be inefficient when there are 
many outcomes. 

In a repeated lottery, participants were explicitly told 
the magnitudes of all possible outcomes77. By paying some 
money, they could sample from the lottery to experience 
the probabilities of these outcomes. Then, they were given 
a chance to bet on that lottery in order to gain money. In 
some trials, both outcome probabilities and magnitudes 
changed. In other trials, participants were informed that 
outcome magnitudes had changed from the previous 
trial, but that outcome probabilities were held constant. 
Had participants encoded all the outcome probabilities 
from the previous trial, there would have been nothing to 
gain from sampling the new lottery (because the magni-
tudes, the only thing that changed, were stated explicitly). 
However, in half of these trials, participants did sample the 
probabilities, which suggests that they did not encode all 
individual outcome probabilities, thus contradicting the 
idea of utility maximization accounts of risk preference77. 
In fact, in these trials, the participants’ behaviour suggests 
that they encoded a summary-statistic measure of out-
come uncertainty without having to encode individual 
outcome probabilities and magnitudes.

Box 5 | Outcome uncertainty and expected utility theory

In the economic 
literature, utility is often 
conceptualized as a 
measure of satisfaction 
by a good. Utility is 
assumed not to be 
linearly related to the 
value of that good. For 
example, the utility of 
three cars might not  
be three times the utility 
of one car (that is, 
receiving three cars 
might not be three times 
as satisfying as receiving 
one car). The figure 
shows an example for a 
nonlinear utility function 
as prescribed by several 
mainstream economic 
theories: with increasing value, the increment in utility in this particular example becomes 
smaller. To make utility measurable and to make the use of utility functions tractable, 
expected utility theory9 relies on a number of assumptions that are not reviewed here.

We briefly illustrate how this kind of utility function might explain a behavioural 
sensitivity to uncertainty (see the figure). In a lottery that can yield £200 or £600, as a 
result of a flip of a coin, the expected value is £400; hence a value-maximizer should be 
indifferent between this lottery and receiving £400 for sure. However, the expected 
utilities map nonlinearly, so that in the above example, the expected utility of the lottery 
is lower than the expected utility of winning £400. Hence, a utility-maximizer should 
avoid the lottery, regardless of whether there is an explicit uncertainty representation in 
the brain.

Now, imagine a choice between two lotteries, both of which have three outcomes with 
equal probabilities. The first lottery could yield £400, £500 or £600. The second lottery 
could yield £100, £200 or £1,200. Both lotteries have the same expected value of £500. 
However, most people would find £1,200 less than two times as useful as winning £600. 
Hence, the expected utility of the second lottery is lower than that of the first, and most 
people choose the first. This lottery also turns out to have lower outcome uncertainty. 
Hence, this framework can explain sensitivity to outcome uncertainty without having to 
explicitly describe uncertainty.
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Outcome uncertainty also occurs in Posner-type 
tasks, which involve state transitions without economic 
value. Here, a correct action depends on a target posi-
tion that was cued; however, the cues are not always cor-
rect. The validity of the cue and therefore the uncertainty 
about the target (the upcoming state), has been shown 
to be inversely correlated to a reaction time difference 
between correctly and incorrectly cued actions61. In other 
words, when outcome uncertainty was low, subjects 
needed more time to shift their attention after a change 
in target position. Also, corticospinal excitability, which 
indicates motor preparation, is high when there is little 
uncertainty about the state transition78.

Motor uncertainty is the estimated uncertainty of an 
upcoming motor action and has been investigated from 
the perspective of sensorimotor control. In motor plan-
ning, sensory and motor uncertainty are often integrated, 
and humans do this in a near-optimal manner41,42 (see sec-
tion on sensory uncertainty). Furthermore, the cost of an 
imprecise motor action can be spatially asymmetric (for 
example, when walking close to a cliff edge, the cost of 
staggering to the cliff edge is higher than staggering to the 
other side). In such cases, motor uncertainty influences 
average motion in humans79 (in our example, one would 
walk further away from the cliff edge). Furthermore, 
when controlling a ball, humans apply different control 
movements at the same state of the ball depending on  
uncertainty of the future trajectory of the ball80.

