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1. Introduction 

Distributed systems of computers are rapidly gaining popularity in a wide variety 
of applications. However, the distributed nature of control and information in such 
systems makes the design and analysis of distributed protocols and plans a complex 
task. In fact, at the current time, these tasks are more an art than a science. Basic 
foundations, general techniques, and a clear methodology are needed to improve 
our understanding and ability to deal effectively with distributed systems. 

Although the tasks that distributed systems are required to perform are normally 
stated in terms of the global behavior of the system, the actions that a processor 
performs can depend only on its local information. Since the design of a distributed 
protocol involves determining the behavior and interaction between individual 
processors in the system, designers frequently find it useful to reason intuitively 
about processors’ “ states of knowledge” at various points in the execution of a 
protocol. For example, it is customary to argue that “. . . once the sender receives 
the acknowledgment, it knows that the current packet has been delivered; it can 
then safely discard the current packet, and send the next packet . . . “. Ironically, 
however, formal descriptions of distributed protocols, as well as actual proofs of 
their correctness or impossibility, have traditionally avoided any explicit mention 
of knowledge. Rather, the intuitive arguments about the state of knowledge of 
components of the system are customarily buried in combinatorial proofs that are 
unintuitive and hard to follow. 

The general concept of knowledge has received considerable attention in a variety 
of fields, ranging from Philosophy [25] and Artificial Intelligence [32, 331 to Game 
Theory [l] and Psychology [5]. The main purpose of this paper is to demonstrate 
the relevance of reasoning about knowledge to distributed systems as well. Our 
basic thesis is that explicitly reasoning about the states of knowledge of the 
components of a distributed system provides a more general and uniform setting 
that offers insight into the basic structure and limitations of protocols in a given 
system. 

As mentioned above, agents can only base their actions on their local informa- 
tion. This knowledge, in turn, depends on the messages they receive and the events 
they observe. Thus, there is a close relationship between knowledge and action in 
a distributed environment. When we consider the task of performing coordinated 
actions among a number of agents in a distributed environment, it does not, in 
general, suffice to talk only about individual agent’s knowledge. Rather, we need 
to look at states of knowledge of groups of agents (the group of all participating 
agents is often the most relevant one to consider). Attaining particular states of 
group knowledge is a prerequisite for performing coordinated actions of various 
kinds. 

In this work we define a hierarchy of states of group knowledge. It is natural to 
think of communication in the system as the act of improving the state of 
knowledge, in the sense of “climbing up the hierarchy.” The weakest state of 
knowledge we discuss is distributed knowledge, which corresponds to knowledge 
that is distributed among the members of the group, without any individual agent 
necessarily having it.’ The strongest state of knowledge in the hierarchy is common 
knowledge, which roughly corresponds to “public knowledge.” We show that the 
execution of simultaneous actions becomes common knowledge, and hence that 

’ In a previous version of this paper [22], what we are now calling distributed knowledge was called 
implicit knowledge. We have changed the name here to avoid conflict with the usage of the phrase 
“implicit knowledge” in papers such as [ 111 and [29]. 
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such actions cannot be performed if common knowledge cannot be attained. 
Reaching agreement is an important example of a desirable simultaneous action 
in a distributed environment. A large part of the technical analysis in this paper is 
concerned with the ability and cost of attaining common knowledge in systems of 
various types. It turns out that attaining common knowledge in distributed envi- 
ronments is not a simple task. We show that when communication is not guaran- 
teed it is impossible to attain common knowledge. This generalizes the impossibility 
of a solution to the well-known coordinated attack problem [ 171. A more careful 
analysis shows that common knowledge can only be attained in systems that 
support simultaneous coordinated actions. It can be shown that such actions cannot 
be guaranteed or detected in practical distributed systems. It follows that common 
knowledge cannot be attained in many cases of interest. We then consider states 
of knowledge that correspond to eventually coordinated actions and to coordinated 
actions that are guaranteed to be performed within a bounded amount of time. 
These are essentially weaker variants of common knowledge. However, whereas, 
strictly speaking, common knowledge cannot be attained in many practical cases, 
these weaker states of knowledge often can be attained. 

Another question that we consider is that of when it is safe to assume that certain 
facts are common knowledge, even when strictly speaking they are not. For this 
purpose, we introduce the concept of internal knowledge consistency. Roughly 
speaking, it is internally knowledge consistent to assume that a certain state of 
knowledge holds at a given point, if nothing the processors in the system will ever 
encounter will be inconsistent with this assumption. 

The rest of the paper is organized as follows: In the next section, we look at the 
“muddy children” puzzle, which illustrates some of the subtleties involved in 
reasoning about knowledge in the context of a group of agents. In Section 3, we 
introduce a hierarchy of states of knowledge in which a group may be. Section 4 
focuses on the relationship between knowledge and communication by looking at 
the coordinated attack problem. In Section 5, we sketch a general definition of a 
distributed system, and, in Section 6, we discuss how knowledge can be ascribed 
to processors in such systems so as to make statements such as “agent 1 knows Cp ” 
completely formal and precise. Section 7 relates common knowledge to the 
coordinated attack problem. In Section 8, we show that, strictly speaking, common 
knowledge cannot be attained in practical distributed systems. Section 9 considers 
the implications of this observation and in Section 10 we begin to reconsider the 
notion of common knowledge in the light of these implications. In Sections 11 and 
12, we consider a number of variants of common knowledge that are attainable in 
many cases of interest and discuss the relevance of these states of knowledge to the 
actions that can be performed in a distributed system. Section 13 discusses the 
notion of internal knowledge consistency, and Section 14 contains some concluding 
remarks. 

2. The Muddy Children Puzzle 

A crucial aspect of distributed protocols is the fact that a number of different 
processors cooperate in order to achieve a particular goal. In such cases, since more 
than one agent is present, an agent may have knowledge about other agents’ 
knowledge in addition to his knowledge about the physical world. This often 
requires care in distinguishing subtle differences between seemingly similar states 
of knowledge. A classical example of this phenomenon is the muddy children 
puzzle-a variant of the well known “wise men” or “cheating wives” puzzles. The 
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version given here is taken from [2]: 

Imagine n children playing together. The mother of these children has told 
them that if they get dirty there will be severe consequences. So, of course, 
each child wants to keep clean, but each would love to see the others get 
dirty. Now it happens during their play that some of the children, say k of 
them, get mud on their foreheads. Each can see the mud on others but not 
on his own forehead. So, of course, no one says a thing. Along comes the 
father, who says, “At least one of you has mud on your head,” thus expressing 
a fact known to each of them before he spoke (if k > 1). The father then asks 
the following question, over and over: “Can any of you prove you have mud 
on your head?” Assuming that all the children are perceptive, intelligent, 
truthful, and that they answer simultaneously, what will happen? 

The reader may want to think about the situation before reading the rest of 
Barwise’s discussion: 

There is a “proof” that the first k - 1 times he asks the question, they will 
all say “no” but then the kth time the dirty children will answer “yes.” 

The “proof” is by induction on k. For k = 1, the result is obvious: the dirty 
child sees that no one else is muddy, so he must be the muddy one. Let us 
do k = 2. So there are just two dirty children, a and 6. Each answers “no” 
the first time, because of the mud on the other. But, when b says “no,” a 
realizes that he must be muddy, for otherwise b would have known the mud 
was on his head and answered “yes” the first time. Thus, a answers “yes” the 
second time. But b goes through the same reasoning. Now suppose k = 3; so 
there are three dirty children, a, b, c. Child a argues as follows. Assume I 
don’t have mud on my head. Then, by the k = 2 case, both b and c will 
answer “yes” the second time. When they don’t, he realizes that the assump- 
tion was false, that he is muddy, and so will answer “yes” on the third 
question. Similarly for b and c. [The general case is similar.] 

Let us denote the fact “At least one child has a muddy forehead” by m. Notice 
that if k > 1, that is, more than one child has a muddy forehead, then every child 
can see at least one muddy forehead, and the children initially all know m. Thus, 
it would seem, the father does not need to tell the children that m holds when 
k > 1. But this is false! In fact, had the father not announced m, the muddy children 
would never have been able to conclude that their foreheads are muddy. We now 
sketch a proof of this fact. 

First of all, given that the children are intelligent and truthful, a child with a 
clean forehead will never answer “yes” to any of the father’s questions. Thus, if 
k = 0, all of the children answer all of the father’s questions “no.” Assume 
inductively that if there are exactly k muddy children and the father does not 
announce m, then the children all answer “no” to all of the father’s questions. Note 
that, in particular, when there are exactly k muddy foreheads, a child with a clean 
forehead initially sees k muddy foreheads and hears all of the father’s questions 
answered “no.” Now assume that there are exactly k + 1 muddy children. Let 
q 2 1 and assume that all of the children answer “no” to the father’s first q - 1 
questions. We have argued above that a clean child will necessarily answer “no” to 
the father’s qth question. Next observe that before answering the father’s qth 
question, a muddy child has exactly the same information as a clean child has at 
the corresponding point in the case of k muddy foreheads. It follows that the 
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muddy children must all answer “no” to the father’s qth question, and we are 
done. (A very similar proof shows that if there are k muddy children and the father 
does announce m, his first k - 1 questions are answered “no.“) 

So, by announcing something that the children all know, the father somehow 
manages to give the children useful information! How can this be? Exactly what 
was the role of the father’s statement? In order to answer this question, we need to 
take a closer look at knowledge in the presence of more than one knower; this is 
the subject of the next section. 

3. A Hierarchy ofStates of Knowledge 

In order to analyze the muddy children puzzle introduced in the previous section, 
we need to consider states of knowledge of groups of agents. As we shall see in the 
sequel, reasoning about such states of knowledge is crucial in the context of 
distributed systems as well. In Section 6, we shall carefully define what it means 
for an agent i to know a given fact Q (which we denote by KiQ). For now, however, 
we need knowledge to satisfy only two properties. The first is that an agent’s 
knowledge at a given time must depend only on its local history: the information 
that it started out with combined with the events it has observed since then. 
Secondly, we require that only true things be known, or more formally: 

KiQ > Q; 

that is, if an agent i knows Q, then Q is true. This property, which is occasionally 
referred to as the knowledge axiom, is the main property that philosophers 
customarily use to distinguish knowledge from belief (cf. [23]). 

Given a reasonable interpretation for what it means for an agent to know a fact 
Q, how does the notion of knowledge generalize from an agent to a group? In other 
words, what does it mean to say that a group G of agents knows a fact Q? We 
believe that more than one possibility is reasonable, with the appropriate choice 
depending on the application: 

-DGQ (read “the group G has distributed knowledge of Q “): We say that knowl- 
edge of Q is distributed in G if someone who knew everything that each member 
of G knows would know Q. For instance, if one member of G knows # and 
another knows that $ > Q, the group G may be said to have distributed knowledge 
of Q. 

-&Q (read “someone in G knows Q “): We say that &Q holds iff some member 
of G knows Q. More formally, 

SGQ E V KiQ. 
iEG 

-E,Q (read “everyone in G knows Q “): We say that EGQ holds iff all members 
of G know Q. More formally, 

E,Q = A K,Q. 
iEG 

-Ek Q, for k z 1 (read “Q is E k-knowledge in G “): E$ Q is defined by 

EAQ = EGQ, 
Ei+‘Q = EGE,$Q, for krl. 

Q is said to be Ek-knowledge in G if “everyone in G knows that everyone in G 
knows that . . . that everyone in G knows that Q is true” holds, where the phrase 
“everyone in G knows that” appears in the sentence k times. 
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-CGQ (read “Q is common knowledge in G”): The formula Q is said to be 
common knowledge in G if Q is E&knowledge for all k I 1. In other words, 

CGQ = E,Q A E;Q A --. A E$Q A -.a 

(We omit the subscript G when the group G is understood from context.) 
Clearly, the notions of group knowledge introduced above form a hierarchy, 

with 

CQ> ..a >Ek+‘Qb .-. >EQ>SQ>DQ>Q. 

However, depending on the circumstances, these notions might not be distinct. 
For example, consider a model of parallel computation in which a collection of n 
processors share a common memory. If their knowledge is based on the contents 
of the common memory, then we arrive at a situation in which CQ = E kQ = 
EQ = SQ = DQ. By way of contrast, in a distributed system in which n processors 
are connected via some communication network and each one of them has its own 
memory, the above hierarchy is strict. Moreover, in such a system, every two levels 
in the hierarchy can be separated by an actual task, in the sense that there will be 
an action for which one level in the hierarchy will suffice, but no lower level will. 
It is quite clear that this is the case with EQ > SQ > DQ, and, as we are about to 
show, the “muddy children” puzzle is an example of a situation in which EkQ 
suffices to perform a required action, but E k-’ Q does not. In the next section, we 
present the coordinated attack problem, a problem for which CQ suffices to perform 
a required action, but for no k does EkQ suffice. 

Returning to the muddy children puzzle, let us consider the state of the children’s 
knowledge of m: “At least one forehead is muddy.” Before the father speaks, Ek-‘m 
holds, and Ekm does not. To see this, consider the case k = 2 and suppose that 
Alice and Bob are the only muddy children. Clearly everyone sees at least one 
muddy child, so Em holds. But the only muddy child that Alice sees is Bob, and, 
not knowing whether she is muddy, Alice considers it possible that Bob is the only 
muddy child. Alice therefore considers it possible that Bob sees no muddy child. 
Thus, although both Alice and Bob know m (i.e., Em holds), Alice does not know 
that Bob knows m, and hence E2m does not hold. A similar argument works for 
the general case. We leave it to the reader to check that when there are k muddy 
children, E km suffices to ensure that the muddy children will be able to prove 
their dirtiness, whereas Ek-’ m does not. (For a more detailed analysis of this 
argument, and for a general treatment of variants of the muddy children puzzle, 
see [35].) 

Thus, the role of the father’s statement was to improve the children’s state of 
knowledge of m from E k-1 m to E k m. In fact, the children have common knowledge 
of m after the father announces that m holds. Roughly speaking, the father’s public 
announcement of m to the children as a group results in all the children knowing 
m and knowing that the father has publicly announced m. Assuming that it is 
common knowledge that all of the children know anything the father announces 
publicly, it is easy to conclude that the father’s announcement makes m common 
knowledge. Once the father announces m, all of the children know both m and 
that the father has announced m. Every child thus knows that all of the children 
know m and know that the father publicly announced m, and so E2m holds. It is 
similarly possible to show that, once the father announces m, then Ekm holds for 
all k, so Cm holds (see Section 10 for further discussion). Since, in particular, Ekm 
holds, the muddy children can succeed in proving their dirtiness. 
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The vast majority of the communication in a distributed system can also be 
viewed as the act of improving the state of knowledge (in the sense of “climbing 
up a hierarchy”) of certain facts. This is an elaboration of the view of communi- 
cation in a network as the act of “sharing knowledge.” Taking this view, two 
notions come to mind. One is fact discovery-the act of changing the state of 
knowledge of a fact from being distributed knowledge to levels of explicit knowledge 
(usually S-, E-, or C-knowledge), and the other is fact publication-the act of 
changing the state of knowledge of a fact that is not common knowledge to 
common knowledge. An example of fact discovery is the detection of global 
properties of a system, such as deadlock. The system initially has distributed 
knowledge of the deadlock, and the detection algorithm improves this state to 
s-knowledge (see [3] for work related to fact discovery). An example of fact 
publication is the introduction of a new communication convention in a computer 
network. Here the initiator(s) of the convention wish to make the new convention 
common knowledge. 

