
KNOWLEDGE AND REASONING IN PROGRAM SYNTIIESIS

BY

%OHAR MANNA~ Applied Mathematics Department~ Weizmann Institute

of Seience~ Rehovot~ Israel

and

RICHARD WALDINGER~ Artificial Intelligence Center, Stanford

Research Institute, Menlo Park, California, U. S. A.

ABST~CT~

Program synthesis is the construction of a computer program from

given specifications. An automatic program synthesis system must

combine reasoning and programming ability with a good deal of

knowledge about the subject matter of the program. This ability

and knowledge must be represented both procedurally (by programs)

and structurally (by choice of representation).

We describe some of the reasoning and programming capabilities

of a projected synthesis system. Special attention is paid to

the introduction of conditional tests, loops, and intructions

with side effects in the program being constructed. The ability

to satisfy several interacting goals simultaneously proves to be

important in many contexts. The modification of an already exist-

ing program to solve a somewhat different problem has been found

to be a powerful approach.

We illustrate these concepts with hand simulations of the syn-

thesis of a number of pattern-matching programs. Some of these

techniques have already been implemented, others are in the

course of implementation, while others seem equivalent to well-

known unsolved problems in artificial intelligence.

237

I. INTRODUCTION

In this paper we describe some of the knowledge and the reason-

ing ability that a computer system must have in order to construct

computer programs automatically. It is our hypothesis that such

a system needs to embody a relatively small class of reasoning

and programming tactics combined with a great deal of knowledge

about the world. These tactics and this knowledge are expressed

both procedurally (i.e., explicitly in the description of a problem

solving process) and structurally (i.e., implicitly in the choice

of representation). We consider the ability to reason as central

to the program synthesis process, and most of this paper is con-

cerned with the incorporation of common-sense reasoning techni-

ques into a program synthesis system. However, symbolic reason-

ing alone will not suffice to produce the synthesis of complex

programs; we therefore consider other techniques as well:

OThe construction of "almost correct" programs that must be

debugged (cf. Sussman [1973]).

eThe modification of an existing program to perform a somewhat

different task (ef. Balzer [1972]).

eThe use of "visual" representations to reduce the need for

deduction (cf. Bundy [1973]).

We regard program synthesis as a part of artificial intelligence.

Many of the abilities we require of a program synthesizer, such

as the ability to represent knowledge or to draw comI~on-sense

conclusions from facts, we would also expect from a natural lan-

guage understanding system or a robot problem solver. These ge-

neral problems have been under study by researchers for many

years, and we do not expect that they will all be solved in the

near future. However, we still prefer to address those problems

rather than restrict ourselves to a more limited program synthe-

sis system without those abilities.

Thus, although implementation of some of the techniques in this

paper has already been completed, others require further develop-

ment before a complete implementation will be possible. We ima-

gine the knowledge and reasoning tactics of the system to be

expressed in a PLANNER-type language (Hewitt [1972]); our own

238

implementation is in the QLISP language (Reboh and Sacerdoti

[1973])~ Further details on the implementation are discussed

in Section V-A.

Part II of the paper gives the basic techniques of reasoning for

program synthesis. They include the formation of conditional

tests and loops, the satisfaction of several simultaneous goals~

and the handling of instructions with side effects. Part III

applies the techniques of Part II to synthesize a nontrivial

"pattern-matcher" that determines if a given expression is an

instance of a given pattern. We show how different choices made

during the synthesis process result in different final programs.

Part IV demonstrates the modification of programs. We take the

pattern matcher we have constructed in Part Ill and adapt it to

construct a more complex program: a "unification algorithm"

that determines if two patterns have a common instance. In Part

V we give some of the historical background of automatic prog-

ram synthesis~ and we compare this work with other recent efforts.

II. FUNDAMENTAL REASONING

In this section we will describe some of the reasoning and prog-

ramming tactics that are basic to the operation of our proposed

synthesizer. These tactics are not specific to one particular

domain; they apply to any programming problem. In this class of

tactics~ we include the formation of program branches and loops

and the handling of statements with side effects~

A. Specification and Tactics Language

We must first say something about how programming problems are

to be specified. In this discussion we consider only correct

and exact specifications in an artificial language. Thus, we

will not discuss input-output examples (cf. Green et al. [1974],

Hardy [1974])~ traees (cf. Biermann et al. [1973]), or natural

language descriptions as methods for specifying programs; nor

will we consider interactive specification of programs (of. Balzer

[1972]). Neither are we limiting ourselves to the first-order

predicate calculus (cf. Kowalski [1974]). Instead, we try to in-

troduce specification constructs that allow the natural and

239

intuitive description of programming problems. We therefore

include constructs such as

Find x such that P(x)

and the ellipsis notation, e.g.,

A[I]~ A[2] A[n].

Furthe!~ore, we introduce new constructs that are specific to

certain subject domains. For instance, in the domain of sets

we use

{x[FOx)}

for "the set of all x such that P(x)". As we introduce an example

we will describe features of the language that apply to that ex-

ample. Since the specification language is extendible, we can

introduce new constructs at any time.

We use a separate language to express the system's knowledge and

reasoning tactics. In the paper, these will be expressed in the

form of rdles written in English. In our implementation, the

same rules are represented as programs in the QLISP programming

language. When a problem or goal is presented to the system,

the appropriate rules are summoned by "pattern-directed function

invocation" (Hewitt [1972]). In other words, the form of the

goal determines which rules are applied.

In the following two sections we will use a single example, the

synthesis of the set-theoretic union program, to illustrate the

formation both of conditionals and of loops. The problem here

is to compute the union of two finite sets, where sets are rep-

resented as lists with no repeated elements.

Given two sets, s and t, we want to express

union(s t) = {x[xCs or xEt}

in a LISP-like language. We expect the output of the synthesized

program to be a set itself. Thus

union((A B) (B C)) = (A B C).

We do not regard the expression {x[xffs or xCt} itself as a proper

program: the operator { I...} is a construct in our specifica-

tion language but not in our LISP-like programming language. We

assume that the programming language does have the following func-

tions:

240

head(~) = the first element of the list ~.

Thus head(CA B C D)) = A.

tail(~) = the list of all but the first element of the list ~.

Thus tail((A B C D)) = (B C D). *)

add(x s) = the set consisting of the element x and the ele-

ments of the set s.

Thus add(A (B C D)) = (A B C D)

whereas add(B (B C D)) = (B C D).

empty(s) is true if s is the empty list

false otherwise.

Our task is to transform our specifications into an equivalent

algorithm in this programming language.

We assume the system has some basic knowledge about sets, such

as the following rules:

(!) x E s is false if empty(s)

(2) x ~ s is equivalent to (x = head(s) or x a tail(s))

if ~ empty(s).

(3) (xix a s) is equal to s

(41 (xlx=a or Q(x)) is equal to add(a (xIQ(x)))

We also assume that the system knows a considerable amount of

propositional logic, which we will not mention explicitly.

Before proceeding with our example we must discuss the formation

of conditional expressions.

B. Formation of Conditional Expressions

In addition to the above constructs, we assume that our program-

ming language contains conditional expressions of the form

(if p then q else r) = r if p is false

q otherwise.

The conditional expression is a technique for dealing with uncer-

tainty. In constructing a program~ we want to know if condition

p is true or not, but in fact p may be true on some occasions

~Since sets are represented as lists, head and tail may be applied

to sets as well as lists. Their value then depends on our ac-

tual choice of representation.

241

and false on others, depending on the value of the argument.

The human programmer faced with this problem is likely to re-

sort to "hypothetical reasoning": he will assume p is false

and write a program r that solves his problem in that case;

then he will assume p is true and write a program q that works

in that case; he will then put the two programs together into

a single program

(if p then q else r).

Conceptually he has solved his problem by splitting his world in-

to two worlds: the ease in which p is true and the case in which

p is false. In each of these worlds, uncertainty is reduced.