In summary, there is strong evidence to suggest that 
outcome uncertainty influences behaviour, both when 
future states of the world are imbued with economic 
value, and when discrete states have no explicit value or 
when future states are defined in continuous time as in 
sensorimotor control. Some economic theories argue 
against an explicit notion of uncertainty to explain such  
phenomena9, but there is evidence to suggest that at 
the very least some assumptions of these theories are 
not met77. This indicates that we should expect to find 
an explicit neural encoding of outcome uncertainty to 
explain its impact on behaviour.

Encoding of outcome uncertainty. The neural represen-
tation of uncertainty has been widely investigated in 
neuro economic studies, in which outcome uncertainty is 
usually termed risk — a terminology that is sometimes 
used in reinforcement-learning paradigms. In reinforce-
ment learning, single-unit recordings in monkeys suggest 
that prediction error signals are scaled by the variability 
in possible outcomes81. That is, phasic dopamine neuron 
responses are of the same magnitude for large deviations 
from an expected outcome in high-uncertainty contexts 
and for small deviations in low-uncertainty contexts81, 
a phenomenon that requires a neural representation of 
uncertainty. 

There is also direct evidence for a specific representa-
tion of outcome uncertainty in monkeys who passively 
view reward cues. Here, it has been suggested that the 
rate of change in a tonic ramping of midbrain dopamine 
neurons before reward delivery encodes reward variance82  

(but see the debate in  REFS 83,84). In addition, a sum-
mary-statistic encoding of outcome uncertainty has been 

found in OFC neurons in a study in which outcome 
uncertainty was defined as variance in reward magnitudes 
when two possible rewards had equal probability and dif-
ferent magnitude85. Crucially, the mean reward magnitude 
was encoded by a (largely) different set of neurons in the 
OFC in this experiment.  

This is an important result, because according to 
some economic theories, situations with highly variable 
outcomes have lower internal utility than those with 
less variable outcomes. Hence, neural activity that cor-
relates with outcome uncertainty might reflect utility 
encoding if these theories apply to how the brain works. 
However,  in this experiment, there is evidence show-
ing that distinct neurons respond to uncertainty versus  
utility, which therefore discounts this possibility.

Several human neuroimaging experiments have 
addressed encoding of outcome uncertainty. In some 
of these experiments, outcome certainty was defined as 
the probability of receiving reward, and findings of these 
studies are therefore more informative about expected 
reward anticipation than uncertainty86–88. In other stud-
ies, encoding of outcome uncertainty versus expected 
reward were distinguished. These studies involved par-
adigms in which participants performed an action to 
receive an outcome or just passively awaited a signalled 
outcome, whereby outcome possibilities could either be 
learnt or were explicitly signalled as in economic gambles. 
Such studies investigated both immediate and sustained 
(over a few seconds) BOLD responses to a cue that sig-
nalled outcome uncertainty. Sustained responses possibly 
reflect (slowly) ramping activity in dopaminergic neurons, 
which correlate with uncertainty82. Immediate responses 
to outcome uncertainty during passive anticipation of 
explicitly signalled outcomes were seen within parahip-
pocampal gyrus, transverse temporal gyrus, anterior 
insula, midbrain areas, ACC and localized parietal and 
frontal regions89, and during passive anticipation of previ-
ously learned outcomes in the lateral orbitofrontal gyrus72. 
After choosing between certain and a variable option with 
previously learned outcomes, immediate responses to out-
come uncertainty of the variable option were observed 
in anterior insula73. Upon choosing between an explicitly 
signalled option and one with previously learned out-
comes, outcome uncertainty of the explicit option was 
represented in anterior insula, in contrast to that seen for 
a previously learned option in ACC74.

