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Abstract

Recent years witness a growing interest in nonstandard epistemic logics of “knowing

whether”, “knowing what”, “knowing how”, and so on. These logics are usually not nor-

mal, i.e., the standard axioms and reasoning rules for modal logic may be invalid. In this

paper, we show that the conditional “knowing value” logic proposed by Wang and Fan [12]

can be viewed as a disguised normal modal logic by treating the negation of the Kv oper-

ator as a special diamond. Under this perspective, it turns out that the original first-order

Kripke semantics can be greatly simplified by introducing a ternary relation Rc
i

in standard

Kripke models, which associates one world with two i-accessible worlds that do not agree

on the value of constant c. Under intuitive constraints, the modal logic based on such Kripke

models is exactly the one studied by Wang and Fan [12,13]. Moreover, there is a very nat-

ural binary generalization of the “knowing value” diamond, which, surprisingly, does not

increase the expressive power of the logic. The resulting logic with the binary diamond has

a transparent normal modal system, which sharpens our understanding of the “knowing

value” logic and simplifies some previously hard problems.

Keywords: knowing value, normal modal logic, ternary relation, binary modality,

first-order modal logic

1 Introduction

Classic epistemic logic à la von Wright and Hintikka mainly studies the inference

patterns about propositional knowledge by using a modal operator Ki to express

that agent i knows that a proposition is true. Epistemic logic has been success-

fully applied to various fields to capture knowledge and its change in multi-agent

settings, such as distributed systems and imperfect information games (cf. e.g.

[3,9]). However, in everyday life, knowledge is often expressed in terms of know-

ing the answer to an embedding question, such as “I know whether the claim is

true”, “I know what your password is”, “I know how to prove the theorem” and

so on. Recent years witness a growing interest in the logics of such knowledge

expressions [7,8,12,13,4,5,10]. The fundamental idea is to simply treat “knowing
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whether”, “knowing what”, “knowing how” as new modalities, just as “knowing

that” in standard epistemic logic (cf. the survey [11]).

The resulting logics are usually not normal in the technical sense that usual

modal axioms and rules may be invalid. For example, the K axiom for normal

modal logic is not valid for the knowing whether operator, i.e., Kw(p! q)^Kwp!
Kwq does not hold, e.g., knowing that p is false makes sure that you know whether

p and also whether p! q, but it does not tell you anything about the truth value

of q. Similarly, knowing how to swim and knowing how to cook does not mean

knowing how to swim and cook at the same time, thus invalidating Khp ^ Khq!
Kh(p ^ q), a theorem in normal modal logic when taking Kh as a box modality.

On the other hand, the non-normality does not necessarily mean that we have

to abandon Kripke models for more general models. As demonstrated in [5], we

can still use Kripke models to accommodate those non-normal modal logics by

using nonstandard yet intuitive truth conditions for the new modalities. However,

there is usually a clear asymmetry between the relatively simple modal language

and the “rich” model which may cause troubles in axiomatizing the logic. For

example, the conditional knowing value logic proposed in [12] has the following

language ELKvr(where i 2 I, p 2 P, c 2 C and I,P,C are countably infinite):

� ::= > | p | ¬� | (� ^�) | Ki� | Kvi(�, c)

where Kvi(�, c) says that i knows [what] the value of c [is], given �, e.g., I know

the password of this website given it is 4-digit, since I may have only one 4-digit

password ever, although I am not sure which password I used for this website

without the information on the digits. The language is interpreted on first-order

Kripke modelsM = hS, D, {!i: i 2 I}, V, VCi where hS, {!i: i 2 I}, V i is a standard

Kripke model, and D is a constant domain, and VC assigns to each (non-rigid) c 2 C

an element in D on each s 2 S. The semantics for the new Kvi operator is as follows:

M , s è Kvi(�, c) () for any t1, t2 : if s!i t1, s!i t2,M , t1 è � andM , t2 è �,

then VC(c, t1) = VC(c, t2).

According to this semantics, the formula Kvi(�, c) can also be understood as a first-

order modal formula: 9xKi(�! c = x). 1 Thus ELKvr can be viewed as a (small)

fragment of first-order modal logic where a quantifier is packed with a modality.

It is shown in [12] that ELKvr is equally expressive as public announcement logic

extended with unconditional Kvi operators proposed in [7] (i.e., only Kvi(>, c)

are allowed). Satisfiability of ELKvr over arbitrary models is PSPACE-complete,

as proved in [2]. Note that although values are assigned to the constants in the

model, we cannot talk about them explicitly in the language. In fact, we only care

about whether on some worlds a given constant has exactly the same value. The

contrast between the rich model and the simple language made the completeness

proof of the following axiomatization SELKVrS5 quite involved over multi-agent

1 Note that there is a constant domain D and each c has a unique value on each state.
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S5 models (cf. [13]). 2

System SELKVrS5

Axiom Schemas

TAUT all the instances of tautologies

DISTK Ki(p! q)! (Ki p! Kiq)

T Ki p! p

4 Ki p! KiKi p

5 ¬Ki p! Ki¬Ki p

DISTKv
r Ki(p! q)! (Kvi(q, c)! Kvi(p, c))

Kv
r4 Kvi(p, c)! KiKvi(p, c)

Kv
r? Kvi(?, c)

Kv
r_ K̂i(p ^ q)^ Kvi(p, c)^ Kvi(q, c)! Kvi(p _ q, c)

Rules

MP
p, p! q

q

NECK
�

Ki�

SUB
�

�[p/ ]

RE
 $ �

�$ �[ /�]

Since the Kvi operator is not a modality taking only propositions as arguments, it

is hard to say whether the above logic is normal or not. DISTKvr looks a little bit

like the K axiom but it is in fact about the interaction between Ki and Kvi . Kv
r4

is a variation of the positive introspection axiom, and the corresponding negative

introspection is derivable. Kvr? says that the Kvi operator is essentially a condi-

tional. Axiom Kv
r_ handles the composition of the conditions, where K̂i is the dual

of Ki .

In this paper, we look at ELKvr from a new yet “normal modal logic” perspective

in order to answer the following questions:

(i) Since we do not talk about values in the language, is there a simpler value-

free Kripke-model based semantics for ELKvr that can keep the logic (valid

formulas) the same? If so, we can restore the symmetry between the language

and the model and understand the essence of our logic.

(ii) Can ELKvr be linked to a normal modal logic (modulo some syntactic trans-

formation)? If so, we can apply many standard modal logic techniques to

simplify previously complicated discussions.

We give positive answers to both questions, inspired by a crucial observation:

Observation ¬Kvi(�, c) can be viewed as a diamond operator Üc
i
� which says that

there are two i-accessible �-worlds, which do not agree on the value of c.

Note that to simplify the technical discussion in order to reveal the crucial

points, in this paper we focus on the logic over arbitrary models. Our techniques

can be applied to the S5 setting.

The contributions of this paper are summarized as below:

• We give a simple alternative Kripke semantics to ELKvr without value assign-

ments, which does not change the set of valid formulas. The completeness proof

is much simpler compared to the one in [13].

2 �[ /�] in the rule RE (replacement of equivalents) denotes any formula obtained by replacing some

occurrences of  by � .



Gu & Wang 365

• We generalize Üc
i
� in a natural way to a binary diamond operator Üc

i
(�, ). It

turns out the generalization does not increase the expressive power of the logic

but it can give us a transparent normal modal logic proof system.