Note that we must be careful that the condition p on which we

are splitting the world is computable in our programming language;

otherwise, the conditional expression we construct also will not

be computable (of. Luokham and Buchanan [1974]).

We can now proceed with the synthesis of the union function. Our

specifications were

union(s t) = {xlx ~ s or x ~ t}.

We begin to transform these specifications into an equivalent pro-

gram in our language, using our rules. We examine the subexpres-

sion x e s. Two of the rules, (i) and (2), apply to this sub-

expression. Rule (i) generates a subgoal, empty(s). We cannot

prove s is empty - this depends on the input -- and therefore

this is an occasion for a hypothetical world split. (We know

that empty(s) is a computable condition becuase empty is a pri-

mitive in our language.) In the case in which s is empty, the

expression

{xlx E s or x E t}

therefore reduces to

{x I false or x s t},

or, by propositional logic,

{xlx ~ t}.

Now rule (3) reduces this to t, which is one of the inputs to our

program and therefore is itself an acceptable program segment in

our language.

In the other world--the case in which s is not empty--we cannot

solve the problem without discussing the recursive loop formation

242

mechanism° However~ we know at this point that the program will

have the form

union(s t) = if empty(s)

then t

else

where the else clause will be whatever program segment we const-

ruct for the ease in which s is not empty.

Before we continue with this example we will discuss the loop for-

mation mechanism.

C. Formation of Loops

The term "loop" includes both iteration and recursion; however,

in this paper we will only discuss reeursive loops (cf. Manna and

Waldinger [1971]). Intuitively, we form a reeursive call when,

in the course of working on our problem, we generate a subgoal

that is identical in form to our top-level goal. For instance,

suppose our top-level goal is to construct the program reverse(h),

that reverses the elements of the list £ (e.g., reverse(A (B C) D)=

(D (B C) A)). If in the course of constructing this program we

generate the subgoal of reversing the elements of the list tail(£),

we can use the program we are constructing to satisfy this sub-

goal. In other words we can introduce a reeursive call revers__~e

(tail(£)) to solve the subsidiary problem. We must always check

that a recursive call cannot lead to an infinite recursion. No

such infinite loop can occur here because the input tail(£) is

"shorter" than the original input ~.

Let us see how this technique applies to our union example. Con-

tinuing where we left off in the discussion of conditionals, we

attempt to expand the expression

{xlx ~ s or x a t}

in the case in which s is not empty. Applying rule (2) to the

subexpression x s s~ we can expand our expression to

{xlx = head(s) or x s tail(s) or x e t}.

Using rule (4)~ this reduces to

add(head(s) {xlx s tail(s) or x s t}).

If we observe that

{xlx s tail(s) or x s t}

243

is an instance of the top-level subgoal, we can reduce it to

unionCtail<s) t).

Again, this reeursive call leads to no infinite loops, since

tail(s) is shorter than s. Our completed union program is now

unionCs t) = if empty(s)

then t

else add(head(s) union(tail(s) t)).

As presented in this section, the loop formation technique can

only be applied if a subgoal is generated that is a special case

of the top-level goal. We shall see in the next section how

this restriction can be relaxed.

D, Generalization of Specifications

When proving a theorem by mathematical induction, it is often neces-

sary to strengthen the theorem in order for the induction to "go

through." Even though we have an apparently more difficult theorem

to prove, the proof is facilitated because we have a stronger in-

duction hypothesis. For example, in proving theorems about LISP

programs, the theorem prover of Boyer and Moore [1973] often auto-

matically generalizes the statement of the theorem in the course

of a proof by induction.

A similar phenomenon occurs in the synthesis of a recursive prog-

ram. It is often necessary to strengthen the specifications of

a program in order for that program to be useful in recursive

calls. We believe that this ability to strengthen specifications

is an essential part of the synthesis process, as many of our ex-

amples will show.

For example, suppose we want to construct a program to reverse a

list. A good recursive reverse program is

reverse(k) = rev(~ ())

where

Here

rev(~ m) = if empty(h)

then m

else rev(tail(~) head(~)-m).

244

() is the empty list

xo~ is the !ist formed by inserting x before the first

element of ~. (e.g., A°(B C D) = (A B C D)).

Note that rev(~ m) reverses the list ~ and appends it onto the

list m, e.g.~

rev((A B C) (D E)) : (C B A D E).

This is a good way to compute reverse: it uses very primitive

LISP functions and its recursion is such that it can be compiled

without use of a stack. However, writing such a program entails

writing the function rev, which is apparently more general and

difficult to compute than reverse itself, since it must reverse

its first argument as a subtask. The synthesis of this reverse

function involves generalizing the original specifications of

reverse into the specifications of rev.

The reverse function requires that the top-level goal be genera-

lized in order to match the lower level goal. Another way for

the specifications to be generalized is as follows. Suppose in

the course of the synthesis of a function f(x), we generate a

subgoal of the form P(f(a)), where f(a) is a particular recursive

call. Instead of proving P(f(a)), it may be easier to rewrite

the specifications for f(x) so as to satisfy P(f(x)) for all x.

This step may require that we actually modify portions of the

program f that have already been synthesized in order to satisfy

the new specification P. The recursive call to the modified prog-

ram will then be sure to satisfy P(f(a)). This process will be

illustrated in more detail during the synthesis of the pattern

marcher in Part III.

E. ~unctive Goals

The problem of solving conjunctive goals is the problem of synthe-

sizing a program that satisfies several constraints simultaneously.

The general form for this problem is

Find z such that P(z) and Q(z).

The conjunctive goals problem is difficult because, even if we

have methods for solving the goals

Find z such that P(z)

and

245

Find z such that Q(z)

independently, the two solutions may not merge together nicely

into a single solution. Moreover, there seems to be no way of

solving the conjunctive goal problem in general~ a method that

works on one such problem may be irrelevant to another.

We will illustrate one instance of the conjunctive goals problem:

the solution of two simultaneous linear equations. Although this

problem is not itself a program synthesis problem, it could be

rephrased as a synthesis problem. Moreover the difficulties in-

volved and the technique to be applied extend also to many real

synthesis problems, such as the pattern-matcher synthesis of

Part llI. Suppose our problem is the following:

Find <Zl, z2> such that

2z I = z 2 + I and

2z 2 = z I + 2.

Suppose further that although we can solve single linear equations

with ease, we have no built-in package for solving sets of equa-

tions simultaneously. We may try first to find a solution to each

equation separately. Solving the first equation, we might come up

with

<Zl, z2> = <i,I>,

whereas solving the second equation might give

<Zl~ z2> = <2,2>.

There is no way of combining these two solutions. Furthermore,

it doesn't help matters to reverse the order in which we approach

the two subgoals. What is necessary is to make the solution of

the first goal as general as possible, so that some special case

of the solution might satisfy the second goal as well. For ins-

tance, a "general" solution to the first equation might be

<I + w, 1 + 2w> for any w.

This solution is a generalization of our earlier solution <i,i>.

The problem is how to find a special case of the general solution

that also solves the second equation. In other words, we must

find a w such that

2(1 + 2w) = (i + w) + 2.

This strategy leads us to a solution.

Of course the method of generalization does not apply to all con-

junctive goal problems. For instance, the synthesis of an inte-

246

get square-root program has specifications

Find z such that

z is an integer and

2
z ~ x and

(z + 1) 2 > x,

where x ~ 0.

The natural approach of finding a general solution to one of the

conjuncts and plugging it into the others is not practical in

this case.

F. Side Effects

Up to now we have been considering programs in a LISP-like lan-

guage. These programs return a value but have no side effects.

In the next two sections we will consider the synthesis of more

general programs which may modify the state of the world. Prog-

rams that change the values of variables or alter the configura-

tion of data structures are examples of this class. This sort

of program is usually synthesized when a goal is proposed of the

general form

Achieve P.

A program that satisfies this specification will have the effect

of making P true.

