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ABST~CT~ 

Program synthesis is the construction of a computer program from 

given specifications. An automatic program synthesis system must 

combine reasoning and programming ability with a good deal of 

knowledge about the subject matter of the program. This ability 

and knowledge must be represented both procedurally (by programs) 

and structurally (by choice of representation). 

We describe some of the reasoning and programming capabilities 

of a projected synthesis system. Special attention is paid to 

the introduction of conditional tests, loops, and intructions 

with side effects in the program being constructed. The ability 

to satisfy several interacting goals simultaneously proves to be 

important in many contexts. The modification of an already exist- 

ing program to solve a somewhat different problem has been found 

to be a powerful approach. 

We illustrate these concepts with hand simulations of the syn- 

thesis of a number of pattern-matching programs. Some of these 

techniques have already been implemented, others are in the 

course of implementation, while others seem equivalent to well- 

known unsolved problems in artificial intelligence. 
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I. INTRODUCTION 

In this paper we describe some of the knowledge and the reason- 

ing ability that a computer system must have in order to construct 

computer programs automatically. It is our hypothesis that such 

a system needs to embody a relatively small class of reasoning 

and programming tactics combined with a great deal of knowledge 

about the world. These tactics and this knowledge are expressed 

both procedurally (i.e., explicitly in the description of a problem 

solving process) and structurally (i.e., implicitly in the choice 

of representation). We consider the ability to reason as central 

to the program synthesis process, and most of this paper is con- 

cerned with the incorporation of common-sense reasoning techni- 

ques into a program synthesis system. However, symbolic reason- 

ing alone will not suffice to produce the synthesis of complex 

programs; we therefore consider other techniques as well: 

OThe construction of "almost correct" programs that must be 

debugged (cf. Sussman [1973]). 

eThe modification of an existing program to perform a somewhat 

different task (ef. Balzer [1972]). 

eThe use of "visual" representations to reduce the need for 

deduction (cf. Bundy [1973]). 

We regard program synthesis as a part of artificial intelligence. 

Many of the abilities we require of a program synthesizer, such 

as the ability to represent knowledge or to draw comI~on-sense 

conclusions from facts, we would also expect from a natural lan- 

guage understanding system or a robot problem solver. These ge- 

neral problems have been under study by researchers for many 

years, and we do not expect that they will all be solved in the 

near future. However, we still prefer to address those problems 

rather than restrict ourselves to a more limited program synthe- 

sis system without those abilities. 

Thus, although implementation of some of the techniques in this 

paper has already been completed, others require further develop- 

ment before a complete implementation will be possible. We ima- 

gine the knowledge and reasoning tactics of the system to be 

expressed in a PLANNER-type language (Hewitt [1972]); our own 
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implementation is in the QLISP language (Reboh and Sacerdoti 

[1973])~ Further details on the implementation are discussed 

in Section V-A. 

Part II of the paper gives the basic techniques of reasoning for 

program synthesis. They include the formation of conditional 

tests and loops, the satisfaction of several simultaneous goals~ 

and the handling of instructions with side effects. Part III 

applies the techniques of Part II to synthesize a nontrivial 

"pattern-matcher" that determines if a given expression is an 

instance of a given pattern. We show how different choices made 

during the synthesis process result in different final programs. 

Part IV demonstrates the modification of programs. We take the 

pattern matcher we have constructed in Part Ill and adapt it to 

construct a more complex program: a "unification algorithm" 

that determines if two patterns have a common instance. In Part 

V we give some of the historical background of automatic prog- 

ram synthesis~ and we compare this work with other recent efforts. 

II. FUNDAMENTAL REASONING 

In this section we will describe some of the reasoning and prog- 

ramming tactics that are basic to the operation of our proposed 

synthesizer. These tactics are not specific to one particular 

domain; they apply to any programming problem. In this class of 

tactics~ we include the formation of program branches and loops 

and the handling of statements with side effects~ 

A. Specification and Tactics Language 

We must first say something about how programming problems are 

to be specified. In this discussion we consider only correct 

and exact specifications in an artificial language. Thus, we 

will not discuss input-output examples (cf. Green et al. [1974], 

Hardy [1974])~ traees (cf. Biermann et al. [1973]), or natural 

language descriptions as methods for specifying programs; nor 

will we consider interactive specification of programs (of. Balzer 

[1972]). Neither are we limiting ourselves to the first-order 

predicate calculus (cf. Kowalski [1974]). Instead, we try to in- 

troduce specification constructs that allow the natural and 
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intuitive description of programming problems. We therefore 

include constructs such as 

Find x such that P(x) 

and the ellipsis notation, e.g., 

A[I]~ A[2] ..... A[n]. 

Furthe!~ore, we introduce new constructs that are specific to 

certain subject domains. For instance, in the domain of sets 

we use 

{x[ FOx)} 

for "the set of all x such that P(x)". As we introduce an example 

we will describe features of the language that apply to that ex- 

ample. Since the specification language is extendible, we can 

introduce new constructs at any time. 

We use a separate language to express the system's knowledge and 

reasoning tactics. In the paper, these will be expressed in the 

form of rdles written in English. In our implementation, the 

same rules are represented as programs in the QLISP programming 

language. When a problem or goal is presented to the system, 

the appropriate rules are summoned by "pattern-directed function 

invocation" (Hewitt [1972]). In other words, the form of the 

goal determines which rules are applied. 

In the following two sections we will use a single example, the 

synthesis of the set-theoretic union program, to illustrate the 

formation both of conditionals and of loops. The problem here 

is to compute the union of two finite sets, where sets are rep- 

resented as lists with no repeated elements. 

Given two sets, s and t, we want to express 

union(s t) = {x[xCs or xEt} 

in a LISP-like language. We expect the output of the synthesized 

program to be a set itself. Thus 

union((A B) (B C)) = (A B C). 

We do not regard the expression {x[xffs or xCt} itself as a proper 

program: the operator { I...} is a construct in our specifica- 

tion language but not in our LISP-like programming language. We 

assume that the programming language does have the following func- 

tions: 
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head(~) = the first element of the list ~. 

Thus head(CA B C D)) = A. 

tail(~) = the list of all but the first element of the list ~. 

Thus tail((A B C D)) = (B C D). *) 

add(x s) = the set consisting of the element x and the ele- 

ments of the set s. 

Thus add(A (B C D)) = (A B C D) 

whereas add(B (B C D)) = (B C D). 

empty(s) is true if s is the empty list 

false otherwise. 

Our task is to transform our specifications into an equivalent 

algorithm in this programming language. 

We assume the system has some basic knowledge about sets, such 

as the following rules: 

(!) x E s is false if empty(s) 

(2) x ~ s is equivalent to (x = head(s) or x a tail(s)) 

if ~ empty(s). 

(3) (xix a s) is equal to s 

(41 (xlx=a or Q(x)) is equal to add(a (xIQ(x))) 

We also assume that the system knows a considerable amount of 

propositional logic, which we will not mention explicitly. 

Before proceeding with our example we must discuss the formation 

of conditional expressions. 

B. Formation of Conditional Expressions 

In addition to the above constructs, we assume that our program- 

ming language contains conditional expressions of the form 

(if p then q else r) = r if p is false 

q otherwise. 

The conditional expression is a technique for dealing with uncer- 

tainty. In constructing a program~ we want to know if condition 

p is true or not, but in fact p may be true on some occasions 

~Since sets are represented as lists, head and tail may be applied 

to sets as well as lists. Their value then depends on our ac- 

tual choice of representation. 
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and false on others, depending on the value of the argument. 

The human programmer faced with this problem is likely to re- 

sort to "hypothetical reasoning": he will assume p is false 

and write a program r that solves his problem in that case; 

then he will assume p is true and write a program q that works 

in that case; he will then put the two programs together into 

a single program 

(if p then q else r). 

Conceptually he has solved his problem by splitting his world in- 

to two worlds: the ease in which p is true and the case in which 

p is false. In each of these worlds, uncertainty is reduced. 

Note that we must be careful that the condition p on which we 

are splitting the world is computable in our programming language; 

otherwise, the conditional expression we construct also will not 

be computable (of. Luokham and Buchanan [1974]). 

We can now proceed with the synthesis of the union function. Our 

specifications were 

union(s t) = {xlx ~ s or x ~ t}. 