• The normal modal logic perspective helps us to discover a bisimulation notion

for ELKvr and obtain a proof system for a weaker language proposed by [7].

Our findings show that ELKvr is essentially a “disguised” normal logic, and this

may help us to understand such nonstandard epistemic operators better.

The rest of the paper is organized as follows: we first introduce in Section 2 the

language with the unary diamond Üc
i

and a semantics based on Kripke model with

both binary and ternary relations under three intuitive constraints. We show that

this semantics is equivalent to the original FO Kripke semantics of ELKvr modulo

validity (under a straightforward syntactic translation). In Section 3 we prove the

completeness of the translated SELKVr system w.r.t. the new semantics directly.

This demonstrates the advantages of using this simplified semantics. In Section 4

we generalize theÜc
i
naturally to a binary one and show that the extended language

is in fact equally expressive as ELKvr . On the other hand, the extended language

facilitates a transparent normal logic proof system. It then helps us in Section 5 to

come up with a notion of bisimulation for ELKvr and obtain a proof system for a

weaker language proposed earlier. We conclude in the end with future directions.

2 Negation of Kvi as a diamond

As we mentioned in the introduction, ¬Kvi(�, c) can be viewed as a diamond for-

mula Üc
i
�: there are two i-accessible �-worlds which do not agree on the value

of c. Then Éc
i
� := ¬Üc

i
¬� means that all the i-accessible ¬�-worlds agree on the

value of c (and it is Kvi(¬�, c) essentially.). For uniformity of the language, we

take Éc
i

as the primitive symbol and introduce the following language (MLKvr):

� ::= > | p | ¬� | (� ^�) | Éi� | É
c
i
�

where p 2 P, c 2 C, i 2 I. We can, without difficulty, inductively define a translation

function T from the original ELKvr to this modal language (the other way is also

straightforward):

Definition 2.1 A translation function T from ELKvr to MLKvr formulas is defined as

follows:

T (p) = p

T (¬�) = ¬T (�)

T (� ^ ) = T (�)^ T ( )

T (Ki�) = Éi T (�)

T (Kvi(�, c)) = Éc
i
¬T (�)

Now we have the following translated axioms (the names are kept):

T (DISTKvr) = Éi(p! q)! (Éc
i
¬q! Éc

i
¬p)

T (Kvr_) = Üi(p ^ q)^Éc
i
¬p ^Éc

i
¬q! Éc

i
¬(p _ q)

T (Kvr?) = Éc
i
(¬?)
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We can massage the axioms, 3 and obtain the following equivalent system (mod-

ulo translation T) from SELKVr (i.e., SELKVr -S5 without the S5 related axioms

T,4,5,Kvr4):

System SMLKVr

Axiom Schemas

TAUT all the instances of tautologies

DISTK Éi(p! q)! (Éi p! Éiq)

DISTKv
r Éi(p! q)! (Éc

i
p! Éc

i
q)

Kv
r_ Üi(p ^ q)^Üc

i
(p _ q)! (Üc

i
p _Üc

i
q)

Rules

MP
�,�! 

 

NECK
�

Éi�

NECKv
r �

Éc
i
�

SUB
�

�[p/ ]

RE
 $ �

�$ �[ /�]

Note that instead of Kvr?, we have a more classic-looking rule NECKvr . In fact,

it is equivalent to have either Kvr? or NECKvr in the system: from NECKv
r , it is

trivial to derive Kvr?, and from Kv
r?, DISTKvr and NECK it is also straightforward

to derive each instance of NECKvr by taking p in DISTKv
r as >.

To a modal logician, SMLKVr may look much more friendly compared to

SELKVr . In particular, Kvr_ is simply a conditional distribution axiom for Üc
i

over

disjunction. Note that Üi(p_q)! (Üi p_Üiq) is valid but Üc
i
(p_q)! (Üc

i
p_Üc

i
q)

is not, e.g., all the p worlds agree on the value of c and all the q worlds agree on

the value of c but they just cannot agree with each other. This demonstrates that

Üc
i

is apparently not a normal modality. However, as we will discover later that this

apparent non-normality is a bit misleading and we will restore the normality in the

next section by considering a natural binary generalization of the Üc
i

operator.

Now we are going to give a simplified but equivalent semantics to MLKvr such

that the system SMLKVr is sound and complete. The idea is to abandon the first-

order Kripke model and use a rather standard Kripke model for propositional modal

logics since much of the information in the FO Kripke model is not relevant for the

language MLKvr .

Definition 2.2 A model for MLKvr is a tuple hS, {!i: i 2 I}, {Rc
i

: i 2 I, c 2 C}, V i,
where

• hS, {!i: i 2 I}, V i is a standard Kripke model with binary relations.

• For each c 2 C, Rc
i

is a triple relation over S satisfying for any s, t, u, v 2 S:

(i) SYM: sRc
i
tu () sRc

i
ut

(ii) INCL: sRc
i
tu only if s!i t and s!i u

(iii) ATEUC: sRc
i
tu and s!i v imply that at least one of sRc

i
t v and sRc

i
uv holds

Intuitively, sRc
i
tu roughly means that s can see two i-accessible worlds t, u

which do not agree on the value of c, although we do not have value assignments

3 For example, T(DISTKvr ) is equivalent to Éi(¬q ! ¬p) ! (Éc
i
¬q ! Éc

i
¬p) under RE, which is

equivalent to Éi(p! q)! (Éi p! Éiq) under SUB.
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for c in the model. Further conditions are imposed to let the ternary relation really

capture what we want. (i) is a symmetry condition on the later two arguments of

Rc
i
. Condition (ii) establishes the connection between the ternary and binary rela-

tions. The most crucial condition is (iii), an anti-euclidean property 4 that says if

two i-accessible worlds do not agree on the value of c then for any third i-accessible

world it must disagree with one of the two worlds on c. 5

t

cs
i

22

i ,,
i

✏✏

u

v

implies

t

c

c

s
i

22

i ,,
i

✏✏

u

v

or

t

cs
i

22

i ,,
i

✏✏

u

c

v

The new semantics is defined as follows which reflects the intuition behind Rc
i
:

M , s ç > always

M , s ç p , s 2 V (p)

M , s ç ¬� , M , s 6ç �
M , s ç � ^ , M , s ç � andM , s ç 

M , s ç Üi� , there exists t such that s!i t andM , t ç �

M , s ç Üc
i
� , there exist u, v such that sRc

i
uv,M , u ç � andM , v ç �

In the rest of this section, we show that the above semantics of MLKvr is equi-

valent to the semantics for ELKvr modulo the syntactic translation T . To show

this, the difficult part is to saturate an MLKvr model with value assignments while

keeping the truth values of formulas modulo translation T . Note that this is not

straightforward, as it is possible in an MLKvr model that sRc
i
t t and there is no way

to assign to c two different values on the same world t. Moreover, it can hap-

pen that sRc
i
uv, s ! j u and s ! j v while it is not the case that sRc

j
uv. However,

we can avoid such problem by preprocessing the MLKvr model before assigning

valuations.

Lemma 2.3 For any set of ELKvr formula Σ[ {�}, Σ è � iff T (Σ) ç T (�).

Proof It suffices to prove that for any set of ELKvr formula Σ, Σ is è-satisfiable iff

T (Σ) is ç-satisfiable. We say that an ELKvr modelM , s is equivalent to an MLKvr

modelN , t if for all � 2 ELKvr : M , s è � () N , t ç T (�). In the following we

show that for any pointed FO Kripke modelM , s for ELKvr , there is an equivalent

MLKvr model N , t, and vice versa.