To discuss this general case we will continue to use the concept

of '~wor!d ~' that we introduced in our discussion of hypothetical

reasoning. The concept of world is virtually identical to the

concept of state (McCarthy [1962]). Assertions may be true in

one world and false in another. New worlds may be constructed

by programs in three ways: world modification, splitting and

joining,

oWorld Modification -- The execution of an instruction with

side effects causes the creation of a new world. None of the

assertions in the old world may be assumed to be true in the

new world.

WORLDI i

WORLD2

247

eWorld Splitting -- The execution of a conditional test P causes

the creation of Two new worlds.

WORLDI ~

• WORLD2 WORLD3

Any assertion in WORLD i is also true in WORLD2 and WORLDS.

Furthermore P is true in WORLD2 and ~ P is true in WORLDS.

• World Joining -- When two paths of a program join together,

the corresponsing worlds are joined too.

I WORLD1 WORLD2

WORLD3

Here, in order for an assertion to be true in WORLD3 it must

be true in both WORLDI and WORLD2.

When an instruction with side effects has modified the world, we

need to be able to test if an assertion is true in the new world

after the instruction is executed. We do this by "passing" that

assertion back to the old world before the instruction is execut-

ed. When we "pass" an assertion back over an instruction, we ac-

tually construct a new assertion that must be true in the old

world in order that the original assertion will be true in the

new world (cf. Floyd [1967] and Hoare [1989]).

To illustrate the application of these constructs to the synthe-

sis of a program with side effects, let us consider the program

sort(x y) that sorts the values of two variables x and y. For

simplicity we will use the statement interchange(x y) that ex-

changes the value of x and y, instead of primitive assignment

statements. Our specifications will be simply

Achieve x { y.

Strictly speaking, we should include in the specifications the

additional requirement that the set of values of x and y after

the sort should be the same as before the sort. However, we

will not consider such complex goals until the next section,

and we can achieve the same effect by requiring that the inter-

change statement be the only instruction with side effects that

appears in the program.

248

The first step in achieving a goal is to see if it is already true.

(If a goal is a theorem, for instance, we do not need to construct

a program to achieve it.) We cannot prove x~y, but we can use it as

a basis for a hypothetical world split. Our program thus far is

WORLDI i

WORLD2 ~ ~ WORLD3

In WORLD2 our goal is already achieved; we may restrict our atten-

tion to WORLD3. In WORLD3 we know that ~ (x~y), i.e., x>y. To

achieve xcy~ it suffices to establish x<y, but this may be achiev-

ed by executing interchange(x y), creating WORLD4.

~ WORLDI
it ~ F
l

WORLD2 6 WORLD3

E 1
~ WORLD4

We have achieved x~y in both WORLD2 and WORLD4. If we join them

together, we will have succeeded in modifying WORLDI to make x~y

true. The final program is therefore:

1

WORLD2 I WORLD3

1
- } WORLD4

f WORLD5
Often a goal to be achieved will involve the simultaneous satis-

faction of more than one condition. As in the case of the con-

junctive goals in the programs without side effects, the special

249

interest of this problem lies in the interaction between the sub-

goals. The satisfaction of simultaneous goals will be the sub-

ject of the next section.

G. Simultaneous Goals

The problem of simultaneous goals is the problem of approaching

a goal of form

Achieve P and Q.

Sometimes P and Q will be independent conditions, so that we can

achieve P and Q simply by achieving P and then achieving Q. For

example, if our goal is

Achieve x : 2 and y = 3,

the two goals x=2 and y=3 are completely independent. In this

section, however, we will be concerned with the more complex

case in which P and Q interact. In such a case we may make P

false in the course of achieving Q.

Consider for example the problem of sorting three variables x, y,

and z. We will assume that the only instruction we can use is

the subroutine sort(u v), described in the previous section, which

sorts two variables. Our goal is then

Achieve x ~ y and y (z.

We know that the program sort(u v) will achieve a goal of form

u~v. If we apply the straightforward technique of achieving the

conjunct x{y first, and then the conjunct y(z, we obtain the pro-

gram

sort(x y)

sort(y z).

However, this program has a bug in that sorting y and z may dis-

rupt the relation xCy: if z is initially the smallest of the three,

we make y less than x in interchanging y and z. Reversing the

order in which the eonjunets are achieved is useless in this case.

There are a number of ways in which this problem may be resolved.

One of them involves the notion of debugging (ef. Sussman [1973]).

The approach is to debug the program

sort(x y)

sort(y z)

so that in executing sort(y z) we do not disturb the relation

250

x~y. To illustrate the process more clearly, we will expand the

definition of sort in terms of interchange and present the entire

program in flowchart notation,

WORLD2

WORLDI

WORLD3

! l interchange (x y)I
J

WORLD4

L
~t"~'WORLD5

~ ~ W O R L D 7

WORLD6 linterehange(y zi I

~ l WORLD8
L -~,IWORLD 9

We want to modify this program so that x~y in WORLD9. We now

choose not to achieve xcy directly in WORLDg, for fear of dis-

turbing the protected relation y~z. Instead we decide to pass

the predicate x~y back to some earlier point in the program where

there are no protected relations. We can then safely attempt to

achieve the modified predicate at that point.

There are two ways of passing the predicate x~y back to WORLD5 --

through WORLD6 or through WORLD8 and WORLD7. In the first

ease the predicate is unmodified. Since we know x~y is true in

WORLD5, we do not have to worry about this case. In the second

case~ passing x~y over statement ~nterchanse(y z) gives the mo-

dified predicate x~z in WORLD7. Therefore we must achieve

x ~ z if y > z in WORLD5°

We may attempt to achieve this relation directly, by inserting

the instruction sort(x z) in the middle of the program, yielding

251

the program

sort(x y)

sort(x z)

sort(y z).

However, this action, though ultimately correct, risks disturb-

ing the relation x(y protected in WORLD5. A more prudent course

is to pass the predicate back still further to WORLDI, where no

relation is protected at all. Passing the relation back to WORLDI

gives the two predicates

x (z if y > z and x ~ y in WORLDI

and

y (z if x > z and x > y in WORLDI.

We must achieve both of these relations. If we achieve the first

relation first, we insert the instruction sort(x z) at the begin-

ning of the program, then beeuase x(z, the second relation is tri-

vially satisfied. The program obtained is the

sort(x z)

sort(x y)

sort(y z).

If, on the other hand we try to achieve the second relation first,

by inserting the instruction sort(y z) at the beginning of the

program, the first relation will also be satisfied automatically,

and the program will then be

sort(y z)

sort(x y)

sort(y z).

The simultaneous goal problem is essential to all program synthe-

sis: what we have said in this section only begins to explore

the subject.

This concludes the presentation of our basic program synthesis

techniques. In the next part we will show how the same techni-

ques work together in the synthesis of some more complex examples.

III. PROGRAM SYNTHESIS: THE PATTERN-MATCHER

We will present the synthesis of a simple pattern-matcher to show

how the concepts discussed in the pre%ious section can be applied to a

non-trivial problem. Later, in Part IV, we shall show how we can con-

252

struct an even more complex program~ the unification algorithm

of Robinson [1965], by modifying the program we are about to syn-

thesize. We must first describe the data structures and primi-

tive operations involved in the pattern-matching and unification

problems.

A. Domain and Notations

The main objects in our domain are 9xpressi0n~ and substitutions.

i. Expressions

Expressions are atoms or nested lists of atoms{ cog., (A B (X C) D)

is an expression. An atom may be either a variable or a constant.

(In our examples we will use A,B,C,... for constants and U,V,W,...

for variables.) We have basic predicates atom, var and eonst to

distinguish these objects:

atom(R) ~ ~ is an atom,

var(~) ~ Z is a variable,

and
const(Z) ~ ~ is a constant.

To decompose an expression, we will use the primitive functions

head(~) and tail(Z)~ defined when ~ is not an atom.

head(~) is the first element of Z~

tail(~) is the list of all but the first element of Z.

