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In this paper, we describe a Bayesian deep neural network (DNN) for predicting FreeSurfer

segmentations of structural MRI volumes, in minutes rather than hours. The network was

trained and evaluated on a large dataset (n = 11,480), obtained by combining data from

more than a hundred different sites, and also evaluated on another completely held-out

dataset (n = 418). The network was trained using a novel spike-and-slab dropout-based

variational inference approach. We show that, on these datasets, the proposed Bayesian

DNN outperforms previously proposed methods, in terms of the similarity between the

segmentation predictions and the FreeSurfer labels, and the usefulness of the estimate

uncertainty of these predictions. In particular, we demonstrated that the prediction

uncertainty of this network at each voxel is a good indicator of whether the network

has made an error and that the uncertainty across the whole brain can predict the

manual quality control ratings of a scan. The proposed Bayesian DNN method should be

applicable to any new network architecture for addressing the segmentation problem.

Keywords: brain segmentation, deep learning,magnetic resonance imaging, Bayesian neural networks, variational

inference, automated quality control

1. INTRODUCTION

Identifying which voxels in a structural magnetic resonance imaging (sMRI) volume correspond -to
different brain structures (i.e., segmentation) is an essential processing step in neuroimaging
analyses. These segmentations are often generated using the FreeSurfer package (Fischl, 2012),
a process which can take a day or more for each subject (FreeSurfer, 2018). The computational
resources for doing this at a scale of hundreds to thousands of subjects are beyond the capabilities
of the computational resources available to most researchers. This has led to an interest in the use of
deep neural networks as a general approach for learning to predict the outcome of a processing task,
given the input data, in a much shorter time period than the processing would normally take. In
particular, several deep neural networks have been trained to perform segmentation of brain sMRI
volumes (Ronneberger et al., 2015; Fedorov et al., 2017a,b; Li et al., 2017; Dolz et al., 2018; Roy
et al., 2018b), taking between a few seconds and a few minutes per volume. These networks predict
a manual or an automated segmentation from the structural volumes [Fedorov et al. (2017a,b),
Dolz et al. (2018), and Roy et al. (2018b) used FreeSurfer, Petersen et al. (2010) used GIF (Cardoso
et al., 2015), and Rajchl et al. (2018) used FSL (Jenkinson et al., 2012), SPM (Friston et al., 1994)
and MALP-EM (Ledig et al., 2015)].
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These networks, however, have been trained on a limited
number (on the order of hundreds or low thousands) of examples
from a limited number of sites (i.e., locations and/or scanners),
which can lead to poor cross-site generalization for complex
segmentation tasks with a large number of classes (McClure et al.,
2018). This includes several of the recent DNNs proposed for
fine-grain sMRI segmentation. (Note: We focus on DNNs which
predict >30 classes.)

Roy et al. (2018b) performed 33 class segmentation using
581 sMRI volumes from the IXI dataset to train an initial
model and then fine-tuned on 28 volumes from the MALC
dataset (Marcus et al., 2007). They showed an ∼9.4% average
Dice loss on out-of-site data from the ADNI-29 (Mueller et al.,
2005), CANDI (Kennedy et al., 2012), and IBSR (Rohlfing, 2012)
datasets. Fedorov et al. (2017a) used 770 sMRI volumes from
HCP (Van Essen et al., 2013) to train an initial model and then
fine-tuned on 7 volumes from the FBIRN dataset (Keator et al.,
2016). Li et al. (2017) performed a 160 class segmentation using
443 sMRI volumes from the ADNI dataset (Petersen et al., 2010)
for training. Rajchl et al. (2018) used 5,000 sMRI volumes from
the UK Biobank Sudlow et al. (2015) dataset to train a model by
using multi-task learning to simultaneously predict 4 SPM labels,
17 FSL labels, and 139 MALP-EM labels. However, Fedorov et al.
(2017a), Li et al. (2017), and Rajchl et al. (2018) did not report
test results for sites that where not used during training.

These results show that it is possible to train a neural network
to carry out segmentation of a sMRI volume. However, they
provide a limited indication of whether such a network would
work on data from any new site not encountered in training.
While fine-tuning on labeled data from new sites can improve
performance, even while using small amounts of data (Fedorov
et al., 2017a; McClure et al., 2018; Roy et al., 2018b), a robust
neural network segmentation tool should generalize to new sites
without any further effort.