In the rest of the paper, we devote a considerable amount of attention to fact 
publication and common knowledge. As we shall show, common knowledge is 
inherent in a variety of notions of agreement, conventions, and coordinated action. 
Furthermore, having common knowledge of a large number of facts allows for 
more efficient communication. Since these are goals frequently sought in distrib- 
uted computing, the problem of fact publication-how to attain common knowl- 
edge-becomes crucial. Common knowledge is also a basic notion in everyday 
communication between people. For example, shaking hands to seal an agreement 
signifies that the handshakers have common knowledge of the agreement. Also, it 
can be argued [5] that when we use a definite reference such as “the president” in 
a sentence, we assume common knowledge of who is being referred to. 

In [5], Clark and Marshall present two basic ways in which a group can come to 
have common knowledge of a fact. One is by membership in a community, for 
example, the meaning of a red traffic light is common knowledge in the community 
of licensed drivers. The other is by being copresent with the occurrence of the fact, 
for example, the father’s gathering the children and publicly announcing the 
existence of muddy foreheads made that fact common knowledge. Notice that if, 
instead, the father had taken each child aside (without the other children noticing) 
and told her or him about it privately, this information would have been of no 
help at all. 

In the context of distributed systems, community membership corresponds to 
information that the processors are guaranteed to have by virtue of their presence 
in the system (e.g., information that is “inserted into” the processors before they 
enter the system). However, it is not obvious how to simulate copresence or 
“public” announcements using message passing in a distributed system. As we shall 
see, there are serious problems and unexpected subtleties involved in attempting 
to do so. 

4. The Coordinated Attack Problem 

To get a flavor of the issues involved in attaining common knowledge by simulating 
copresence in a distributed system, consider the coordinated attack problem, 
originally introduced by Gray [ 171: 

Two divisions of an army are camped on two hilltops overlooking a common 
valley. In the valley awaits the enemy. It is clear that if both divisions attack 
the enemy simultaneously, they will win the battle; whereas if only one 
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division attacks, it will be defeated. The divisions do not initially have plans 
for launching an attack on the enemy, and the commanding general of the 
first division wishes to coordinate a simultaneous attack (at some time the 
next day). Neither general will decide to attack unless he is sure that the other 
will attack with him. The generals can only communicate by means of a 
messenger. Normally, it takes the messenger one hour to get from one 
encampment to the other. However, it is possible that he will get lost in the 
dark or, worse yet, be captured by the enemy. Fortunately, on this particular 
night, everything goes smoothly. How long will it take them to coordinate an 
attack? 

We now show that despite the fact that everything goes smoothly, no agreement 
can be reached and no general can decide to attack. (This is, in a way, a folk 
theorem of operating systems theory; cf. [ 16, 17, 441.) Suppose General A sends a 
message to General B saying “Let’s attack at dawn,” and the messenger delivers it 
an hour later. General A does not immediately know whether the messenger 
succeeded in delivering the message. And because B would not attack at dawn if 
the messenger is captured and fails to deliver the message, A will not attack unless 
he knows that the message was successfully delivered. Consequently, B sends the 
messenger back to A with an acknowledgment. Suppose the messenger delivers the 
acknowledgment to A an hour later. Since B knows that A will not attack without 
knowing that B received the original message, he knows that A will not attack 
unless the acknowledgment is successfully delivered. Thus, B will not attack unless 
he knows that the acknowledgment has been successfully delivered. However, for 
B to know that the acknowledgment has been successfully delivered, A must send 
the messenger back with an acknowledgment to the acknowledgment. . . . Similar 
arguments can be used to show that no fixed finite number of acknowledgments, 
acknowledgments to acknowledgments, etc., suffices for the generals to attack. 
Note that in the discussion above, the generals are essentially running a handshake 
protocol (cf. [ 171). The above discussion shows that for no k does a k-round 
handshake protocol guarantee that the generals be able to coordinate an attack. 

In fact, we can use this intuition to actually prove that the generals can never 
attack and be guaranteed that they are attacking simultaneously. We argue by 
induction on d-the number of messages delivered by the time of the attack-that 
d messages do not suffice. Clearly, if no message is delivered, then B will not know 
of the intended attack, and a simultaneous attack is impossible. For the inductive 
step, assume that k messages do not suffice. If k + 1 messages suffice, then the 
sender of the (k + 1)st message attacks without knowing whether his last message 
arrived. Since whenever one general attacks they both do, the intended receiver of 
the (k + 1)st message must attack regardless of whether the (k + 1)st message is 
delivered. Thus, the (k + 1)st message is irrelevant, and k messages suffice, 
contradicting the inductive hypothesis. 

After presenting a detailed proof of the fact that no protocol the generals can use 
will satisfy their requirements and allow them to coordinate an attack, Yemini and 
Cohen in [44] make the following remark: 

. . . Furthermore, proving protocols correct (or impossible) is a difficult and 
cumbersome art in the absence of proper formal tools to reason about 
protocols. Such backward-induction argument as the one used in the impos- 
sibility proof should require less space and become more convincing with a 
proper set of tools. 
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Yemini and Cohen’s proof does not explicitly use reasoning about knowledge, 
but it uses a many-scenarios argument to show that if the generals both attack in 
one scenario, then there is another scenario in which one general will attack and 
the other will not. The crucial point is that the actions that should be taken depend 
not only on the actual state of affairs (in this case, the messenger successfully 
delivering the messages), but also (and in an acute way) on what other states of 
affairs the generals consider possible. Knowledge is just the dual of possibility, so 
reasoning about knowledge precisely captures the many-scenario argument in an 
intuitive way. We feel that understanding the role knowledge plays in problems 
such as coordinated attack is a first step towards simplifying the task of designing 
and proving the correctness of protocols. 

A protocol for the coordinated attack problem, if one did exist, would ensure 
that when the generals attack, they are guaranteed to be attacking simultaneously. 
Thus, in a sense, an attacking general (say A) would know that the other general 
(say B) is also attacking. Furthermore, A would know that B similarly knows that 
A is attacking. It is easy to extend this reasoning to show that when the generals 
attack they have common knowledge of the attack. However, each message that 
the messenger delivers can add at most one level of knowledge about the desired 
attack, and no more. For example, when the message is first delivered to B, B 
knows about A’s desire to coordinate an attack, but A does not know whether the 
message was delivered, and therefore A does not know that B knows about the 
intended attack. And when the messenger returns to A with B’s acknowledgment, 
A knows that B knows about the intended attack, but, not knowing whether the 
messenger delivered the acknowledgment, B does not know that A knows (that B 
knows of the intended attack). This in some sense explains why the generals cannot 
reach an agreement to attack using a finite number of messages. We are about to 
formalize this intuition. Indeed, we shall prove a more general result from which 
the inability to achieve a guaranteed coordinated attack follows as a corollary. 
Namely, we prove that communication cannot be used to attain common knowl- 
edge in a system in which communication is not guaranteed, and show that, in 
order to coordinate an attack, common knowledge is required. Before we do so, 
we need to define some of the terms that we use more precisely. 

5. A General Model of a Distributed System 

We now present a general model of a distributed environment. Formally, we model 
such an environment by a distributed system, where the agents are taken to be 
processors and interaction between agents is modeled by messages sent between 
the processors over communication links. For the sake of generality and applica- 
bility to problems involving synchronization in distributed systems, our treatment 
will allow processors to have hardware clocks. Readers not interested in such issues 
can safely ignore all reference to clocks made throughout the paper. 

We view a distributed system as a finite collection (pI, p2, . . . , p,,] of two or 
more processors that are connected by a communication network. We assume an 
external source of “real time” that in general is not directly observable by the 
processors. The processors are state machines that possibly have clocks, where a 
clock is a monotone nondecreasing function of real time. If a processor has a clock, 
then we assume that its clock reading is part of its state. (This is in contrast to the 
approach taken by Neiger and Toueg in [38]; the difference is purely a matter of 
taste.) The processors communicate with each other by sending messages along the 
links in the network. 
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A rulz r of a distributed system is a description of an execution of the system, 
from time 0 until the end of the execution. (We assume for simplicity that the 
system executes forever. If it terminates after finite time, we can just assume that 
it remains in the same state from then on.) A point is a pair (r, t) consisting of a 
run r and a time t I 0. We characterize the run r by associating with each point 
(r, t ) every processor pi’s local history at (r, t ), denoted h( pi, r, t ). Roughly 
speaking, h(pi, r, t) consists of the sequence of events that pi has observed up to 
time t in run r. We now formalize this notion. We assume that processor pi “wakes 
up” or joins the system in run Y at some time tinit(pi, r) 2 0. The processor’s local 
state when it wakes up is called its initial state. The initial configuration of a run 
consists of the initial state and the wake up time for each processor. In sys- 
tems with clocks, the clock time function T describes processors’ clock readings; 
T(pi, r, t) is the reading of pi’s clock at the point (r, t). Thus, 7(pi, r, t) is un- 
defined for t < tinit(pi, r) and is a monotonic nondecreasing function of t for 
t 2 tinit(pi, r). We say that r and r’ have the same clock readings if T(pi, r, t ) = 
7(pi, r’, t) for all processors pi and all times t. (If there are no clocks in the sys- 
tem, we say for simplicity that all runs have the same clock readings.) We take 
h(pi, r, t) to be empty if t < tinit(pi, r). For t 1 tinit(pi, r), the history h(pi, r, t) 
consists of pi’s initial state and the sequence of messages pi has sent and received 
up to, but not including, those sent or received at time t (in the order they were 
sent/received). We assume that this sequence of messages is finite. If pi has a clock, 
the messages are also marked with the time at which they were sent or received 
(i.e., with T( pi, r, t ), if they were sent or received at time t ), and the history 
includes the range of values that the clock has read up to and including time t. If we 
consider randomized protocols, then h(pi, r, t ) also includes pis, random coin 
tosses. For ease of exposition, we restrict attention to deterministic protocols 
in this paper. In a deterministic system with no external inputs and no failures, 
a processor’s initial state will be a function of its history. Thus, the sequence of 
internal states that a processor goes through can be recovered from its history. 

Corresponding to every distributed system, given an appropriate set of assump- 
tions about the properties of the system and its possible interaction with its 
environment, there is a natural set R of all possible runs of the system. We identify 
a distributed system with such a set R of its possible runs. For ease of exposi- 
tion, we sometimes slightly abuse the language and talk about a point (r, t ) as 
being a point of R when r E R. A run r’ is said to extend a point (r, t ) if 
h(pi, r, t ‘) = h(p;, r’, t ‘) for all t ’ 5 t and all processors pi. Observe that r’ 
extends (r, t ) iff r extends (r’, t ). 

Identifying a system with a set of runs is an important idea that will play a 
crucial role in allowing us to make precise the meaning of knowledge in a distributed 
system. The relative behavior of clocks, the properties of communication in the 
system, and many other properties of the system, are directly reflected in the 
properties of this set of runs. Thus, for example, a system is synchronous exactly if 
in all possible runs of the system the processors and the communication medium 
work in synchronous phases. A truly asynchronous system is one in which the set 
of runs allows any message sent to be delayed an unbounded amount of time 
before being delivered. (We discuss asynchrony in greater detail in Section 8.) 
Clocks are guaranteed to be synchronized to within a bound of 6 if they differ by 
no more than 6 time units at all points in all runs of the system. If we view the set 
of runs as a probability space with some appropriate measure, then we can also 
capture probabilistic properties of the environment and formalize probabilistic 
protocols in this framework. 
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We shall often be interested in the set of runs generated by running a particular 
protocol, under some assumptions on the communication medium. Intuitively, a 
protocol is a function specifying what actions a processor takes (which in our case 
amounts to what messages it sends) at any given point (after the processor wakes 
up) as a function of the processor’s local state. Since a processor’s local state is 
determined by its history, we simply define a protocol to be a deterministic function 
specifying what messages the processor should send at any given instant, as a 
function of the processor’s history. Recall that h(pi, r, t), processor pi’s history at 
the point (r, t), does not include messages sent or received at time t, so a processor’s 
actions at time t according to a protocol depend only on messages received in the 
past. As we mentioned above, for ease of exposition we restrict attention to 
deterministic protocols in this paper. The definitions and results can be extended 
to nondeterministic and probabilistic protocols in a straightforward way. A joint 
protocol for G is a tuple consisting of a protocol for every processor in G. 

6. Ascribing Knowledge to Processors 

What does it mean to say that a processor knows a fact Cp? In our opinion, there is 
no unique “correct” answer to this question. Different interpretations of knowledge 
in a distributed system are appropriate for different applications. For example, an 
interpretation by which a processor is said to know (0 only if P appears explicitly 
in a designated part of the processor’s storage (its “database”) seems interesting for 
certain applications. In other contexts, we may be interested in saying that a 
processor knows Cp if the processor could deduce Cp from the information available 
to it. In this section, we give precise definitions of interpretations of knowledge in 
a distributed system. 

We assume the existence of an underlying logical language of formulas for 
representing ground facts about the system. A ground fact is a fact about the state 
of the system that does not explicitly involve processors’ knowledge. For example, 
“the value of register x is 0” or “processor pi sent the message m to processor pi” 
are ground facts. 

We extend the original language of ground formulas to a language that is closed 
under operators for knowledge, distributed knowledge, everyone knows, and com- 
mon knowledge (so that for every formula P, processor pi, and subset G of the 
processors &PO, Dc’P, EG(P, and Cc Cp are formulas), and under Boolean connec- 
tives. (In Section 11, we consider additional operators.) 

We now describe one of the most natural ways of ascribing knowledge to 
processors in a distributed system, which we call view-based knowledge interpre- 
tations. At every point each processor is assigned a view; we say that two points 
are indistinguishable to the processor if it has the same view in both. A processor 
is then said to know a fact at a given point exactly if the fact holds at all of the 
points that the processor cannot distinguish from the given one. Roughly speaking, 
a processor knows all of the facts that (information theoretically) follow from its 
view at the current point.’ 

2 In a previous version of this paper [22], view-based knowledge interpretations were called state-based 
interpretations. Particular view-based knowledge interpretations were first suggested to us independently 
by Cynthia Dwork and by Stan Rosenschein. Since the appearance of [22], most authors who considered 
knowledge in distributed systems have focused on view-based interpretations; cf. [4], [9], [14], [19], 
[20], [28], [36], [40], and [42] for an overview. (See [I I] and [34] for examples of interpretations of 
knowledge that are not view based.) The approach taken to defining knowledge in view-based systems 
is closely related to the possible-worlds approach taken by Hintikka [25]. For us, the “possible worlds” 
are the points in the system; the “agents” are the processors. A processor in one world (i.e., point) 
considers another world possible if it has the same view in both. 
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More formally, a view function u for a system R assigns to every processor at any 
given point of R a view from some set Z of views (the structure of Z is not relevant 
at this point); that is, U( pi, r, t ) E 2 for each processor pi and point (r, t ) of R. 
Given that a processor’s history captures all of the events in the system that 
a processor may possibly observe, we require that the processor’s view at any 
given point be a function of its history at that point. In other words, whenever 
h(pi, r, t) = h(pi, r’, t ‘), it must also be the case that u(pi, r, t) = U(pi, r’, t ‘). 

A view-based knowledge interpretation 4 is a triple (R, r, II), consisting of a set 
of runs R, an assignment x that associates with every point in R a truth assignment 
to the ground facts (so that for every point (r, t) in R and every ground fact P, we 
have r(r, t)(P) E (true, false)), and a view function u for R. A triple (Yu; r, t), 
where .Y is a knowledge interpretation and (r, t) is a point of R, is called a 
knowledge point. Formulas are said to be true or false of knowledge points. Let 
3 = (R, X, II). We can now define the truth of a formula Cp at a knowledge point 
(J”; r, t ), denoted (3 r, t ) k Cp (and also occasionally read “ Cp holds at (-U; r, t )“, or 
just “p holds at (r, t ),” if the interpretation 4 is clear from context), by induction 
on the structure of formulas: 

(a) If P is a ground formula then (3 r, t ) I= P iff r(r, t)(P) = true. 