Thus

head(((A (X) B) C (D X))) : (A (X) B),

tail(((A (X) B) C (D X))) : (C (D X)).

We will abbreviate head(~) as £i and tail(~) as ~2"

To construct expressions we have the concatenation function: if

is any expression and m is a nonatomic expression, ~.m is the

expression with £ inserted before the first element of m. For

example

(A (X) B) (C (D X)) = ((A (X) B) C (D X)).

The predicate occursin(x ~) is true if x is an atom that occurs

in expression ~ at any level, e.g.,

oceursin(A (C (B (A) B) C)) is true

but

occursin(x Y) is false.

Finally, we will introduce the predicate constexp(~), which is

true if ~ is made up entirely of constants. Thus

253

constexp((A (B) C (D E))) is true

but

constexp(X) is false.

Note that constexp differs from const in that constexp may be

true on nonatomic expressions.

2. Substitutions

A substitution replaces certain variables of an expression by

other expressions. We will represent a substitution as a list

of pairs. Thus

(<X (A B)> <Y (C Y)>)

is a substitution.

The instantiation function inst(s £) applies the substitution s

to an expression £. For example, if s is the substitution above

and £ is

(X (A Y) X)

then inst(s ~) is

((A B) (A (C Y)) (A B)) .

Note that the substitution is applied by first replacing all oc-

currences of X simultaneously by (A B) and then all occurrences

of Y simultaneously by (C Y). Thus, if the substitution s were

(<X Y > <Y C>),

then inst(s ~) would be

(C (A C) C).

The empty substitution A is represented by the empty list of pairs.

Thus, for any expression ~,

inst(A ~) = ~.

We regard two substitutions s I and s 2 as equal (written Sl=S 2) if

and only if

inst(s I ~) = inst(s 2 ~)

for every expression ~. Thus

(<X Y> <Y C>)

and

(<X C> <Y C>)

are regarded as the same substitution.

We can build up substitutions using the functions pair and o (com-

position): If v is a variable and t an expression, pair(v t) is

254

the substitution that replaces v by t; i.e.~

a~i~(v t) : (<v t>).

If s I and s 2 are two substitutions~ Sl°S 2 is the substitution

with the same effect as applying s I followed by s 2. Thus

inst(sl°s 2 ~) : inst(s 2 inst(s I ~)).

For examp!e~ if

s I = (<X A> <Y B>)
and

s = (<Z C> <X D>)
2

then

Sl°S 2 = (<X A> <Y B> <Z C>).

Note that for the empty substitution A

A°s : s°A : s

for any substitution s.

B. The specifications

The problem of pattern-matching may be described as follows. We

are given two expressions, p a t and ar___gg. Pat can be any expression,

but ar~ is assumed to contain no variables; i.e., constexp(a_r~)

is true. We want to find a substitution z that transforms pat in-

to arg, such that

inst(z pat) = arg.

We will call such a substitution a match. If no match exists, we

want the program to return the distinguished constant NOMATCH.

For examp!e~ if

is (X A (Y B))

and

is (C A (D B)),

we want the program to find the match

(<X C> <Y D>).

On the other hand, if

pat is (X A (X B))

and

arg is (B A (D B)),

then no substitution will transform pa t into arg, so the program

will yield NOMATCH.

This version of the pattern~matcher is simpler than the pattern-

matching algorithms usually implemented in programming languages

because of the absence of "sequence" or "fragment" variables.

Our variables must match exactly one expression, whereas a frag-

ment variable may match any number of expressions. Because of

255

the absence of fragment variables, a match, if it exists, will

be unique. Thus if

pat is (X Y Z) and

at@ is ((A B) C (A B)),

X and Z must be bound to (A B), and Y must be bound to C. If

pat is (X Y) and

arg is (A B C),

no match is possible at all. (If X and Y were fragment variables,

four matches would be possible.)

In mathematical notation the specifications for our pattern-matcher

are:

Goal i: I match(p0t a~g) :

r
Find z such that inst(z pat) = arg

............ else z = NOMATCH

where "Find z such that P(z) else Q(z)" means find a z such that

P(z) if one exists; otherwise, find a z such that Q(z).

The above specifications do not completely capture our intentions;

for instance, if

pat is (X Y), and

arg is (A B),

then the substitution

z = (<X A> <Y B> <Z C>)

will satisfy our specifications as well as

z = (<X A> <Y B>).

We have neglected to include in our specifications that no sub-

stitutions should be made for variables that do not occur in pat.

We will call a match that satisfies this additional condition a

most seneral match.

An interesting characteristic of the synthesis we present is that

even if the user forgets to require that the match found be most

general~ the system will be able to strengthen the specifications

automatically to imply this condition, using the method outlined

in Section II-D. Therefore we will begin the synthesis using the

weaker specifications.

C. The Synthesis: The Base Cases

Rather than listing all the knowledge we require in a special see-

256

tion at the beginning~ we will mention a rule only when it is

about to be used. Furthermore~ if a rule seems excessively tri~

vial we will omit it entirely. The general strategy is to first

work on

Goal 2: Find z such that inst(z pat) = arg.

If this is found to be impossible (i.e., if it is proven that no

such z exists)~ we will work on

Goal 3: Find a z such that z = NOMATCH;

which is seen to be trivially satisfied by taking z to be NOMATCH.

Thus~ from now on we will be working primarily on Goal 2. How-

ever, in working on any goal we devote a portion of our time to

showing that the goal is impossible to achieve. When we find

cases in which Goal 2 is proven impossible~ we will automatically

return NOMATCH~ which satisfies Goal 3.

We have in our knowledge base a number of rules concerning inst,

including

Rule i: inst(s x) = x for any substitution s

if constexp(x)

Rule 2: inst(pair(v t) v) = t

if var(v)

We assume that these rules are retrieved by pattern-directed func-

tion invocation on Goal 2. Rule i applies only in the case that

cons texp(pat) and pat = arg. We cannot prove either of these con-

ditions; their truth or falsehood depends on the particular inputs

to the program~ We use these predicates as conditions for a hypo-

thetical world-split. In the case that both of these conditions

are true~ Rule i tells us that any substitution is a satisfactory

match. We will have occasion to tighten the specifications of

our program later; as they stand now~ we will simply return z÷any.

The portion of the program we have constructed so far reads

match(pat arg) =

if constexp(pat)

then if pair = ar_~g

then z + any

else.o.

On the other hand~ in the case constex~(pat) and pat ~ arig, Rule I

257

tells us that

inst(z pat) ~ arg

for any z. Hence we are led to try to satisfy Goal 3 and take

z÷NOMATCH.

We now consider the case

~ constexp(pat).

Ruel 2 establishes the subgoal

var(pat).

This is another occasion for a hypothetical world-split. When

var(pat) is true, the program must return ~air(pat arg); the pro-

gram we have constructed so far is

match(pa t arg) =

if eonstex~(pat)

then if pat = arg

then z ÷ any

else z ÷ NOMATCH

else if vat(pat)

then z ÷ pair(pat arg)

else

Heneefore we assume - var(pat). Recall that we have been assuming

also that ~ 9onstexp(pat). To proceed we make use of the follow-

ing additional knowledge about the function inst:

Rule 3: inst(s x.y) = inst(s x). inst(s y) for any substitution s.

This rule applies to our Goal 2 if pat:x.y for some expressions x

and y. We have some additional knowledge about expressions in ge-

neral:

Rule 4: u = u I u 2

if ~ atom(u)

Recall that u I is an abbreviation for head(u) and u 2 is an abbrevia-

tion for tail(u).

Rule 5: u ¢ v.w for any u, v, and w

if atom(u)

Using Rule 4, we generate a subgoal

- atom(pat).

Since we have already assumed ~ constexp(pat) and ~ vat(pat), we

can actually prove ~ atom(pat) using knowledge in the system.