As part of the process of adding segmentation capabilities to
the “Nobrainer” tool1, we trained a network to predict FreeSurfer
segmentations given a training set of ∼10,000 sMRI volumes.
This paper describes this process, as well as a quantitative and
qualitative evaluation of the performance of the resulting model.

Beyond the segmentation performance of the network, a
second aspect of interest to us is to understand whether it is
feasible for a network to indicate how confident it is about its
prediction at each location in the brain. We expect the network
to make errors, be it because of noise, unusual positioning
of the brain, very different contrast than what it was trained
on, etc. Because our model is probabilistic and seeks to learn
uncertainties, we expect it to be less confident in its predictions
in such cases. It is also possible that, for certain locations, there
are very similar brain structures labeled as different regions
in different people. In such locations, there would be a limit
to how well the network could perform, the Bayes error rate
(Hastie et al., 2005). Additionally, the network should be less
confident for examples that are very different from those seen
in the training set (e.g., contain large artifacts). While prediction
uncertainty can be computed for standard neural networks,

1https://github.com/neuronets/nobrainer

as done by Dolz et al. (2018), these uncertainty estimates are
often overconfident (Guo et al., 2017; McClure and Kriegeskorte,
2017). Bayesian neural networks (BNNs) have been proposed
as a solution to this issue. One popular BNN approach is
Monte-Carlo (MC) Bernoulli Dropout (Srivastava et al., 2014;
Gal and Ghahramani, 2016). Using this method, Li et al. (2017)
and Roy et al. (2018a) showed that the segmentation performance
of the BNN predictions was better for voxels with low dropout
sampling-based uncertainties and that injected input noise can
lead to increased uncertainty. Roy et al. (2018a) also found that
using MC Bernoulli dropout decreased the drop in segmentation
performance from 9.4% to 7.8% on average when testing on
data from new sites compared to Roy et al. (2018b). However,
MC Bernoulli dropout does not learn dropout probabilities from
data, which can lead to not properly modeling the uncertainty of
the predicted segmentation. Recent works has shown that these
dropout probabilities can be learned using a concrete relaxation
(Gal et al., 2017). Additionally, learning individual uncertainties
for each weight has been shown to be beneficial for many
purposes (e.g., pruning and continual learning) (Blundell et al.,
2015; McClure et al., 2018; Nguyen et al., 2018). In this paper, we
propose using both learned dropout uncertainties and individual
weight uncertainties.

Finally, we test the hypothesis that overall prediction
uncertainty across an entire image reflects its “quality,” as
measured by human quality control (QC) scores. Given the
effort required to produce such scores, there have been multiple
attempts to either crowdsource the process (Keshavan et al.,
2018) or automate it (Esteban et al., 2017). The latter, in
particular, does not rely on segmentation information, so we
believe it is worthwhile to test whether uncertainty derived from
segmentation is more effective.

2. METHODS

2.1. Data
2.1.1. Imaging Datasets
We combined several datasets (Table 1), many which themselves
contain data from multiple sites, into a single dataset with
11,480 T1 sMRI volumes. In-site validation and test sets were
created from the combined dataset using a 80-10-10 training-
validation-test split. This resulted in a training set of 9,184
volumes, a validation set of 1,148 volumes, and a test set of 1,148
volumes. The training set was used for training the networks, the
validation set for setting DNN hyperparameters (e.g., Bernoulli
dropout probabilities), and the test set was used for evaluating
the performance of the DNNs on new data from the same sites
that were used for training.

We additionally used 418 sMRI volumes from the NNDSP
dataset (Lee et al., 2018) as a held-out dataset to test
generalization of the network to an unseen site. In addition to
sMRI volumes, each NNDSP sMRI volume was given a QC score
from 1 to 4, higher scores corresponding to worse scan quality,
by two raters (3 if values differed by more than 1), as described
in Blumenthal et al. (2002). If a volume had a QC score greater
than 2, it was labeled as a bad quality scan; otherwise, the scan
was labeled as a good quality scan.
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TABLE 1 | The number of examples used from different datasets.