(b) (X r, t ) I= 3 iff C-U; r, t > F +. 
(cl (3 r, t> E J/, A h ifi(yu; r, t) != 4, and (X r, t> k $2. 
(d) (8 r, t) b Ki$ iff (*x r’, t ‘) I= + for all (r’, t ‘) in R satisfying u(pi, r, t) = 

U(Pi, r’, t ‘1. 

Part (a) says the truth value of ground facts is defined by ir. Parts (b) and (c) 
state that negations and conjunctions have their classical meaning. Part (d) captures 
the fact a processor pi’s knowledge at a point (r, t) is completely determined by its 
view u( p,, r, t ). The processor does not know Cp in a given view exactly if there is 
a point (in R) at which the processor has that same view, and Cp does not hold. The 
definitions of when EGIc/ and Cc+ hold at a knowledge point follow directly from 
the definition of EG and C, in Section 3: 

(e) (-U;r, t)FE&iff(--F;r, t)kKi$forallpiEG. 
(f) (3 r, t) i= Cc+ iff (-U; r, t) I= E,$$ for all k > 0. 

Let us consider when a group G of processors has distributed knowledge of a 
fact. Intuitively, a group’s distributed knowledge is the combined knowledge of all 
of its members. For example, we could imagine considering the group as being 
able to distinguish two points if one (or more) of its members can distinguish them. 
The set of points indistinguishable by G from the current one is then the intersection 
of the sets of points indistinguishable by the individual members of the group. We 
can therefore define when a group G has distributed knowledge of a fact Ic, as 
follows: 

(g) (;“; r, t) I= D& iff (cX r’, t ‘) b $ for all (r’, t ‘) in R satisfying u(p;, r, t) = 
~(p;, r’, t ‘) for all pi E G. 

Notice that indeed under this definition, if one member of G knows Cp while 
another member knows that Cp > 1c/, then the members of G have distributed 
knowledge of $. The definition of distributed knowledge given above is in a precise 
sense a direct generalization of individual processors’ knowledge in clause (d) 
above. We can define the joint view assigned by u to G to be 

u(G, r, t) sf I(P;, u(pi, r, t>> lpi E Gl. 
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It is easy to check that (X r, t) l= D& iff (X Y’, t ‘) l= rc/ for all (r’, t ‘) in R 
satisfying u(G, r, t) = u(G, r’, t ‘). Thus, we can identify the distributed knowledge 
of a group G with the knowledge of an agent whose view is the group’s joint view.3 
Note that the knowledge distributed in a group of size one coincides with its unique 
member’s knowledge. 

View-based interpretations will prove to be a useful way of ascribing knowledge 
to processors for the purpose of the design and analysis of distributed protocols. 
We now discuss some of the basic properties of knowledge in view-based interpre- 
tations. Fix a system R and a view function u. We can construct a graph corre- 
sponding to R and u by taking the nodes of the graph to be all the points of R, 
and joining two nodes (r, t) and (r’, t ‘) by an edge labeled pi if u(pi, r, t) = 
u(pi, r’, t ‘); that is, if pi has the same view at both points. Our definition of 
knowledge under a view-based interpretation immediately implies that K;Q holds 
at a given point (r, t) if and only if Q holds at all points (r’, t ‘) that share an edge 
labeled pi with (r, t). Define a point (r’, t ‘) in this graph to be G-reachable from 
(r, t) in k steps (with respect to the view function u) if there exist points (r,,, to), 

O-1, tl), . . . , (rk, tk) such that (r, t) = (rO, to), (r’, t ‘) = (rk, tk), and for every i c k 
there is a processor pi, E G such that (r;, t;) and (ri+r, t;+,) are joined by an edge 
labeled pi,. It follows that EcQ holds at (r, t ) under this view-based interpretation 
exactly if Q holds at all points G-reachable from (r, t ) in 1 step. An easy induction 
on k shows that E,$Q holds exactly if Q holds at all points G-reachable in k steps. 
Consequently, it is easy to see that CGQ holds at a point (r, t ) if and only if Q holds 
at all points that are G-reachable from (r, t) in a finite number of steps. In the 
particular case that G is the set of all processors, then CcQ holds at (r, t) exactly if 
Q holds at all points in the same connected component of the graph as (r, t ). 

The way distributed knowledge is represented in this graph is also instructive: 
DGQ holds at a given point (r, t) iff Q holds at all points (r’, t ‘) such that for each 
pi E G, there is an edge between (r, t ) and (r’, t ’ ) labeled by p;.Thus, for distributed 
knowledge the set of points we need to consider is the intersection of the sets of 
points we consider when determining what facts each individual processor knows. 

By describing the various notions of knowledge in the view-based case via this 
graph, it becomes easier to investigate their properties. In fact, this graph is very 
closely related to Kripke structures, a well-known standard way of modeling modal 
logics. In fact, drawing on the theory of modal logics, we can immediately see that 
the definition of knowledge in view-based interpretations agrees with the well- 
known modal logic S5 (cf. [23]). A modal operator M is said to have the properties 
of S 5 if it satisfies the following axioms and rules of inference: 

A 1. The knowledge axiom : MQ 3 Q, 
A2. The consequence closure axiom: MQ A M(Q 3 I$) 3 M$, 
A3. The positive introspection axiom: MQ 3 MMQ, 
A4. The negative introspection axiom: 7MQ > MTMQ, and 
R 1. The rule of necessitation: From Q infer MQ. 

Given a knowledge interpretation 4 for a system R, a fact $ is said to be valid 
in the system if it holds at (c4 r, t ) for all points (r, t ) of R. In our context the rule 
Rl means that whenever Q is valid in the system, so is MQ. 

We can now show: 

PROPOSITION 1. Under view-based knowledge interpretations, the operators Ki, 
DC, and C, all have the properties of S5. 

3 The knowledge ascribed to a set of processes by Chandy and Misra in [4] essentially corresponds to 
the distributed knowledge of that set, as defined here. See also [40] and [42]. 



562 J. Y. HALPERN AND Y. MOSES 

The proof is a consequence of the fact that the definitions of these notions are 
based on equivalence relations (over points): The relation of processor p,‘s having 
the same view at two points, the relation of all processors in G having the same 
joint views at both points, and the relation of being reachable via a path consisting 
solely of edges labeled by members of G in the graph corresponding to the view, 
are all equivalence relations. The proof of this proposition can be found in [23]. 

In addition to having the properties of S5, common knowledge has two additional 
useful properties under view-based interpretations: 

Cl. TheJixedpoint axiom: CGP = EG(P A &cP), and 
C2. The induction rule: From P > &(P A $) infer Cp > C&. 

The fixed-point axiom essentially characterizes C,cP as the solution of a fixed- 
point equation (in fact, it is the greatest solution; we discuss this in more detail in 
Section 11 and Appendix A). This property of common knowledge is crucial in 
many of our proofs. 

Intuitively, the induction rule says that if P is “public” and implies $, so that 
whenever Cp holds then everybody knows P A $, then whenever P holds, $ is 
common knowledge. We call it the “induction rule” because it is closely related to 
the notion of induction in arithmetic: Using the fact that P > E,(P A Ic/) is valid 
in the system, we can prove by induction on k that P > E$(P A $) is also valid in 
the system, for all k > 0. It then follows that P > Cc+ is valid in the system. 
Roughly speaking, this proof traces our line of reasoning when we argued that the 
children in the muddy children puzzle attain common knowledge of the father’s 
statement. We can get an important special case of the Induction Rule by taking 1c, 
to be Cp. Since EG((P A ‘P) is equivalent to E&, we get that from Cp > EGP we can 
infer Cp > C,cP. 

A very important instance of view-based knowledge interpretations, that will be 
used extensively from Section 11 on, is called the complete-history interpretation. 
Under this interpretation we have u( pi, r, t ) ‘Zf h( p,, r, t ). That is, the processor’s 
complete history is taken to be the view on which the processor’s knowledge is 
based. (In a previous version of this paper [22], this was called the total view 
interpretation.) The complete-history interpretation makes the finest possible dis- 
tinctions among histories. Thus, in a precise sense, it provides the processors with 
at least as much knowledge about the ground formulas as any other view-based 
interpretation. This is one of the reasons why the complete-history interpretation 
is particularly well suited for proving possibility and impossibility of achieving 
certain goals in distributed systems, and for the design and analysis of distributed 
protocols (cf. [4], [9], and [36]). 

Notice that view-based knowledge interpretations ascribe knowledge to a 
processor without the processor necessarily being “aware” of this knowledge, and 
without the processor needing to perform any particular computation in order 
to obtain such knowledge. Interestingly, even if the view function u does not 
distinguish between possibilities at all, that is, if there is a single view A such that 
u( pi, r, t ) = A for all pi, r, and t, the processors are still ascribed quite a bit of 
knowledge: Every fact that is true at all points of the system is common knowledge 
among all the processors under this view-based interpretation (and in fact under 
all view-based interpretations). Note that the hierarchy of Section 3 collapses under 
this interpretation, with DP = E(P = CP. This interpretation makes the coarsest 
possible distinctions among histories; at the other extreme we have the complete- 
history interpretation, which makes the finest possible distinctions among histories. 
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Another reasonable view-based interpretation is one in which u(pi, r, t ) is 
defined to be pi’s local state at (r, t ). (Recall that processors are state machines, 
and are thus assumed to be in some local state at every point.) This is the choice 
made in [ 141, [41], and [42]. Under this interpretation, a processor might “forget” 
facts that it knows. In particular, if a processor can arrive at a given state by two 
different message histories, then, once in that state, the processor’s knowledge 
cannot distinguish between these two “possible pasts.” In the complete-history 
interpretation, a processor’s view encodes all of the processor’s previous states, and 
therefore processors do not forget what they know; if a processor knows P at a 
knowledge point (3 r, t ), then at all knowledge points (;C: r, t ’ ) with t ’ > t the 
processor will know that it once knew P. Thus, while there may be temporary facts 
such as “it is 3 on my clock” which a processor will not know at 4 o’clock, it will 
know at 4 o’clock that it previously knew that it was 3 o’clock. 

Other view-based interpretations that may be of interest are ones in which a 
processor’s view is identified with the contents of its memory, or with the position 
of its program counter (see [26] for a closer look at some of these view-based 
interpretations). The precise view-based interpretations we choose will vary from 
application to application. For proving lower bounds we frequently use the 
complete-history interpretation since, in general, if processors cannot perform 
an action with the knowledge they have in the complete-history interpretation, 
they cannot perform it at all. On the other hand, if we can show that very little 
information is required to perform a given action, this may suggest an efficient 
protocol for performing it. 

Although view-based knowledge interpretations are natural and useful in many 
applications, they do not cover all reasonable possibilities of ascribing knowledge 
to processors in a distributed system. For example, as we have commented above, 
view-based knowledge interpretations ascribe knowledge to processors in a fashion 
that is independent of the processor’s computational power. To the extent that we 
intend processors’ knowledge to correspond closely to the actions they can perform, 
it often becomes crucial to define knowledge in a way that depends on the 
processors’ computational powers (cf. [34] and [36]). In most of the paper, we deal 
exclusively with view-based knowledge interpretations. However, in order to be 
able to prove stronger negative results about the attainability of certain states of 
knowledge, we now give a general definition of knowledge interpret.ations, which 
we believe covers all reasonable cases. 

Intuitively, we want to allow any interpretation that satisfies the two properties 
discussed in Section 3: (1) that a processor’s knowledge be a function of its history 
and (2) that only true things be known (so that the axiom K,P > Cp is valid). We 
capture the first property through the notion of an epistemic interpretation. An 
epistemic interpretation 9 is a function assigning to every processor pi at any given 
point (r, t ), a set 3s (r, t ) of facts in the extended language that pi is said to 
“believe.” 5YiY (r, t ) is required to be a function of pi’s history at (r, t ). Thus, if 
h(p;, r, t) = h(p,, r’, t ‘), then X,f(r, t) = A?,y(r’, t’). 

Given an epistemic interpretation 3 we now specify when a formula P of the 
extended language holds at a point (r, t ) (denoted (4 r, t ) I= P). As before, if Cp is 
a ground fact, we say that (,Y; r, t ) I= Cp iff x(r, t)(P) = true, while if Cp is a 
conjunction or a negation, then its truth is defined based on the truth of its 
subformulas in the obvious way. If Cp is of the form Ki $, then (3 r, t ) I= K,$ iff 
# E 27” (r, t). In this case we say that pi believes $. The formula EC+ is identified 
with the conjunction A,,, Ki#, so that (8 r, t) K EGG iff (x r, t) I= K,$ for all 
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pi E G. If Cp is of the form CG$, then (3 r, t) E Cclc, iff (-U; r, t) E &(\F/ A C,$). 
Thus, common knowledge is defined so that the fixed point axiom holds, rather 
than as an infinite conjunction. Although this definition seems circular, it is not. 
In order to determine if (X r, t ) b Cc Ic/, we first check if (-u; r, t ) != Ki( $ A C, $) 
for all pi E G. The latter fact can be determined by considering the sets X;p (r, t ). 
Finally, to handle distributed knowledge, we need to add a set 3?/,” (r, t ) of formulas 
to every point (r, t ) for each set of processors G, analogous to the sets 3;’ (r, t ) for 
individual processors. We define (‘X r, t ) I= DG’P if P E X<(r, t). The sets 
X,“(r, t ) must be a function of G’s joint history at (r, t ). We may want to put 
some restrictions on the sets 37;;’ (r, t ). For example, we may require that, if i E G 
and P E X”(r, t ), then Cp E 3;; (r, t) (which implies that Ki(P 3 DGP is valid). 
Since we do not consider distributed knowledge in interpretations that are not view 
based, we do not pursue the matter any further here. 

The knowledge axiom Ki(P 3 P is not necessarily valid in epistemic interpreta- 
tions. Indeed, that is why we have interpreted Ki(P as “processor i believes (0 ” in 
epistemic interpretations, since the knowledge axiom is the key property that is 
taken to distinguish knowledge from belief. A processor’s beliefs may be false, 
although a processor cannot be said to know Cp if Cp is in fact false. Given an 
epistemic interpretation 4 and a set of runs R, we say that 3 is a knowledge 
interpretation fir R if for all processors pi, times t, runs r E R and formulas Cp 
in the extended language, it is the case that whenever (X r, t ) l= KiP holds, 
(4 r, t ) E Cp also holds. Thus, an epistemic interpretation for R is a knowledge 
interpretation for R exactly if it makes the knowledge axiom valid in R. Notice 
that the view-based knowledge interpretations defined above are in particular 
knowledge interpretations. 

A trivial consequence of our definition above is: 

LEMMA 2. Let Y be a knowledge interpretation for R and let (r, t ) be a point of 
R. The following are equivalent for a nonempty subset G of processors: 

(2) (3 I-, t) b Ki((P A CGP) for a~~processors pi E G 
(3) (x r, t ) E K;( Cp A Cc P ) for some processor pi E G. 

This lemma shows that common knowledge requires simultaneity in a very 
strong sense: When a new fact becomes common knowledge in a group G, the 
local histories of all of the members of G must change simultaneously to reflect the 
event of the fact’s becoming common knowledge. This point is perhaps best 
understood if we think of time as ranging over the natural numbers. Given a 
knowledge interpretation -u; suppose that common knowledge does not hold at the 
point (r, t ) but does hold at the point (r, t + l), so that (X r, t ) E 1C’GcP and 
($ r, t + 1) b Cc P. Then it must be the case that the local histories of all processors 
in G changed between times t and t + 1. To see this, note that by Lemma 2 we 
have (x r, t + 1) k Ki(‘P A CGCP) for all pi E G. Suppose pi E G has the same local 
history in (r, t ) and (r, t + 1). Then by our assumption that a processor’s knowledge 
depends only on its local history, we have that (< r, t ) I= Ki((P A CG‘P). Now by 
Lemma 2 again, we have (x r, t ) k CGP, contradicting our original assumption. 