Therefore pat=patl.pat 2 and using Rule 3 our Goal 2 is then

258

reduced to

Goal ~: Find z such that inst(z patl)~inst(z pat2) = ar_~.

We now make use of some general list-processing knowledge.

Rule 6: To prove x • y = u . v, prove x = u and y = v.

Applying this rule~ we generate a subgoal to show that

arg = U • V

for some u and v. Applying Rule 4, we know this is true with

u = a__~l and v : arg 2 if

~ atom(arg).

This is another occasion for a hypothetical world-split.

Thus, by Rule 6~ in the case that ~ atom(arg), our subgoal re-

Find z such that

inst(z pat I) = arg I
and

inst(z pat 2) : arg 2.

We will portpone treatment of ~his goal until after we have con-

sidered the other case, in which

atom(ar___~g)

holds. In this case Rule 5 tells us that

inst(z pat I) - inst(z pat 2) ~ arg

for any z. Hence, our goal is unachievable in this case, and we

can take

z + NOMATCH.

The program so far is

match(pat ar~) :

if constexp(~at)

then if pat = arg

then z + any

else z + NOMATCH

else if var(pat)

then z ÷ pair(pat arg)

else if atom(arg)

then z ÷ NOMATCH

else . . .

For the as yet untreated case neither pat nor ar~ is atomic. Hence-

forth using Rule 4 we assume that pat is patl.pat 2 and arg is

argl" arg 2 •

duces to

Goal 5 :

259

D. The Synthesis: The Inductive Case

We will describe the remainder of the synthesis in less detail,

because the reader has already seen the style of reasoning we

have been using. Recall that we had postponed our discussion of

Goal 5 in order to consider the ease in which arg is atomic.

Now that we have completed our development of that case, we re-

sume our work on Goal 5:

Find z such that

inst(z pat I) = argl , and

inst(z pat 2) = ~Fg2"

This is a conjunctive goal, and is treated analogously to the goal

in the simultaneous linear equations example: each conjunct is

treated separately. The system will attempt to use a recursive

call to the pattern-matcher itself in solving each conjunct.

The interaction between the two conjunets is part of the challenge

of this synthesis. It is quite possible to satisfy each conjunct

separately without being able to satisfy them both together. For

example, if pat=(X X) and ~rg=(A B) then patl=X , pat2=(X) , argl=A

and ar~2=(B). Thus z=(<X A>) satisfies the first conjunct,

z=(<X B>) satisfies the second conjunct, but no substitution will

satisfy both conjuncts because it cannot match X against both A

and B. Some mechanism is needed to ensure that the expression

assigned to a variable in solving the first conjunct is the same

as the expression assigned to that variable in solving the second

conjunct.

There are several ways to approach this difficulty. For instance~ the

programmer may satisfy the two conjuncts separately and then attempt

to combine the two substitutions thereby derived into a single sub-

stitution. Or he may actually replace those variables in pat 2

that also occur in a~9~l by whatever expressions they have been

matched against~ before attempting to match pat 2 against arg 2.

Or he may simply pass the substitution that satisfied the first

conjunct as a third argument to the pattern-marcher in working on the

second conjunct. The pattern-marcher must then check that the matches

assigned to variables are consistent with the substitution given as

the third argument.

260

We will examine in this section how a system would discover the

second of these methods and consider in a later section how the

third method could be discovered. We will not consider the first

method here because it is not easily adapted to the unification

problem.

Our strategy for approaching the conjunctive goal is as follows.

We will consider the first conjunct independently:

Goal 6: Find z such that inst(z patl) = argl.

If we find a z that satisfies this goal~ we will substitute that

z into the second conjunct, giving

Goal 7: Prove inst(z ~at2) = ar___~g 2.

If we are successful in Goal 7~ we are done~ however, if we fail,

we will try to generalize z. In other words, we will try to

find a broader class of substitutions that satisfy Goal 6 and

from these select one that also satisfies Goal 7. This is the

method we introduced to solve conjunctive goals in Section II-E.

Applying this strategy, we begin work on Goal 6. We first use a

rule that relates the construct

Find z such that P(z)

to the construct

Find z such that P(z) else Q(z).

Rule 7: To find z such that P(z),

find z I such that P(z I)

else Q(z I) for some predicate Q,

and prove ~ Q(Zl).

This rule~ applied to Goal 6 causes the generation of the subgoal

Goal 8: Find z I such that inst(z I pat I) = arg I

else q(Zl)~

and prove ~ Q(Zl).

This subgoal matches the top-level Goal i, where Q(z I) is Zl=

NOMATCH. This suggests establishing a recursion at this point,

taking

z I = match(patl argl).

Termination is easily shown, because both pat I and arg I are pro-

per subexpressions of pat and @rg, respeetively, It remains to

show, according to Rule 7, that zi~NOMATCH. This causes another

261

hypothetical world-split: in the case Zl=match(patl ar~l)=

NOMATCH (i.e., no substitution will cause p atl and arg I to match),

we can show that no substitution can cause pat and arg to match

either, and hence can take z=NOMATCH. On the other hand, if

match(~atl argl)~NOMATCH, we try to show Goal 7, i.e.,

inst(z I pat 2) = arg 2.

However, we fail in this attempt; in fact we can find sample in-

puts pa t and arg that provide a counter-example to Goal 7 (e.g.,

pat=(A X), arg=(A B), Zl=A). Thus we go back and try to genera-

lize our solution to Goal 6.

We already have a solution to Goal 6: we know inst(z I patl)=arg I.

We also can deduce that constexp(argl) , because we have assumed

constexp(arg). Hence Rule i tells us that

inst(w arg I) = arg I

for any substitution w. Hence

inst(w inst(z I p atl)) = argl,

i.e.,

inst(zl°w pat I) = arg I

for any substitution w. Thus having one substitution z I that sa-

tisfies Goal 6, we have an entire class of substitutions, of form

Zl°W ~ that also satisfy Goal 6. These substitutions may be con-

sidered to be "extensions" of Zl; although z I itself may not sati-

sfy Goal "7, perhaps some extension of z I will.

The above reasoning is straightforward enough to justify, but

further work is needed to motivate a machine to pursue it.

It remains now to find a single w so that Zl°W satisfies Goal 7, i.e.,

Goal 9: Find w such that inst(zl°w pat.2)=ar__zg2 ,

or equivalently,

Find w such that inst(w inst(z I P at2))=arg 2.

applying Rule 7, we establish a new goal

Goal i0: Find w such that inst(w inst(z I pat2))=arg 2

else Q(w),

and prove ~ Q(w)

This goal is an instance of our top-level goal, taking pat to be

inst(z I pat2), a rg to be a rg2' and Q(w) to be w=NOMATCH. Thus we

attempt to insert the recursive call

262

z 2 * match($n&tCz I pat2) arg2)

into our program at this point and take w to be z 2. However, we

must first establish

Q(z2) ,

match(inst(z I pat2) arg 2) ~ NOMATCH.

We cannot prove this. We have eounter-examples, e.g., if

pat = (A A)~ ~ = (A B) and z I = A,

then

match(inst(A A) B) = NOkIATCH.

Therefore we split on this condition.

'In the case

mateh(inst(z I pat2) arg2) ~ NOMATCH

Goal i0 is satisfied. Thus w=z 2 also satisfies Goal 9, and

Z=Zl°Z 2 satisfies Goal 7.

Our program so far is

mateh(p_~ ar_~) =

if eonstex~(pat)

then if ~ = arg

then z ÷ any

else z ÷ NOMATCH

else if var(pat)

then z ÷ pair(pat ar$)

else if atom(a<[)

then z + NOMATCH

else z I ÷ match(pat I argl)

if z I = NOMATCH

then z + N0~IATCH

else z 2 ÷ match(inst(z I p_a~2) arg2)

if z 2 = NOMATCH

then ...

else z ÷ Zl°Z 2

E. The Synthesis: The S<ren~thening of the Specifications

We have gone this far through the synthesis using the weak speci-

fications~ i.e., without requiring that the match found be most

general. In fact~ the match found may or may not be most general

263

depending on the value taken for the unspecified substituion "any"

produced in the very first case. The synthesis is nearly complete.