Dataset Number of examples

CoRR (Zuo et al., 2014) 3,039

OpenfMRI (Poldrack et al., 2013) 1,873

NKI (Nooner et al., 2012) 1,136

SLIM (Liu et al., 2017) 1,003

ABIDE (Di Martino et al., 2014) 992

HCP (Van Essen et al., 2013) 956

ADHD200 (Bellec et al., 2017) 719

CMI (Alexander et al., 2017) 611

SALD (Wei et al., 2018) 477

Buckner (Biswal et al., 2010) 183

HBNSSI (O’Connor et al., 2017) 178

GSP (Holmes et al., 2015) 152

Haxby (Haxby et al., 2011; Nastase et al., 2017) 55

Gobbini (di Oleggio Castello et al., 2017) 51

ICBM (Mazziotta et al., 2001) 45

Barrios (Vzquez et al., 2016) 10

2.1.2. Segmentation Target
We computed 50-class FreeSurfer (Fischl, 2012) segmentations,
as in Fedorov et al. (2017a), for all subjects in each of the
datasets described earlier. These were used as the labels for
prediction. Although, FreeSurfer segmentations may not be
perfectly correct, as compared to manual, expert segmentations,
using them allowed us to create a large training dataset, as one
could not feasibly label it by hand. FreeSurfer trained networks
can also outperform FreeSurfer segmentations when compared
to expert segmentations (Roy et al., 2018b). The trained network
could be fine-tuned with expert small amounts of labeled data,
which would likely improve the results (McClure et al., 2018; Roy
et al., 2018b).

2.1.3. Data Pre-processing
The sMRI volumes were resampled to 1mm isotropic cubic
volumes of 256 voxels per side and the voxel intensities were
normalized according to Freesurfer’s mri_convert with the
conform flag. After resampling, input volumes were individually
z-scored across voxels. We then split each sMRI volume into 512
non-overlapping 32× 32× 32 sub-volumes, similarly to Fedorov
et al. (2017b) and Fedorov et al. (2017a), to be used as inputs for
the neural network. The prediction target is the corresponding
segmentation sub-volume. This resulted in 512 pairs (x, y), of
sMRI and label sub-volumes, respectively, for each sMRI volume.

2.2. Convolutional Neural Network
2.2.1. Architecture
Several deep neural network architectures have been proposed
for brain segmentation, such as U-net (Ronneberger et al.,
2015), QuickNAT (Roy et al., 2018b), HighResNet (Li
et al., 2017), and MeshNet (Fedorov et al., 2017a,b). We
chose MeshNet because of its relatively simple structure, its
lower number of learned parameters, and its competitive
performance, since the computational cost of Bayesian neural

TABLE 2 | The MeshNet dilated convolutional neural network architecture used

for brain segmentation.

Layer Filter Padding Dilation (l) Non-linearity

1 96 × 33 1 1 ReLU

2 96 × 33 1 1 ReLU

3 96 × 33 1 1 ReLU

4 96 × 33 2 2 ReLU

5 96 × 33 4 4 ReLU

6 96 × 33 8 8 ReLU

7 96 × 33 1 1 ReLU

8 50 × 13 0 1 Softmax

networks scales based on structural complexity and number
of parameters.

MeshNet uses dilated convolutional layers (Yu and Koltun,
2015) due to the 3D structural nature of sMRI data. Applying
a discrete volumetric dilated convolutional layer to one input
channel for one weight filter can be expressed as:

(wf ∗l h)i,j,k =

a
∑

ĩ=−a

b
∑

j̃=−b

c
∑

k̃=−c

w
f ,ĩ,j̃,k̃

h
i−lĩ,j−lj̃,k−lk̃

= (wf ∗l h)v

=
∑

t∈Wabc

wf ,thv−lt. (1)

where h is the input to the layer, a, b, and c are the bounds for
the i, j, and k axes of the filter with weights wf (i, j, k) is the voxel,
v, where the convolution is computed. The set of indices for the
elements ofwf can be defined asWabc = {−a, ..., a}×{−b, ..., b}×
{−c, ..., c}. The dilation factor, number of filters, and other details
of the MeshNet-like architecture that we used for all experiments
is shown in Table 2. Note that we increased the number of filters
per layer from 72 to 96, compared to Fedorov et al. (2017a) and
McClure et al. (2018), since we greatly increased the number of
training volumes.