We close this section with another trivial observation that follows easily from 
Lemma 2. 

LEMMA 3. Let 9 be a knowledge interpretation for R, let r and r’ be runs in R, 
and let pi be a processor in G. If h(p;, r, t) = h(p;, r’, t ‘), then (-u; r, t) i= CGP iff 
(xr’, t’)i= cG’P. 
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PROOF. Given that pi E G, we have by Lemma 2 that (-U; r, t ) != CGcP 
iff ($ r, t) l= Ki((P A C,(o). Since h(p;, r, t) = h(p;, r’, t’), this holds iff 
(X r’, t ‘) E Ki((P A Cc’f’). Again by Lemma 2 this is true iff (X r’, t’) != CCV, 
and we are done. 0 

7. Coordinated Attack Revisited 

Now that we have the basic terminology with which to define distributed systems 
and knowledge in distributed systems, we can relate the ability to perform a 
coordinated attack to the attainment of common knowledge of particular facts. 
This in turn will motivate an investigation of the attainability of common knowl- 
edge in systems of various types. 

We formalize the coordinated attack problem as follows: We consider the generals 
as processors and their messengers as communication links between them. The 
generals are assumed to each behave according to some predetermined determin- 
istic protocol; that is, a general’s actions (what messages it sends and whether it 
attacks) at a given point are a deterministic function of his history and the time on 
his clock. In particular, we assume that the generals are following a joint protocol 
(PA, PB), where A follows PA and B follows PB. We can thus identify the generals 
with a distributed system R, consisting of all possible runs of (PA, PB). According 
to the description of the coordinated attack problem in Section 4, the divisions do 
not initially have plans to attack. Formally, this means that the joint protocol the 
generals are following has the property that in the absence of any successful 
communication neither general will attack. Thus, in any run of R where no 
messages are delivered, the generals do not attack. 

We can now show that attacking requires attaining common knowledge of the 
attack: 

PROPOSITION 4. Any correct protocol for the coordinated attack problem has the 
property that whenever the generals attack, it is common knowledge that they are 
attacking. 

PROOF. Let (PA, PB) be a correct (joint) protocol for the coordinated attack 
problem, with R being the corresponding system. Consider a ground language 
consisting of a single fact rc/ gf “both generals are attacking,” let 7r(r, t) assign a 
truth value to this formula in the obvious way at each point (r, t), and let 3 be 
the corresponding complete-history interpretation. Assume that the generals attack 
at the point (?, i) of R. We show that (< ?, i) l= C$. Our first step is to show that 
rC, 3 EIC, is valid in the system R. Assume that (r, t ) is an arbitrary point of R. If 
(3 r, t) i= -+, then we trivially have (x r, t) E # 3 E#. If (3 r, t) E rc/, then both 
generals attack at (r, t ). Suppose that (r’, t ’ ) is a point of R in which A has the 
same local history as in (r, t). Since A is executing a deterministic protocol and A 
attacks in (r, t), A must also attack in (r’, t ’ ). Furthermore, given that the protocol 
is a correct protocol for coordinated attack, if A attacks in (r’, t ‘), then so does B, 
and hence (x r’, t ‘) l= $. It follows that (3 r, t ) i= KA$; similarly we obtain 
(x r, t) K Ke$. Thus (x r, t) E E$, and again we have (X r, t) L 9 3 E+. 
We have now shown that Ic/ > EIC/ is valid in R. By the induction rule it follows 
that # > Clc, is also valid in R. Since (-U: i, i) l= $, we have that (3 i, i) l= C$ 
and we are done. 0 

Proposition 4 shows that common knowledge is a prerequisite for coordinated 
attack. Unfortunately, common knowledge is not always attainable, as we show in 
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the next section. Indeed, it is the unattainability of common knowledge that is the 
fundamental reason why the generals cannot coordinate an attack. 

8. Attaining Common Knowledge 

Following the coordinated attack example, we first consider systems in which 
communcation is not guaranteed. Intuitively, communication is not guaranteed in 
a system if messages might fail to be delivered in an arbitrary fashion, independent 
of any other event in the system. Completely formalizing this intuition seems to 
be rather cumbersome (cf. [20]), and we do not attempt to do so here. For our 
purposes, a weak condition, which must be satisfied by any reasonable definition 
of the notion of communication not being guaranteed, will suffice. Roughly 
speaking, we take communication not being guaranteed to correspond to two 
conditions. The first says that it is always possible that from some point on no 
messages will be received. The second says that if processor pi does not get any 
information to the contrary (by receiving some message), then pi considers it 
possible that none of its messages were received. 

Formally, given a system R, we say that communication in R is not guaranteed 
if the following two conditions hold: 

NGl. For all runs r and times t, there exists a run r’ extending (r, t) such that r 
and r’ have the same initial configuration and the same clock readings, and 
no messages are received in r’ at or after time t. 

NG2. If in run r processor pi does not receive any messages in the interval (t ‘, t ), 
then there is a run r’ extending (r, t ‘) such that r and r’ have the 
same initial configuration and the same clock readings, h( pi, r, t “) = 
h(pi, r’, t “) for all t V 5 t, and no processor pj # pi receives a message 
in r’ in the interval [t ‘, t). 

Note that the requirement that r and r’ have the same initial configuration already 
follows from the fact that r’ extends (r, t) if all the processors have woken up by 
time t in run r. In particular, if we restricted attention to systems where all 
processors were up at time 0, we would not require this condition. 

We can now show that in a system in which communication is not guaranteed, 
common knowledge is not attainable. 

THEOREM 5. Let R be a system in which communication is not guaranteed, let 
9 be a knowledge interpretation for R, and let 1 G 1 L 2. Let r be a run of R, and 
let r- be a run of R with the same initial configuration and the same clock readings 
as r, such that no messages are received in r- up to time t. Then for all formulas Q, 
it is the case that (X r, t) I= CGQ iff(X r-, t) E C&Q. 

PROOF. Fix Q. Without loss of generality, we can assume pI, p2 E G. Let d(r) 
be the number of messages received in r up to (but not including) time t. We show 
by induction on k that if d(r) = k, then (X r, t) b C,Q iff (x r-, t) E CcQ. We 
assume that all the runs mentioned in the remainder of the proof have the same 
initial configuration and the same clock readings as r. Fir<& assume that d(r) = 0. 
Thus, no messages are received in r up to time 1. Since r and r- have the same 
initial configuration and clock readings, it follows that h(p,, r, t) = h(p,, r-, t). 
By Lemma 3, we have (8 r-, t ) l= Cc Q iff ($ r, t ) E Cc Q, as desired. 

Assume inductively that the claim holds for all runs r’ E R with d(r’) = k, and 
assume that d(r) = k + 1. Let t ’ < t be the latest time at which a message is 
received in r before time t. Let pj be a processor that receives a message at time t ’ 
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in r. Let pi be a processor in G such that pi # pj (such a pi exists since I G 1 I 2). 
From property NG2 in the definition of communication not being guaranteed, it 
follows that there is a run r’ E R extending (r, t ‘) such that h(pi, r, t “) = 
h(pi, r’, t”) for all t N < t and all processors pk # pi receive no messages 
in r’ in the interval [t ‘, t). By construction, d(r’) 5 k, so by the inductive hy- 
pothesis we have that (X r-, t) != CGCP iff (3 r’, t) I= Co(P. Since h(pi, r, t) = 
h(pi, r’, t), by Lemma 3 we have that (J r’, t) I= C,P iff (4 r, t) F Co’P. 
Thus, (< r-, t ) l= C, V iff (-U; r, t ) l= C, Cp. This completes the proof of the 
inductive step. q 

Note that Theorem 5 does not say that no fact can become common knowledge 
in a system where communication is not guaranteed. In a system where commu- 
nication is not guaranteed but there is a global clock to which all processors have 
access, then at 5 o’clock it becomes common knowledge that it is 5 o’clock.4 
However, the theorem does say that nothing can become common knowledge 
unless it is also common knowledge in the absence of communication. This is a 
basic property of systems with unreliable communication, and it allows us to prove 
the impossibility of coordinated attack. 

COROLLARY 6. Any correct protocol for the coordinated attack problem guar- 
antees that neither party ever attacks (!). 

PROOF. Recall that communication between the generals is not guaranteed (i.e., 
it satisfies conditions NGl and NG2 above), and we assume that in the absence of 
any successful communication neither general will attack. Thus, if we take rC, to be 
“both generals are attacking,” then C$ does not hold at any point in a run in 
which no messages are received (since $ does not hold at any point of that run). 
Theorem 5 implies that the generals will never attain common knowledge of # in 
any run, and hence by Proposition 4 the generals will never attack. 0 

It is often suggested that for any action for which CV suffices, there is a k such 
that Ek’P s&ices, as is the case in the muddy children puzzle. The coordinated 
attack problem shows that this is false. The generals can attain Ek’P of many facts 
Cp for an arbitrarily large k (for example, if the first k messages are delivered). 
However, simultaneous coordinated attack requires common knowledge (as is 
shown in Proposition 4); nothing less will do. 

The requirement of simultaneous attack in the coordinated attack problem is a 
very strong one. It seems that real-life generals do not need a protocol that 
guarantees such a strong condition, and can probably make do with one that 
guarantees a nonsimultaneous attack. We may want to consider weakening this 
requirement in order to get something that is achievable. In Section 11, we use a 
variant of the argument used in Corollary 6 to show that no protocol can even 
guarantee that, if one party attacks, then the other will eventually attack! On the 
other hand, a protocol that guarantees that if one party attacks, then with high 
probability the other will attack is achievable, under appropriate probabilistic 
assumptions about message delivery. The details of such a protocol are straightfor- 
ward and left to the reader. 

4 We remark that the possible presence of some sort of global clock is essentially all that stops us from 
saying that no fact can become common knowledge if it was not already common knowledge at the 
beginning of a run. See Proposition 13 in Appendix B and the discussion before it for conditions under 
which it is the case that no fact can become common knowledge that was not initially common 
knowledge. 
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We can prove a result similar to Theorem 5 even if communication is guaranteed, 
as long as there is no bound on message delivery times. A system R is said to be a 
system with unbounded message delivery times if condition NG2 of communication 
not guaranteed holds, and in addition we have: 

NGl ‘. For all runs r and all times t, u, with t 5 u, there exists a run r’ extending 
(v, t) such that r’ has the same initial configuration and the same clock 
readings as r, and no messages are received in r’ in the interval [t, u]. 

Asynchronous systems are often defined to be systems with unbounded message 
delivery times (for example, in [ 151). Intuitively, condition NG 1’ says that it is 
always possible for no messages to be received for arbitrarily long periods of time, 
whereas condition NGl says that it is always possible for no messages at all to be 
received from some time on. In some sense, we can view NGl as the limit case of 
NGl ‘. Notice that both systems where communication is not guaranteed and 
systems with unbounded message delivery times satisfy condition NG2. The proof 
of Theorem 5 made use only of NG2, not NG 1, so we immediately get: 

THEOREM 7. Let R be a system with unbounded message delivery times, let .P 
be a knowledge interpretation for R, and let 1 G 1 I 2. Let r be a run of R, and let 
r- be a run of R with the same initial configuration and the same clock readings as 
r, such that no messages are received in r- up to time t. Then, for all formulas ‘P, it 
is the case that (X r, t) I= CacP iff (x r-, t) E Cc(o. 

The previous results show that, in a strong sense, common knowledge is not 
attainable in a system in which communication is not guaranteed or, for that 
matter, in a system in which communication is guaranteed, but there is no bound 
on the message delivery times. However, even when all messages are guaranteed 
to be delivered within a fixed time bound, common knowledge can be elusive. To 
see this, consider a system consisting of two processors, R2 and D2, connected by 
a communication link. Moreover, (it is common knowledge that) communication 
is guaranteed. But there is some uncertainty in message delivery times. For 
simplicity, let us assume that any message sent from R2 to D2 reaches D2 either 
immediately or after exactly t seconds; furthermore, assume that this fact is 
common knowledge. Now suppose that at time ts, R2 sends D2 a message m that 
does not contain a timestamp, that is, does not mention ts in any way. The message 
m is received by D2 at time t,,. Let sent(m) be the fact “the message m has been 
sent.” D2 does not know sent(m) initially. How does (R2, D2)‘s state of knowledge 
of sent(m) change with time? 

At time tD, D2 knows sent(m). Because it might have taken t time units for m 
to be delivered, R2 cannot be sure that D2 knows sent(m) before ts + 6. Thus, 
KRKDsent(m) holds at time tS + E and no earlier. D2 knows that R2 will not know 
that D2 knows sent(m) before ts + t. Because for all D2 knows m may have been 
delivered immediately (in which case ts = tD), D2 does not know that R2 knows 
that D2 knows sent(m) before tD + E. Since tD might be equal to ts + t, R2 must 
wait until ts + 2~ before he knows that tD + E has passed. Thus, KRKD&KDSent(m) 

holds at time ts + 2~ but no earlier. This line of reasoning can be continued 
indefinitely, and an easy proof by induction shows that before time ts + kt, the 
formula (KRKD)ksent(m) does not hold, while at ts + kc it does hold. Thus, it 
“costs” E time units to acquire every level of “R2 knows that D2 knows.” Recall 
that Csent(m) implies (KRKD)ksent(m) for every k. It follows that Csent(m) will 
never be attained! 
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We can capture this situation using our formal model as follows. Let MIN = 
k/c J, and consider the system with a countable set of runs (r,, r: : i an integer with 
i 2 -MIN 1. If i r -M1N, then in run ri, R2 sends the message m at time ts + ic 
and D2 receives it at the same time. In run rl, R2 again sends the message m at 
time t, + it, but D2 receives it at time ts + (i + 1)~. (Note our choice of MIN 
guarantees that all messages are sent at time greater than or equal to 0.) If we 
assume that in fact the message in the example took E time to arrive, then the run 
rh describes the true situation. However, it is easy to see that at all times t, R2 
cannot distinguish runs ri and rl (in that its local state is the same at the 
corresponding points in the two runs, assuming that only message m is sent), while 
D2 cannot distinguish ri and ri’_, (provided i - 1 2 -MZN). 

Our discussion of knowledge in a distributed system is motivated by the fact that 
we can view processors’ actions as being based on their knowledge. Consider an 
eager epistemic interpretation 4 under which R2 believes Gent(m) as soon as it 
sends the message m, while D2 believes Gent(m) as soon as it receives m. Clearly, 
2 is not a knowledge interpretation, because it is not knowledge consistent (R2 
might believe that D2 knows sent(m), when in fact D2 does not). However, once 
D2 receives m, which happens at most t time units after R2 starts believing 
Gent(m), it is easy to see that Gent(m) does indeed hold! In a sense, Lemma 2 
says that attaining common knowledge requires a certain kind of “natural birth”; 
it is not possible to attain it consistently unless simultaneity is attainable. But if 
one is willing to give up knowledge consistency (i.e., abandon the K,(P > Cp axiom) 
for short intervals of time, something very similar to common knowledge can be 
attained. 