However, we will be unable to complete it without strengthening

the specifications and modifying the program accordingly. We now

have only one case left to consider. This is the case in which

z 2 = NO~TCH

i.e.,

match(inst(z i pat 2) = NOMATCH.

This means that no substitution w satisfies

inst(w inst(z I pat2)) = arg2,

or, equivalently

inst(zl°w pat 2) # arg 2 for every substitution w.

This means that no substitution of form Zl°W could possibly satisfy

inst(zl°w pat) = a rg.

We here have a choice: we can try to find a substitution s not of

form Zl°W that satisfies

inst(s pat I) = arg 1

and repeat the process; or we could try to show that only a sub-

stitution s of form Zl°W could possibly satisfy

inst(s pat I) = argl,

and therefore we can take z=NOMATCH.

We have already extended the class of substitutions that satisfy

the condition once; therefore we pursue the latter course. We

try to show that the set of substitutions S=Zl°W is the entire

set of solutions to

inst(s pat l) = arg I.

In other words, we show that for any substitution s,

if inst(s pat I) = arg I then s = Zl°W for some w.

This condition is equivalent to saying that z I is a most general

match. We cannot prove this about z I itself; however, since z 1

is match(pat I arg I) it suffices to add the condition to the speci-

fications for match, as described in Section II-D. The strengthened

specifications now read

Find z such that

{inst(z pat) = arg and

for all s [if inst(s pat) = arg

then s = z°w for some w]}

else z = NOMATCH.

264

Once we have strengthened the specifications it is necessary to

go through the entire program and see that the new, stronger spe~

cifications are satisfied, modifying the program if necessary.

In this case no major modifications are necessary; however, the

assignment

z + any

that occurs in the case in which pat and ar$ are equal and cons-

tant is further specified to read

z ÷ A.

Our final program is therefore

match(pat a_E~) :

if 9onstexz(pat)

then if pa t = arg

then z + A

else z ÷ NOMATCH

else if var(pat)

then z + pair(pat ar$,)

else if atom(arg)

then z ÷ NOMATCH

else z I ÷ match(~atl argl)

if z I = NOMATCH

then z ÷ NOHATCH

else z 2 ÷ match(inst(z I pat 2) arg 2)

if z 2 = NOMATCH

then z ÷ NOMATCH

else z ÷ zl°z 2.

265

F. Alternative Programs

The above pattern-matcher is only one of may pattern-matchers

that can be derived to satisfy the same specifications. In pur-

suing the synthesis the system has made many choices; some of

the alternative paths result in a failure to solve the problem

altogether, whereas other paths result in different, possibly

better programs. In this section we will indicate how a system

might make a different decision in the above synthesis and, con-

sequently, drive a different program.

In the above synthesis we derived a goal (Goal 9):

Find w such that inst(zl°w Pat2) = arg 2.

We chose at that point to transform the goal to the equivalent

Find w such that inst(w inst(z I Pat2)) = arg2,

and then apply Rule 7, which added an else-clause to the goal,

yielding Goal I0. We then matched Goal i0 against our top-level

goal, introducing the second recursive call into our program.

It would be equally plausible that the system should apply Rule

7 directly to Goal 9, giving a new goal

Goal I@': Find w such that inst(zl°w pat 2) = ar__~2

else Q(w),

and prove ~ Q(w).

The system may now attempt to use a reeursive call to satisfy

Goal I0' However, this goal is not a precise instance of our

top-level goal~ we are demanding not only that a match be found

between pat 2 and arg2, but also that the match be of form Zl°W ,

where z I is the output of the previous recursive call. We must

therefore generalize our program to take three inputs: pat, ar___gg,

and alist. We insist that the match found be an extension of

alist. In the case that alist is A, the new program will be iden-

tical to the old one. On the other hand, if alist=zl~ pat=pat2

and arg:arg2, a recursive call to the new program suffices to

satisfy Goal i0'

In mathematical notation, the stronger specifications now read

I Find z such that [inst(z pa t) = arg and

z = alist°w for some w]

[else z : NOMATCH.

266

We will call the generalized program

match2(Ra ~ arg alist).

The original program match will be written as a call to the more

general auxiliary program:

match(pat ar_~) = match2(pat ar e A).

The portion of the program already constructed in the synthesis

of match must be systematically modified to satisfy the strengthen-

ed requirements of match2.

First, in the case that constexp(pat) where p at=arg~ we originally

took z÷any. However~ we must now take

z ÷ alist°any,

becuase the substitution found must be an extension of alist.

In the case that vat(pat) we originally took z+pair(a~ ar_~g);

however, here we must check to see whether ~ has already been

matched against something other than ar__~. The new program seg-

ment is

if inst(alist ~at) = pat

then z ÷ alis~°pair(ap~_ arg)

else if inst(alist pat) = arg

then z ÷ alist

else z ÷ NOMATCH.

Of course.we are omitting the details of synthesis; the actual

derivation is somewhat more lengthy.

The call z I ÷ match(pat I argl) must be replaced by

z I * mateh2(pat I arg I alist).

Having modified the portion of the program already constructed~

the system continues the synthesis. A recursive call

z 2 ÷ match2(a~_~2 arg 2 z I)

satisfies Goal 9; the balance of the synthesis parallels the de-

velopment of the first program, including the further strengthen-

ing of the specifications to ensure that the match found is the

most general possible.

The value of the second recursive call is shown to satisfy the

strengthened top-level goal.

The program derived from this alternative synthesis is

267

where

match(pat arg) = match2(pat arg A)

mateh2(pat arg alist) =

if constexp(pat)

then if ~at = arg

then z ÷ a!ist

else z ÷ NO~TCH

else if var(pat)

then if inst(a!ist pat) = pat

then z ÷ alist°pair(pat arg)

else if inst(alist pat) = arg

then z + alist

else z ÷ NOMATCH

else if atom(ar$)

then z ÷ NOMATCH

else z I + match2(pat I ~gl alist)

if z I = NOMATCH

then z ÷ NOMATCH

else z + match2(pat2 arg 2 Zl).

IV. PROGRAM MODIFICATION: THE UNIFICATION ALGORITHM

In general, we cannot expect a system to synthesize an entire com-

plex program from scratch, as in the pattern-matcher example. We

would like the system to remember a large body of programs that

have been synthesized before and the method by which they were

constructed. When presented with a new problem, the system should

cheek to see if it has solved a similar problem before. If so, it

may be able to adapt the technique to the old program to make it

solve the new problem.

There are several difficulties involved in this approach. First,

we cannot expect the system to remember every detail of every syn-

thesis in its history. Therefore, it must decide what to remember

and what to forget. Second, the system must decide which problems

are similar to the one being considered, and the concept of simi-

larity is somewhat ill-defined. Third, having found a similar

program, the system must somehow modify the old synthesis to solve

the new problem. We will concentrate only on the latter of these

268

problems in this discussion. We will illustrate a technique for

program modification as applied to the synthesis of a version of

RobinsonTs unification algorithm.

A. The Specifications

Unification may be considered to be a generalization of pattern

matching in which variables appear in both Pat and arg. The prob-

lem is to find a single substitution (called a "unifier") that,

when applied to both pat and arg , will yield identical expressions.

for instance, if

pat = (X A)

and

arg : (B Y)~

then a possible unifier of pat and arg is

(<X B><Y A>).

The close analogy between pattern-matehing and unification is

clear. If we assume that the system remembers the pattern-

marcher we constructed in Sections III-2 through III-5 and the

goal structure involved in the synthesis, the solution to the

unification problem is greatly facilitated.