): For any pointed FO Kripke modelM , s, we can naturally define the ternary

relation Rc
i

as follows: sRc
i
tu iff s!i t, s!i u and VC(c, t) 6= VC(c, u). It’s straight-

4 Euclidean property says that 8x , y, z : xRy ^ xRz! yRz. Taking R0 = R̄ we have 8x , y, z : ¬xR0 y ^
¬xR0z! ¬yR0z, i.e., 8x , y, z : yR0z! xR0 y _ xR0z. Our condition is inspired by this observation.
5 Careful readers may wonder about whether we can break the the ternary relation into two: the

i-relation and an anti-equivalence relation. We will come back to this point at the end of the paper.
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forward to check that the resulting model N is an MLKvr model (satisfying the

three conditions) and N , s is equivalent toM , s.

(: Recall that what we need to show is the following: given an MLKvr model

N = hS, {!i: i 2 I}, {Rc
i

: i 2 I, c 2 C}, V i and t 2 S, find an ELKvr modelM , s

such thatM , s è � () N , t ç T (�). As mentioned, we need to preprocess N
before assigning values.

The preprocessing consists of two steps: splitting and unraveling. We first split

the states in N into two copies in order to handle the uRc
i
vv problem mentioned

before. Let N 0 be hS ⇥ {0, 1}, {!0
i
: i 2 I}, {P c

i
: i 2 I, c 2 C}, V 0i, where:

• (u, x)!0
i
(v, y) () u!i v

• (u, x)P c
i
(v, y)(w, z) () uRc

i
vw and (v, y) 6= (w, z)

• V 0((u, x)) = V (u)

It can be verified that N 0 has the three properties of MLKvr models, 6 and

there is no state v such that uP c
i
vv for any u, v. We can prove the following claim

by a simple induction on the structure of MLKvr formulas:

N , u⌘MLKvr N 0, (u, x) where x 2 {0, 1}

The only non-trivial case is when � = Üc
i
 . Suppose N , u ç Üc

i
 , then

there exist v, v0 2 S (v and v0 are not necessarily different) such that uRc
i
vv0,

N , v ç  and N , v0 ç  . By the definition of P c
i

and the induction hypothesis,

(u, x)P c
i
(v, 0)(v0, 1), N 0, (v, 0) ç and N 0, (v0, 1) ç , so N 0, (u, x) ç Üc

i
 . Sup-

pose N 0, (u, x) ç Üc
i
 , then there exist (v, y)(v0, z) such that (u, x)P c

i
(v, y)(v0, z),

N , (v, y) ç  and N , (v0, z) ç  . According to the definition of P c
i
, this en-

tails (v, y) 6= (v0, z) and uRc
i
vv0. By induction hypothesis, N , (v, y) ç  and

N , (v0, z) ç , so N , u ç Üc
i
 . As a simple consequence,

N , s ⌘MLKvr N 0, (s, 0) (1)

To simplify notation, we shall write (s, 0) as s0 in the rest of this proof.

Now we unravel N 0 at s0 intoM 0 = hW, {,!i: i 2 I}, {Qc
i

: i 2 I, c 2 C}, U 0i:

• W = {hs0, i1, v1, . . . , ik, vki : there is a path s0
i1
! v1 . . .

ik
! vk in N 0}. Note that the

trivial path hs0i 2W ,

• hs0, i1, . . . , vki ,!i hs
0, j1, . . . , umi iff m= k+1, hs0, i1, . . . , vki= hs

0, j1, . . . , uki, jm =

i and vk!
0
i
um in N 0,

• hs0, i1, . . . , vkiQ
c
i
hs0, j1, . . . , umihs

0, l1, . . . , lni iff vk P c
i
umln, hs0, i1, . . . , vki ,!i

hs0, j1, . . . , umi and hs0, i1, . . . , vki ,!i hs
0, l1, . . . , lni,

• U 0(hs0, i1, . . . , ui) = V 0(u).

6 Take the anti-euclidean property as an example. Suppose (u, x)P c
i
(v, y)(v0, y 0) and (u, x)!0

i
(w, z).

If (w, z) is one of (v, y) and (v0, y 0), done. If not, then (u, x)P c
i
(v, y)(v0, y 0) implies uRc

i
vw, and (u, x)!0

i
(w, z) implies u!i w. By the anti-euclidean property of the original model N , we have either uRc

i
vw

or uRc
i
v0w. So either (u, x)Rc

i
(v, y)(w, z) or (u, x)Rc

i
(v0, y 0)(w, z).
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Intuitively, the new modelM 0 starts from hs0i, and each state corresponds to a

path which is accessible from s0 in N 0. It is not hard to verify the three properties

of MLKvr models. 7 By definition, the ,! skeleton ofM 0 is a tree-like structure:

acyclic, every state except the root hs0i can be reached eventually by hs0i and has

one and only one predecessor. It follows that for any u, v inM 0, it is not the case

that u ,!i v and u ,! j v for any i 6= j.

Now we can prove the following by induction on the structure of � 2MLKvr :

M 0, hs0, i1, v1, . . . , ik, vki ⌘MLKvr N 0, vk In particular,

N 0, s0 ⌘MLKvr M 0, hs0i (2)

Now the only thing left is to transform the MLKvr modelM 0 into an equivalent

ELKvr model M . Basically, we just need to give values to c 2 C on each state

according to the ternary relations Qc
j
. LetM = hW, D, {,!i: i 2 I}, U , VCi where:

• W and {,!i: i 2 I} are exactly the same as inM 0;

• U = U 0;

• VC(c, w) = |(c, w)|⇠. That is, VC(c, w) is the equivalence class under the equival-

ence relation ⇠ over C⇥W defined as:

⇠ = {h(c, u), (e, v)i : c = e,9s9 j : s ,! j u, s ,! j v,8w 2 W : ¬wQc
j
uv} [

{h(c, u), (c, u)i | (c, u) 2 C⇥W}

• D = {|(c, w)|⇠ | (c, w) 2 C⇥W};

To make sure M is well-defined, we need to show that ⇠ is an equivalence

relation. Reflexivity and symmetry are obvious, and for transitivity: If (c, w) ⇠
(d, u), (d, u) ⇠ (e, v), then c = d = e, there exist s, i such that s ,!i w, s ,!i u

while for any t not tQc
i
wu, and there exist s0, j such that s0 ,! j u, s0 ,! j v while

for any t not tQc
j
uv. Since every state in W has at most one predecessor, s = s0.

Since there is at most one relation between two different states, i = j. Therefore

s ,!i w, s ,!i v and s ,!i u. Suppose towards contradiction that there exists o 2W

such that oQc
i
wv, then o = s. Thus sQc

i
wu or sQc

i
uv by anti-euclidean property,

contradiction. Therefore (c, w)⇠ (e, v).

We still need to verify that this assignment is good, in the sense that: for any

ELKvr formula �,M 0, w ç T (�) () M , w è � for any w 2 W . We prove this

by induction on � and only show the non-trivial case:

If � = Kvi( , c), then T (�) = Éc
i
¬T ( ).