The existence of an interval of up to E time units during which R2 and D2’s 
“knowledge” might be inconsistent may have practical impact. If the processors 
need to act on the basis of whether Gent(m) holds during the interval, they might 
not act in an appropriately coordinated way. This is a familiar problem in the 
context of distributed database systems. There, committing a transaction roughly 
corresponds to entering into an agreement that the transaction has taken place in 
the database. However, in general, different sites of the database commit transac- 
tions at different times (although usually all within a small time interval). When a 
new transaction is being committed there is a “window of vulnerability” during 
which different sites might reflect inconsistent histories of the database. However, 
once all sites commit the transaction, the history of the database that the sites 
reflect becomes consistent (at least as far as the particular transaction is concerned). 
In Section 13 we return to the question of when an “almost knowledge consistent” 
version of common knowledge can be safely used “as if it were” knowledge. 

Returning to the R2-D2 example, note that it is the uncertainty in relative 
message delivery time that makes it impossible to attain common knowledge, and 
not the fact that communication is not instantaneous. If it were common knowledge 
that messages took exactly E time units to arrive, then sent(m) would be common 
knowledge at time ts + t (and the system would consist only of run rl). 

Another way of removing the uncertainty is by having a common (global) clock 
in the system. Suppose that there is such a clock. Consider what would happen if 
R2 sends D2 the following message m ’ : 

“This message is being sent at time ts; m.” 

Since there is a global clock and it is guaranteed that every message sent by R2 is 
delivered within E time units, the fact that R2 sent m ’ to D2 would again become 



570 J. Y. HALPERN AND Y. MOSES 

common knowledge at time ts + e ! In this case, the system would consist of two 
runs, r. and rl. At time ts + t, D2 would know which of the two was actually the 
case, although R2 would not (although D2 could tell him by sending a message). 

It seems that common knowledge is attainable in the latter two cases due to the 
possibility of simultaneously making the transition from not having common 
knowledge to having common knowledge (at time ts + c). The impossibility of 
doing so in the first case was the driving force behind the extra cost in time incurred 
in attaining each additional level of knowledge. 

Lemma 2 already implies that when C(o first holds all processors must come to 
believe CP simultaneously. In particular, this means that all of the processors’ 
histories must change simultaneously. However, strictly speaking, practical systems 
cannot guarantee absolute simultaneity. In particular, we claim that essentially all 
practical distributed systems have some inherent temporal uncertainty. There is 
always some uncertainty about the precise instant at which each processor starts 
functioning, and about exactly how much time each message takes to be delivered. 
In Appendix B we give a precise formulation of the notion of temporal imprecision, 
which captures these properties, and use methods derived from [7] and [21] to 
prove the following result: 

THEOREM 8. Let R be a system with temporal imprecision, let Y be a knowledge 
interpretation for R, and let 1 G 1 2 2. Then for all runs r E R, times t, andformulas 
(0 it is the case that (2 r, t) t= CccP i#(x r, 0) E &cP. 

Since practical systems turn out to have temporal imprecision, Theorem 8 
implies that, strictly speaking, common knowledge cannot be attained in practical 
distributed systems! In such systems, we have the following situation: A fact Cp can 
be known to a processor without being common knowledge, or it can be common 
knowledge (in which case that processor also knows ‘P), but due to (possibly 
negligible) imperfections in the system’s state of synchronization and its commu- 
nication medium, there is no way of getting from the first situation to the second! 
Note that if there is a global clock, then there cannot be any temporal imprecision. 
Thus, it is consistent with Theorem 8 that common knowledge is attainable in a 
system with a global clock. 

Observe that we can now show that, formally speaking, even people cannot 
attain common knowledge of any new fact! Consider the father publicly announcing 
m to the children in the muddy children puzzle. Even if we assume that it is 
common knowledge that the children all hear whatever the father says and 
understand it, there remains some uncertainty as to exactly when each child comes 
to know (or comprehend) the father’s statement. Thus, it is easy to see that the 
children do not immediately have common knowledge of the father’s announce- 
ment. Furthermore, for similar reasons, the father’s statement can never become 
common knowledge. 

9. A Paradox? 

There is a close correspondence between agreements, coordinated actions, and 
common knowledge. We have argued that, in a precise sense, reaching agreements 
and coordinating actions in a distributed system requires attaining common 
knowledge of certain facts. However, in the previous section we showed that 
common knowledge cannot be attained in practical distributed systems! We are 
faced with a seemingly paradoxical situation on two accounts. First of all, these 
results are in contradiction with practical experience, in which operations such as 
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reaching agreement and coordinating actions are routinely performed in many 
actual distributed systems. It certainly seems as if these actions are performed in 
such systems without the designers having to worry about common knowledge 
(and despite the fact that we have proved that common knowledge is unattainable!). 
Secondly, these results seem to contradict our intuitive feeling that common 
knowledge is attained in many actual situations; for example, by the children in 
the muddy children puzzle. 

Where is the catch? How can we explain this apparent discrepancy between our 
formal treatment and practical experience? What is the right way to interpret our 
negative results from the previous section? Is there indeed a paradox here? Or 
perhaps we are using a wrong or useless definition of common knowledge? 

We believe that we do have a useful and meaningful definition of common 
knowledge. However, a closer inspection of the situation is needed in order to 
understand the subtle issues involved. First of all, we shall see that only rather 
strong notions of coordination in a distributed system require common knowledge. 
Common knowledge corresponds to absolutely simultaneous coordination, which 
is more than is necessary in many particular applications. For many other types of 
coordination, weaker states of knowledge suffice. In the coming sections, we 
investigate a variety of weaker states of knowledge that are appropriate for many 
applications. Furthermore, in many cases practical situations (and practical distrib- 
uted systems) can be faithfully modeled by a simplified abstract model, in which 
common knowledge is attainable. In such a case, when facts become common 
knowledge in the abstract model, it may be perfectly safe and reasonable to consider 
them to be common knowledge when deciding on actions to be performed in the 
actual system. We discuss this in greater detail in Section 13. 

10. Common Knowledge Revisited 

In Section 8, we showed that common knowledge is not attainable in practical 
distributed systems under any reasonable interpretation of knowledge (i.e., in any 
epistemic interpretation). Our purpose in the coming sections is to investigate what 
states of knowledge are attainable in such systems. For that purpose, we restrict 
our attention to view-based interpretations of knowledge, since they seem to be the 
most appropriate for many applications in distributed systems. Under view-based 
interpretations, it seems useful to consider an alternative view of common 
knowledge. 

Recall the children’s state of knowledge of the fact m in the muddy children 
puzzle. If we assume that it is common knowledge that all children comprehend 
m simultaneously, then after the father announces m, the children attain Cm. 
However, when they attain Cm it is not the case that the children learn the 
infinitely many facts of the form Ekm separately. Rather, after the father speaks, 
the children are in a state of knowledge S characterized by the fact that every child 
knows both that m holds and that S holds. Thus, S satisfies the equation 

S = E(m A S). 

The fixed point axiom of Section 6 says that under a view-based interpretation, 
C,P is a solution for X in an analogous fixed point equation, namely 

X= EG(P A X). 

Now this equation has many solutions, including, for example, both false and 
CG(cP A $), for any formula #. CGP can be characterized as being the greatestfixed 
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point of the equation; that is, a fixed point that is implied by all other solutions. 
(The /east fixed point of this equation is f&e, since it implies all other solutions.) 
As our discussion of common knowledge in the case of the muddy children puzzle 
suggests, expressing common knowledge as a greatest fixed point of such an 
equation seems to correspond more closely to the way it actually arises. We sketch 
a semantics for a propositional view-based logic of knowledge with fixed point in 
Appendix A. This alternative point of view, considering common knowledge as 
the greatest fixed point of such an equation, will turn out to be very useful when 
we attempt to define related variants of common knowledge. 

11. C-Common Knowledge and O-Common Knowledge 

Since, strictly speaking, common knowledge cannot be attained in practical distrib- 
uted systems, it is natural to ask what states of knowledge can be obtained by the 
communication process. In this section, we consider what states of knowledge are 
attained in systems in which communication delivery is guaranteed but message 
delivery times are uncertain. For ease of exposition, we restrict our attention to 
view-based interpretations of knowledge here and in the next section. 

We begin by considering synchronous broadcast channels of communication; 
that is, ones in which every message sent is received by all processors, and there 
are constants L and t such that all processors receive the message between L and 
L + t time units from the time it is sent. We call 6 the broadcast spread of such a 
channel. Recall that the properties of the system hold throughout all of its runs 
and hence are common knowledge. In particular, the properties of the broadcast 
channel are common knowledge under any view-based interpretation. 

Let us now consider the state of knowledge of the system when a processor pi 
receives a broadcast message m. Clearly pi knows that within an interval oft time 
units around the current time everyone (receives m and) knows sent(m). But pi 
also knows that any other processor that receives m will know that all processors 
will receive m within such an t interval. Let us define within an E interval, everyone 
knows P, denoted E ‘P, to hold if there is an interval oft time units containing the 
current time such that each processor comes to know P at some point in 
this interval. Formally, we have: (.Z r, t) k E&P if there exists an interval 
I = [t ‘, t ’ + 61 such that t E 1 and for all pi E G there exists ti E I for which 
(Cu: r, t,) l= Ki(P. Let 1c, be “some processor has received m .” In a synchronous 
broadcast system as described above, we clearly have that rc/ 3 E ‘rC, is valid. 

We are thus in a state of knowledge that is analogous to common knowledge; 
here, however, rather than everyone knowing Cp at the same instant, they all come 
to know Cp within an interval of t time units. We call this the state of group 
knowledge e-common knowledge, denoted C ‘. The formal definition of Cf; P is as 
the greatest fixed point of the equation: 

X = E&(P A X). 

We refer the reader to Appendix A for a rigorous definition. The fact rc/ above, 
stating that some processor received the message m, has the property that 1c, > Cc J/. 
In addition, since $3 sent(m) is valid, it is also the case that 4 > C’sent(m). Thus, 
when some processor receives m it becomes c-common knowledge that m has been 
sent. 

As a straightforward consequence of its definition, C’ satisfies the appropriate 
analogues of the fixed point axiom Cl and the induction rule C2 of Section 6 
(replacing E by E ’ and C by CL ). Note that we did not define Ci P as an infinite 
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conjunction of (E6)k(P, k 2 1. Although it is not hard to show that C&V’ implies 
this infinite conjunction, it is not equivalent to it; however, giving a detailed 
counterexample is beyond the scope of this paper. (We give an example of a similar 
phenomenon below.) The fixed-point definition is the one that is appropriate for 
our applications. Just as common knowledge corresponds to simultaneous actions 
in a distributed system, t-common knowledge corresponds to actions that are 
guaranteed to be performed within E time units of one another. This is what we get 
from the fixed-point axiom Cl, which does not hold in general for the infinite 
conjunction. We are often interested in actions that are guaranteed to be performed 
within a small time window. For example, in an “early stopping” protocol for 
Byzantine agreement (cf. [S]), all correct processors are guaranteed to decide on a 
common value within c time units of each other. It follows that once the first 
processor decides, the decision value is E-common knowledge.’ 

There is one important special case where it can be shown that the fixed-point 
definition of CG(P is equivalent to the infinite conjunction. This arises when we 
restrict attention to complete-history interpretations and stable facts, facts that 
once true, remain true. Many facts of interest in distributed systems applications, 
such as “P held at some point in the past, ” “the initial value of x is 1,” or “P holds 
at time t on pi’s clock,” are stable. If Cp is stable, then it is not hard to check that 
in complete-history interpretations, we have that EG(P holds iff EG(P will hold in E 
time units. As a straightforward consequence of this observation, we can show that 
in complete-history interpretations, for a stable fact ‘P, we do have that Cf;cP holds 
iff (Ei)kP holds for all k L 1.6 

It is not hard to verify that of the properties of S5, C’ satisfies only A3 (positive 
introspection) and RI (the rule of necessitation). The failure of C’ to satisfy the 
knowledge axiom and the consequence closure axiom can be traced to the failure 
of E’ to satisfy these axioms. The problem is that E ’ (0 only requires that Cp hold 
and be known at some (not all!) of the points in the 6 interval I. Indeed, it is not 
hard to construct an example in which E “P A E ‘+P holds. We remark that if we 
restrict attention to stable facts and complete-history interpretations, then conse- 
quence closure does hold for both EC and C ‘. 

It is interesting to compare c-common knowledge with common knowledge. 
Clearly, C(P > C’(P is valid. However, since synchronous broadcast channels are 
implementable in systems where common knowledge is not attainable, the converse 
does not hold. Thus, t-common knowledge is strictly weaker than common 
knowledge. Moreover, note that while C(P is a static state of knowledge, which can 
be true of a point in time irrespective of its past or future, C’(P is a notion that is 
essentially temporal. Whether or not it holds depends on what processors will know 
in an t interval around the current time. 

For any message m broadcast on a channel with broadcast spread E, the fact 
sent(m) becomes c-common knowledge L times units after m is broadcast (in 
particular, as soon as it is sent if L = 0). Upon receiving m, a processor pi knows 
that C’seMt(m) holds, that is, KiC’sent(m) holds. Returning to R2 and D2’s 
communication problem, we can view them as a synchronous broadcast system, 

5 The situation there is in fact slightly more complicated since only the correct processors are required 
to decide; see [36] for definitions of knowledge appropriate for such situations. 

6 We remark that in earlier versions of this paper, we restricted attention to complete-history interpre- 
tations and stable facts, and defined EI;(O as O’&cO, where O’$ is true at a point (r, t) iff $ is true 6 
time units later, at (r, t + c). By the comments above, our current definition is a generalization of our 
former definition. 
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and indeed they attain C’sent(m) immediately when R2 sends the message m. 
(Note that L = 0 in this particular example; the interested reader is invited to 
check that R2 and D2 in fact achieve c/2-common knowledge of sent(m) at 
time ts + t/2.) 

Having discussed states of knowledge in synchronous broadcast channels, we 
now turn our attention to systems in which communication is asynchronous: no 
bound on the delivery times of messages in the system exists. Consider the state of 
knowledge of sent(m) in a system in which m is broadcast over an a.synchronous 
channel: a channel that guarantees that every message broadcast will eventually 
reach every processor. Upon receiving m, a processor knows sent(m), and knows 
that every other processor either has already received m or will eventually receive 
m. This situation, where it is common knowledge that if m is sent then everyone 
will eventually know that m has been sent, gives rise to a weak state of group 
knowledge that we call eventual common knowledge. 

We define everyone in G will eventually have known (0, denoted Ez ‘P, to hold if 
for every processor in G there is some time during the run at which it knows (0. 
Formally, (4 r, t ) L Ez Cp if for all pi E G there exists ti 2 0 such that ($ Y, ti) E 
KiP. We remark that if we restrict attention to stable facts Cp and complete-history 
interpretations, then Ez Cp is equivalent to 0 EC (0, that is, eventually everyone in 
G knows ‘P.’ We define the state of O-common knowledge (read eventual common 
knowledge), denoted by Co, by taking C,” Cp to be the greatest fixed point of the 
equation: 

X = E:((o A X). 

Notice that we again used the fixed-point definition rather than one in terms of 
infinite conjunction of (Ez)?, k 2 1. Our definition implies the infinite conjunc- 
tion but, as we show by example below, it is not equivalent to the infinite 
conjunction, even if we restrict to stable facts and complete-history interpretations. 

Our motivation for considering the fixed-point definition is the same as it was 
in the case of c-common knowledge. The fixed-point definition gives us analogues 
to C 1 and C2; as a consequence, O-common knowledge corresponds to events that 
are guaranteed to take place at all sites eventually. For example, in some of the 
work on variants of the Byzantine Agreement problem discussed in the literature 
(cf. [8]), the kind of agreement sought is one in which whenever a correct processor 
decides on a given value, each other correct processor is guaranteed to decide on 
the same value eventually. The state of knowledge of the decision value that 
the processors attain in such circumstances is Oicommon knowledge. Also, in 
asynchronous error-free broadcast channels, a processor knows that sent(m) 
is O-common knowledge when it receives the message m. 