Sustained BOLD responses during passive anticipation 
of explicitly signalled outcomes were found in anterior 
insula, ventral striatum, thalamus, midbrain and small 
parietal and frontal regions in one study89, in medial pre-
frontal/orbitofrontal regions and hippocampus in another 
study90, in putamen in a third study91, in putamen, anterior 
insula and ventromedial orbitofrontal cortex in a fourth 
study92, and in parietal cortex in a fifth study93. Sustained 
responses to outcome uncertainty during choice involv-
ing explicitly signalled outcomes have been observed in 
anterior insula and orbitofrontal cortex94, and in a task 
involving choices on previously learned outcomes in the 
midbrain75. Furthermore, activation of dorsal ACC has 
been reported during choice for explicitly signalled out-
comes, although it is not clear whether this referred to 
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immediate or sustained responses95. In a paradigm unre-
lated to decision making, during a long stream of visual 
events with an associated incidental task, the entropy of 
outcome predictions (that is, the average uncertainty) for 
each stimulus covaried with immediate BOLD responses 
in the hippocampus96.

Note that all the learning tasks mentioned above 
involved, but did not explicitly investigate responses to, 
rule uncertainty, which is sometimes even confounded 
with outcome uncertainty75. In addition, for all sus-
tained responses, outcome uncertainty is moderately 
confounded with the resolution of uncertainty and the 
associated prediction errors97. Furthermore, the reported 
studies have different standards in terms of the thresholds 
of statistical significance.

Outcome uncertainty is a crucial feature of Posner 
tasks, as discussed above. When cue validity (and there-
fore state uncertainty) is kept constant, the difference 
in reaction times between non-cued and cued targets 
increases after a lesion to basal forebrain acetylcholine 
areas98 and decreases after nicotine application99,100. This 
has been interpreted as indicating an involvement of 
acetylcholine in the representation of outcome uncer-
tainty61. However, as uncertainty was not varied in these 

experiments, acetylcholine might simply be involved in 
shifting attention after an invalid cue. Thus, the notion 
that acetylcholine signals uncertainty about outcomes 
requires further support.

In summary, a few firm conclusions can be drawn 
regarding outcome uncertainty. First, phasic prediction 
error signals in dopaminergic neurons are scaled by out-
come uncertainty. A possible, but debated, mechanism 
for encoding outcome uncertainty is sustained firing of 
these same neurons. Second, a neuronal population in 
OFC carries outcome uncertainty signals in their firing 
rate, independent of value signals. Third, BOLD fMRI 
studies have implicated more than ten distinct brain 
regions as representing outcome uncertainty in different 
situations. These findings await replication in compara-
ble experimental designs and with conservative thresholds 
of statistical significance. A parsimonious conclusion is 
that outcome uncertainty is not a unitary concept in the 
sense that its representation depends on context. Taken 
together, it remains unclear how findings in dopaminer-
gic midbrain regions and OFC relate to each other and to 
overt behaviour, and to what extent outcome uncertainty 
representations depend on the actual outcomes that are 
uncertain.

Conclusions and future directions
In this Review, we considered uncertainty within a hier-
archical processing model (FIG. 2), which allowed us to 
compare empirical findings from widely differing studies 
and experimental contexts. We first considered whether 
uncertainty on different variables guides behaviour, and 
conclude that there is strong evidence from different spe-
cies to suggest that sensory and outcome uncertainty do 
influence behaviour, with sensory uncertainty (most of 
the time) being utilized in a near-optimal manner. 

Economic theory explains the behavioural influence of 
outcome uncertainty by invoking algorithms not involv-
ing uncertainty, but empirical evidence now points to a 
an algorithm that explicitly uses outcome uncertainty. 
There is little theoretical or empirical work to suggest that 
state uncertainty influences behaviour (over and above a 
direct influence of sensory uncertainty on state estima-
tion), and there is only weak evidence to suggest a behav-
ioural impact of rule uncertainty, so far only in situations 
in which this impact is not mathematically optimal. In 
addition to a need for additional empirical work, recent 
theoretical advances on rule uncertainty in reinforcement 
learning needs to be integrated with economic theory 
and with studies on uncertainty of state transition rules 
in non-economic paradigms. It seems parsimonious to 
conclude that in most cases, uncertainty guides behaviour, 
often in an optimal fashion.