The specifications for The unification algorithm, in mathemati-

cal notation, are

unify(p_a~ arg) I
Find z such that inst(z pat) = inst(z arg)

else z : NOPLATCH

B° The Analogy with the Pattern-Matcher

For purposes of comparison we rewrite the match specifications:

match(pat arg) =

Find z such that inst(z pat) = arg

else z = NOMATCH.

In formulating the analgy, we identify unify with match, pat with

pat, the ar___gg in unify (~at arg) with arg, and inst(z arg) also

with arg~ In accordance with this analogy, we must systematically

alter the goal structure of the pattern-matcher synthesis. For

example, Goal 5 becomes modified to read

269

Find z such that

inst(z pat I) = inst(z argl) and

inst(z pat 2) : inst(z aFg2).

In constructing the pattern-matcher, we had to break down the

synthesis into various oases. We will try to maintain this case

structure in formulating our new program. Much of the savings

derived from modifying the pattern-matcher instead of construct-

ing the unification algorithm from scratch arises because we do

not have to deduce the ease splitting all over again.

A difficult step in the pattern-mateher synthesis involved the

strengthening of the specifications for the entire program. We

added the condition that the match found was to be "most general."

In formulating the unification synthesis, we will immediately

strengthen the specifications in the analogous way. The streng-

thened s)ecifications read

unify(pat argi =

Find z such that

{inst(z pat) = inst(z erg) and

for all s [if inst(s pat) : inst(s arg)

then s = z°w for some w]}

else z = NOMATCH.

Following Robinson [1965], we will refer to a unifier satisfying

the new condition as a "most general unifier."

Note that this alteration process is purely syntactic; there is

no reason to assume that the altered goal structure corresponds

to a valid line of reasoning. For instance, simply because a-

chieving Goal 2 in the pattern-matching program is useful in

achieving Goal i does not necessarily imply that achieving Goal

2' in the unification algorithm will have any bearing on Goal I'

The extent to which the reasoning carries over depends on the

soundness of the analogy. If a portion of the goal structure

proves to be valid, the corresponding segment of the program ean

still remain; otherwise, we must construct a new program segment.

C. The Modification

Let us examime the first two cases of the unification synthesis

in full detail, so that we can see exactly how the modification

270

process works. In the pattern-macher, we generated the subgoal

(Goal 2)

Find z such that inst(z pat) = arg.

The corresponding unification subgoal is

Find z such that inst(z pat) = inst(z arg).

In the pattern-matcher we first considered the case constexp(pat)

where pat=arg. In this case the corresponding program segment is

z ÷ A.

This segment also satisfies the modified goal in this case, because

ins t(A a~9 ~) : inst(A arg).

The system must also check that i is a most general unifier, i.e.,

for any s [if inst(s pat) : inst(s ar__~g)

then s = A°w for some w].

This condition is easily satisfied, taking w=s. Thus, in this

case, the program segment is correct without any modification.

The next case does require some modification. In the pattern-

marcher, when constexp(p! ~) is true and p!tCarg, z is taken to

be NOMATCHo However, in this case in the unification algorithm

we must check that

inst(s pat) ~ inst(s arg),

i.eo~

nat ~ inst(s ar$)

for any s, in order to take z=NOMATCH. Since for unification arg

may contain variables, this condition cannot be satisfied. We

must therefore try to achieve the specifications in some other

way. In this case (where constexp(pat)), the specifications of

the unification algorithm reduce to

Find z such that

{pat = inst(z arg) and

for any s [if pat = inst(s arg)

then s = z°w for some w]}

else z = NOMATCH.

These specifications are precisely the specifications of the

pattern-marcher with ~ and arg reversed; consequently, we can

invoke match(arg ap_a~) at this point in the program.

The balance of the modification can be carried out in the same

manner. The derived unification algorithm is

271

unify(pat arg) =

if ~constexp(pat)

then if pat = arg

then z ÷ A

else z ÷ match(arg pat)

else if vat(pat)

then if occursin(pat arg)

then z + NO[%ATCH

else z + pair(pat arg)

else if atom(arg)

then z ÷ unify(arg pat)

else z I ÷ unify(patl ar~l)

if z I = NOMATCH

then z ÷ NOMATCH

else z 2 ÷ unify(inst(z I a~2) inst(z I arg2))

if z 2 = NOMATCH

then z + NOMATCH

else z + Zl°Z 2.

Recall that occursin(pat arg) means that pat occurs in ar& as a

subexpression.

The termination of this program is considerably more difficult

to prove than was the termination of the pattern-matcher. How-

ever, the construction of the unification algorithm from the

pattern-matcher is much easier than the initial synthesis of the

pattern-mateher itself.

Note that the program we have constructed contains a redundant

branch. The expression

if pat = arg

then z + A

else z ÷ mateh(aF~ pat)

could be reduced to

z ÷ mateh(arg pat).

Such improvements would not be made until a later optimization

phase.

272

V. DISCUSSION

A. l~l~entat~on

Implementation of the techniques presehted in this paper is under-

way. Some of them have already been implemented. Others will re-

quire further development before an implementation will be possible.

We imagine the rules, used to represent reasoning tactics, to be

expressed as programs in a PLANNER-type language. Our own imple-

mentation is in QLISP (Reboh and Sacerdoti [1973]). Rules are

summoned by pattern-directed function invocation.

Worlds have been implemented using the context mechanism of QLISP,

which was introduced in QA4 (Rulifson etal. [1972]). The control-

structure necessary for the hypothetical worlds, which involve an

actual splitting of the control path as well as the assertional

data base~ is expressed using the multiple environments (Bobrow

and Wegbreit [1973]) of INTERLISP (Teitelman [1974]). The hypo-

thetical world-splitting has been implemented, but we have yet to

experiment with the various strategies for controlling it.

The existing system is capable of producing simple programs such

as the union function, the program to sort two variables from Part

II, or the loop-free segments of the pattern-matcher from Part III.

The generalization of specifications (Seotions II-4 and III-5) is

a difficult technique to apply without its going astray. We will

develop heuristics to regulate it in the course of the implementa-

tion. Similarly, our approach to conjunctive goals (Section !I-5)

needs further explication.

\

B. H~storical Context and Contemporary Research

Early'work in program synthesis (e.g. Simon [19631, Green [1969],

Waldinger and Lee [1969]), was limited by the problem-solving capa-

bilities of the respective formalisms involved (the General Prob-

lem Solver in the case of Simon, resolution theorem proving in the

case of the others). Our paper on loop formation (Hanna and Waldin-

get [1971]) was set in a theorem-proging framework, and paid little

attention to the implementation problems.

273

It is typical of contemporary program synthesis work not to at-

tempt to restrict itself to a formalism; systems are more likely

to write programs the way a human programmer would write them.

For example, the recent work of Sussman [1973] is modelled after

the debugging process. Rather than trying to produce a oorrect

program at once, Sussmants system rashly goes ahead and writes in-

correct programs which it then proceeds to debug. The work re-

ported in Green et al. [1974] attempts to model a very experienced

programmer. For example, if asked to produce a sort program, the

system recalls a variety of sorting methods and asks the user

which he would like best.

The work reported here emphasizes reasonging more heavily than

the papers of Sussman and Green. For instance, in our synthesis

of the pattern-marcher we assumed no knowledge about pattern-

matching itself. Thus our system would be unlikely to ask the

user what kind of pattern-matcher he would like. Of course we

do assume extensive knowledge of lists, substitutions, and other

aspects of the subject domain.

Although Sussman's debugging approach has influenced our treat-

ment of program modification and the handling of simultaneous

goals, we tend to rely more on logical methods than Sussman.

Furthermore, Sussman deals only with programs that manipulate

blocks on a table; therefore he has not been forced to deal with

problems that are more crucial in conventional programming, such

as the formation of conditionals and loops.

The work of Buchanan and Luckham [1974] (see also Luckham and

Buchanan [1974]) is closest to ours in the problems it addresses.