): SupposeM , w 6è Kvi( , c) then there exist t, t 0 such that w ,!i t, w ,!i t,

M , t è  , M , t 0 è  and (c, t) 6⇠ (c, t 0). According to the definition of ⇠, this

implies 9u such that uQc
i
t t 0. But we have shown that every state has exactly one

predecessor, so u = w, and wQc
i
t t 0. By induction hypothesis, M 0, t ç T ( ) and

M 0, t 0 ç T ( ). Therefore,M 0, w ç Üc
i
T ( ), i.e.,M 0, w 6è Éc

i
¬T ( ).

7 Again, take the anti-euclidean property as an example. Suppose uQc
i
vv0, u ,!i t. Suppose u =

hs0, . . . , uki, v = hs0, . . . , vmi, v0 = hs0, . . . , v0ni, w = hs0, . . . , wl i. Then uk P c
i

vmv0n and uk !
0
i

wl , which

implies at least one of uk P c
i

vmwl and uk P c
i

v0nwl holds. This together with u ,!i v, u ,!i v0 and u ,!i w

imply either uQc
i
vw or uQc

i
v0w.
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(: SupposeM 0, w 6ç Éc
i
¬T ( ), i.e. M 0, w ç Üc

i
T ( ). Then there exist t, t 0 2

W such that wQc
i
t t 0,M 0, t ç T ( ) andM 0, t 0 ç T ( ). So w ,!i t, w ,!i t 0 but

(c, t) 6⇠ (c, t 0), i.e. VC(c, t) 6= VC(c, t 0). By induction hypothesis, M , t è  and

M , t 0 è . Therefore,M , w 6è Kvi( , c).

It follows that for any ELKvr formula �,

M 0, hs0i ç T (�) () M , hs0i è � (3)

With (1), (2) and (3), we can now conclude that for any MLKvr model N , t

there is always an equivalent ELKvr modelM , s and this concludes the proof. É

Remark 2.4 The above lemma implies that for any ELKvr formula �:

è � () ç T (�)

which asserts the validities are the same modulo the translation. We need the

stronger version to handle strong completeness later.

3 Completeness of SMLKVr

In this section, we show a direct proof of the strong completeness of SMLKVr

proposed in the previous section. As we will see, this proof is much simpler com-

pared to the original completeness proof of SELKVr in [13] due to the fact that

we do not need to construct a FO canonical Kripke model with value assignments

anymore.

Definition 3.1 The canonical model of SMLKVr is a tuple

M = hS, {!i: i 2 I}, {Rc
i

: i 2 I, c 2 C}, V i

where:

• S is the set of all maximal SMLKVr -consistent sets of MLKvr formulas,

• s!i t () {� : Éi� 2 s} ✓ t,

• sRc
i
tu () (1){� : Éi� 2 s} ✓ t \ u and (2){ : Éc

i
 2 s} ✓ t [ u,

• V (s) = {p : p 2 s}.

Note that condition (2) for Rc
i

says that if s can see two i-accessible worlds

which do not agree on c then at least one should satisfy  for each Kvi(¬ , c) 2 s.

Proposition 3.2 The canonical modelM is an MLKvr model.

Proof We only need to check the three conditions of Rc
i
.

(i) sRc
i
uv) sRc

i
vu: Obvious.

(ii) sRc
i
uv) s!i u: By condition (1) in the definition of Rc

i
.

(iii) sRc
i
uv and s !i t ) either sRc

i
ut or sRc

i
t v: Suppose not. Then according to

the definition of Rc
i
, we have { : Éc

i
 2 s} 6✓ u [ t and { : Éc

i
 2 s} 6✓

v [ t. So there exist  1, 2 2 { : Éc
i
 2 s} such that  1 62 u [ t and
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 2 62 v [ t. According to the property of maximal consistent sets, this entails

 1 ^ 2 62 u [ t and  1 ^ 2 62 v [ t. Now, we distinguish two situations:

Üi(¬ 1 ^ ¬ 2) 2 s and Üi(¬ 1 ^ ¬ 2) 62 s, and go on to show that in both

cases we would arrive at contradiction.

Suppose Üi(¬ 1 ^ ¬ 2) 2 s. Note that since  1, 2 2 { : Éc
i
 2 s},

Éc
i
 1 2 s and Éc

i
 2 2 s. Then according to Kv

r_, we have Éc
i
( 1 ^ 2) 2 s.

So  1 ^ 2 2 { : Éc
i
 2 s}. Since { : Éc

i
 2 s} ✓ u [ v,  1 ^ 2 2 u [ v.

But this means that  1 ^ 2 2 u[ t or v [ t, contradiction.

Suppose Üi(¬ 1 ^¬ 2) 62 s, then Éi( 1 _ 2) 2 s. According to the defin-

ition of Rc
i
, we have  1 _ 2 2 t. By the property of MCS, at least one of  1

and 2 is in t. However, since 1 62 u[ t and 2 62 v[ t, we have 1, 2 62 t,

contradiction.

Therefore, the canonical modelM is indeed an MLKvr model. É

By a Lindenbaum-like argument, every consistent set of MLKvr formulas can

be extended to a maximal consistent set (of MLKvr formulas). In the following

we (as routine) prove the existence lemma for both modalities Üi and Üc
i

in order

to obtain the truth lemma. The proof is the SMLKVr adaption of the proof of

SELKVr in [13].

Given a state s 2 S such that Üc
i
� 2 s. We let Z = { | Éi 2 s} [ {�} and

X = {� | Éc
i
� 2 s}. Since X is countable, we list the elements in X as �i for i 2 N.

Note that since ` Éc
i
>, > 2 X , namely X is non-empty.

Fact 3.3 For any � 2 X , {�} [ Z is consistent. Therefore Z and every � are also

consistent.

Proof Suppose not, then there exists � 2 X ,  1, . . . , n 2 Z such that ` 1 ^ · · ·^
 n ^ � ! ¬� . By NECK and DISTK, we have ` Éi( 1 ^ · · · ^  n) ! Éi(� !
¬�). Since Éi 1, . . . ,Éi n 2 s, Éi(� ! ¬�) 2 s. Note that Kvr_ is equivalent to

Éi(p! q)! (Üc
i
p! Üc

i
q). By SUB, we have ` Éi(�! ¬�)^Ü

c
i
�! Üc

i
¬� . This

together with the fact that Éi(� ! ¬�) 2 s and Üc
i
� 2 s (assumption), we have

Üc
i
¬� 2 s, contradiction. Since > 2 X , {>}[ Z is consistent thus Z is consistent.É

Let B0 = Z [ {�0}, C0 = Z . We inductively construct Bn and Cn as following:

• If Bn [ {�n+1} is consistent, then Bn+1 = Bn [ {�n+1}, Cn+1 = Cn.

• Else, Bn+1 = Bn, Cn+1 = Cn [ {�n+1}.

• Finally, let B =
S

n<! Bn, C =
S

n<! Cn.

In order to show that B and C are consistent we first show that Bn and Cn are

consistent for each n<!.

Proposition 3.4 For any k � 0, if Bk is consistent and �k+1 is not consistent with

Bk, then �k+1 is consistent with Ck. Therefore Bk and Ck are consistent for k 2 N.