C,” is the weakest temporal notion of common knowledge that we have intro- 
duced. In fact, we now have a hierarchy of the temporal notions of common 
knowledge. For any fact Cp and t, 5 . . . 5 ck 5 tk+, 5 . . . , we have: 

Gj-cp 3 cpjcpcp 3 **a 3 c;;k(P 3 c%+‘cp 3 *f * 3 c,“cp. 

We next consider how C’ and Co are affected by communication not being 
guaranteed. Recall that Theorem 5 implies that if communication is not guaranteed, 
then common knowledge is unaffected by the communication process. A fact only 

’ Formally, we take OG to be true at a point (T, I) if $ is true at some point (r, & ’ ) with 1’ z t. In an 

earlier version of this paper, we defined E$‘P as OEG'P. Again, by the comments above, our current 

definition is a generalization of our former one. 
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becomes common knowledge if it becomes common knowledge in the absence of 
messages. Interestingly, the obvious analogue of Theorem 5 does not hold for C’ 
and Co. Indeed, it is possible to construct a situation in which C’(o is attained 
only if communication is not sufficiently successful. For example, consider a system 
consisting of R2 and D2 connected by a two-way link. Communication along the 
link is not guaranteed, R2 and D2’s clocks are perfectly synchronized, and both of 
them run the following protocol: 

At time 0, send the message “OK”. For all natural numbers k > 0, if you have 
received k “OK” messages by time k on your clock, send an “OK” message at time 
k; otherwise, send nothing. 

Let rc/ = “it is time k where k 1 1 and some message sent at or before time k - 1 
was not delivered within one time unit.” Assume a complete-history interpretation 
for this system and fix t = 1. It is easy to see that tc/ 3 E’ $ is valid in this system. 
For suppose that at time k the fact $ holds because one of R2’s messages was not 
delivered to D2. D2 knows rl/ at time k and, according to the protocol, will not 
send a message to R2 at time k. Thus, by time k + 1, R2 will also know rl/ (if it did 
not know it earlier). The induction rule implies that $ 3 C’$ is also valid in the 

’ system. If r is a run of the system where no messages are received, then it is easy 
to see that # holds at (r, l), and hence so does C’$. However, C’lc, does not hold 
at (r’, 1) if r’ is a run where all messages are delivered within one time unit. (The 
same example works for C ’ $,) 

In the example above, successful communication in a system where communi- 
cation is not guaranteed can prevent CA # (resp., C,” II/) from holding. However, 
the following theorem shows that we can get a partial analogue to Theorem 5 for 
C’ and Co. Intuitively, it states that if C&lc, (resp., C,” #) does not hold in the 
absence of successful communication, then Cd$ (resp., C,$lc/) does not hold 
regardless of how successful communication may turn out to be. More formally, 

THEOREM 9. Let R and G be as in Theorem 5, and let 3 be a view-based 
interpretation. Let r- be a run of R where no messages are received. If (x r-, t ) I# 
C&P (resp., (-u; r-, t) t# C:(P) for all times t, then (x r, t) I# CZ.cP (resp., 
(x r, t ) I# C,” (0) for all runs r with the same initial configuration and the 
same clock readings as r- and all times t. 

PROOF. We sketch the proof for CicP ; the proof for C,” Cp is analogous. We 
assume that all runs mentioned in this proof have the same initial configuration 
and the same clock readings as r-. If r is a run such that C6(P holds at some point 
in r, let tj(r) be the first time in r that processor pj E G knows C&P. Let i(r) = 
max(tj(r): pj E G}, and let d(r) be the number of messages that are received in r 
up to (but not including) i(r). We show by induction on k that if r is a run such 
that C&P holds at some point in r, then d(r) # k. This will show that in fact C;cP 
can never hold. 

If d(r) = 0 and Cf;cP holds at some point in r, choose some pi E G and let ti = 
ti(r). Then we have that (-u; r, ti) E K;C&P. Clearly h(pi, r, ti) = h(pi, r-, ti), SO 

(x r-, ti) ti KiC&P. By the knowledge axiom, we have that (x r-, ti) I= CGP, 
contradicting the hypothesis of the theorem. 

For the inductive step, assume that d(r) = k + 1 and let t^ = i(r). We now 
proceed as in the proof of Theorem 5. Let pj be a processor receiving the last 
message received in r before time i. Let t ’ be the time at which pj receives this 
message. Let pi be a processor in G such that pi # pj and let ti = ti(r). Since 
communication is not guaranteed, there exists a run r’ extending (r, t ‘) such that 



576 J. Y. HALPERN AND Y. MOSES 

(1) no messages are received in Y’ at or after time ?, (2) h(p,, r, t “) = h(p;, r’, t “) 
for all t N 5 1, and (3) all processors pk # pi IWXiVe no messages in the interval 
[t ‘, i). By construction, at most k messages are received altogether in Y’, so 
d(v’) 5 k. By the induction hypothesis we have that (X Y’, t “) l= -C&P for all t “. 
It follows that (< Y’ , t,) K 1 KiC&P. But since we assumed (x Y, ti) E Ki C& Cp 
and h( p,, Y, ti) = h(pi, r’, ti), this gives us a contradiction. 0 

We can now use Theorem 9 to prove an analogue to Corollary 6, which shows 
that if communication is not guaranteed, then there is no protocol for eventually 
coordinated attack. 

PROPOSITION 10. In the coordinated attack problem, any protocol that guaran- 
tees that whenever either party attacks the other party will eventually attack, is a 
protocol in which necessarily neither party attacks. 

PROOF. The proof is analogous to that of Corollary 6. Assume that (PA, PB) is 
a joint protocol that guarantees that if either party attacks then they both eventually 
attack, and let R be the corresponding system. Let $ = “At least one of the generals 
has started attacking”. We first show that when either general attacks, then eventual 
common knowledge of $ must hold. Since the protocol guarantees that whenever 
one general attacks the other one eventually attacks, it is easy to see that a general 
that has decided to attack knows 4 and knows that eventually both generals will 
know #. Thus, by the induction rule for Co, when a general attacks Co+ holds. 
Since in every run of the protocol in which no messages are received no party 
attacks (and hence neither II/ nor Co+ hold in such runs), by Theorem 9, the 
protocol (PA, PB) guarantees that neither general will ever attack. 0 

Theorem 9 allows us to construct an example in which the infinite conjunction 
of (E o)kP holds, but Co P does not. In the setting of the coordinated attack 
problem, let Cp be “General A is in favor of attacking”. Consider a run in which all 
messengers arrive safely, and messages are acknowledged ad infinitum. Clearly, 
assuming a complete-history interpretation, for all k it is the case that EkV holds 
after the kth message is delivered. It follows that (E o)kP holds at time 0. However, 
Theorem 9 implies that C”‘P never holds in this run. It follows that C”‘P is not 
equivalent to the infinite conjunction of (E’)“P even in the case of stable facts Cp 
and complete-history interpretations. 

Recall that the proof that unreliable communication cannot affect what facts are 
common knowledge carried over to (reliable) asynchronous communication. Our 
proof in Theorem 9 clearly does not carry over. In fact, a message broadcast over 
a reliable asynchronous channel does become eventual common knowledge. How- 
ever, it is possible to show that asynchronous channels cannot be used in order to 
attain c-common knowledge: 

THEOREM 11. Let R be a system with unbounded delivery times and let 
( G 1 2 2. Suppose there is some run r- in R in which no messages are 
delivered in the interval [0, t + c) such that (X r-, t) F C&#. Then for all runs r 
in R with the same initial configuration and the same clock readings as r-, we 
have (< r, t) I# C&#. 

SKETCH OF PROOF. The proof essentially follows the proof of Theorems 5 and 
9. We proceed by induction on d(r), the number of messages received in r up to 
time t. Details are left to the reader. Cl 
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Thus, asynchronous communication channels are of no use for coordinating 
actions that are guaranteed to be performed at all sites within a predetermined 
fixed time bound. 

12. Timestamping: Using Relativistic Time 

Real time is not always the appropriate notion of time to consider in a distributed 
system. Processors in a distributed system often do not have access to a common 
source of real time, and their clocks do not show identical readings at any given 
real time. Furthermore, the actions taken by the processors rarely actually depend 
on real time. Rather, time is often used mainly for correctly sequencing events at 
the different sites and for maintaining “consistent” views of the state of the system. 
In this section, we consider states of knowledge relative to relativistic notions of 
time. 

Consider the following scenario: R2 knows that R2 and D2’s clock differ by at 
most 6, and that any message R2 sends D2 will arrive within E time units. R2 sends 
D2 the following message m ’ : 

“This message is being sent at ts on R2’s clock, and will reach D2 by 
ts + 6 + 6 on both clocks; m.” 

Let us denote ts + E + 6 by TO. Now, at time TO on his clock, R2 would like to 
claim that sent (m ’ ) is common knowledge. Is it? Well, we know by now that it is 
not, but it is interesting to analyze this situation. Before we do so, let us introduce 
a relativistic formalism for knowledge, which we call timestamped knowledge: We 
denote “at time Ton his clock, pi knows Q” by KFQ. T is said to be the timestamp 
associated with this knowledge. We then define 

E;Q = A K=Q. 
P;~G 

E ‘Q corresponds to everyone knowing Q individually at time T on their own 
clocks. Notice that for TO as above, sent (m ’ ) 3 E ‘osent (m ’ ). It is natural to define 
the corresponding relativistic variant of common knowledge, CT, which we call 
timestamped common knowledge, so that CZQ is the greatest fixed point of the 
equation 

X = E,T(Q A X). 

So, in any run where the message m ’ is sent, R2 and D2 have timestamped 
common knowledge of sent(m ’ ) with timestamp TO. It is easy to check that CT 
satisfies the fixed point axiom and the induction rule, as well as all of the axioms 
of S5 except for the knowledge axiom. In this respect, CT resembles C more closely 
than C’ and C ’ do. 

It is interesting to investigate how the relativistic notion of timestamped common 
knowledge relates to the notions of common knowledge, c-common knowledge, 
and O-common knowledge. Not surprisingly, the relative behavior of the clocks in 
the system plays a crucial role in determining the meaning of CT. 

THEOREM 12. For any fact Q and view-based interpretation, 

(a) ifit is guaranteed that all clocks show identical times, then at time Ton any 
processor’s clock, C,‘Q = CGQ. 

(b) ifit is guaranteed that all clocks are within E time units of each other, then at 
time Ton any processor’s clock, C,‘Q 3 C6Q. 
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(c) $tpis guaranteed that each local clock reads T at some time, then C,‘cP 3 

G . 

Theorem 12 gives conditions under which CT can be replaced by C, C’, and 
C ‘. A weak converse of Theorem 12 holds as well. Suppose the processors are able 
to set their clocks to a commonly agreed upon time T when they come to know 
C,cP (resp., come to know C&V’, C,” V). Then it is easy to see that whenever CG(P 
(resp. C& (0, C,” P) is attainable, so is C,‘cP. 

In many distributed systems, timestamped common knowledge seems to be a 
more appropriate notion to reason about than “true” common knowledge. Al- 
though common knowledge cannot be attained in practical systems, timestamped 
common knowledge is attainable in many cases of interest and seems to correspond 
closely to the relevant phenomena with which protocol designers are confronted. 
For example, in distributed protocols that work in phases, we speak of the state of 
the system at the beginning of phase 2, at the end of phase k, and so on. It is 
natural to think of the phase number as a “clock” reading, and consider knowledge 
about what holds at the different phases as “timestamped” knowledge, with the 
phase number being the timestamp. In certain protocols for Byzantine agreement, 
for example, the nonfaulty processors attain common knowledge of the decision 
value at the end of phase k (cf. [9, 361). In practical systems in which the phases 
do not end simultaneously at the different sites of the system, the processors can 
be thought of as actually attaining timestamped common knowledge of the decision 
value, with the timestamp being “the end of phase k.” Indeed, protocols like the 
atomic broadcast protocol of [6] are designed exactly for the purpose of attaining 
timestamped common knowledge. (See [38] for more discussion of timestamped 
common knowledge.) 

13. Internal Knowledge Consistency 

We have seen that common knowledge closely corresponds to the ability to perform 
simultaneous actions. In the last few sections, we introduced a number of related 
states of knowledge corresponding to weaker forms of coordinated actions. Such 
weaker forms of coordination are often sufficient for many practical applications. 
This helps explain the paradox of the happy existence of practical distributed 
systems despite the apparent need for common knowledge and the negative results 
of Theorem 8. 

However, there are situations where we act as if-or we would like to carry out 
our analysis as if-we had true common knowledge, not a weaker variant. For 
example, in the muddy children puzzle, even though simultaneity may not be 
attainable, we want to assume that the children do indeed have common knowledge 
of the father’s statement. As another example, consider a protocol that proceeds in 
phases, in which it is guaranteed that no processor will ever receive a message out 
of phase. In many cases, all the aspects of this protocol that we may be interested 
in are faithfully represented if we model the system as if it were truly synchronous: 
All processors switch from one phase to the next simultaneously. 

Intuitively, in both cases, the assumption of common knowledge seems to be a 
safe one, even if it is not quite true. We would like to make this intuition precise. 
Recall that an epistemic interpretation is one that specifies what a processor believes 
at any given point as a function of the processor’s history at that point. An 
epistemic interpretation 4 is a knowledge interpretation if it is knowledge consis- 
tent, that is, if it has the property that whenever (4 r, t ) I= Ki(P then also 
(X r, t ) E Cp. Now an epistemic interpretation that is not knowledge consistent 
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may nevertheless be internally knowledge consistent, which intuitively means that 
the processors never obtain information from within the system that would 
contradict the assumption that the epistemic interpretation is in fact a knowledge 
interpretation. In other words, no processor ever has information that implies that 
the knowledge axiom K;P > Cp is violated. More formally, an epistemic interpre- 
tation Y for a system R is said to be internally knowledge consistent if there is a 
subsystem R’ C R such that JQ is a knowledge interpretation when restricted to 
R’, and for all processors pi and points (r, t) of R, there is a point (r’, t ‘) in R’ 
such that h(p;, r, t) = h(pi, r’, t ‘). 

Given that epistemic interpretations ascribe knowledge (or, perhaps more appro- 
priately in this case, beliefs) to processors as a function of the processors’ histories, 
the above definition implies that whenever a processor is ascribed knowledge of a 
certain fact at a point of R, then as far as any events involving this processor at the 
current and at any future time are concerned, it is consistent to assume that the 
fact does indeed hold. 

Using the notion of internal knowledge consistency, we can make our previous 
intuitions precise. When analyzing the muddy children puzzle, we assume that the 
children will never discover that they did not hear and comprehend the father’s 
statement simultaneously. We take the set R’ from the definition of internal 
knowledge consistency here to be precisely the set of runs where they did hear and 
comprehend the father’s statement simultaneously. Similarly, in the case of the 
protocol discussed above, the set R’ is the set where all processors advance from 
one phase to the next truly simultaneously. It now also makes sense to say that 
under reasonable conditions processors can safely use an “eager” protocol corre- 
sponding to the eager epistemic interpretation of Section 8, in which processors act 
as if they had common knowledge, even though common knowledge does not 
hold. It is possible to give a number of conditions on the ordering of events in the 
system that will ensure that it will be internally knowledge consistent for the 
processors to act as if they have common knowledge. 

For further discussion on internal knowledge consistency, see the recent paper 
by Neiger [37]. 

14. Conclusions 

In this paper, we have tried to bring out the important role of reasoning about 
knowledge in distributed systems. We have shown that reasoning about the knowl- 
edge of a group and its evolution can reveal subtleties that may not otherwise be 
apparent, can sharpen our understanding of basic issues, and can improve the 
high-level reasoning required in the design and analysis of distributed protocols 
and plans. 