We begin to transform these specifications into an equivalent pro- 

gram in our language, using our rules. We examine the subexpres- 

sion x e s. Two of the rules, (i) and (2), apply to this sub- 

expression. Rule (i) generates a subgoal, empty(s). We cannot 

prove s is empty - this depends on the input -- and therefore 

this is an occasion for a hypothetical world split. (We know 

that empty(s) is a computable condition becuase empty is a pri- 

mitive in our language.) In the case in which s is empty, the 

expression 

{xlx E s or x E t} 

therefore reduces to 

{x I false or x s t}, 

or, by propositional logic, 

{xlx ~ t}. 

Now rule (3) reduces this to t, which is one of the inputs to our 

program and therefore is itself an acceptable program segment in 

our language. 

In the other world--the case in which s is not empty--we cannot 

solve the problem without discussing the recursive loop formation 
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mechanism° However~ we know at this point that the program will 

have the form 

union(s t) = if empty(s) 

then t 

else .... 

where the else clause will be whatever program segment we const- 

ruct for the ease in which s is not empty. 

Before we continue with this example we will discuss the loop for- 

mation mechanism. 

C. Formation of Loops 

The term "loop" includes both iteration and recursion; however, 

in this paper we will only discuss reeursive loops (cf. Manna and 

Waldinger [1971]). Intuitively, we form a reeursive call when, 

in the course of working on our problem, we generate a subgoal 

that is identical in form to our top-level goal. For instance, 

suppose our top-level goal is to construct the program reverse(h), 

that reverses the elements of the list £ (e.g., reverse(A (B C) D)= 

(D (B C) A)). If in the course of constructing this program we 

generate the subgoal of reversing the elements of the list tail(£), 

we can use the program we are constructing to satisfy this sub- 

goal. In other words we can introduce a reeursive call revers__~e 

(tail(£)) to solve the subsidiary problem. We must always check 

that a recursive call cannot lead to an infinite recursion. No 

such infinite loop can occur here because the input tail(£) is 

"shorter" than the original input ~. 

Let us see how this technique applies to our union example. Con- 

tinuing where we left off in the discussion of conditionals, we 

attempt to expand the expression 

{xlx ~ s or x a t} 

in the case in which s is not empty. Applying rule (2) to the 

subexpression x s s~ we can expand our expression to 

{xlx = head(s) or x s tail(s) or x e t}. 

Using rule (4)~ this reduces to 

add(head(s) {xlx s tail(s) or x s t}). 

If we observe that 

{xlx s tail(s) or x s t} 
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is an instance of the top-level subgoal, we can reduce it to 

unionCtail<s) t). 

Again, this reeursive call leads to no infinite loops, since 

tail(s) is shorter than s. Our completed union program is now 

unionCs t) = if empty(s) 

then t 

else add(head(s) union(tail(s) t)). 

As presented in this section, the loop formation technique can 

only be applied if a subgoal is generated that is a special case 

of the top-level goal. We shall see in the next section how 

this restriction can be relaxed. 

D, Generalization of Specifications 

When proving a theorem by mathematical induction, it is often neces- 

sary to strengthen the theorem in order for the induction to "go 

through." Even though we have an apparently more difficult theorem 

to prove, the proof is facilitated because we have a stronger in- 

duction hypothesis. For example, in proving theorems about LISP 

programs, the theorem prover of Boyer and Moore [1973] often auto- 

matically generalizes the statement of the theorem in the course 

of a proof by induction. 

A similar phenomenon occurs in the synthesis of a recursive prog- 

ram. It is often necessary to strengthen the specifications of 

a program in order for that program to be useful in recursive 

calls. We believe that this ability to strengthen specifications 

is an essential part of the synthesis process, as many of our ex- 

amples will show. 

For example, suppose we want to construct a program to reverse a 

list. A good recursive reverse program is 

reverse(k) = rev(~ ()) 

where 

Here 

rev(~ m) = if empty(h) 

then m 

else rev(tail(~) head(~)-m). 
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() is the empty list 

xo~ is the !ist formed by inserting x before the first 

element of ~. (e.g., A°(B C D) = (A B C D)). 

Note that rev(~ m) reverses the list ~ and appends it onto the 

list m, e.g.~ 

rev((A B C) (D E)) : (C B A D E). 

This is a good way to compute reverse: it uses very primitive 

LISP functions and its recursion is such that it can be compiled 

without use of a stack. However, writing such a program entails 

writing the function rev, which is apparently more general and 

difficult to compute than reverse itself, since it must reverse 

its first argument as a subtask. The synthesis of this reverse 

function involves generalizing the original specifications of 

reverse into the specifications of rev. 

The reverse function requires that the top-level goal be genera- 

lized in order to match the lower level goal. Another way for 

the specifications to be generalized is as follows. Suppose in 

the course of the synthesis of a function f(x), we generate a 

subgoal of the form P(f(a)), where f(a) is a particular recursive 

call. Instead of proving P(f(a)), it may be easier to rewrite 

the specifications for f(x) so as to satisfy P(f(x)) for all x. 

This step may require that we actually modify portions of the 

program f that have already been synthesized in order to satisfy 

the new specification P. The recursive call to the modified prog- 

ram will then be sure to satisfy P(f(a)). This process will be 

illustrated in more detail during the synthesis of the pattern 

marcher in Part III. 

E. ~unctive Goals 

The problem of solving conjunctive goals is the problem of synthe- 

sizing a program that satisfies several constraints simultaneously. 

The general form for this problem is 

Find z such that P(z) and Q(z). 

The conjunctive goals problem is difficult because, even if we 

have methods for solving the goals 

Find z such that P(z) 

and 
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Find z such that Q(z) 

independently, the two solutions may not merge together nicely 

into a single solution. Moreover, there seems to be no way of 

solving the conjunctive goal problem in general~ a method that 

works on one such problem may be irrelevant to another. 

We will illustrate one instance of the conjunctive goals problem: 

the solution of two simultaneous linear equations. Although this 

problem is not itself a program synthesis problem, it could be 

rephrased as a synthesis problem. Moreover the difficulties in- 

volved and the technique to be applied extend also to many real 

synthesis problems, such as the pattern-matcher synthesis of 

Part llI. Suppose our problem is the following: 

Find <Zl, z2> such that 

2z I = z 2 + I and 

2z 2 = z I + 2. 

Suppose further that although we can solve single linear equations 

with ease, we have no built-in package for solving sets of equa- 

tions simultaneously. We may try first to find a solution to each 

equation separately. Solving the first equation, we might come up 

with 

<Zl, z2> = <i,I>, 

whereas solving the second equation might give 

<Zl~ z2> = <2,2>. 

There is no way of combining these two solutions. Furthermore, 

it doesn't help matters to reverse the order in which we approach 

the two subgoals. What is necessary is to make the solution of 

the first goal as general as possible, so that some special case 

of the solution might satisfy the second goal as well. For ins- 

tance, a "general" solution to the first equation might be 

<I + w, 1 + 2w> for any w. 

This solution is a generalization of our earlier solution <i,i>. 

The problem is how to find a special case of the general solution 

that also solves the second equation. In other words, we must 

find a w such that 

2(1 + 2w) = (i + w) + 2. 

This strategy leads us to a solution. 

Of course the method of generalization does not apply to all con- 

junctive goal problems. For instance, the synthesis of an inte- 
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get square-root program has specifications 

Find z such that 

z is an integer and 

2 
z ~ x and 

(z + 1) 2 > x, 

where x ~ 0. 

The natural approach of finding a general solution to one of the 

conjuncts and plugging it into the others is not practical in 

this case. 

F. Side Effects 

Up to now we have been considering programs in a LISP-like lan- 

guage. These programs return a value but have no side effects. 

In the next two sections we will consider the synthesis of more 

general programs which may modify the state of the world. Prog- 

rams that change the values of variables or alter the configura- 

tion of data structures are examples of this class. This sort 

of program is usually synthesized when a goal is proposed of the 

general form 

Achieve P. 

A program that satisfies this specification will have the effect 

of making P true. 

To discuss this general case we will continue to use the concept 

of '~wor!d ~' that we introduced in our discussion of hypothetical 

reasoning. The concept of world is virtually identical to the 

concept of state (McCarthy [1962]). Assertions may be true in 

one world and false in another. New worlds may be constructed 

by programs in three ways: world modification, splitting and 

joining, 

oWorld Modification -- The execution of an instruction with 

side effects causes the creation of a new world. None of the 

assertions in the old world may be assumed to be true in the 

new world. 