2.2.2. Maximum a Posteriori Estimation
When training a neural network, the weights of the network,
w, are often learned using maximum likelihood estimation
(MLE). For MLE, log p(D|w) is maximized where D =

{(x1, y1), ..., (xN , yN)} is the training dataset and (xn, yn) is the nth
input-output example. This often overfits, however, so we used
a prior on the network weights, p(w), to obtain a maximum a
posteriori (MAP) estimate, by optimizing log p(w|D):

w∗ = argmax
w

N
∑

n=1

log p(yn|xn,w)+ log p(w). (2)

We used a fully factorized Gaussian prior (i.e., p(w
f ,ĩ,j̃,k̃

) =

N (0, 1)). This results in the MAP weights being learned by
minimizing the softmax cross-entropy with L2 regularization. At
test time, this point estimate approximation, w∗, is used to make
a prediction for new examples:

p(ytest|xtest) ≈ p(ytest|xtest ,w
∗) (3)
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2.2.3. Approximate Bayesian Inference
In Bayesian inference for neural networks, a distribution of
possible weights is learned instead of just a MAP point
estimate. Using Bayes’ rule, p(w|D) = p(D|w)p(w)/p(D), where
p(w) is the prior over weights. However, directly computing
the posterior, p(w|D), is often intractable, particularly for
DNNs. As a result, an approximate inference method must
be used.

One of the most popular approximate inference methods
for neural networks is variational inference, since it scales
well to large DNNs. In variational inference, the posterior
distribution p(w|D) is approximated by a learned variational
distribution of weights qθ (w), with learnable parameters θ .
This approximation is enforced by minimizing the Kullback-
Leibler divergence (KL) between qθ (w), and the true posterior,
p(w|D), KL[qθ (w)||p(w|D)], which measures how qθ (w) differs
from p(w|D) using relative entropy. This is equivalent to
maximizing the variational lower bound (Hinton and Van Camp,
1993; Graves, 2011; Blundell et al., 2015; Kingma et al.,
2015; Gal and Ghahramani, 2016; Louizos and Welling, 2017;
Molchanov et al., 2017), also known as the evidence lower
bound (ELBO),

LELBO(θ) = LD(θ)− LKL(θ), (4)

where LD(θ) is

LD(θ) =

N
∑

n=1

Eqθ (w)[log p(yn|xn,w)] (5)

and LKL(θ) is the KL divergence between the variational
distribution of weights and the prior,

LKL(θ) = KL[qθ (w)||p(w)], (6)

which measures how qθ (w) differs from p(w) using
relative entropy.

Maximizing LD seeks to learn a qθ (w) that explains the
training data, while minimizing LKL (i.e., keeping qθ (w) close to
p(w)) prevents learning a qθ (w) that overfits to the training data.

The objective function in Equation (4) is usually impractical
to compute for deep neural networks, due to both: (1) being a
full-batch approach and (2) integrating over qθ (w). (1) is often
dealt with by using stochastic mini-batch optimization (Robbins
and Monro, 1951) and (2) is often approximated using Monte
Carlo sampling. As discussed in Graves (2011) and Kingma
et al. (2015), these methods can be used to perform stochastic
gradient variational Bayes (SGVB) in deep neural networks. For
each parameter update, an unbiased estimate of ∇θLD for a
mini-batch, {(x1, y1), ..., (xM , yM)}, is calculated using one weight
sample, wm, from qθ (w) for each mini-batch example. This
results in the following approximation to Equation (4):

LELBO(θ) ≈ L
SGVB
D

(θ)− LKL(θ), (7)

where

LD(θ) ≈ L
SGVB
D

(θ) =
N

M

M
∑

m=1

log p(ym|xm,wm). (8)

At test time, the weights, w would ideally be marginalized
out, p(ytest|xtest) =

∫

p(ytest|xtest ,w)qθ (w)dw, when making a
prediction for a new example. However, this is often impractical
to compute for DNNs, so a Monte-Carlo approximation is often
used. This results in the prediction of a new example being made
by averaging the predictions of multiple weight samples from
qθ (w) (Figure 1):

p(ytest|xtest) ≈
1

NMC

NMC
∑

n

p(ytest|xtest ,wn) (9)

where wn ∼ qθ (w).

2.2.3.1. MC Bernoulli dropout
For MC Bernoulli dropout (BD) (Gal and Ghahramani, 2016),
we drew weights from qθ (w) by drawing a Bernoulli random
variable (bi,j,k ∼ Bern(pl)), where i, j, k are the indices of
the volume axes, for every element of the layer, l, input, h,
and then elementwise multiplying b and h before applying
the next dilated convolutional layer. This effectively sets the
filter weights to zero when applied to a dropped element. Gal
and Ghahramani (2016) approximated the KLD between this
Bernoulli variational distribution and a zero-mean Gaussian
by replacing the variational distribution with a mixture of
Gaussians, resulting in an L2-like penalty. However, this can lead
to pathological behavior due to Bernoulli distributions not having
support over all real numbers (Hron et al., 2018). In Bernoulli
dropout, pl codes for the uncertainty of the weights and is often
set layerwise via hyperparameter search (for our experiments, we
found the best value of p to be 0.9 after searching over the values
of 0.95, 0.9, 0.75, and 0.5 using the validation set). However,
Bayesian models would ideally learn how uncertain to be for
each weight.