We introduced a number of states of group knowledge, but focused much of our 
attention on one particular state, that of common knowledge. We showed that, in 
a precise sense, common knowledge is a prerequisite for agreement. However, we 
also showed that in many practical systems common knowledge is not attainable. 
This led us to consider three variants of common knowledge--t-common knowl- 
edge, eventual common knowledge, and timestamped common knowledge-that 
are attainable in practice, and may suffice for carrying out a number of actions. 
The methodology we introduce for constructing these variants of common knowl- 
edge, involving the fixed-point operator, can be used to construct other useful 
variants of common knowledge. Indeed, recent papers have introduced concurrent 
common knowledge [39], probabilistic common knowledge [ 121, and polynomial- 
time common knowledge [34], using this methodology. 
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There is clearly much more work to be done in terms of gaining a better 
understanding of knowledge in distributed systems. This paper considers a general 
model of a distributed system. It would also be useful to consider knowledge in 
distributed systems with particular properties. The work of Chandy and Misra [4] 
is an interesting study of this kind (see [9], [ 131, and [ 181 for other examples). We 
carried out a knowledge-based analysis of the coordinated attack problem here. 
Since this paper first appeared, a number of other problems, including Byzantine 
agreement, distributed commitment, and mutual exclusion, have been analyzed in 
terms of knowledge (see [4], [9], [18], [24], [31], [36], and [38]). Such knowledge- 
based analyses both shed light on the problem being studied and improve our 
understanding of the methodology. More studies of this kind would further deepen 
our understanding of the issues involved. 

Another general direction of research is that of using knowledge for the specifi- 
cation and verification of distributed systems. (See [26] for an initial step in this 
direction.) Formalisms based on knowledge may prove to be a powerful tool for 
specifying and verifying protocols, and may also be readily applicable to the 
synthesis of protocols and plans. Temporal logic has already proved somewhat 
successful in this regard [ 10, 301. 

Our analysis of the muddy children puzzle and the coordinated attack problem, 
as well as the work in [9], [20], [35], and [36] illustrate how subtle the relationship 
between knowledge, action, and communication in a distributed system can be. In 
this context, Halpern and Fagin (cf. [20]) look at knowledge-basedprotocols, which 
are protocols in which a processor’s actions are explicitly based on the processor’s 
knowledge. This provides an interesting generalization of the more standard notions 
of protocols. 

In the long run, we hope that a theory of knowledge, communication, and action 
will prove rich enough to provide general foundations for a unified theoretical 
treatment of distributed systems. Such a theory also promises to shed light on 
aspects of knowledge that are relevant to related fields. 

Appendix A 

In this appendix we present a logic with a greatest fixed-point operator and illustrate 
how common knowledge and variants of common knowledge can be formally 
defined as greatest fixed points. Our presentation follows that of Kozen [27]. 

Intuitively, given a system R, a formula + partitions the points of R into two 
sets: those that satisfy Ic/, and those that do not. We can identify a formula with the 
set of points that satisfy it. In order to be able to define fixed points of certain 
formulas, which is our objective in this appendix, we consider formulas that may 
contain a free variable whose values range over subsets of the points of R. Once 
we assign a set of points to the free variable, the formula can be associated with a 
set of points in a straightforward way (as will be shown below). Thus, such a 
formula can be viewed as a function from subsets of R to subsets of R. (A formula 
with no free variable is then considered a constant function, yielding the same 
subset regardless of the assignment.) 

Before we define the logic more formally, we need to review a number of relevant 
facts about fixed points. Suppose S is a set andfis a function mapping subsets of 
S to subsets of S. A subset A of S is said to be a fixed point off iff(A) = A. A 
greatest (resp., least) fixed point offis a set B such thatf(B) = B, and iff(A) = 
A, then A G B (resp., B C A). It follows that iffhas a greatest fixed point B, then 
B = U (A: f(A) = A}. The functionfis said to be monotone increasing iff(A) !Z 
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f(B) whenever A C B and monotone decreasing if f(A) 1 f(B) whenever A C B. 
The Knaster-Tarski theorem (cf. [43]) implies that a monotone increasing function 
has a greatest (and a least) fixed point. Given a functionfand a subset A, define 
f’(A) = A andf”(A) =f(fi(A)).f is said to be downward continuous iff( n; Ai) 
= nif(Ai) for all sequences A,, AZ, . . . with A, 2 A2 2 . . . . Given a monotone 
increasing and downward continuous function fit is not hard to show that the 
greatest fixed point off is the set n,,, fk(S). We remark that if f is monotone 
increasing but not downward continuous, then we can still obtain the greatest fixed 
points offin this fashion, but we have to extend the construction by definingf” 
for all ordinals 01.~ 

We are now in a position to formally define our logic. We start with a set @ = 
If’, Q, PI,. . . ) of primitive propositions and a single propositional variable X. We 
form more complicated formulas by allowing the special formula true and then 
closing off under conjunction, negation, the modal operators Ki, EG, E&, and Ez 
for every group G of processors, and the greatest fixed-point operator vX. Thus, if 
Cp and J/ are formulas, then so are TV’, P A #, Ki(P, EG(P, Ek(P, Ez(P, and uX.P 
(read “the greatest fixed point of Cp with respect to X”). However, we place a 
syntactic restriction, described below, on formulas of the form uX.(P. 

Just as Vx in first-order logic binds occurrences of x, uX binds occurrences of X. 
Thus, in a formula such as X A ~E~(vX.[X A (K,X A K2X)]), the first occurrence 
of X is free, while the rest are bound. We say that a free occurrence of X in a 
formula Cp is positive if it is in the scope of an even number of negation signs, and 
negative if it is in the scope of an odd number of negation signs. Thus, in a formula 
such as X A lK, X, the first occurrence of X is positive while the second is negative. 
The restriction on formulas of the form vX.P is that all free occurrences of X in Cp 
must be positive; the point of this restriction will be explained below. 

The next step is to associate with each formula a function. Given a distributed 
system represented by its set of runs R, let S = R X [0, ~0). A model &? is a triple 
(S, r, IJ), where S is as above, r associates a truth assignment to the primitive 
propositions with each point in S, and u: (1, . . , , m) X S-, Z is an assignment of 
views (from a set of states Z: ) to the processors at the points of S. We now associate 
with each formula Cp a function CPA from subs ets of S to subsets of S. Intuitively, 
if no occurrences of X are free in P, then P” will be a constant function, and 
‘PA(A) will be the set of points where P is true (no matter how we choose A). If X 
is free in ‘P, then Cp &(A) is the set of points where Cp is true if A is the set of points 
where X is true. We define (P”(A) by induction on the structure of (0 as follows: 

(a) X”(A) = A (so XM is the identity function). 
(b) P”(A) = (s E S: r(s)(P) = true) for a primitive proposition P. 
(c) true”(A) = S. 
(d) (TV’)“(A) = S - ‘PM@). 
(e) (‘P A $)“Y(A) = (P”(A) n tiX(A). 
(f) (KjcP)“Y(A) = ((r, t) E S: for all (r’, t ‘) E S, U(pi, r, t) = u(p;, r’, t ‘) implies 

(r’, t ‘) E ‘PM(A)}. 
(8) (EG~)~(A) = nm(Kp)“(A). 
(h) (E&cP)X(A) = {(r, t) E S: there exists an interval I = [t ‘, t ’ + t] with t E I, 

such that VP, E G 3ti E Z((r, ti) E (KicP)“y(A))). 

8 We can similarly define a functionfto be upwardcontinuous iff( U, A;) = U,j&&) for all sequences 

A,, 4.. . with Al C A2 C . For monotone increasing upward continuous functions1 the least fixed 

point off is Uk<, fk(0). Again, to get least fixed points in the general case, we have to extend this 

construction through the ordinals. 
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(i) (EzQ)AC(A) = ((Y, t) E S: tlpi E G 3tj((r, ti) E (K,Q)“(A))). 
(j) (uX.Q)~(A) = U(B: P”(B) = B]. 

Now by an easy induction on the structure of formulas we can prove the 
following facts: 

(1) If Q is a formula in which all free occurrences of X are positive (resp., negative), 
then (OR is monotone increasing (resp., monotone decreasing). Note that our 
syntactic restriction on formulas of the form uX.Q guarantees that for a well- 
formed formula of this form, the function QM is monotone increasing. As a 
consequence, (vX.Q)~(A) is the greatest fixed point of the function Qn. 

(2) If Q is a formula with no free variables, then ‘PM is a constant function. In 
particular, observe that (vX.Q)~ is necessarily a constant function (the defini- 
tion shows that (vX.Q)&(A) is independent of the choice of A). As well, it is 
easy to check that if Q is a valid formula such as l(P A lP), then 
(PA(A) = s. 

(3) For formulas in which the variable X does not appear (so, in particular, for 
formulas not involving the greatest fixed point operator), (PM(A) = ((r, t ) : 
(~a”, Y, t ) l= Q 1, where 3, is the view-based interpretation associated with the 
view function u. (Again, this is true for any choice of A, since by the 
previous observation, Q x is a constant function if there is no occurrence of 
Xin Q.) Thus, if we define (A, r, t) I= Q iff (r, t) E Q”(0), then this definition 
extends our previous definition (in that for formulas in which the variable X 
does not appear, we have (J?‘, r, t ) l= Q iff (Ly;, r, t ) I= ‘P). 

Given the machinery at our disposal, we can now formally define CGQ as 
vX.E,(Q A X), define C&Q as uX.Ef;(Q A X), and define C,“Q as uX.E~(Q A X). 
It follows from our characterization of greatest fixed points of downward continu- 
ous functions that if Q”’ is downward continuous, then vX.Q is equivlaent to 
‘PO A Q, A .-*, where ‘PO is true, ‘Pi+, is Q[Qi/X], and Q[$/X] denotes the 
result of substituting $ for the free occurrences of X in Q. it is easy to check that 
(EG(Q A JO)” is downward continuous if QR is downward continuous. In 
particular, if 8 has no free occurrences of X (so that QL is constant), it follows 
that we have: 

CGQ E EGQ A EG(Q A EGQ) A EG(Q A EG(Q A EC(o)) ***.9 

Since EG(IC/, A Ic/z) = (EGIJ~ A EG$z) it follows that 

CGQ=EGQ A EGEGQ A -... 

However, (E&(Q A X))” and (Ez(Q A X))” are not necessarily downward 
continuous. The reason that (Ez(Q A X))” is not downward continuous is that 
an infinite collection of facts can each eventually hold, without them necessarily 
all holding simultaneously at some point. We have already seen one example of 
this phenomenon in Section Il. For another example, suppose we are working in 
a system with an unbounded global clock, and let Ai = (current-time > i)“. Since 
the clock is unbounded, it follows that Ai # 0 for all i, but fli Ai = 0. Taking Ic/ to 
be the formula E '(Q A X), it is easy to see that (r, 0) E fi”(Ai) for all i, and hence 
ni($“M)) f $“(ni Ai). 

’ Note that the formula on the right-hand side of the equivalence is not in our language, since we have 
not allowed infinite conjunctions. However, we can easily extend the language to allow infinite 
conjunctions in the obvious way so that the equivalence holds. 
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We can construct a similar example in the case of E’, because we have taken 
time to range over the reals. For example, if we take xi to be an infinite sequence 
of real numbers converging from below to E, take Ai = (current-time E (xi, c))~, 
and now take $ to be the formula E ‘(P A X), then again we have fli Ai = 0, and 
(r, 0) E fli($“p(Ai)). This example does depend crucially on the fact that time 
ranges over the reals. If instead we had taken time to range over the natural 
numbers, then we would in fact get downward continuity. 

We encourage the reader to check that CCP, C6 P, and C,” Cp all satisfy the tixed- 
point axiom and the induction rule. The fixed-point axiom is a special case of the 
more general fixed-point axiom uX.P = P[vX.CP/X], while the induction rule is a 
special case of the more general induction rule for fixed points: from II/ > P [q/X] 
infer Ic/ > vX.P. The reader might also now wish to check that C has the properties 
of S5, while C’ and Co satisfy the positive introspection axiom and the necessitation 
rule. Furthermore, for stable facts and complete-history interpretations, they also 
satisfy the consequence closure axiom. C’ and Co satisfy neither the knowledge 
axiom nor the negative introspection axiom. We remark that both notions satisfy 
weaker variants of the knowledge axiom: C’P implies that Cp holds at some point 
at most E time units away from the current point, while COP implies that (b holds 
(at least) at some point during the run. 

It is straightforward to extend the above framework to include explicit individual 
clock times in order to define C,‘cP (see [38] for more details). Here, for example, 
it is the case that (E ‘( P A A!))” is downward continuous, and ET distributes over 
conjunction; hence CT will coincide with the appropriate infinite conjunction. 
Similar treatments can be applied to many related variants of common knowledge 
(see, e.g., [12], [34], and [39]). 

Appendix B 

In this appendix we till in the details of the proof that common knowledge cannot 
be attained in practical systems (Theorem 8 in Section 8). 

Our first step is to establish a general condition-namely, that the initial point 
of a run is reachable from any later point-under which common knowledge can 
be neither gained nor lost. We remark that Chandy and Misra have shown that in 
the case of completely asynchronous, event-driven systems where communication 
is not guaranteed, common knowledge of any fact can be neither gained nor lost 
[4]. Since it is easy to see that, in such systems, the initial point of a run is reachable 
from all later points, our result provides a generalization of that of [4]. 

PROPOSITION 13. Let r E R be a run in which the point (r, 0) is G-reachable 
from (r, t ) in the graph corresponding to the complete-history interpretation, and let 
3 be a knowledge interpretation for R. Then for all formulas (0 we have (X r, t ) I= 
CGP if(X r, 0) t= C,cP. 

PROOF. Fix a run r, time t, and formula P. Since (r, 0) is G-reachable from 
(r, t ) in the graph corresponding to the complete-history interpretation, there exist 
points (r0, to), (rl, tl), . . . , (rk, tk) such that (r, t) = (ro, to), (r, 0) = (rk, t,+), and for 
every i < k there is a processor ji E G that has the same history at (ri, ti) and at 
(ri+l , ti+l ). We can now prove by induction on i, using Lemma 2, that (4 r, t ) b 
CG P iff (4 ri, ti) E CGCP. The result follows. 0 

We next provide a formal definition of systems with temporal imprecision, and 
show that in such systems, the initial point of a run is always reachable from later 
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points. A system R has temporal imprecision if 

VrER VtrO ViVj#i 36~0 V’s’~[0,6) 3r’Vt’<t 

(h(pi, r, t ‘) = h(pi, r’, t ’ + 6’) A h(pj, r, t ‘) = h(p,, r’, t ‘))). 

Intuitively, this means that processors cannot perfectly coordinate their notions of 
time in a system with temporal imprecision. One processor might always be a little 
behind the others. 

By reachable in the following lemma we mean reachable (in the sense of Section 
6) with respect to the view function defined by the complete-history interpretation. 

LEMMA 14. If R is a system with temporal imprecision, then for all runs r E R 
and times t, the point (r, 0) is reachable from (r, t ). 