WORLDI i 

WORLD2 
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eWorld Splitting -- The execution of a conditional test P causes 

the creation of Two new worlds. 

WORLDI ~ 

• WORLD2 WORLD3 

Any assertion in WORLD i is also true in WORLD2 and WORLDS. 

Furthermore P is true in WORLD2 and ~ P is true in WORLDS. 

• World Joining -- When two paths of a program join together, 

the corresponsing worlds are joined too. 

I WORLD1 WORLD2 

WORLD3 

Here, in order for an assertion to be true in WORLD3 it must 

be true in both WORLDI and WORLD2. 

When an instruction with side effects has modified the world, we 

need to be able to test if an assertion is true in the new world 

after the instruction is executed. We do this by "passing" that 

assertion back to the old world before the instruction is execut- 

ed. When we "pass" an assertion back over an instruction, we ac- 

tually construct a new assertion that must be true in the old 

world in order that the original assertion will be true in the 

new world (cf. Floyd [1967] and Hoare [1989]). 

To illustrate the application of these constructs to the synthe- 

sis of a program with side effects, let us consider the program 

sort(x y) that sorts the values of two variables x and y. For 

simplicity we will use the statement interchange(x y) that ex- 

changes the value of x and y, instead of primitive assignment 

statements. Our specifications will be simply 

Achieve x { y. 

Strictly speaking, we should include in the specifications the 

additional requirement that the set of values of x and y after 

the sort should be the same as before the sort. However, we 

will not consider such complex goals until the next section, 

and we can achieve the same effect by requiring that the inter- 

change statement be the only instruction with side effects that 

appears in the program. 
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The first step in achieving a goal is to see if it is already true. 

(If a goal is a theorem, for instance, we do not need to construct 

a program to achieve it.) We cannot prove x~y, but we can use it as 

a basis for a hypothetical world split. Our program thus far is 

WORLDI i 

WORLD2 ~ ~  WORLD3 

In WORLD2 our goal is already achieved; we may restrict our atten- 

tion to WORLD3. In WORLD3 we know that ~ (x~y), i.e., x>y. To 

achieve xcy~ it suffices to establish x<y, but this may be achiev- 

ed by executing interchange(x y), creating WORLD4. 

~ WORLDI 
it ~ F 
l 

WORLD2 6 WORLD3 

E 1 
~ WORLD4 

We have achieved x~y in both WORLD2 and WORLD4. If we join them 

together, we will have succeeded in modifying WORLDI to make x~y 

true. The final program is therefore: 

1 

WORLD2 I WORLD3 

1 
- } WORLD4 

f WORLD5 
Often a goal to be achieved will involve the simultaneous satis- 

faction of more than one condition. As in the case of the con- 

junctive goals in the programs without side effects, the special 
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interest of this problem lies in the interaction between the sub- 

goals. The satisfaction of simultaneous goals will be the sub- 

ject of the next section. 

G. Simultaneous Goals 

The problem of simultaneous goals is the problem of approaching 

a goal of form 

Achieve P and Q. 

Sometimes P and Q will be independent conditions, so that we can 

achieve P and Q simply by achieving P and then achieving Q. For 

example, if our goal is 

Achieve x : 2 and y = 3, 

the two goals x=2 and y=3 are completely independent. In this 

section, however, we will be concerned with the more complex 

case in which P and Q interact. In such a case we may make P 

false in the course of achieving Q. 

Consider for example the problem of sorting three variables x, y, 

and z. We will assume that the only instruction we can use is 

the subroutine sort(u v), described in the previous section, which 

sorts two variables. Our goal is then 

Achieve x ~ y and y ( z. 

We know that the program sort(u v) will achieve a goal of form 

u~v. If we apply the straightforward technique of achieving the 

conjunct x{y first, and then the conjunct y(z, we obtain the pro- 

gram 

sort(x y) 

sort(y z). 

However, this program has a bug in that sorting y and z may dis- 

rupt the relation xCy: if z is initially the smallest of the three, 

we make y less than x in interchanging y and z. Reversing the 

order in which the eonjunets are achieved is useless in this case. 

There are a number of ways in which this problem may be resolved. 

One of them involves the notion of debugging (ef. Sussman [1973]). 

The approach is to debug the program 

sort(x y) 

sort(y z) 

so that in executing sort(y z) we do not disturb the relation 
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x~y. To illustrate the process more clearly, we will expand the 

definition of sort in terms of interchange and present the entire 

program in flowchart notation, 

WORLD2 

WORLDI 

WORLD3 

! l interchange (x y)I 
J 

WORLD4 

L 
~t"~'WORLD5 

~ ~ W O R L D 7  

WORLD6 linterehange(y zi I 

~ l  WORLD8 
L .... -~,IWORLD 9 

We want to modify this program so that x~y in WORLD9. We now 

choose not to achieve xcy directly in WORLDg, for fear of dis- 

turbing the protected relation y~z. Instead we decide to pass 

the predicate x~y back to some earlier point in the program where 

there are no protected relations. We can then safely attempt to 

achieve the modified predicate at that point. 

There are two ways of passing the predicate x~y back to WORLD5 -- 

through WORLD6 or through WORLD8 and WORLD7. In the first 

ease the predicate is unmodified. Since we know x~y is true in 

WORLD5, we do not have to worry about this case. In the second 

case~ passing x~y over statement ~nterchanse(y z) gives the mo- 

dified predicate x~z in WORLD7. Therefore we must achieve 

x ~ z if y > z in WORLD5° 

We may attempt to achieve this relation directly, by inserting 

the instruction sort(x z) in the middle of the program, yielding 
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the program 

sort(x y) 

sort(x z) 

sort(y z). 

However, this action, though ultimately correct, risks disturb- 

ing the relation x(y protected in WORLD5. A more prudent course 

is to pass the predicate back still further to WORLDI, where no 

relation is protected at all. Passing the relation back to WORLDI 

gives the two predicates 

x ( z if y > z and x ~ y in WORLDI 

and 

y ( z if x > z and x > y in WORLDI. 

We must achieve both of these relations. If we achieve the first 

relation first, we insert the instruction sort(x z) at the begin- 

ning of the program, then beeuase x(z, the second relation is tri- 

vially satisfied. The program obtained is the 

sort(x z) 

sort(x y) 

sort(y z). 

If, on the other hand we try to achieve the second relation first, 

by inserting the instruction sort(y z) at the beginning of the 

program, the first relation will also be satisfied automatically, 

and the program will then be 

sort(y z) 

sort(x y) 

sort(y z). 

The simultaneous goal problem is essential to all program synthe- 

sis: what we have said in this section only begins to explore 

the subject. 

This concludes the presentation of our basic program synthesis 

techniques. In the next part we will show how the same techni- 

ques work together in the synthesis of some more complex examples. 

III. PROGRAM SYNTHESIS: THE PATTERN-MATCHER 

We will present the synthesis of a simple pattern-matcher to show 

how the concepts discussed in the pre%ious section can be applied to a 

non-trivial problem. Later, in Part IV, we shall show how we can con- 
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struct an even more complex program~ the unification algorithm 

of Robinson [1965], by modifying the program we are about to syn- 

thesize. We must first describe the data structures and primi- 

tive operations involved in the pattern-matching and unification 

problems. 

A. Domain and Notations 

The main objects in our domain are 9xpressi0n~ and substitutions. 

i. Expressions 

Expressions are atoms or nested lists of atoms{ cog., (A B (X C) D) 

is an expression. An atom may be either a variable or a constant. 

(In our examples we will use A,B,C,... for constants and U,V,W,... 

for variables.) We have basic predicates atom, var and eonst to 

distinguish these objects: 

atom(R) ~ ~ is an atom, 

var(~) ~ Z is a variable, 

and 
const(Z) ~ ~ is a constant. 

To decompose an expression, we will use the primitive functions 

head(~) and tail(Z)~ defined when ~ is not an atom. 

head(~) is the first element of Z~ 

tail(~) is the list of all but the first element of Z. 

Thus 

head(((A (X) B) C (D X))) : (A (X) B), 

tail(((A (X) B) C (D X))) : (C (D X)). 