2.2.3.2. Spike-and-slab dropout with learned model

uncertainty
We propose a form of dropout that both learns the dropout
probability for each filter using a concrete relaxation of dropout
(Gal et al., 2017), and an individual uncertainty for each weight
using fully factorized Gaussian (FFG) filters (Graves, 2011;
Blundell et al., 2015; Molchanov et al., 2017; McClure et al.,
2018; Nguyen et al., 2018). This is in contrast to previous spike-
and-slab dropout methods, which did not learn the model (or
epistemic) uncertainty (Der Kiureghian and Ditlevsen, 2009;
Kendall and Gal, 2017) from data either by learning the dropout
probabilities or by learning the variance parameter of the
Gaussian components of the weights (McClure and Kriegeskorte,
2017). In our proposed method, we assume each of the F filters
are independent (i.e., p(w) =

∏F
f=1 p(wf )), as done in previous

FFG methods (Graves, 2011; Blundell et al., 2015; Molchanov
et al., 2017; McClure et al., 2018; Nguyen et al., 2018). We
then decompose each filter into a dropout-based component, bf ,
and a Gaussian component, gf , such that wf = bf gf . Per this
decomposition, we perform variational inference on the joint
distribution of {b1, ..., bF , g1, ...gF}, instead of on p(w) directly
(Titsias and Lázaro-Gredilla, 2011; McClure and Kriegeskorte,
2017). We then assume each element of gf is independent (i.e.,
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FIGURE 1 | Illustration of generating a prediction from a Bayesian neural network using Monte Carlo sampling (modified from Blundell et al., 2015). A standard neural

network (A, top left) has one weight for each of its connections (w∗), learned from the training set and used in generating a prediction for a test example. A Bayesian

neural network (B, bottom left) has, instead, a posterior distribution for each weight, parameterized by theta (qθ (w)). The process of training starts with an assigned

prior distribution for each weight, and returns an approximate posterior distribution. At test time (C, right), a weight sample w1 (red) is drawn from the posterior

distribution of the weights, and the resulting network is used to generate a prediction p(y|x,w1) for an example x. The same can be done for samples w2 (blue) and

w3 (green), yielding predictions p(y|x,w2) and p(y|x,w3), respectively. The three networks are treated as an ensemble and their predictions averaged.

p(gf ) =
∏

t∈Wabc
p(gf ,t)), and that each weight is Gaussian (i.e.,

gf ,t ∼ N (µf ,t, σ
2
f ,t
)) with learned parametersµf ,t and σf ,t. Instead

of drawing each bf from Bern(pl), we draw them from a concrete
distribution (Gal et al., 2017) with a learned dropout probability,
pf , for each filter:

bf = sigmoid
(1

t
(log pf − log(1− pf )+ log u− log(1− u)) (10)

where u ∼ Unif (0, 1). This concrete distribution converges to the
Bernoulli distribution as the sigmoid scaling parameter, t, goes to
zero. (In this paper, we used t = 0.02). As discussed in Kingma
et al. (2015) and Molchanov et al. (2017), randomly sampling
each gf ,t for each mini-batch example can be computationally
expensive, so we used the fact that the sum of independent
Gaussian variables is also Gaussian to move the noise from
the weights to the convolution operation, as in McClure et al.
(2018). For, dilated convolutions and the proposed spike-and-
slab variational distribution, this is described by:

(wf ∗l h)v = bf (gf ∗l h)v (11)

where

(gf ∗l h)v ∼ N (µ∗
f ,v, (σ

∗
f ,v)

2), (12)

µ∗
f ,v =

∑

t∈Wabc

µf ,thv−lt, (13)

and

(σ ∗
f ,v)

2 =
∑

t∈Wabc

σ 2
f ,th

2
v−lt. (14)