Proof Suppose not, i.e., �k+1 is not consistent with both Bk and Ck. Let U = Bk\Z ,

V = Ck \ Z , U = {¬ :  2 U}, and V = {¬ :  2 V}. Then there exist

↵1, . . . ,↵l ,�1, . . . ,�m,�1, . . . ,�n 2 Z such that:

• ` ↵1 ^ · · ·^↵l ^
V

U ^�! ¬�k+1
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• ` �1 ^ · · ·^ �m ^
V

V ^�! ¬�k+1

• ` �1 ^ · · ·^ �n ^
V

U ^�!
V

V

The last one is due to the fact that any formula in Ck \ Z is inconsistent with Bk by

construction. By NECK, DISTK and the definition of Z and X , we have

• Éi(
V

U ^�! ¬�k+1) 2 s

• Éi(
V

V ^�! ¬�k+1) 2 s

• Éi(
V

U ^�!
V

V ) 2 s

First, we claim that Üi(
V

U ^ �) 2 s. If not, then Éi¬(
V

U ^ �) 2 s, which

means that ¬(
V

U ^�) 2 Z ✓ Bk. But as U ✓ Bk, � 2 Bk, this implies that Bk is

inconsistent, contradiction.

Then, we claim that Üi(¬�k+1 ^
V

V ) 2 s. Since Éi(
V

U ^�! ¬�k+1) 2 s and

Éi(
V

U ^� !
V

V ) 2 s then Éi(
V

U ^� ! ¬�k+1 ^
V

V ), we immediately get

Üi(¬�k+1 ^
V

V ) 2 s due to the fact Üi(
V

U ^�) 2 s that we just showed.

Finally, since Éc
i
�k+1 2 s and Éc

i
 2 s for all  2 V , Éc

i
(�k+1 ^
V

V ) 2 s.

Therefore Éc
i
¬� 2 s, contradiction to Üc

i
� 2 s.

Now, we can prove that Bk and Ck are consistent for any k 2 N. We do induction

on k. For k = 0, then B0 = C0 = Z , whose consistency is shown in Fact 3.3. For

k = i+1, consider whether �i+1 is consistent with Bi . If �i+1 is consistent with Bi ,

then Bk = Bi [�i+1 and Ck = Ci (by induction hypothesis) are consistent. If �i+1 is

inconsistent with Bi , then by induction hypothesis, Bi = Bi+1 and Ci are consistent.

So according to the above conclusion Ci+1 is also consistent. É

Proposition 3.5 B =
S

n<! Bn and C =
S

n<! Cn are both consistent.

Proof Suppose B is not consistent. That is, there exist �1, . . . ,�n 2 B such that

` �1^ · · ·^�n!?. Therefore, there must be a finite m such that �1, . . . ,�n 2 Bm.

But this means that Bm is already inconsistent, contradictory to the construction of

Bk. The case for C is similar. É

It is routine to prove the following:

Lemma 3.6 (Existence Lemma for Üi) Given a state s 2 S. If Üi� 2 s, then there

exists t 2 S such that s!i t and � 2 t;

Also we have the existence lemma for Üc
i
:

Lemma 3.7 (Existence Lemma for Üc
i
) Given a state s 2 S. If Üc

i
 2 s, then there

exist t, u 2 S such that sRc
i
tu and  2 t \ u.

Proof Let Z , B and C be defined as above. Due to Proposition 4.5 B and C are

both consistent. Therefore, both can be extended into maximal consistent sets,

say t and u. Now, the construction of B and C itself guarantee that sRc
i
tu and

� 2 t, u. É

Lemma 3.8 (Truth Lemma) For any state s 2M and �,M , s ç � () � 2 s.

Proof Prove by induction. We only give the Üc
i
 case; the others are routine.
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): SupposeM , s ç Üc
i
 . Then there exist t, u such that sRc

i
tu,M , t ç and

M , u ç  . By induction hypothesis,  2 t \ u. If Üc
i
 62 s, then Éc

i
¬ 2 s, which

implies ¬ 2 t [ u by the construction of Rc
i
, contradiction. Therefore, Üc

i
 2 s.

(:Suppose Üc
i
 2 s. Then according to the existence lemma for Üc

i
, there exist

t, u such that sRc
i
tu and  2 t \ u. By induction hypothesis,M , t ç ,M , u ç .

ThereforeM , s ç Üc
i
 . É

The completeness result then follows immediately:

Theorem 3.9 (Completeness) SMLKVr is strongly complete over arbitrary models.

Remark 3.10 At this point, it is interesting to compare our canonical model with

the canonical model used in [13]. A complication in [13] is that merely max-

imal consistent sets are not enough to build a FO canonical Kripke model. How-

ever, as we have seen, we only use the maximal consistent sets in our canonical

MLKvrmodel: it does not involve value assignments. Thus we have restored the

symmetry between the logical language and the model to some extent: there is no

longer too much information in the model, which cannot be talked about by the

language. Note that we allow sRi t t, which also helps to have compact models.

4 Extended language with binary modalities

In the previous sections, we treatÜc
i

as a unary modality interpreted by a ternary re-

lation. Essentially, Üc
i

can be viewed as a binary modality where the two arguments

are the same. In this section, we restore the symmetry between the semantics and

the syntax one step further by having the binary Üc
i
(·, ·) in the language. Surpris-

ingly, this extension does not increase the expressive power of MLKvr . What is

more, the new logic is normal. Consequently, the extension will help us to under-

stand MLKvr more deeply from a normal modal logic point of view.

The extended language MLKvb is given by the following BNF (b for binary):

� ::= > | p | ¬� | (� ^�) | Éi� | É
c
i
(�,�)

We define Üc
i
( ,�) as ¬Éc

i
(¬ ,¬�). And Üc

i
� is now equivalent to the MLKvb

formula Üc
i
(�,�). To see the intuition, for example, Üc

i
(p,¬p) says that i can see

a p world and a ¬p world which do not agree on the value of c. Formally, the

semantics is defined on the same MLKvr models M = hS, {!i: i 2 I}, {Rc
i

: i 2
I, c 2 C}, V, VCi:

M , s ç Üc
i
(�, ) , there exist t, u 2 S such that sRc

i
tu,M , t ç � andM , u ç .

The above semantics coincides with the standard semantics for binary diamond

modalities [1]. 8 Note that Üc
i
(�, ) is essentially different from Üc

i
(� _ ): the

latter only says that there are two �_ -successors that have different values of c,

8 Binary modalities appear in many modal logics, such as the until operator in temporal logic, and the

relevant implication in relevance logic interpreted on Kripke models with a ternary relation.
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but not necessarily one � world and one  world. So, on first sight, MLKvrseems

to be weaker than MLKvb.

However, we will show by the following lemma that MLKvr and MLKvb are

equally expressive, by reducing the binary Üc
i

to the unary Üc
i

in presence of the

diamond Üi .

Lemma 4.1 Üc
i
(�, ) is equivalent to the disjunction of the following three formulas:

(i) Üc
i
� ^Üi 

(ii) Üc
i
 ^Üi�

(iii) Üi� ^Üi ^¬Ü
c
i
� ^¬Üc

i
 ^Üc

i
(� _ )

Proof The proof consists of two directions.

First, we show that each of the three disjuncts entails Üc
i
(�, ).

(i) For any modelM , s that satisfies Üc
i
� ^ Üi , there exists t, u 2 S such that

sRc
i
tu, t ç � and u ç �, and exists v such that s!i v and v ç  . According

to the property of Rc
i
, at least one of sRc

i
t v and sRc

i
uv holds. W.l.o.g. suppose

sRc
i
t v. Then according to the semantics of Üc

i
, we have s ç Üc

i
(�, ).

(ii) For Üc
i
 ^Üi�, the proof is similar to (i).