We will abbreviate head(~) as £i and tail(~) as ~2" 

To construct expressions we have the concatenation function: if 

is any expression and m is a nonatomic expression, ~.m is the 

expression with £ inserted before the first element of m. For 

example 

(A (X) B) (C (D X)) = ((A (X) B) C (D X)). 

The predicate occursin(x ~) is true if x is an atom that occurs 

in expression ~ at any level, e.g., 

oceursin(A (C (B (A) B) C)) is true 

but 

occursin(x Y) is false. 

Finally, we will introduce the predicate constexp(~), which is 

true if ~ is made up entirely of constants. Thus 
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constexp((A (B) C (D E))) is true 

but 

constexp(X) is false. 

Note that constexp differs from const in that constexp may be 

true on nonatomic expressions. 

2. Substitutions 

A substitution replaces certain variables of an expression by 

other expressions. We will represent a substitution as a list 

of pairs. Thus 

(<X (A B)> <Y (C Y)>) 

is a substitution. 

The instantiation function inst(s £) applies the substitution s 

to an expression £. For example, if s is the substitution above 

and £ is 

(X (A Y) X) 

then inst(s ~) is 

((A B) (A (C Y)) (A B)) .  

Note that the substitution is applied by first replacing all oc- 

currences of X simultaneously by (A B) and then all occurrences 

of Y simultaneously by (C Y). Thus, if the substitution s were 

(<X Y > <Y C>), 

then inst(s ~) would be 

(C (A C) C). 

The empty substitution A is represented by the empty list of pairs. 

Thus, for any expression ~, 

inst(A ~) = ~. 

We regard two substitutions s I and s 2 as equal (written Sl=S 2) if 

and only if 

inst(s I ~) = inst(s 2 ~) 

for every expression ~. Thus 

(<X Y> <Y C>) 

and 

(<X C> <Y C>) 

are regarded as the same substitution. 

We can build up substitutions using the functions pair and o (com- 

position): If v is a variable and t an expression, pair(v t) is 
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the substitution that replaces v by t; i.e.~ 

a~i~(v t) : (<v t>). 

If s I and s 2 are two substitutions~ Sl°S 2 is the substitution 

with the same effect as applying s I followed by s 2. Thus 

inst(sl°s 2 ~) : inst(s 2 inst(s I ~)). 

For examp!e~ if 

s I = (<X A> <Y B>) 
and 

s = (<Z C> <X D>) 
2 

then 

Sl°S 2 = (<X A> <Y B> <Z C>). 

Note that for the empty substitution A 

A°s : s°A : s 

for any substitution s. 

B. The specifications 

The problem of pattern-matching may be described as follows. We 

are given two expressions, p a t and ar___gg. Pat can be any expression, 

but ar~ is assumed to contain no variables; i.e., constexp(a_r~) 

is true. We want to find a substitution z that transforms pat in- 

to arg, such that 

inst(z pat) = arg. 

We will call such a substitution a match. If no match exists, we 

want the program to return the distinguished constant NOMATCH. 

For examp!e~ if 

is (X A (Y B)) 

and 

is (C A (D B)), 

we want the program to find the match 

(<X C> <Y D>). 

On the other hand, if 

pat is (X A (X B)) 

and 

arg is (B A (D B)), 

then no substitution will transform pa t into arg, so the program 

will yield NOMATCH. 

This version of the pattern~matcher is simpler than the pattern- 

matching algorithms usually implemented in programming languages 

because of the absence of "sequence" or "fragment" variables. 

Our variables must match exactly one expression, whereas a frag- 

ment variable may match any number of expressions. Because of 
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the absence of fragment variables, a match, if it exists, will 

be unique. Thus if 

pat is (X Y Z) and 

at@ is ((A B) C (A B)), 

X and Z must be bound to (A B), and Y must be bound to C. If 

pat is (X Y) and 

arg is (A B C), 

no match is possible at all. (If X and Y were fragment variables, 

four matches would be possible.) 

In mathematical notation the specifications for our pattern-matcher 

are: 

Goal i: I match(p0t a~g) : 

r 
Find z such that inst(z pat) = arg 

............ else z = NOMATCH ...... 

where "Find z such that P(z) else Q(z)" means find a z such that 

P(z) if one exists; otherwise, find a z such that Q(z). 

The above specifications do not completely capture our intentions; 

for instance, if 

pat is (X Y), and 

arg is (A B), 

then the substitution 

z = (<X A> <Y B> <Z C>) 

will satisfy our specifications as well as 

z = (<X A> <Y B>). 

We have neglected to include in our specifications that no sub- 

stitutions should be made for variables that do not occur in pat. 

We will call a match that satisfies this additional condition a 

most seneral match. 

An interesting characteristic of the synthesis we present is that 

even if the user forgets to require that the match found be most 

general~ the system will be able to strengthen the specifications 

automatically to imply this condition, using the method outlined 

in Section II-D. Therefore we will begin the synthesis using the 

weaker specifications. 

C. The Synthesis: The Base Cases 

Rather than listing all the knowledge we require in a special see- 
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tion at the beginning~ we will mention a rule only when it is 

about to be used. Furthermore~ if a rule seems excessively tri~ 

vial we will omit it entirely. The general strategy is to first 

work on 

Goal 2: Find z such that inst(z pat) = arg. 

If this is found to be impossible (i.e., if it is proven that no 

such z exists)~ we will work on 

Goal 3: Find a z such that z = NOMATCH; 

which is seen to be trivially satisfied by taking z to be NOMATCH. 

Thus~ from now on we will be working primarily on Goal 2. How- 

ever, in working on any goal we devote a portion of our time to 

showing that the goal is impossible to achieve. When we find 

cases in which Goal 2 is proven impossible~ we will automatically 

return NOMATCH~ which satisfies Goal 3. 

We have in our knowledge base a number of rules concerning inst, 

including 

Rule i: inst(s x) = x for any substitution s 

if constexp(x) 

Rule 2: inst(pair(v t) v) = t 

if var(v) 

We assume that these rules are retrieved by pattern-directed func- 

tion invocation on Goal 2. Rule i applies only in the case that 

cons texp(pat) and pat = arg. We cannot prove either of these con- 

ditions; their truth or falsehood depends on the particular inputs 

to the program~ We use these predicates as conditions for a hypo- 

thetical world-split. In the case that both of these conditions 

are true~ Rule i tells us that any substitution is a satisfactory 

match. We will have occasion to tighten the specifications of 

our program later; as they stand now~ we will simply return z÷any. 

The portion of the program we have constructed so far reads 

match(pat arg) = 

if constexp(pat) 

then if pair = ar_~g 

then z + any 

else.o. 

On the other hand~ in the case constex~(pat) and pat ~ arig, Rule I 
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tells us that 

inst(z pat) ~ arg 

for any z. Hence we are led to try to satisfy Goal 3 and take 

z÷NOMATCH. 

We now consider the case 

~ constexp(pat). 

Ruel 2 establishes the subgoal 

var(pat). 

This is another occasion for a hypothetical world-split. When 

var(pat) is true, the program must return ~air(pat arg); the pro- 

gram we have constructed so far is 

match(pa t arg) = 

if eonstex~(pat) 

then if pat = arg 

then z ÷ any 

else z ÷ NOMATCH 

else if vat(pat) 

then z ÷ pair(pat arg) 

else .... 

Heneefore we assume - var(pat). Recall that we have been assuming 

also that ~ 9onstexp(pat). To proceed we make use of the follow- 

ing additional knowledge about the function inst: 

Rule 3: inst(s x.y) = inst(s x). inst(s y) for any substitution s. 

This rule applies to our Goal 2 if pat:x.y for some expressions x 

and y. We have some additional knowledge about expressions in ge- 

neral: 

Rule 4: u = u I u 2 

if ~ atom(u) 

Recall that u I is an abbreviation for head(u) and u 2 is an abbrevia- 

tion for tail(u). 

Rule 5: u ¢ v.w for any u, v, and w 

if atom(u) 

Using Rule 4, we generate a subgoal 

- atom(pat). 

Since we have already assumed ~ constexp(pat) and ~ vat(pat), we 

can actually prove ~ atom(pat) using knowledge in the system. 