For this spike-and-slab dropout (SSD) implementation, we
used a spike-and-slab prior, instead of the Gaussian prior
used by Gal and Ghahramani (2016) and Gal et al. (2017).
Using a spike-and-slab prior with MC Bernoulli dropout
was discussed in Gal (2016), but not implemented. As in
the variational distribution, each filter is independent in
the prior. Per the spike-and-slab decomposition discussed
above, the KL-divergence term of the ELBO can be
written as

LKL(θ) =

F
∑

f=1

KL[qpf (bf )qµ,σ (gf )||p(bf )p(gf )], (15)

where θ =
⋃F

f

⋃

t∈Wabc
{pf ,µf ,t, σf ,t} are the learned parameters

and p(bf ) and p(gf ) are priors. Assuming that each weight in a
filter is independent, as commonly done in the literature (Graves,
2011; Blundell et al., 2015; Nguyen et al., 2018), allows the term
to be rewritten as

LKL(θ) =

F
∑

f=1

(KL[qpf (bf )||p(bf )]+
∑

t∈Wabc

KL[qµ,σ (gf ,t)||p(gf ,t)]).

(16)
For KL[qpf ||p(bf )], we used the KL-divergence between two
Bernoulli distributions,

KL[qpf (bf )||p(bf )] = pf log
pf

pprior
+ (1−pf ) log

1− pf

1− pprior
, (17)
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since we used a relatively small sigmoid scaling parameter. Using
p(gf ,t) = N (µprior , σ

2
prior),

KL[qµ,σ (gf ,t)||p(gf ,t)] = log
σprior

σf ,t
+

σ 2
f ,t

+ (µf ,t − µprior)
2

2σ 2
prior

−
1

2
.

(18)
For this paper, the spike-and-slab prior parameters were set as
pprior = 0.5,µprior = 0, and σprior = 0.1. pprior = 0.5 corresponds
to a maximum entropy prior (i.e., in the absence of new data be
maximally uncertain). Alternatively, a pprior close to 0 is a sparcity
prior (i.e., in the absence of data do not use a filter).

2.3. Implementation Details
The DNNs were implemented using Tensorflow (Abadi et al.,
2016). During training, the parameters of each DNN were
updated using Adam (Kingma and Ba, 2015) with an initial
learning rate of 1e-4. A mini-batch size of 32 subvolumes was
used with data parallelization across 4 12GB NVIDIA Titan X
Pascal GPUs was used for training and a mini-batch size of 8
subvolumes on 1 12GB NVIDIA Titan X Pascal GPU was used
for validation and testing.

2.4. Quantifying Performance
2.4.1. Segmentation Performance Measure
To measure the quality of the produced segmentations, we
calculated the Dice coefficient, which is defined by

Dicec =
2|ŷc · yc|

||ŷc||2 + ||yc||2
=

2TPc

2TPc + FNc + FPc
, (19)

where ŷc is the binary segmentation for class c produced by a
network, yc is the ground truth produced by FreeSurfer, TPc is
the true positive rate for class c, FNc is the false negative rate for
class c, and FPc is the false positive rate for class c. We calculate
the Dice coefficient separately for each class c = 1, . . . , 50, and
average across classes to compute the overall performance of a
network for one sMRI volume.

2.4.2. Uncertainty Measure
We quantify the uncertainty of a prediction, p(ym|xm), using
the aleatoric uncertainty (Der Kiureghian and Ditlevsen, 2009;
Kendall and Gal, 2017) for each voxel, v. This was measured by
the entropy of the softmax across the 50 output classes,

H(Ym,v|Xm = xm) = −

50
∑

c=1

p(ym,v = c|xm) log p(ym,v = c|xm),

(20)

We calculated the uncertainty for one sMRI volume by averaging
across all output voxels not classified as background (i.e., given
the unknown label).

3. RESULTS

3.1. Segmentation Performance
We trained MAP, MC Bernoulli Dropout (BD), and Spike-and-
Slab Dropout (SSD) Meshnet-like CNNs on the 9,184 sMRI

TABLE 3 | The average and standard deviation of the class Dices across test

volumes for the maximum a posteriori (MAP), MC Bernoulli dropout (BD), and

spike-and-slab dropout (SSD) network on the in-site and out-of-site test sets.