However, there are differences in detail between our approach

and theirs:

The Buchanan-Luckham specification language is first-order pre-

dicate calculus; ours allows a variety of other notations. Their

method of forming conditionals involves an auxiliary stack; ours

uses contexts and the Bobrow-Wegbreit control structures. In the

Buchanan-Luckham system the loops in the program are iterative,

and are specified in advance by the user as "iterative rules,"

whereas in our system the (recursive) loops are introduced by

the system itself when it recognizes a relationship between the

274

top-level goal and a subgoal. The treatment of programs with

side effects is also quite different in the Buchanan-Luckham

system, in which a model of the world is maintained and updated,

and assertions are removed when they are found to contradict

other assertions in the model. Our use of contexts allows the

system to recall past states of the world and avoids the tricky

problem of determining when a model is inconsistent. I should

be added that the implementation of the Buchanan-Luekham system

is considerably more advanced than ours.

C. Conclusions and Future Work

We hope we have managed to convey in this paper the promise of

program synthesis, without giving the false impression that auto-

matic synthesis is likely to be immediately practical. A compu-

ter system that can replace the human programmer will very like-

ly be able to pass the rest of the Turing test as well.

Some of the approaches to program synthesis that we feel will be

most fruitful in the future have been given little emphasis in

this paper because they are not yet fully developed. For example,

the technique of program modifieation, which occupied only one

small part of the current paper, we feel to be central to future

program synthesis work. The retention of previously constructed

programs is a powerful way to acquire and store knowledge. Further-

more program optimization and program debugging are just special

cases of program modification.

Another technique that we believe will be valuable is the use of

more visual or graphic representations, that convey more of the

properties of the object being discussed in a single structure.

For example, we have found that the synthesis of the pattern mat-

chef could be made shorter and more intuitive by the introduction

of the substitution notation of mathematical logic. If we rep-

resent an expression P as P(Xl,...,Xn), where Xl,...,x n is the

complete list of the variables that oeeur in P, then P(tl,...,t n)

is the result of substituting variables x i by terms t i in P. We

can then formulate the problem of pattern matching as follows:

275

Let a~ = pat Lxl,..,,xn)

Find z such that

if ar$ = pat(tl,...,t n) for some tl,...,t n

tl> >} then z = {<x I ,...,<x n t n

else x = NOMATCH.

Note that this specification includes implicityly the restriction

that the match found be a most general match, because each of the

variables x i actually occurs in pat. Therefore, the specifica-

tions do not need to be strengthened during the course of the

synthesis.

We hope to experiment with visual representations in a variaty

of applications. Clearly, while the reasoning required is simpli-

fied by the use of pictorial notation, the handling of innovations

such as the ellipsis notation in an implementation is correspond-

ingly more complex.

ACKNOWLEDGEMENTS

We wish to thank Robert Boyer, Bertram Raphael, and Georgia Suther-

land for giving detailed critical readings of the manuscript. We

would also like to thank Nachum Dershowitz, Peter Deutsch~ Richard

Fikes, Akira Fusaoka, Cordell Green and his students, Irene @reif,

Carl Hewitt, Shmuel Katz, David Luckham, Earl Saeerdoti, and Ben Weg-

breit for conversations that aided in formulating the ideas in

this paper. We would also like to thank Claire Collins and Hanna

Z£es for typing many versions of this manuscript.

This research was primarily sponsored by the National Science Foun-

dation under grants GJ-36146 and GK-35493.

276

BIBLZOGRAPHY

i. Balzer, R. M. (September 1972), "Automatic Programming," Insti-

tute Technical Memo, University of Southern California/Informa-

tion Sciences Institute.

2. Biermann, A. W., R. Baum, R. Kirisknasw~my and F. E. Petry (Oc-

tober 1973)~ '~Automatic Program Synthesis Reports," Computer and

Information Sciences Technical Report TR-73-6, Ohio State Univer-

sity.

3. Bobrow~ D. G. and B. Wegbreit (August 1973), "A Model for Control

Structures for Artificial Intelligence Pr0grammin ~ Languages,"

Adv. Papers 3d. Intl. Conf. on Artificial Intelligence, 246-

253, Stanford University, Stanford, California.

4. Boyer, R. S. and J S. Moore (1973), "Proving Theorems about

LISP Functions," Adv. Papers 3d. Intl. Conf. on Artificial In-

telligence.

5. Buchanan~ J. R. and D. C. Luckham (March 1974), "On Automating

the Construction of Programs," Memo, Stanford Artificial Intel-

ligence Project, Stanford~ California.

6. Bundy, A. (August 1973), "Doing Arithmetic with Diagrams," Adv.

Papers 3d. Intl. Conf. on Artificial Intelligence, 130-138,

Stanford University, Stanford, California.

7. Floyd, R. W., (1967), "Assigning Meanings to Programs," Proc. of

a Symposium in A~plied Mathematics, Vol. 19, (J. T. Schwartz, ed.),

Am. Math. Sock, 19-32.

8. Green, C. C. (May 1969), "Application of Theorem Proving to Prob-

lem Solving~" Proc. Intl. Joint Conf. on Artificial Intelligenoe~

219-239.

9. Green~ C. C., R. Waldinger, R. Elschlager, D. Lenat, B. McCune,

and D. Shaw~ (1974), "Progress Report on Program-Understanding

Programs~" Memo, Stanford Artificial Intelligence Project, Stan-

ford, California.

i0. Hardy, S. (December 1973), "Automatic Induction of LISP Functions,"

Essex University.

277

ii. Hewitt, C. (1972)~ "Description and Theoretical Analysis (Using

Schemata) of PLANNER: A Language for Proving Theorems and Mani-

pulating Models in a Robot," AI Memo No. 251, MIT, Project MAC,

April 1972.

12. Hoare, C. A. R., (October 1969), "An Axiomatic Basis for Computer

Programming," C. ACM 12, i0, 576-580, 583.

13. Kowalski, R. (March 1974), "Logic for Problem Solving," Memo No.

75, Department of Computational Logic, University of Edinburgh,

Edinburgh.

14. Luckham, D. and J. R. Buchanan (March 1974), "Automatic Genera-

tion of Programs Containing Conditional Statements," Memo, Stan-

ford Artificial Intelligence Project, Stanford, California.

15. Manna, Z. and R. Waldinger (March 1971), "Toward Automatic Prog-

ram Synthesis," Comm. ACM, Vol. 14, No. 3, pp. 151-165.

16. McCarthy, J. (1962), "Towards a Mathematical Science of Computa-

tion," Prec. IFiP Congress 62, North Holland, Amsterdam, 21-28.

17. Reboh, R. and E. Saeerdoti (August 1973), "A Preliminary QLISP

Manual," Tech. Note 81, Artificial Intelligence Center, Stanford

Research Institute, Menlo Park, California.

18. Robinson, J. A., (January 1965), "A Machine-0riented Logic Based

on the Resolution Principle," Jour. ACM, Vol. 12, No. I, 23-41.

19. Rulifson, J. F., J. A. Derksen, and R. J. Waldinger (November

1972), "QA4: A Procedural Calculus for Intuitive Reasoning,"

Tech. Note 73, Artificial Intelligence Group, Stanford Research

Institute, Menlo Park, California.

20. Simon, H. A., (October 1963), "Experiments with a Heuristic Com-

uter," Jour. ACM, Vol. I0, No. 4, 493-506.

21. Sussman, G. J. (August 1973), "A Computational Model of Skill Ac-

quisition," Ph.D. Thesis, Artificial Intelligence Laboratory,

M.I.T., Cambridge, Mass.

22. Teitelman, W., (1974), INTERLISP Reference Manual, Xerox, Pale

Alto, California.

23. Waldinger, R. J., and R. C. T. Lee (May 1969), "PROW: A Step To-

ward Automatic Program Writing," Prec. Intl. Joint Conf. on Arti-

ficial Intelli~enee, 241-252.