Therefore pat=patl.pat 2 and using Rule 3 our Goal 2 is then 
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reduced to 

Goal ~: Find z such that inst(z patl)~inst(z pat2 ) = ar_~. 

We now make use of some general list-processing knowledge. 

Rule 6: To prove x • y = u . v, prove x = u and y = v. 

Applying this rule~ we generate a subgoal to show that 

arg = U • V 

for some u and v. Applying Rule 4, we know this is true with 

u = a__~l and v : arg 2 if 

~ atom(arg). 

This is another occasion for a hypothetical world-split. 

Thus, by Rule 6~ in the case that ~ atom(arg), our subgoal re- 

Find z such that 

inst(z pat I) = arg I 
and 

inst(z pat 2) : arg 2. 

We will portpone treatment of ~his goal until after we have con- 

sidered the other case, in which 

atom(ar___~g) 

holds. In this case Rule 5 tells us that 

inst(z pat I) - inst(z pat 2) ~ arg 

for any z. Hence, our goal is unachievable in this case, and we 

can take 

z + NOMATCH. 

The program so far is 

match(pat ar~) : 

if constexp(~at) 

then if pat = arg 

then z + any 

else z + NOMATCH 

else if var(pat) 

then z ÷ pair(pat arg) 

else if atom(arg) 

then z ÷ NOMATCH 

else . . . 

For the as yet untreated case neither pat nor ar~ is atomic. Hence- 

forth using Rule 4 we assume that pat is patl.pat 2 and arg is 

argl" arg 2 • 

duces to 

Goal 5 : 
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D. The Synthesis: The Inductive Case 

We will describe the remainder of the synthesis in less detail, 

because the reader has already seen the style of reasoning we 

have been using. Recall that we had postponed our discussion of 

Goal 5 in order to consider the ease in which arg is atomic. 

Now that we have completed our development of that case, we re- 

sume our work on Goal 5: 

Find z such that 

inst(z pat I) = argl , and 

inst(z pat 2) = ~Fg2" 

This is a conjunctive goal, and is treated analogously to the goal 

in the simultaneous linear equations example: each conjunct is 

treated separately. The system will attempt to use a recursive 

call to the pattern-matcher itself in solving each conjunct. 

The interaction between the two conjunets is part of the challenge 

of this synthesis. It is quite possible to satisfy each conjunct 

separately without being able to satisfy them both together. For 

example, if pat=(X X) and ~rg=(A B) then patl=X , pat2=(X) , argl=A 

and ar~2=(B). Thus z=(<X A>) satisfies the first conjunct, 

z=(<X B>) satisfies the second conjunct, but no substitution will 

satisfy both conjuncts because it cannot match X against both A 

and B. Some mechanism is needed to ensure that the expression 

assigned to a variable in solving the first conjunct is the same 

as the expression assigned to that variable in solving the second 

conjunct. 

There are several ways to approach this difficulty. For instance~ the 

programmer may satisfy the two conjuncts separately and then attempt 

to combine the two substitutions thereby derived into a single sub- 

stitution. Or he may actually replace those variables in pat 2 

that also occur in a~9~l by whatever expressions they have been 

matched against~ before attempting to match pat 2 against arg 2. 

Or he may simply pass the substitution that satisfied the first 

conjunct as a third argument to the pattern-marcher in working on the 

second conjunct. The pattern-marcher must then check that the matches 

assigned to variables are consistent with the substitution given as 

the third argument. 
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We will examine in this section how a system would discover the 

second of these methods and consider in a later section how the 

third method could be discovered. We will not consider the first 

method here because it is not easily adapted to the unification 

problem. 

Our strategy for approaching the conjunctive goal is as follows. 

We will consider the first conjunct independently: 

Goal 6: Find z such that inst(z patl ) = argl. 

If we find a z that satisfies this goal~ we will substitute that 

z into the second conjunct, giving 

Goal 7: Prove inst(z ~at2) = ar___~g 2. 

If we are successful in Goal 7~ we are done~ however, if we fail, 

we will try to generalize z. In other words, we will try to 

find a broader class of substitutions that satisfy Goal 6 and 

from these select one that also satisfies Goal 7. This is the 

method we introduced to solve conjunctive goals in Section II-E. 

Applying this strategy, we begin work on Goal 6. We first use a 

rule that relates the construct 

Find z such that P(z) 

to the construct 

Find z such that P(z) else Q(z). 

Rule 7: To find z such that P(z), 

find z I such that P(z I) 

else Q(z I) for some predicate Q, 

and prove ~ Q(Zl). 

This rule~ applied to Goal 6 causes the generation of the subgoal 

Goal 8: Find z I such that inst(z I pat I) = arg I 

else q(Zl)~ 

and prove ~ Q(Zl). 

This subgoal matches the top-level Goal i, where Q(z I) is Zl= 

NOMATCH. This suggests establishing a recursion at this point, 

taking 

z I = match(patl argl). 

Termination is easily shown, because both pat I and arg I are pro- 

per subexpressions of pat and @rg, respeetively, It remains to 

show, according to Rule 7, that zi~NOMATCH. This causes another 
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hypothetical world-split: in the case Zl=match(patl ar~l)= 

NOMATCH (i.e., no substitution will cause p atl and arg I to match), 

we can show that no substitution can cause pat and arg to match 

either, and hence can take z=NOMATCH. On the other hand, if 

match(~atl argl)~NOMATCH, we try to show Goal 7, i.e., 

inst(z I pat 2) = arg 2. 

However, we fail in this attempt; in fact we can find sample in- 

puts pa t and arg that provide a counter-example to Goal 7 (e.g., 

pat=(A X), arg=(A B), Zl=A). Thus we go back and try to genera- 

lize our solution to Goal 6. 

We already have a solution to Goal 6: we know inst(z I patl)=arg I. 

We also can deduce that constexp(argl) , because we have assumed 

constexp(arg). Hence Rule i tells us that 

inst(w arg I) = arg I 

for any substitution w. Hence 

inst(w inst(z I p atl)) = argl, 

i.e., 

inst(zl°w pat I) = arg I 

for any substitution w. Thus having one substitution z I that sa- 

tisfies Goal 6, we have an entire class of substitutions, of form 

Zl°W ~ that also satisfy Goal 6. These substitutions may be con- 

sidered to be "extensions" of Zl; although z I itself may not sati- 

sfy Goal "7, perhaps some extension of z I will. 

The above reasoning is straightforward enough to justify, but 

further work is needed to motivate a machine to pursue it. 

It remains now to find a single w so that Zl°W satisfies Goal 7, i.e., 

Goal 9: Find w such that inst(zl°w pat.2)=ar__zg2 , 

or equivalently, 

Find w such that inst(w inst(z I P at2))=arg 2. 

applying Rule 7, we establish a new goal 

Goal i0: Find w such that inst(w inst(z I pat2))=arg 2 

else Q(w), 

and prove ~ Q(w) 

This goal is an instance of our top-level goal, taking pat to be 

inst(z I pat2), a rg to be a rg2' and Q(w) to be w=NOMATCH. Thus we 

attempt to insert the recursive call 
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z 2 * match($n&tCz I pat2) arg2 ) 

into our program at this point and take w to be z 2. However, we 

must first establish 

Q(z2) , 

match(inst(z I pat2) arg 2) ~ NOMATCH. 

We cannot prove this. We have eounter-examples, e.g., if 

pat = (A A)~ ~ = (A B) and z I = A, 

then 

match(inst(A A) B) = NOkIATCH. 

Therefore we split on this condition. 

'In the case 

mateh(inst(z I pat2) arg2 ) ~ NOMATCH 

Goal i0 is satisfied. Thus w=z 2 also satisfies Goal 9, and 

Z=Zl°Z 2 satisfies Goal 7. 

Our program so far is 

mateh(p_~ ar_~) = 

if eonstex~(pat) 

then if ~ = arg 

then z ÷ any 

else z ÷ NOMATCH 

else if var(pat) 

then z ÷ pair(pat ar$) 

else if atom(a<[) 

then z + NOMATCH 

else z I ÷ match(pat I argl ) 

if z I = NOMATCH 

then z + N0~IATCH 

else z 2 ÷ match(inst(z I p_a~2 ) arg2) 

if z 2 = NOMATCH 

then ... 

else z ÷ Zl°Z 2 

E. The Synthesis: The S<ren~thening of the Specifications 

We have gone this far through the synthesis using the weak speci- 

fications~ i.e., without requiring that the match found be most 

general. In fact~ the match found may or may not be most general 
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depending on the value taken for the unspecified substituion "any" 

produced in the very first case. The synthesis is nearly complete. 