A second question we addressed was evidence for a 
neural representation of uncertainty. We conclude that 
neuronal correlates of uncertainty have been demon-
strated across all the posited levels of uncertainty (sensory, 
state, rule and outcome). There is strong evidence for spe-
cific representations of sensory and outcome uncertainty 
that influence other neural computations. However, only a 
handful of well-controlled animal studies have addressed 
how precisely this uncertainty is encoded, and it is still 

Figure 2 | The brain as a hierarchical probabilistic 
machine. Schematic example of hierarchical 
computations in an action episode. Each graph reflects a 
neural variable that is represented by a probability 
distribution of possible values. Possible values can be 
discrete states or continuous values; in this example we 
depict magnitude values. The expected value is the most 
likely value, and the uncertainty of its estimation can be 
inferred from the dispersion of the probability distribution 
(see BOX 1 for quantification of the dispersion). Both the 
expected value and its associated uncertainty influence 
computations performed at other processing levels 
through forward (solid arrows) and backward (dashed 
arrow) projections.
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not understood how it is translated into behaviour.  
A proliferation of BOLD fMRI studies in humans examin-
ing uncertainty across all levels of the proposed hierarchy 
are beset with interpretative problems. Primarily, this is 
because of methodological reasons, which are due both 
to weaknesses of individual experiments and inherent 
difficulties in linking BOLD responses to precise neural 
mechanisms.

Third, we considered the functional anatomy of 
uncertainty representation: is uncertainty encoded in 
a distributed manner or encoded in a single area that 
serves as an uncertainty module, which calculates all 
levels of imprecision? We have highlighted the fact that 
studies report different brain areas that carry uncertainty 
signals, even between studies using similar experimental 
manipulations. This might reflect experimental varia-
tions and confounding factors that we discussed in this 
article. However, we think it is unlikely that such hetero-
geneous results could arise if one brain area is respon-
sible for calculating uncertainty. In particular, when 
distinct forms of uncertainty are directly contrasted, a 
distributed neural representation emerges. As a con-
clusion, we propose a spatially distributed encoding 
of uncertainty that relates to the actual variable we are 
uncertain about.

How is a putative distributed coding scheme organ-
ized? One might assume that coding of uncertainty about 
a variable is associated with encoding value. Although 
this has seldom been investigated in a single experiment, 
the literature considered in this article suggests that this 
assumption is not supported. One methodological rea-
son for this lack of support is that within hierarchical 
models of brain function2, uncertainty at one level of 
neuronal computation necessarily influences the value 
of variables at higher (bottom-up) or lower (top-down) 
levels (FIG. 2). This means that when one manipulates 
uncertainty and measures its correlates on one variable, 
one implicitly manipulates (and measures) the value of 
these other variables. As a simple example, increasing 
sensory uncertainty in a rewarded sensory decision-
making task decreases expected reward; that is, the out-
come value. The present state of research does not allow 
firm conclusions to be made about the spatial distribu-
tion of uncertainty representations in the brain, and a 
clear specification is required of the likely consequences 
from a specific manipulation of uncertainty. The kind 
of hierarchical model used in this Review is a heuristic 
example of specifying processing levels. Specifying pro-
cess levels are necessary to be able to make a statement 
of the precise variables related to uncertainty that are 
influenced in any particular experiment.

Assuming that there are specific neural representa-
tions of sensory, state, rule and outcome uncertainty, 
what type of neural code is involved? This is an issue 
that has been barely addressed experimentally. Several 
models based on theoretical analyses have been pro-
posed11. Among these are population codes that require 
neuronal tissue and fixed-form codes that require only a 
limited number of neurons101. Beyond sensory decision- 
making (in which the rate of change in individual neu-
rons’ firing rate are assumed to carry uncertainty),  

a summary-statistic population code for uncertainty is 
implicitly assumed in most human fMRI studies, as these 
use mass-univariate analysis (an approach that cannot 
detect representations that rest on very few neurons). 