(iii) IfM , s ç Üi�^Üi ^¬Ü
c
i
�^¬Üc

i
 ^Üc

i
(�_ ), then: s has �-successors and

 -successors; all�-successors have the same value of c, all�-successors have

the same value of c, but the two values are different due toM , s ç Üc
i
(�_ ).

So we can easily guarantee that there are two states, one�-successor and one

 -successor of s such that they have different values with regard to c. This

meansM , s ç Üc
i
(�, ).

Second, we prove that ifM , s ç Üc
i
(�, ), then at least one of (i), (ii) and (iii)

holds.

SupposeM , s ç Üc
i
(�, ), namely there exist t, u 2M such that sRc

i
tu,M , t ç

� andM , u ç . We immediately haveM , s ç Üi� ^Üi ^Ü
c
i
(� _ ). If neither

Üc
i
� nor Üc

i
 holds on s, then M , s ç Üi� ^ Üi ^ ¬Ü

c
i
� ^ ¬Üc

i
 ^ Üc

i
(� _ ).

Therefore, M , s ç (Üc
i
� ^ Üi ) _ (Ü

c
i
 ^ Üi�) _ (Üi� ^ Üi ^ ¬Ü

c
i
� ^ ¬Üc

i
 ^

Üc
i
(� _ ))
In sum, we can now conclude the equivalence. É

With this lemma in hand, the reduction theorem is straightforward:

Theorem 4.2 (Reduction) For any MLKvb formula�, there exists an MLKvr formula

 such that for any pointed modelM , s: M , s ç � () M , s ç .

Proof We define a reduction function r inductively:

• r(p) = p; r(¬�) = ¬r(�); r(� ^ ) = r(�)^ r( ); r(Üi�) = Üi r(�);

• r(Üc
i
(�, )) = (Üc

i
r(�) ^ Üi r( )) _ (Ü

c
i
r( ) ^ Üi r(�)) _ (Üi r(�) ^ Üi r( ) ^

¬Üc
i
r(�)^¬Üc

i
r( )^Üc

i
(r(�)_ r( ))).

The correctness of the reduction is guaranteed based on Lemma 4.1. It is not

hard (but important) to see that the rewriting always terminates. É
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Remark 4.3 Although MLKvr is equally expressive as MLKvb in presence of Üi ,

it is not the case if Üi is absent. To see this, consider the following two pointed

models M , s and N , x where sRc
i
tu, sRc

i
uv in the left model, and xRc

i
yz in the

other model:

t : p
c

y : p

cs

i
99

i //

i
%%

u : p x

i
88

i
&&

v : q

c

z : p

We can use Üc
i
(p, q) to distinguish the two pointed models; however, they are

indistinguishable by using any formula with the unary Üc
i

but no Üi , which can be

proved by a simple induction.

Now observe that MLKvb is a standard modal language defined on standard

Kripke models with standard semantics. It is a relatively routine exercise to

propose a normal modal logic system with the following axioms SYM, INCL and

ATEUC to capture the corresponding special properties of the models:

System SMLKVb

Axiom Schemas

TAUT all the instances of tautologies

DISTK Éi(p! q)! (Éi p! Éiq)

DISTKv
b Éc

i
(p! q, r)! (Éc

i
(p, r)! Éc

i
(q, r))

SYM Éc
i
(p, q)! Éc

i
(q, p)

INCL Üc
i
(p, q)! Üi p

ATEUC Üc
i
(p, q)^Üi r ! Ü

c
i
(p, r)_Üc

i
(q, r)

Rules

MP
�,�! 

 

NECK
�

Éi�

NECKv
b �

Éc
i
(�, )

SUB
�

�[p/ ]

RE
 $ �

�$ �[ /�]

Note that due to SYM, we do not need to include the variations of DISTKvb and

NECKv
b w.r.t. the second argument in the binary Éc

i
(cf. [1] for the standard proof

systems of polyadic normal modal logics.)

In this system SMLKVb we can derive all the axioms in SMLKVr . Before

proving it, we first show the following handy propositions.

Proposition 4.4 `SMLKVb Üc
i
(p _ q, r)! Üc

i
(p, r)_Üc

i
(q, r).

Proof This proposition captures the interaction between boolean operator _ and

Üc
i

9 . So we can only start from the axiom DISTKv
b. Note that RE is used fre-

quently.

(1) Éc
i
(p! q, r)! (Éc

i
(p, r)! Éc

i
(q, r)) (DISTKvb)

(2) ¬(Éc
i
(p, r)! Éc

i
(q, r))! ¬Éc

i
(p! q, r)

(3) Éc
i
(p, r)^Üc

i
(¬q,¬r)! Üc

i
(p ^¬q,¬r)

(4) Üc
i
(¬q,¬r)! (¬Éc

i
(p, r)_Üc

i
(p ^¬q,¬r))

(5) Üc
i
(¬q,¬r)! (Üc

i
(¬p,¬r)_Üc

i
(p ^¬q,¬r))

9 Actually this is a standard axiom for normal modal logic. In case the binary case might not be that

familiar, we give the proof here.
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(6) Üc
i
(p _ q, r)! (Üc

i
(p, r)_Üc

i
(¬p ^ (p _ q), r)) ((5) & SUB)

(7) Üc
i
(p _ q, r)! (Üc

i
(p, r)_Üc

i
(q, r)) É

Proposition 4.5 `SMLKVb Üc
i
(p ^ q, r)! Üc

i
(p, r)^Üc

i
(q, r).

Proof This is similar to the above proof. É

Proposition 4.6 `SMLKVb Éc
i
(p, r)^Éc

i
(q, r)^Üi¬r ! Éc

i
(p, q).

Proof Easily derived from ATEUC: Üc
i
(p, q)^Üi r ! Ü

c
i
(p, r)_Üc

i
(q, r). É

Proposition 4.7 All the SMLKVr axioms are provable in SMLKVb and the rules of

SMLKVr are admissible in SMLKVb (viewing Üc
i
� as Üc

i
(�,�)).

Proof We need to check DISTKvr , Kvr_ and NECKv
r in SMLKVr .

(i) DISTKv
r :

(1) Üc
i
(p, q)! Üi p (INCL)

(2) Éi¬p! Éc
i
(¬p,¬q)

(3) Éi(p! q)! Éc
i
(p! q, p) ((2) SUB)

(4) Éi(p! q)! Éc
i
(p! q, q) ((2) SUB)

(5) Éi(p! q)! (Éc
i
(p! q, p)^Éc

i
(p! q, q)) ((3) (4))

(6) Éi(p! q)! (Éc
i
(p, p)! Éc

i
(q, p))^ (Éc

i
(p, q)! Éc

i
(q, q)) (DISTKvb)

(7) Éi(p! q)! (Éc
i
p! Éc

i
q) ((6) SYM)

(ii) Kv
r_:

(1) Üc
i
(p, q)^Üi r ! Ü

c
i
(q, r)_Üc

i
(p, r) (ATEUC)

(2) Üc
i
(p _ q, p _ q)^Üi(p ^ q)! Üc

i
(p _ q, p ^ q) (SUB)

(3) Üc
i
(p _ q)^Üi(p ^ q)! (Üc

i
(p, p ^ q)_Üc

i
(q, p ^ q)) (Prop. 4.4)

(4) Üc
i
(p _ q)^Üi(p ^ q)! (Üc

i
(p, p)_Üc

i
(q, q)) (Prop. 4.5)

(5) Üc
i
(p _ q)^Üi(p ^ q)! (Üc

i
p _Üc

i
q)

(iii) NECKv
r : It is a special case of NECKvb in SMLKVb where the two arguments

are the same.