However, we will be unable to complete it without strengthening 

the specifications and modifying the program accordingly. We now 

have only one case left to consider. This is the case in which 

z 2 = NO~TCH 

i.e., 

match(inst(z i pat 2) = NOMATCH. 

This means that no substitution w satisfies 

inst(w inst(z I pat2)) = arg2, 

or, equivalently 

inst(zl°w pat 2) # arg 2 for every substitution w. 

This means that no substitution of form Zl°W could possibly satisfy 

inst(zl°w pat) = a rg. 

We here have a choice: we can try to find a substitution s not of 

form Zl°W that satisfies 

inst(s pat I) = arg 1 

and repeat the process; or we could try to show that only a sub- 

stitution s of form Zl°W could possibly satisfy 

inst(s pat I) = argl, 

and therefore we can take z=NOMATCH. 

We have already extended the class of substitutions that satisfy 

the condition once; therefore we pursue the latter course. We 

try to show that the set of substitutions S=Zl°W is the entire 

set of solutions to 

inst(s pat l) = arg I. 

In other words, we show that for any substitution s, 

if inst(s pat I) = arg I then s = Zl°W for some w. 

This condition is equivalent to saying that z I is a most general 

match. We cannot prove this about z I itself; however, since z 1 

is match(pat I arg I) it suffices to add the condition to the speci- 

fications for match, as described in Section II-D. The strengthened 

specifications now read 

Find z such that 

{inst(z pat) = arg and 

for all s [if inst(s pat) = arg 

then s = z°w for some w]} 

else z = NOMATCH. 
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Once we have strengthened the specifications it is necessary to 

go through the entire program and see that the new, stronger spe~ 

cifications are satisfied, modifying the program if necessary. 

In this case no major modifications are necessary; however, the 

assignment 

z + any 

that occurs in the case in which pat and ar$ are equal and cons- 

tant is further specified to read 

z ÷ A. 

Our final program is therefore 

match(pat a_E~) : 

if 9onstexz(pat) 

then if pa t = arg 

then z + A 

else z ÷ NOMATCH 

else if var(pat) 

then z + pair(pat ar$ ,) 

else if atom(arg) 

then z ÷ NOMATCH 

else z I ÷ match(~atl argl ) 

if z I = NOMATCH 

then z ÷ NOHATCH 

else z 2 ÷ match(inst(z I pat 2) arg 2) 

if z 2 = NOMATCH 

then z ÷ NOMATCH 

else z ÷ zl°z 2. 
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F. Alternative Programs 

The above pattern-matcher is only one of may pattern-matchers 

that can be derived to satisfy the same specifications. In pur- 

suing the synthesis the system has made many choices; some of 

the alternative paths result in a failure to solve the problem 

altogether, whereas other paths result in different, possibly 

better programs. In this section we will indicate how a system 

might make a different decision in the above synthesis and, con- 

sequently, drive a different program. 

In the above synthesis we derived a goal (Goal 9): 

Find w such that inst(zl°w Pat2 ) = arg 2. 

We chose at that point to transform the goal to the equivalent 

Find w such that inst(w inst(z I Pat2)) = arg2, 

and then apply Rule 7, which added an else-clause to the goal, 

yielding Goal I0. We then matched Goal i0 against our top-level 

goal, introducing the second recursive call into our program. 

It would be equally plausible that the system should apply Rule 

7 directly to Goal 9, giving a new goal 

Goal I@': Find w such that inst(zl°w pat 2) = ar__~2 

else Q(w), 

and prove ~ Q(w). 

The system may now attempt to use a reeursive call to satisfy 

Goal I0' However, this goal is not a precise instance of our 

top-level goal~ we are demanding not only that a match be found 

between pat 2 and arg2, but also that the match be of form Zl°W , 

where z I is the output of the previous recursive call. We must 

therefore generalize our program to take three inputs: pat, ar___gg, 

and alist. We insist that the match found be an extension of 

alist. In the case that alist is A, the new program will be iden- 

tical to the old one. On the other hand, if alist=zl~ pat=pat2 

and arg:arg2, a recursive call to the new program suffices to 

satisfy Goal i0' 

In mathematical notation, the stronger specifications now read 

I Find z such that [inst(z pa t ) = arg and 

z = alist°w for some w] 

[ else z : NOMATCH. 
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We will call the generalized program 

match2(Ra ~ arg alist). 

The original program match will be written as a call to the more 

general auxiliary program: 

match(pat ar_~) = match2(pat ar e A). 

The portion of the program already constructed in the synthesis 

of match must be systematically modified to satisfy the strengthen- 

ed requirements of match2. 

First, in the case that constexp(pat) where p at=arg~ we originally 

took z÷any. However~ we must now take 

z ÷ alist°any, 

becuase the substitution found must be an extension of alist. 

In the case that vat(pat) we originally took z+pair( a~ ar_~g); 

however, here we must check to see whether ~ has already been 

matched against something other than ar__~. The new program seg- 

ment is 

if inst(alist ~at) = pat 

then z ÷ alis~°pair( ap~_ arg) 

else if inst(alist pat) = arg 

then z ÷ alist 

else z ÷ NOMATCH. 

Of course.we are omitting the details of synthesis; the actual 

derivation is somewhat more lengthy. 

The call z I ÷ match(pat I argl ) must be replaced by 

z I * mateh2(pat I arg I alist). 

Having modified the portion of the program already constructed~ 

the system continues the synthesis. A recursive call 

z 2 ÷ match2( a~_~2 arg 2 z I) 

satisfies Goal 9; the balance of the synthesis parallels the de- 

velopment of the first program, including the further strengthen- 

ing of the specifications to ensure that the match found is the 

most general possible. 

The value of the second recursive call is shown to satisfy the 

strengthened top-level goal. 

The program derived from this alternative synthesis is 
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where 

match(pat arg) = match2(pat arg A) 

mateh2(pat arg alist) = 

if constexp(pat) 

then if ~at = arg 

then z ÷ a!ist 

else z ÷ NO~TCH 

else if var(pat) 

then if inst(a!ist pat) = pat 

then z ÷ alist°pair(pat arg) 

else if inst(alist pat) = arg 

then z + alist 

else z ÷ NOMATCH 

else if atom(ar$) 

then z ÷ NOMATCH 

else z I + match2(pat I ~gl alist) 

if z I = NOMATCH 

then z ÷ NOMATCH 

else z + match2(pat2 arg 2 Zl). 

IV. PROGRAM MODIFICATION: THE UNIFICATION ALGORITHM 

In general, we cannot expect a system to synthesize an entire com- 

plex program from scratch, as in the pattern-matcher example. We 

would like the system to remember a large body of programs that 

have been synthesized before and the method by which they were 

constructed. When presented with a new problem, the system should 

cheek to see if it has solved a similar problem before. If so, it 

may be able to adapt the technique to the old program to make it 

solve the new problem. 

There are several difficulties involved in this approach. First, 

we cannot expect the system to remember every detail of every syn- 

thesis in its history. Therefore, it must decide what to remember 

and what to forget. Second, the system must decide which problems 

are similar to the one being considered, and the concept of simi- 

larity is somewhat ill-defined. Third, having found a similar 

program, the system must somehow modify the old synthesis to solve 

the new problem. We will concentrate only on the latter of these 
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problems in this discussion. We will illustrate a technique for 

program modification as applied to the synthesis of a version of 

RobinsonTs unification algorithm. 

A. The Specifications 

Unification may be considered to be a generalization of pattern 

matching in which variables appear in both Pat and arg. The prob- 

lem is to find a single substitution (called a "unifier") that, 

when applied to both pat and arg , will yield identical expressions. 

for instance, if 

pat = (X A) 

and 

arg : (B Y)~ 

then a possible unifier of pat and arg is 

(<X B><Y A>). 

The close analogy between pattern-matehing and unification is 

clear. If we assume that the system remembers the pattern- 

marcher we constructed in Sections III-2 through III-5 and the 

goal structure involved in the synthesis, the solution to the 

unification problem is greatly facilitated. 