The finding that uncertainty manipulations result in 
widespread brain activation argues for population codes, 
and, specifically, for a summary-statistic representation. 
However, other potential codes have not been rigorously 
investigated. In addition, it is difficult to unambiguously 
detect specific uncertainty correlates in individual neu-
rons or neuron populations in animal experiments. In 
human neuroimaging research, it seems appropriate to 
use multivariate fMRI methods and compare their sensi-
tivity with the sensitivity of mass-univariate methods in 
determining the nature of the coding. This can open the 
door to an unexploited field that might bridge the gap 
between single-neuron recordings and neuronal tissue-
based methods such as human neuroimaging. Note that 
this Review focused on instantaneous representations 
of uncertainty. It is conceivable that uncertainty in, for 
example, a sensory modality is reflected in enduring, 
hard-wired characteristics of a neural network11, which 
was possibly acquired during evolution or ontogenesis, 
with a representation at the level of brain structure rather 
than function.

By arranging the literature on uncertainty into dis-
tinct levels of a hierarchical process, we highlight that 
an abundance of experiments address sensory uncer-
tainty or uncertainty in (particularly economic) out-
comes, whereas state uncertainty and rule uncertainty 
have not been widely studied. In addition, uncertainty 
at the same hierarchical level can occur in different 
circumstances, and there is a heavy bias here as well. 
Economic outcome uncertainty is investigated much 
more than motor outcome uncertainty, and economic 
rule uncertainty has received a lot more attention than 
reinforcement rule uncertainty. Additionally, it appears 
that there is sometimes little connection between dis-
tinct fields of research, which is apparent in the idiosyn-
cratic terminology that is used in different fields for the 
same concepts.

In this article, we have not taken an a priori theoreti-
cal stance on whether or how uncertainty estimates are 
utilized in the brain, but have focused on empirical lit-
erature. Nevertheless, the empirical data are in alignment 
with a class of brain theories that assume a hierarchical 
brain architecture that is suited to solve probabilistic 
computations so as to infer the causal structure of the 
world1–3,6,101; for example, the Bayesian brain and the 
Helmholtz machine. The representation and use of 
uncertainty estimates are important concepts (among 
other concepts) in such theories. This is evident in sen-
sory and motor uncertainty research, which is often 
guided by such theories. We think that it will be fruitful to 
integrate other approaches to uncertainty — in particular 
from the field of neuroeconomics — into such theories.

Many computational models assume that human 
behaviour is optimal and prescribe algorithms that 
could lead to such optimality. Humans indeed often 
perform at a near-optimal level and use uncertainty esti-
mates in doing so. However, there are many examples of 
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behaviour that is not optimal. Such suboptimal behav-
iour might arise from physical characteristics of neu-
ral computations (that is, neural algorithms might be 
approximations that require less computational power 
than an optimal algorithm)10 or from prior expectation 
that would render the neural computation optimal in a 
larger context outside the laboratory. This leads to the 
question of how uncertainty processing relates to psychi-
atric disorders: neural development and learning history 
might influence prior expectations on certain vari-
ables and in this way account for seemingly irrational 
and maladaptive behaviours. Indeed, it can be argued 
that a number of psychiatric illnesses may be linked to 
aberrant processing of environmental uncertainty (that is, 
in generalized anxiety disorder and depression)102 or 
to increased uncertainty in neural computations (for 
example, as in schizophrenia)103. Hence, research into 

uncertainty coding has implications not only for a basic 
understanding of brain functions, but also for informing 
clinical contexts. Furthermore, humans often develop an 
explicit, metacognitive notion of uncertainty104 (which 
we have not discussed in this Review), and this is likely 
to be of particular interest in the context of psychiatric 
conditions.

Although uncertainty is discomforting, it is equally 
true that monotony is an even greater affliction105,106. 
Humans and other animals have evolved to cope with 
external and internal noise, and hence uncertainty in 
the environment may benefit neural computations107–112. 
Perhaps this is why Homo sapiens continuously strives 
to cross frontiers, reach higher ground, is addicted to 
exploration and invests so much store in scientific 
research — activities that abolish old uncertainties and 
endlessly create new ones.
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