Other axioms and rules in SMLKVr are exactly the same as in SMLKVb. É

Now as we can see below, the standard technique suffices to prove the com-

pleteness of SMLKVb. The only tricky point is the ternary canonical relation.

Theorem 4.8 SMLKVb is sound and strongly complete w.r.t. MLKvr models.

Proof The soundness is straightforward to check. For the completeness we build

a canonical model:

M = hS, {!i: i 2 I}, {Rc
i

: i 2 I, c 2 C}, VCi

• S is the set of all maximal SMLKVb-consistent sets of MLKvb formulas,

• s!i t () {� : Éi� 2 s} ✓ t,

• sRc
i
tu () (1) {� : Éi� 2 s} ✓ t \ u and (2) for any Éc

i
(�, ) 2 s, � 2 t or

 2 u.

• VC(s) = {p : p 2 s}.
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Note that the existence lemma for Üc
i

is quite routine for normal polyadic modal

logic, cf. [1]. The idea is to build two i-successors t, u of s if Üc
i
(�, ) 2 s, such

that � 2 t,  2 u and sRc
i
tu. According to the method in [1, pp. 200], we can

build two maximal consistent sets t, u such that � 2 t and  2 u, and for all

Éc
i
(�1,�2) 2 s we have �1 2 t or �2 2 u. To make sure sRc

i
tu we just need to

check condition (1). To see this, note that by INCL we have Éi� ! É
c
i
(� ,✓ ) 2 s

and by SYM we have Éi� ! É
c
i
(✓ ,�) 2 s. Therefore for each Éi� 2 s we have

Éc
i
(� ,?) 2 s and Éc

i
(?,�) 2 s. Due to the construction of maximal consistent sets

t, u, we have � 2 t or ? 2 u, and ? 2 t or � 2 u, which implies � 2 t \ u. Thus

{� : Éi� 2 s} ✓ t \ u. This concludes the proof that sRc
i
tu. Based on the existence

lemmas for both Üi and Üc
i

we can prove the truth lemma � 2 s () s ç � using

standard techniques.

In the rest of this proof we verify that the canonical model satisfies the three

properties of MLKvr models. Note that condition (1) in the definition of Rc
i

is

symmetric, and condition (2) is also implicitly symmetric due to axiom SYM. It is

also obvious that sRc
i
tu implies sRi t and sRiu by definition. We only need to verify

the anti-euclidean property.

Towards contradiction suppose sRc
i
tu, s!i v but neither sRc

i
t v nor sRc

i
uv. Then

according to the definition of Rc
i
, there exist Éc

i
(�1, 1),É

c
i
(�2, 2) 2 s such that

¬�1 2 t,¬ 1 2 v, ¬�2 2 u and ¬ 2 2 v. Therefore ¬ 1 ^ ¬ 2 2 v. Since

s!i v, Üi(¬ 1 ^¬ 2) 2 s. By DISTKvb, SYM, and NECKv
b, it is not hard to show

`SMLKVb Éc
i
(�1, 1) ! É

c
i
(�1, 1 _ 2) and `SMLKVb Éc

i
(�2, 2) ! É

c
i
(�2, 1 _

 2). SoÉc
i
(�1, 1_ 2),É

c
i
(�2, 1_ 2) 2 s. By Proposition 4.6 and SUB, `SMLKVb

Éc
i
(�1, 1_ 2)^É

c
i
(�2, 1_ 2)^Üi( 1_ 2)! É

c
i
(�1,�2). Since Éc

i
(�1, 1_

 2), É
c
i
(�2, 1 _ 2) and Üi( 1 _ 2) are all in s, Éc

i
(�1,�2) 2 s. This together

with sRc
i
tu imply that �1 2 t or �2 2 u, contradictory to the assumption that

¬�1 2 t and ¬�2 2 u. É

5 Applications

5.1 Bisimulation

In the field of modal logic, various bisimulation notions help to characterize the

expressive power of the new semantics-driven logics. As a normal modal logic,

MLKvb has a natural notion of bisimulation (cf. [1]), and it will in turn help us to

find a notion of bisimulation over FO Kripke models for the original ELKvr .

Definition 5.1 (C-Bisimulation) Let M1 = hS1, {!1
i
: i 2 I}, {Rc

i
: i 2 I , c 2

C}, V1i, M2 = hS2, {!2
i
: i 2 I , c 2 C}, {Qc

i
: i 2 I}, V2i be two models for MLKvb

(also for MLKvr). A C-bisimulation between M1 and M2 is a non-empty binary

relation Z ✓ S1 ⇥ S2 such that for all s1Zs2, the following conditions are satisfied:

Inv : V1(s1) = V2(s2);

Zig : s1!
1
i

t1) 9t2 such that s2!
2
i

t2 and t1Zt2;

Zag : s2!
2
i

t2) 9t1 such that s1!
1
i

t1 and t1Zt2;

Kvb-Zig : s1Rc
i
t1u1) 9t2, u2 2 S2 such that t1Zt2, u1Zu2 and s2Qc

i
t2u2;

Kvb-Zag : s2Qc
i
t2u2) 9t1, u1 2 S1 such that t1Zt2, u1Zu2 and s1Rc

i
t1u1.
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We sayM , s and N , t are C-bisimilar (M , s$C N , t) if there is a C-bisimulation Z

betweenM and N and (s, t) 2 Z.

Theorem 5.2 IfM1, s1
$

CM2, s2, thenM1, s1 ⌘MLKvb M2, s2.

Proof Suppose M1, s1
$

C M2, s2. We prove by induction on the structure of

MLKvb formulas, and the only non-trivial case is when � = Üc
i
( ,�).

SupposeM1, s1 ç Ü
c
i
( ,�), then 9t1, u1 2 S1 such that s1Rc

i
t1u1 withM1, t1 ç

 and M1, u1 ç � . By Kvb-Zig, there exist t2, u2 2 S2 such that t1Zt2, u1Zu2

and s2Qc
i
t2u2. By induction hypothesis, M2, t2 ç  andM2, u2 ç � . Therefore,

M2, s2 ç Ü
c
i
( ,�). The other side is similar by Kvb-Zag. É

As in normal modal logic, we have the following theorem for MLKvb (we omit

the rather standard proof, but one can try to see how the binary modality Üc
i

facil-

itates the proof):

Theorem 5.3 Suppose M , N are finite models. Then M , s $C N , t ()
M , s ⌘MLKvb N , t.

Since MLKvr and MLKvb have the same expressive power we immediately

have:

Corollary 5.4 Suppose M and N are finite models. Then M , s$C N , t ()
M , s ⌘MLKvr N , t.

In [12], a notion of bisimulation has been offered for ELKv, the epistemic logic

with unconditional Kvi operators. However, for ELKvr it was not that clear about

the suitable bisimulation notion. Now we can recast C-bisimulation back to the

setting of ELKvr over FO Kripke models since ELKvr and MLKvr are essentially the

same language.