The specifications for The unification algorithm, in mathemati- 

cal notation, are 

unify(p_a~ arg) I 
Find z such that inst(z pat) = inst(z arg) 

else z : NOPLATCH 

B° The Analogy with the Pattern-Matcher 

For purposes of comparison we rewrite the match specifications: 

match(pat arg) = 

Find z such that inst(z pat) = arg 

else z = NOMATCH. 

In formulating the analgy, we identify unify with match, pat with 

pat, the ar___gg in unify (~at arg) with arg, and inst(z arg) also 

with arg~ In accordance with this analogy, we must systematically 

alter the goal structure of the pattern-matcher synthesis. For 

example, Goal 5 becomes modified to read 
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Find z such that 

inst(z pat I) = inst(z argl ) and 

inst(z pat 2) : inst(z aFg2 ). 

In constructing the pattern-matcher, we had to break down the 

synthesis into various oases. We will try to maintain this case 

structure in formulating our new program. Much of the savings 

derived from modifying the pattern-matcher instead of construct- 

ing the unification algorithm from scratch arises because we do 

not have to deduce the ease splitting all over again. 

A difficult step in the pattern-mateher synthesis involved the 

strengthening of the specifications for the entire program. We 

added the condition that the match found was to be "most general." 

In formulating the unification synthesis, we will immediately 

strengthen the specifications in the analogous way. The streng- 

thened s)ecifications read 

unify(pat argi = ......... 

Find z such that 

{inst(z pat) = inst(z erg) and 

for all s [if inst(s pat) : inst(s arg) 

then s = z°w for some w]} 

else z = NOMATCH. 

Following Robinson [1965], we will refer to a unifier satisfying 

the new condition as a "most general unifier." 

Note that this alteration process is purely syntactic; there is 

no reason to assume that the altered goal structure corresponds 

to a valid line of reasoning. For instance, simply because a- 

chieving Goal 2 in the pattern-matching program is useful in 

achieving Goal i does not necessarily imply that achieving Goal 

2' in the unification algorithm will have any bearing on Goal I' 

The extent to which the reasoning carries over depends on the 

soundness of the analogy. If a portion of the goal structure 

proves to be valid, the corresponding segment of the program ean 

still remain; otherwise, we must construct a new program segment. 

C. The Modification 

Let us examime the first two cases of the unification synthesis 

in full detail, so that we can see exactly how the modification 
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process works. In the pattern-macher, we generated the subgoal 

(Goal 2) 

Find z such that inst(z pat) = arg. 

The corresponding unification subgoal is 

Find z such that inst(z pat) = inst(z arg). 

In the pattern-matcher we first considered the case constexp(pat) 

where pat=arg. In this case the corresponding program segment is 

z ÷ A. 

This segment also satisfies the modified goal in this case, because 

ins t(A a~9 ~) : inst(A arg). 

The system must also check that i is a most general unifier, i.e., 

for any s [if inst(s pat) : inst(s ar__~g) 

then s = A°w for some w]. 

This condition is easily satisfied, taking w=s. Thus, in this 

case, the program segment is correct without any modification. 

The next case does require some modification. In the pattern- 

marcher, when constexp(p! ~) is true and p!tCarg, z is taken to 

be NOMATCHo However, in this case in the unification algorithm 

we must check that 

inst(s pat) ~ inst(s arg), 

i.eo~ 

nat ~ inst(s ar$) 

for any s, in order to take z=NOMATCH. Since for unification arg 

may contain variables, this condition cannot be satisfied. We 

must therefore try to achieve the specifications in some other 

way. In this case (where constexp(pat)), the specifications of 

the unification algorithm reduce to 

Find z such that 

{pat = inst(z arg) and 

for any s [if pat = inst(s arg) 

then s = z°w for some w]} 

else z = NOMATCH. 

These specifications are precisely the specifications of the 

pattern-marcher with ~ and arg reversed; consequently, we can 

invoke match(arg ap_a~) at this point in the program. 

The balance of the modification can be carried out in the same 

manner. The derived unification algorithm is 
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unify(pat arg) = 

if ~constexp(pat) 

then if pat = arg 

then z ÷ A 

else z ÷ match(arg pat) 

else if vat(pat) 

then if occursin(pat arg) 

then z + NO[%ATCH 

else z + pair(pat arg) 

else if atom(arg) 

then z ÷ unify(arg pat) 

else z I ÷ unify(patl ar~l) 

if z I = NOMATCH 

then z ÷ NOMATCH 

else z 2 ÷ unify(inst(z I a~2) inst(z I arg2)) 

if z 2 = NOMATCH 

then z + NOMATCH 

else z + Zl°Z 2. 

Recall that occursin(pat arg) means that pat occurs in ar& as a 

subexpression. 

The termination of this program is considerably more difficult 

to prove than was the termination of the pattern-matcher. How- 

ever, the construction of the unification algorithm from the 

pattern-matcher is much easier than the initial synthesis of the 

pattern-mateher itself. 

Note that the program we have constructed contains a redundant 

branch. The expression 

if pat = arg 

then z + A 

else z ÷ mateh(aF~ pat) 

could be reduced to 

z ÷ mateh(arg pat). 

Such improvements would not be made until a later optimization 

phase. 
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V. DISCUSSION 

A. l~l~entat~on 

Implementation of the techniques presehted in this paper is under- 

way. Some of them have already been implemented. Others will re- 

quire further development before an implementation will be possible. 

We imagine the rules, used to represent reasoning tactics, to be 

expressed as programs in a PLANNER-type language. Our own imple- 

mentation is in QLISP (Reboh and Sacerdoti [1973]). Rules are 

summoned by pattern-directed function invocation. 

Worlds have been implemented using the context mechanism of QLISP, 

which was introduced in QA4 (Rulifson etal. [1972]). The control- 

structure necessary for the hypothetical worlds, which involve an 

actual splitting of the control path as well as the assertional 

data base~ is expressed using the multiple environments (Bobrow 

and Wegbreit [1973]) of INTERLISP (Teitelman [1974]). The hypo- 

thetical world-splitting has been implemented, but we have yet to 

experiment with the various strategies for controlling it. 

The existing system is capable of producing simple programs such 

as the union function, the program to sort two variables from Part 

II, or the loop-free segments of the pattern-matcher from Part III. 

The generalization of specifications (Seotions II-4 and III-5) is 

a difficult technique to apply without its going astray. We will 

develop heuristics to regulate it in the course of the implementa- 

tion. Similarly, our approach to conjunctive goals (Section !I-5) 

needs further explication. 

\ 

B. H~storical Context and Contemporary Research 

Early'work in program synthesis (e.g. Simon [19631, Green [1969], 

Waldinger and Lee [1969]), was limited by the problem-solving capa- 

bilities of the respective formalisms involved (the General Prob- 

lem Solver in the case of Simon, resolution theorem proving in the 

case of the others). Our paper on loop formation (Hanna and Waldin- 

get [1971]) was set in a theorem-proging framework, and paid little 

attention to the implementation problems. 
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It is typical of contemporary program synthesis work not to at- 

tempt to restrict itself to a formalism; systems are more likely 

to write programs the way a human programmer would write them. 

For example, the recent work of Sussman [1973] is modelled after 

the debugging process. Rather than trying to produce a oorrect 

program at once, Sussmants system rashly goes ahead and writes in- 

correct programs which it then proceeds to debug. The work re- 

ported in Green et al. [1974] attempts to model a very experienced 

programmer. For example, if asked to produce a sort program, the 

system recalls a variety of sorting methods and asks the user 

which he would like best. 

The work reported here emphasizes reasonging more heavily than 

the papers of Sussman and Green. For instance, in our synthesis 

of the pattern-marcher we assumed no knowledge about pattern- 

matching itself. Thus our system would be unlikely to ask the 

user what kind of pattern-matcher he would like. Of course we 

do assume extensive knowledge of lists, substitutions, and other 

aspects of the subject domain. 

Although Sussman's debugging approach has influenced our treat- 

ment of program modification and the handling of simultaneous 

goals, we tend to rely more on logical methods than Sussman. 

Furthermore, Sussman deals only with programs that manipulate 

blocks on a table; therefore he has not been forced to deal with 

problems that are more crucial in conventional programming, such 

as the formation of conditionals and loops. 

The work of Buchanan and Luckham [1974] (see also Luckham and 

Buchanan [1974]) is closest to ours in the problems it addresses. 