PROOF. Let R be a system with temporal imprecision and (r, t ) be a point of 
R. Suppose t # 0 (otherwise, clearly (r, 0) is reachable from (r, t)). Let to be the 
greatest lower bound of the set (t ’ : (r, t “) is reachable from (r, t ) for all t N E 
[t ’ , t ] 1. We show that (r, to) is reachable from (r, t ) and that to = 0. Since R is a 
system with temporal imprecision, there exists a 6 such that for all 6 ’ with 
0 < 6 ’ < 6, there exists a run r’ such that for all t ’ 5 t, we have h(p,, r, t ’ ) = 
h(pl, r’, t’+~‘)andh(pi,r,t’)=h(pi,r’,t’)fori#1.If6’<t’~t,itfollows 
that (r’, t ’ ) is reachable from (r, t ’ ) and (r, t ’ - 6 ’ ) is reachable 
from (r’, t ’ ). By transitivity of reachability, we have that (r, t ’ - 6 ‘) is reachable 
from (r, t ‘), and by symmetry, that (r, t ‘) is reachable from (r, t ’ - 6 ‘). It now 
follows that (r, t - 6 ’ ) is reachable from (r, t ) for all 6 ’ < min(d, t ). Thus 
to 5 t - min(d, t). Furthermore, if 6’ < min(6, t), then we know that (r, to + d ‘) 
is reachable from both (r, to) and (r, t). It thus follows that (r, to) is reachable 
from (r, t). Finally, if to # 0, then we know that (r, to - 6 ‘) is reachable from 
(r, to) (and hence from (r, t)) for all 6’ < min(to, 6). But this contradicts our 
choice of to. Thus, to = 0, and (r, 0) is reachable from (r, t). 0 

Theorem 8 now follows as an immediate corollary to Lemma 14 and Proposition 
13. 

We conclude by showing that many practical systems do indeed have temporal 
imprecision (although the 6’s involved in some cases might be very small). Perhaps 
through statistical data, we can assume that for every communication link 1 there 
are known lower and upper bounds Lt and HI, respectively, on the message delivery 
time for messages over 1. We assume that the message delivery time on the link 1 
is always in the open interval (Ll, HI). (We take the interval to be open here since 
it seems reasonable to suppose that if the system designer considers it possible that 
a message will take time T to be delivered, then for some sufficiently small 6 > 0, 
he will also consider it possible that the delivery time is anywhere in the interval 
(T - 6, T + S); in this we differ slightly from [7] and [21]. We delinef; to be a 
message delivery function for link 1 if f;: N + (L,, Hr). A run r is consistent withJ; 
if for all n E N,f;(n) is the delivery time of the nth message in r on link 1. A system 
R has bounded but uncertain message delivery times if for all links 1 there exist 
bounds Lt C Ht such that for all runs r E R and all message delivery functions 
f;: N + (Ll, HI), there exists a run r’ that is identical to r except that message 
delivery time over the link 1 is defined by f;. More formally, r’ is consistent with 
J and for all i, processor pi follows the same protocol, wakes up at the same time 
(i.e., tinit(Pi, r) = tinit( pi, r’ )), and has the same initial state and the same clock 
readings in both r and r’ . 
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We say R is a system with uncertain start times if there exists a0 > 0 such that 
given a run r E R, a processor pi, and 6 with 0 < 6 < &, there is a run r’ which is 
identical to r except that pi wakes up 6 earlier in r’ with its clock readings (if there 
are clocks in the system) shifted back by 6. More formally, for all j # i, processor 
pj follows the same protocol, wakes up at the same time, and has the same initial 
state in both r and r’. Moreover, for all k, the delivery time for the kth message 
on link 1 (if there is one) is the same in both r and r’. All processors other than pi 
have the same clock readings in both r and r’. Processor pi starts 6 later in 
r’ than r, although it has the same initial state in both runs, and r( pi, r, t ) = 
7(pi, r’, t + 6). 

For any practical system, it seems reasonable to assume that there will be some 
(perhaps very small) uncertainty in start times and, even if message delivery is 
guaranteed within a bounded time, that there is some uncertainty in message 
delivery time. These assumptions are sufficient to guarantee temporal imprecision, 
as the following result, whose proof is a slight modification of a result proved in 
[7] on the tightness of clock synchronization achievable, shows: 

PROPOSITION 15. A system with bounded but uncertain message delivery times 
and uncertain start times has temporal imprecision. 

SKETCH OF PROOF. Let (r, t ) be a point of the system, and let pi be a processor. 
Let a0 be as in the definition of uncertain start times. Since only a finite number 
of messages are received by time t in r, there is some 6 > 0 such that the delivery 
times of these messages are more than 6 greater than the lower bound for the 
particular link they were sent over, and more than 6 less than the upper bound. 
Choose 6’ < min(&, 6) and some processor pi. Let r’ be a run in which all 
processors pj # pi start at the same time and in the same initial state as in r, have 
the same clock readings (if there are clocks), and all messages between such 
processors take exactly the same time as in r. In addition, processor pi starts 6 ’ 
time units later in r’ than in r, messages to pi take 6 ’ time units longer to be 
delivered, while messages from pi are delivered 6 ’ time units faster than in r, and 
pi’s clock readings (if there are clocks) are shifted by 6 ‘. Such a run r’ exists by 
our assumptions. It is not hard to check that run r’ has the property that for all 
times t ’ 5 t, all processors p, # pi have exactly the same history at time t ’ in both 
r and r’, while processor pi has the same history at (r, t ‘) and at (r’, t’ + 6 ‘). 
Since (r, t ) and pi were chosen arbitrarily, it thus follows that the system has 
temporal imprecision. q 

ACKNOWLEDGMENTS. This work evolved from work the authors did with Danny 
Dolev on [35]. Many people commented on different versions of this work. Of 
special value were comments by Dave Chelberg, Steve Deering, Cynthia Dwork, 
Ron Fagin, Vassos Hadzilacos, Danny Lehmann, Yoni Malachi, Tim Mann, 
Andres Modet, Gil Neiger, Jan Pachl, Derek Proudian, Stan Rosenschein, Yoav 
Shoham, Ray Strong, Moshe Vardi, Joe Weening, and Lenore Zuck. Jan Pachl 
suggested the term distributed knowledge to replace the term implicit knowledge 
that we have been using. We would particularly like to thank Gil Neiger and 
Lenore Zuck for an outstanding job of refereeing, well beyond the call of duty. 

REFERENCES 

1. AUMANN, R. J. Agreeing to disagree. Ann. Stat. 4, 6 (1976), 1236-1239. 
2. BARWISE, J. Scenes and other situations. J. Philo. LXXVIII 7 (1981), 369-397. 



586 J. Y. HALPERN AND Y. MOSES 

3. CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: Determining global states of distributed 

systems. ACM Trans. Comput. Syst. 3, 1 (1985), 63-75. 

4. CHANDY, K. M., AND MISRA, J. How processes learn. Dist. Comput. I, 1 (1986), 40-52. 

5. CLARK, H. H., AND MARSHALL, C. R. Definite reference and mutual knowledge. In Elements of 
Discourse Understanding, A. K. Joshi, B. L. Webber, and I. A. Sag, eds. Cambridge University 

Press, Cambridge, Mass., 1981, pp. 10-63. 
6. CRISTIAN, F., AGHILI, H., STRONG, H. R., AND DOLEY, D. Atomic broadcast: From simple diffusion 

to Byzantine agreement. In Proceedings of the 15th International Annual Symposium on Fault- 
Tolerant Computing Systems. IEEE, Washington, D.C., 1985, pp. 200-206. 

7. DOLEV, D., HALPERN, J. Y., AND STRONG, H. R. On the possibility and impossibility of achieving 

clock synchronization. J. Comput. Syst. Sci. 32, 2 (1986), 230-250. 

8. DOLEV, D., REISCHUK, R., AND STRONG, H. R. Eventual is earlier than immediate. In Proceedings 
of the 23rd IEEE Symposium on Foundations of Computer Science. IEEE, Washington, D.C., 1982, 

pp. 196-203. 

9. DWORK, C., AND MOSES, Y. Knowledge and common knowledge in a Byzantine environment I: 

Crash failures (extended abstract). In Theoretical Aspects of Reasoning about Knowledge: 
Proceedings of the 1986 Conference, J. Y. Halpern, ed. Morgan Kaufmann, San Mateo, Calif., 

1986, pp. 149-170. Inf: Computation, in press. 

10. EMERSON, E. A., AND CLARKE, E. M. Using branching time temporal logic to synthesize 

synchronization skeletons. Sci. Comput. Prog. 2 (1982), 241-266. 

11. FAGIN, R., AND HALPERN, J. Y. Belief, awareness, and limited reasoning. ArtiJ Int. 34 (1988), 

39-76. 

12. FAGIN, R., AND HALPERN, J. Y. Reasoning about knowledge and probability: Preliminary report. 

In Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge, M. Y. 

Vardi, ed. Morgan Kaufmann, San Mateo, Calif., 1988, pp. 277-293. 

13. FAGIN, R., HALPERN, J. Y., AND VARDI, M. Y. What can machines know? On the epistemic 

properties of machines. In Proceedings of the National Conference on ArtiJicial Intelligence (AA.41- 
86), 1986, pp. 428-434. A revised and expanded version appears as: What can machines know? On 

the properties of knowledge in distributed systems. IBM Res. Rep. RJ56250. IBM, 1988. 

14. FISCHER, M. J., AND IMMERMAN, N. Foundations of knowledge for distributed systems. In 

Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986 Conference, J. Y. 

Halpern, ed. Morgan Kaufmann, San Mateo, Calif., 1986, pp. 17 l-186. 
15. FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed consensus with 

one faulty processor. J. ACM 32, 2 (1985), 374-382. 

16. GALLAGER, R. G. Seminar on computer communication networks. Office of Industrial Liaison, 

MIT, Cambridge, Mass., 1979. 
17. GRAY, J. Notes on database operating systems. IBM Res. Rep. RJ 2188. IBM, Aug. 1987. 

18. HADZILACOS, V. A knowledge-theoretic analysis of atomic commitment protocols. In Proceedings 
of the 6th ACM Symposium on Principles of Database Systems. ACM, New York, 1987, 

pp. 129- 134. A revised version has been submitted for publication. 

19. HALPERN, J. Y. Using reasoning about knowledge to analyze distributed systems. In Annual 
Review of Computer Science, Vol. 2, J. Traub, B. Grosz, B. Lampson, and N. Nilson, eds. Annual 

Reviews, Inc., Palo Alto, Calif., 1987, pp. 37-68. 
20. HALPERN, J. Y., AND FAGIN, R. A formal model of knowledge, action, and communication in 

distributed systems: Preliminmary report. In Proceedings of the 4th ACM Symposium on Principles 
of Distributed Computing. ACM, New York, 1985, pp. 224-236. A revised version appears as: 

Modelling knowledge and action in distributed systems. Dist. Computations 3 (1989), 159- 177. 

2 1. HALPERN, J. Y., MEGIDDO, N., AND MUNSHI, A. Optimal precision in the presence of uncertainty. 

J. Complexity I (1985), 170-196. 
22. HALPERN, J. Y., AND MOSES, Y. Knowledge and common knowledge in a distributed environment. 

In Proceedings of the 3rd ACM Conference on Distributed Computing. ACM, New York, 1984, pp. 
50-61. A revised and expanded version appears as: IBM Res. Rep. RJ 4421. IBM, Yorktown 
Heights, N.Y., 1988. 

23. HALPERN, J. Y., AND MOSES, Y. A guide to the modal logics of knowledge and belief. In 

Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85). 1985, 
pp. 480-490. 

24. HALPERN, J. Y., AND ZUCK, L. D. A little knowledge goes a long way: Simple knowledge-based 

derivations and correctness proofs for a family of protocols. IBM Res. Rep. RJ 5857. IBM, 1987. 
25. HINTIKKA, J. Knowledge and Belief: Cornell University Press, Ithaca, N.Y., 1962. 

26. KATZ, S., AND TAUBENFELD, G. What processes know: Definitions and proof methods. In 

Proceedings of the 5th ACM Symposium on Principles of Distributed Computing. ACM, New York, 

1986, pp. 249-262. 



Knowledge and Common Knowledge in a Distributed Environment 587 

27. KOZEN, D. Results on the propositional r-calculus. Theoret. Comput. Sci. 27, 1 (1983), 333-354. 
28. LADNER, R., AND REIF, J. The logic of distributed protocols (preliminary report). In Theoretical 

Aspects of Reasoning about Knowledge: Proceedings of the 1986 Conference, J. Y. Halpern, ed. 
Morgan Kaufman, San Mateo, Calif., 1986, pp. 207-222. 

29. LEVESQUE, H. A logic of implicit and explicit belief. In Proceedings ofthe National Conference on 
Artificial Intelligence (AAAZ-84). 1984, pp. 198-202. 

30. MANNA, Z., AND WOLPER, P. L. Synthesis of communication processes from temporal logic 
specifications. ACM Trans. Program. Lang. Syst. 6, 1 (1984), 68-93. 

3 1. MAZER, M. S. A knowledge theoretic account of recovery in distributed systems: The case of 
negotiated commitment. In Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning 
about Knowledge, M. Y. Vardi, ed. Morgan Kaufman, San Mateo, Calif., 1988, pp. 309-324. 

32. MCCARTHY, J., SATO, M., HAYASHI, T., AND IGARISH], S. On the model theory of knowledge. 
Tech. Rep. STAN-CS-78-657. Stanford Univ., Stanford, Calif., 1979. 

33. MOORE, R. C. A formal theory of knowledge and action. In Formal Theories ofthe Commonsense 
World, J. Hobbs and R. C. Moore, eds. Ablex Publishing Corp., Norwood, N.J., 1985, pp. 
319-358. 

34. MOSES, Y. Resource-bounded knowledge. In Proceedings of the 2nd Conference on Theoretical 
Aspects of Reasoning about Knowledge, M. Y. Vardi, ed. Morgan Kaufmann, San Mateo, Calif., 
1988, pp. 26 l-276. 

35. MOSES, Y., DOLEV, D., AND HALPERN, J. Y. Cheating husbands and other stories: A case study of 
knowledge, action, and communication. Dist. Comput. I, 3 (1986), 167- 176. 

36. MOSES, Y., AND TUTTLE, M. R. Programming simultaneous actions using common knowledge. 
Algorithmicu 3 (1988), 121-169. 

37. NEIGER, G. Knowledge consistency: A useful suspension of disbelief. In Proceedings of the 2nd 
Conference on Theoretical Aspects of Reasoning about Knowledge, M. Y. Vardi, ed. Morgan 
Kaufman, San Mateo, Calif., 1988, pp. 295-308. 

38. NEIGER, G., AND TOUEG, S. Substituting for real time and common knowledge in asynchronous 
distributed systems. J. ACM 

39. PANANGADEN, P., AND TAYLOR, S. Concurrent common knowledge: a new definition ofagreement 
for asynchronous systems. In Proceedings of the 7th ACM Symposium on Principles of Distributed 
Computing. ACM, New York, 1988, pp. 197-209. 

40. PARIKH, R.; AND RAMANUJAM, R. Distributed processing and the logic of knowledge. In 
Proceedings of the Workshop on Logics of Programs, R. Parikh, ed. Springer-Verlag, Berlin, 1985, 
pp. 256-268. 

4 1. ROSENSCHEIN, S. J. Formal theories of AI in knowledge and robotics. New Gen. Comput. 3 (1985), 
345-357. 

42. ROSENSCHEIN, S. J., AND KAELBLING, L. P. The synthesis of digital machines with provable 
epistemic properties. In Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986 
Conference, J. Y. Halpem, ed. Morgan Kaufmann, San Mateo, Calif., 1986, pp. 83-97. 

43. TARSKI, A. A lattice-theoretic lixpoint theorem and its applications. Pacific J. Math. 5 (1955), 
285-309. 

44. YEMINI, Y., AND COHEN, D. Some issues in distributed processes communication. In Proceedings 
of the 1st International Conference on Distributed Computing Systems. IEEE, Washington, D.C., 
1979, pp. 199-203. 

RECEIVED OCTOBER 1984; REVISED NOVEMBER 1985, AUGUST 1987, AND NOVEMBER 1988; ACCEPTED 

JUNE 1989 

Journal of the Association for Computing Machinery, Vol. 37. No. 3, July 1990. 