Method In-site Out-of-site

MAP 0.7790 ± 0.0576 0.7333 ± 0.0498

BD 0.7764 ± 0.0506 0.7369 ± 0.0474

SSD 0.8373 ± 0.0471 0.7921 ± 0.0444

volumes in the training set. We then applied our networks
to produce segmentations for both the in-site test set and the
out-of-site test data. For the BD and SSD networks, 10 MC
samples were used for test predictions. The means and standard
deviations across volumes for the average Dice across all 50
classes are shown in Table 3. Dice scores for each label for
the in-site and out-of-site test sets are shown in Figures 2,
3, respectively. We found that, compared to MAP and BD,
SSD significantly increased the Dice for both the in-site (p <

1e − 6) and out-of-site (p < 1e − 6) test sets, per a paired
t-test across test volumes. We found that SSD had a 5.7%
drop in performance from the in-site test set to the out-of-
site test set, where as the MAP has a drop of 6.2% and BD a
drop of 5.4%. This is better than drops of 9.4% and 7.8% on
average reported in the literature by Roy et al. (2018b) and Roy
et al. (2018a), respectively. In Figures 4, 5, we show selected
example segmentations for the SSD network for volumes that
have Dice scores similar to the average Dice score across the
respective dataset.

3.2. Utilizing Uncertainty
3.2.1. Predicting Segmentation Errors From

Uncertainty
Ideally, an increase in DNN prediction uncertainty indicates an
increase in the likelihood that prediction is incorrect. To evaluate
whether this is the case for the trained brain segmentation
DNN, we performed a receiver operating characteristic (ROC)
analysis. In this analysis, voxels are ranked from most uncertain
to least uncertain and one considers, at each rank, what fraction
of the voxels were also misclassified by the network. An ROC
curve can then be generated by plotting the true positive rate
vs. the false negative rate for different uncertainty thresholds
used to predict misclassification. The area under this curve
(AUC) typically summarizes the results of the ROC analysis.
The average ROC and AUCs across volumes for MAP, BD,
and SSD for the in-site and out-of-site test sets are shown
in Figure 6. Compared to MAP and BD, SSD significantly
improved the AUC for both the in-site (p < 1e − 6) and
out-of-site (p < 1e − 6) test sets, per a paired t-test across test
set volumes.

3.2.2. Predicting Scan Quality From Uncertainty
Ideally, the output uncertainty for inputs not drawn from
the training distribution should be relatively high. This could
potentially be useful for a variety of applications. One particular
application is detection of bad quality sMRI scans, since the
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FIGURE 2 | Average Dice scores, sorted in decreasing order by average method performance, and standard errors across in-site test volumes for each label for the

maximum a posteriori (MAP), MC Bernoulli dropout (BD), and spike-and-slab dropout (SSD) networks.

segmentation DNN was trained using relatively good quality
scans. To test the validity of predicting high vs. low quality
scans, we performed an ROC analysis on the held-out NNDSP
dataset, where manual quality control ratings are available. We
also did the same analysis using MRIQC (v0.10.5) (Esteban
et al., 2017), a recently published method that combines a wide
range of automated QC algorithms. To statistically test whether
any method significantly outperformed the other methods, we
performed bootstrap sampling of the AUC for predicting scan

quality from average uncertainty by sampling out-of-site test
volumes. We performed 10,000 bootstrap samples, each with
418 volumes. The average ROC and AUC for the MAP, BD,
SSD, and MRIQC methods are shown in Figure 7. The MAP,
BD, and SSD networks all have significantly higher AUCs than
MRIQC (p = 1.369e − 4, p = 1.272e − 5, and p =

1.381e − 6, respectively). Additionally, SSD had a significantly
higher AUC than both MAP and BD (p = 1.156e − 3 and
p = 1.042e− 3, respectively).
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FIGURE 3 | Average Dice scores, sorted in decreasing order by average method performance, and standard errors across out-of-site test volumes for each label for

the maximum a posteriori (MAP), MC Bernoulli dropout (BD), and spike-and-slab dropout (SSD) networks.

4. DISCUSSION

Segmentation of structures in sMRI volumes is a critical pre-

processing step in many neuroimaging analyses. However,

these segmentations are currently generated using tools that
can take a day or more for each subject (FreeSurfer, 2018),

such as FreeSurfer. This computational cost can be prohibitive
when scaling analyses up from hundreds to thousands of
subjects. DNNs have recently been proposed to perform sMRI
segmentation is seconds to minutes. In this paper, we developed

a Bayesian DNN, using spike-and-slab dropout, with the goals
of increasing the similarity of the DNN’s predictions to the
FreeSurfer segmentations and generating useful uncertainty
estimates for these predictions.