However, there are differences in detail between our approach 

and theirs: 

The Buchanan-Luckham specification language is first-order pre- 

dicate calculus; ours allows a variety of other notations. Their 

method of forming conditionals involves an auxiliary stack; ours 

uses contexts and the Bobrow-Wegbreit control structures. In the 

Buchanan-Luckham system the loops in the program are iterative, 

and are specified in advance by the user as "iterative rules," 

whereas in our system the (recursive) loops are introduced by 

the system itself when it recognizes a relationship between the 
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top-level goal and a subgoal. The treatment of programs with 

side effects is also quite different in the Buchanan-Luckham 

system, in which a model of the world is maintained and updated, 

and assertions are removed when they are found to contradict 

other assertions in the model. Our use of contexts allows the 

system to recall past states of the world and avoids the tricky 

problem of determining when a model is inconsistent. I should 

be added that the implementation of the Buchanan-Luekham system 

is considerably more advanced than ours. 

C. Conclusions and Future Work 

We hope we have managed to convey in this paper the promise of 

program synthesis, without giving the false impression that auto- 

matic synthesis is likely to be immediately practical. A compu- 

ter system that can replace the human programmer will very like- 

ly be able to pass the rest of the Turing test as well. 

Some of the approaches to program synthesis that we feel will be 

most fruitful in the future have been given little emphasis in 

this paper because they are not yet fully developed. For example, 

the technique of program modifieation, which occupied only one 

small part of the current paper, we feel to be central to future 

program synthesis work. The retention of previously constructed 

programs is a powerful way to acquire and store knowledge. Further- 

more program optimization and program debugging are just special 

cases of program modification. 

Another technique that we believe will be valuable is the use of 

more visual or graphic representations, that convey more of the 

properties of the object being discussed in a single structure. 

For example, we have found that the synthesis of the pattern mat- 

chef could be made shorter and more intuitive by the introduction 

of the substitution notation of mathematical logic. If we rep- 

resent an expression P as P(Xl,...,Xn), where Xl,...,x n is the 

complete list of the variables that oeeur in P, then P(tl,...,t n) 

is the result of substituting variables x i by terms t i in P. We 

can then formulate the problem of pattern matching as follows: 
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Let a~ = pat Lxl,..,,xn) 

Find z such that 

if ar$ = pat(tl,...,t n) for some tl,...,t n 

tl> >} then z = {<x I ,...,<x n t n 

else x = NOMATCH. 

Note that this specification includes implicityly the restriction 

that the match found be a most general match, because each of the 

variables x i actually occurs in pat. Therefore, the specifica- 

tions do not need to be strengthened during the course of the 

synthesis. 

We hope to experiment with visual representations in a variaty 

of applications. Clearly, while the reasoning required is simpli- 

fied by the use of pictorial notation, the handling of innovations 

such as the ellipsis notation in an implementation is correspond- 

ingly more complex. 

ACKNOWLEDGEMENTS 

We wish to thank Robert Boyer, Bertram Raphael, and Georgia Suther- 

land for giving detailed critical readings of the manuscript. We 

would also like to thank Nachum Dershowitz, Peter Deutsch~ Richard 

Fikes, Akira Fusaoka, Cordell Green and his students, Irene @reif, 

Carl Hewitt, Shmuel Katz, David Luckham, Earl Saeerdoti, and Ben Weg- 

breit for conversations that aided in formulating the ideas in 

this paper. We would also like to thank Claire Collins and Hanna 

Z£es for typing many versions of this manuscript. 

This research was primarily sponsored by the National Science Foun- 

dation under grants GJ-36146 and GK-35493. 



276 

BIBLZOGRAPHY 

i. Balzer, R. M. (September 1972), "Automatic Programming," Insti- 

tute Technical Memo, University of Southern California/Informa- 

tion Sciences Institute. 

2. Biermann, A. W., R. Baum, R. Kirisknasw~my and F. E. Petry (Oc- 

tober 1973)~ '~Automatic Program Synthesis Reports," Computer and 

Information Sciences Technical Report TR-73-6, Ohio State Univer- 

sity. 

3. Bobrow~ D. G. and B. Wegbreit (August 1973), "A Model for Control 

Structures for Artificial Intelligence Pr0grammin ~ Languages," 

Adv. Papers 3d. Intl. Conf. on Artificial Intelligence, 246- 

253, Stanford University, Stanford, California. 

4. Boyer, R. S. and J S. Moore (1973), "Proving Theorems about 

LISP Functions," Adv. Papers 3d. Intl. Conf. on Artificial In- 

telligence. 

5. Buchanan~ J. R. and D. C. Luckham (March 1974), "On Automating 

the Construction of Programs," Memo, Stanford Artificial Intel- 

ligence Project, Stanford~ California. 

6. Bundy, A. (August 1973), "Doing Arithmetic with Diagrams," Adv. 

Papers 3d. Intl. Conf. on Artificial Intelligence, 130-138, 

Stanford University, Stanford, California. 

7. Floyd, R. W., (1967), "Assigning Meanings to Programs," Proc. of 

a Symposium in A~plied Mathematics, Vol. 19, (J. T. Schwartz, ed.), 

Am. Math. Sock, 19-32. 

8. Green, C. C. (May 1969), "Application of Theorem Proving to Prob- 

lem Solving~" Proc. Intl. Joint Conf. on Artificial Intelligenoe~ 

219-239. 

9. Green~ C. C., R. Waldinger, R. Elschlager, D. Lenat, B. McCune, 

and D. Shaw~ (1974), "Progress Report on Program-Understanding 

Programs~" Memo, Stanford Artificial Intelligence Project, Stan- 

ford, California. 

i0. Hardy, S. (December 1973), "Automatic Induction of LISP Functions," 

Essex University. 



277 

ii. Hewitt, C. (1972)~ "Description and Theoretical Analysis (Using 

Schemata) of PLANNER: A Language for Proving Theorems and Mani- 

pulating Models in a Robot," AI Memo No. 251, MIT, Project MAC, 

April 1972. 

12. Hoare, C. A. R., (October 1969), "An Axiomatic Basis for Computer 

Programming," C. ACM 12, i0, 576-580, 583. 

13. Kowalski, R. (March 1974), "Logic for Problem Solving," Memo No. 

75, Department of Computational Logic, University of Edinburgh, 

Edinburgh. 

14. Luckham, D. and J. R. Buchanan (March 1974), "Automatic Genera- 

tion of Programs Containing Conditional Statements," Memo, Stan- 

ford Artificial Intelligence Project, Stanford, California. 

15. Manna, Z. and R. Waldinger (March 1971), "Toward Automatic Prog- 

ram Synthesis," Comm. ACM, Vol. 14, No. 3, pp. 151-165. 

16. McCarthy, J. (1962), "Towards a Mathematical Science of Computa- 

tion," Prec. IFiP Congress 62, North Holland, Amsterdam, 21-28. 

17. Reboh, R. and E. Saeerdoti (August 1973), "A Preliminary QLISP 

Manual," Tech. Note 81, Artificial Intelligence Center, Stanford 

Research Institute, Menlo Park, California. 

18. Robinson, J. A., (January 1965), "A Machine-0riented Logic Based 

on the Resolution Principle," Jour. ACM, Vol. 12, No. I, 23-41. 

19. Rulifson, J. F., J. A. Derksen, and R. J. Waldinger (November 

1972), "QA4: A Procedural Calculus for Intuitive Reasoning," 

Tech. Note 73, Artificial Intelligence Group, Stanford Research 

Institute, Menlo Park, California. 

20. Simon, H. A., (October 1963), "Experiments with a Heuristic Com- 

uter," Jour. ACM, Vol. I0, No. 4, 493-506. 

21. Sussman, G. J. (August 1973), "A Computational Model of Skill Ac- 

quisition," Ph.D. Thesis, Artificial Intelligence Laboratory, 

M.I.T., Cambridge, Mass. 

22. Teitelman, W., (1974), INTERLISP Reference Manual, Xerox, Pale 

Alto, California. 

23. Waldinger, R. J., and R. C. T. Lee (May 1969), "PROW: A Step To- 

ward Automatic Program Writing," Prec. Intl. Joint Conf. on Arti- 

ficial Intelli~enee, 241-252. 