Definition 5.5 (C-bisimulation over FO Kripke models) Given two pointed FO

Kripke models M = hS1, D1, {!1
i
: i 2 I}, V1, V 1

C
i, and N = hS2, D2, {!2

i
: i 2

I}, V2, V 2
C
i, a relation Z ✓ S1 ⇥ S2 is a C-bisimulation between the two modelsM ,N

if whenever s1Zs2 we have:

Inv V1(s1) = V2(s2);

Zig : s1!
1
i

t1) 9t2 such that s2!
2
i

t2 and t1Zt2;

Zag : s2!
2
i

t2) 9t1 such that s1!
1
i

t1 and t1Zt2;

Kvr-Zig If s1 !
1
i

t1 and s1 !
1
i

u1 and V 1
C
(c, t1) 6= V 1

C
(c, u1) then there are t2 and

u2 in N such that s2!
2
i

t2, s2!
2
i

u2, t1Z t2, u1Zu2, and V 2
C
(c, t2) 6= V 2

C
(c, u2) in

N .

Kvr-Zag If s2!
2
i

t2 and s!2
i

u2 and V 2
C
(c, t2) 6= V 2

C
(c, u2) then there are t1 and u1

inM such that s1!
1
i

t1, s!1
i

u1, t1Z t2, u1Zu2 and V 1
C
(c, t1) 6= V 1

C
(c, u1) inM .

Abusing the notation, FO Kripke models M , s and N , t are C-bisimilar (M , s$C

N , t) iff there exists a C-bisimulation Z betweenM and N such that s, t 2 Z.

Now since MLKvb and MLKvr have exactly the same expressive power, and

MLKvr is equivalent to ELKvr modulo translation. The above C-bisimilation works

for ELKvr , as proved in detailed in [6]:
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Theorem 5.6 For finite FO Kripke models M1,M2: M1, s1
$

C M2, s2 iff

M1, s1 ⌘ELKvr M2, s2.

5.2 Completeness of SMLKV

The unconditional Kv operator was introduced in [7] in the context of epistemic

logic (call the language ELKv):

� ::= > | p | ¬� | (� ^�) | Ki� | Kvic

Essentially, Kvic is Kvi(>, c) in ELKvr . The semantics is as in the case of ELKvr ,

which is based on FO Kripke models. Plaza gave two axioms on top of S5 which

are the counterparts of the introspection axioms in standard epistemic logic (over

FO epistemic models):

Kvic! KiKvic ¬Kvic! Ki¬Kvic

However, neither [7] nor [12,13] gave a complete proof of this simple logic. Here

we look at this language from our Üc
i

perspective, and consider the corresponding

simple language (MLKv) over the class of all the models:

� ::= > | p | ¬� | (� ^�) | Éi� | É
c
i
?

Note that ¬Kvic can be viewed as Üc
i
>. Thus Kvic is indeed Éc

i
?.

The semantics is just as in MLKvr but we only allow > as the argument for Üc
i
.

As in the case of ELKvr and MLKvr we can simply show that:

Proposition 5.7 For any set of ELKv formula Σ[ {�}, Σ è � iff T (Σ) ç T (�).

Now based on this view, a natural system SMLKV is obtained by simplifying

the system SMLKVr :

System SMLKV

Axiom Schemas

TAUT all the instances of tautologies

DISTK Éi(p! q)! (Éi p! Éiq)

INCLT Üc
i
>! Üi>

Rules

MP
�,�! 

 

NECK
�

Éi�

SUB
�

�[p/ ]

RE
 $ �

�$ �[ /�]
Note that due to the fact that the only Üc

i
formula is Üc

i
> (and Éc

i
?), most of the

previous axioms and rules do not apply. We only need to add one axiom INCLT on

top of the usual normal modal logic, inspired by the INCL axioms of SMLKVb.

We go on to prove the completeness of SMLKV.

Definition 5.8 The canonical model M is a tuple hS, {!i: i 2 I}, {Rc
i

: i 2 I, c 2
C}, V i where:

• S is the set of maximal SMLKV-consistent sets,

• s!i t () {� : Éi� 2 s} ✓ t,
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• sRc
i
t t 0 () s!i t, s!i t 0 and Üc

i
> 2 s,

• V (s) = {p : p 2 s}

The only tricky point is the definition of canonical relations Rc
i
. The intuition

is that as long as a state can see two states having different values, then we can

safely assume all the states that it can see have different values. Note that in MLKvr

models we also allow sRc
i
t t. We first need to verify thatM is an MLKvr model:

Proposition 5.9 The canonical modelM is an MLKvr model.

Proof We only need to verify the three conditions. The first two are again obvious

by definition, so we only prove the anti-euclidean property. Suppose sRc
i
t t 0 and

s !i u. Then s !i t, s !i t 0 and Üc
i
> 2 s. So both sRc

i
tu and sRc

i
t 0u by the

definition of Rc
i
. É

The existence lemma for Üi is routine. As for the case of Üc
i
:

Lemma 5.10 (Existence Lemma for Üc
i
) If Üc

i
> 2 s, then there exist t, u such that

sRc
i
tu.

Proof Suppose Üc
i
> 2 s then due to INCLT Üi> 2 s. By the existence lemma for

Üi , it follows that there exists t such that s!i t. Therefore by definition sRc
i
t t. É

Lemma 5.11 For any s inM and MLKv formula �,M , s ç � () � 2 s.

Proof The only interesting case is when � = Üc
i
>.

): SupposeM , s ç Üc
i
>. Then there exist t, t 0 such that sRc

i
t t 0. By the defini-

tion of Rc
i
, Üc

i
> 2 s.

(: Suppose Üc
i
> 2 s. By the existence lemma for Üc

i
, there exist t, t 0 such that

sRc
i
t t 0. ThereforeM , s ç Üc

i
>. É

Theorem 5.12 SMLKV is strongly complete w.r.t. MLKv models.

A corollary follows immediately based on Proposition 5.7:

Corollary 5.13 SMLKV (viewing INCLT as ¬Kvi> ! K̂i>) is strongly complete

w.r.t. ELKvr models.

6 Discussion and future work

In this paper, we introduce a ternary relation based simple semantics to the “know-

ing value” logic without explicit value assignments. Under this semantics, the logic

can be viewed as a disguised normal modal logic with both standard unary and bin-

ary modalities. The use of this perspective is demonstrated by various applications.

Another intuitive way to simplify the original FO-Kripke semantics is to intro-

duce a binary relation ⇣c for each c representing the inequality of the value of

c. Correspondingly, in the language, besides Üi� we may introduce Üc� formulas

saying that there is a different world where� holds but c has a different value com-

pared to the current world. However, it is not straightforward to express ¬Kv( , c)

in this language. The closest counterpart Üi( ^ Üc ) will not do the job alone.

We probably need to add a further condition: ÜiÜc p! Üi p which says the ⇣c suc-

cessors of an i-reachable world are again i-reachable. Actually it means that we
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should combine!i and ⇣c which is almost our ternary Rc
i
. Moreover, to axiomat-

ize this ⇣c we need the axioms of anti-equivalence (irreflexivity, symmetry, and

anti-euclidean property 10 ). However, irreflexivity and anti-euclidean property for

the binary ⇣c are not definable in modal logic. We probably need to do the same

as in the Üc
i

case: use Kv_ to capture the i-accessible anti-euclidean property to

some extent. Having said the above, it is clear that our approach in this paper is

more intuitive and technically natural.

To close, we list a few directions which we leave for future occasions:

• The corresponding results in the setting of epistemic (S5) models.

• Characterization theorem of ELKvr (MLKvr) within first-order modal logic via

C-bisimulation.

• A decision procedure for ELKvr (MLKvr) based on the simplified models.

• In similar ways, we can try to simplify the semantics for other “knowing-X” logics,

such as knowing whether, knowing how, and so on.
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