In order to evaluate the proposed Bayesian network, we
trained a standard deep neural network (DNN), using MAP
estimation, to predict FreeSurfer segmentations from structural
MRI (sMRI) volumes. We trained on a little under 10,000 sMRIs,
obtained by combining approximately 70 different datasets
(many of which, in turn, contain images from several sites,
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FIGURE 4 | In-site segmentation results for the spike-and-slab dropout (SSD) network for a test subject with average Dice performance. The columns show,

respectively, the structural image used as input, the FreeSurfer segmentation used as a prediction target, the prediction made by our network, the voxels where there

was a mismatch between prediction and target, and the prediction uncertainty at each voxel.

FIGURE 5 | Out-of-site segmentation results for the spike-and-slab dropout (SSD) network for a test subject with average Dice performance. The columns show,

respectively, the structural image used as input, the FreeSurfer segmentation used as a prediction target, the prediction made by our network, the voxels where there

was a mismatch between prediction and target, and the prediction uncertainty at each voxel.

e.g., NKI, ABIDE, ADHD200). We used a separate test set of
more than 1,000 sMRIs, drawn from the same datasets. The
resulting standard DNN performs at the same level of state-of-
the-art networks (Fedorov et al., 2017a). This result, however,
was obtained by testing over an order of magnitude more test
data, and many more sites, than those papers. We also tested

performance on a completely separate dataset (NNDSP) from
a site not encountered in training, which contained 418 sMRI
volumes. Whereas Dice performance dropped slightly, this was
less than what was observed in other studies (Roy et al., 2018a,b);
this suggests that we may be achieving better generalization by
training on our larger and more diverse dataset, and we plan on
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FIGURE 6 | Receiver operating characteristic (ROC) curves for predicting errors for the in-site and out-of-site test sets from the voxel uncertainty of the maximum a

posteriori (MAP), MC Bernoulli dropout (BD), and spike-and-slab dropout (SSD) networks.

FIGURE 7 | Receiver operating characteristic (ROC) curves for predicting scan

quality for the NNDSP out-of-site test set from the average non-background

voxel uncertainty of the maximum a posteriori (MAP), MC Bernoulli dropout

(BD), and spike-and-slab dropout (SSD) networks and from MRIQC scores.

testing this onmore datasets from novel sites in the future. This is
particularly important to us, as this network is meant to be used
within an off-the-shelf tool1.

We demonstrated that the estimated uncertainty for the
prediction at each voxel is a good indicator of whether the
standard network makes an error in it, both in-site and out-of-
site. The tool that produces the predicted segmentation volume
for an input sMRI will also produce an uncertainty volume. We
anticipate this being useful at various levels, e.g., to refine other
tools that rely on segmentation images, or to improve prediction
models based on sMRI data (e.g., modification of calculation of

cortical thickness, surface area, voxel selection or weighting in
regression (Roy et al., 2018a) or classification models, etc).

We also demonstrated that the average prediction uncertainty
across voxels in the brain is an excellent indicator of
manual quality control ratings. Furthermore, it outperforms
the best existing automated solution (Esteban et al., 2017).
Since automation is already used in large repositories (e.g.,
OpenMRI), we plan on offering our tool as an additional quality
control measure.

Finally, we showed that a new Bayesian DNN using
spike-and-slab dropout with learned model uncertainty was
significantly better than previous approaches. This spike-
and-slab method increased segmentation performance and
improved the usefulness of output uncertainties compared both
to a MAP DNN method and an MC Bernoulli dropout
method, which has previously been used in the brain
segmentation literature (Li et al., 2017; Roy et al., 2018a).
These results show that Bayesian DNNs are a promising
method for building brain segmentation and automated
sMRI quality control tools. We have also made a version
of “Nobrainer,” that incorporates the networks trained and
evaluated in this paper, available for download and use within a
Singularity/Docker container2.

We believe it may be possible to improve this segmentation
processing, in that we did not use registration. One option
would be to use various techniques for data augmentation (e.g.,
variation of image contrast, since that is pretty heterogeneous,
rotations/translations of existing examples, addition of realistic
noise, etc). Another would be to eliminate the need to
divide the brain into sub-volumes, which loses some global
information; this will become more feasible in GPUs with
more memory. Finally, we plan on using post-processing
of results (e.g., ensure some coherence between predictions
for adjacent voxels, leverage off-the-shelf brain and tissue
masking code).

2https://github.com/neuronets/kwyk
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