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Abstract. The possible worlds semantics is a fruitful approach used in Artifi-
cial Intelligence (AI) for both modelling as well as reasoning about knowledge in
agent systems via modal logics. In this work our main idea is not to model/reason
about knowledge but to provide a theoretical framework for knowledge assess-
ment (KA) with the help of Monatague-Scott (MS) semantics of modal logic. In
KA questions asked and answers collected are the central elements and knowl-
edge notions will be defined from these (i.e., possible states of knowledge of
subjects in a population with respect to a field of information).

Keywords: Modal & Epistemic Logics for Question Answering Systems, Question pro-
cessing, Interpretation models.

1 Introduction

Modelling and reasoning about knowledge in agent systems is an active research area
within the Al community [12]. It is often the case that the logical tool used to repre-
sent and reason about knowledge is that of modal logicE] with the underlying possible
worlds [3] model. There is also an interpreted system (IS) model which aims to give a
computational flavour to S5 in terms of the states of computer processes [441] and this
in turn makes it more suitable in one of the major application areas of knowledge rea-
soning namely Multi-Agent Systems (MAS). Recent works show that the IS Model can
also be used for the specification of cognitive attitudes other than knowledge like belief,
desire and intention (BDI) so that techniques like symbolic model checking can be used
to verify the different agent properties inherent in the specification [5]. In this paper we
deviate from the works above in the sense that our main idea is not to model/reason
about knowledge but to provide a framework for knowledge assessment using some
tools and techniques in modal logic.

To make the idea of knowledge assessment precise consider the list of questions
given in TabldI] It is common practice that for assessing a student’s knowledge in el-
ementary mathematics question formats as in Tabld[I]is presented and is followed by a
written examination. Thereafter the students answers are collected and finally the exam-
iner returns an appreciation which usually boils down to a single number or percentage.
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As pointed out in [6] such a testing procedure provides limited information because
provided that a student gives correct answers to questions a, ¢ and e it only shows a
numerical appreciation (60 percent) of his/her work. What it hides is the information
related to the student’s knowledge/mastery in performing multiplication and deficiency
in division operation. Moreover, the responses (answers) also indicate that there is some
dependency among the questions. For instance, question e (a multidigit multiplication)
in table[T]relies on elementary multiplication tested in question a. Consequently from a
correct answer to question e we should infer a correct answer to question a. Obtaining
and exploiting the most precise information from an assesment procedure is particulary
needed in programmed courses as it reveals the weakness as well as strong points of the
student’s preparation and hence advices for further study can be inferred. Similarly any
computer assisted instruction system should entail a module for uncovering the user’s
knowledge. We take motivation for this work from the knowledge structure (KS) theory

Table 1. An Excerpt of a test in Mathematics

al2x378 = 777
b|322+7 = 7”7
c|14.7x 100 = |777?
d
e

6442 +-16= |777?
58.7x0.94 =|777?

as outlined in [[6/7]]. Knowledge structure theory presupposes that the knowledge of an
individual in a particular domain of knowledge can be operationalised as the solving
behaviour of that individual on a domain specific set X of problems. If the solution
result for each problem is binarily coded by true/false, then the knowledge state of an
individual in the given field of knowledge can be formally described as the subset of
problems from X he/she is capable of solving. To tackle the problem of solution de-
pendencies that can exist between problems of a certain field of knowledge KS theory
employs the concept of a surmise system. The idea is to associate each problem x € X
with a family of subsets of X called clauses, with the interpretation that, if a person is
capable of solving x then he/she is capable of solving all problems in at-least one of
these elements.

In this work we describe a theoretical framework based on the possible worlds
model to capture the main ingredients of KS theory as mentioned above which in turn
can be used for Knowledge Assessment. Since our main aim is with respect to the as-
sessment of knowledge we need to have a definition of knowledge that can fit in with this
intuition. Hence, instead of defining knowledge as truth in all possible worlds, which
is the common interpretation given for knowledge models based on possible worlds
semantics, an agent’s knowledge is explicitly described at a state/(in our case with re-
spect to a question q) by a set of sets of states (set of prerequisites for the question q).
In other words, our possible worlds framework for knowledge assessment is based on
Montague-Scott (MS) semantics rather than the usual Kripke semantics.

In the comming sections we briefly discuss the knowledge structure theory along
with surmise systems and outline the technical apparatus of MS-structures. Then we



show how MS-strucutres can be used as a tool for Knowledge Assessment and conclude
the paper with a discussion.

2 Knowledge Structures, Surmise Systems and MS-models

As mentioned in the previous section a knowledge structure consists of a finite set Q to-
gether with a collection J#” of subsets of (Q wherein the elements of QQ are the questions
and the members of " are the knowledge states. For example, assume that the set of
questions in Table (T) is given for a test. Now, any student who took the test is charac-
terised by the subset of questions he/she correctly answered and this subset constitutes
his/her knowledge state. So for instance, we can have ¢ = {a,b,c}, J ={d}, H5 =
0 representing respectively the knowledge states corresponding to three students. What
we can infer from the knowledge states is that the first student gave correct responses
to questions a, b and c whereas the last student to none at all. Similarly one can come
up with a collection .%#~ of knowledge states representing all possible knowledge states
by observing a population of students as given in ().

2 ={0,{a},{d},{a, b, c},{a,d,e},{b,c,d, e}, 0
{a,b,c,d,e}}

It should be noted that not any subset of Q needs to be a knowledge state as solution
dependencies could exist among the members of the set Q. Therefore " comprises of
all those subsets of Q which constitutes the set of all empirically expectable solution
patterns. Also, from () it can be seen that questions b and ¢ belong exactly to the same
knowledge states, i.e., {a, b, c} and {b, c, d, e}. Hence as mentioned in [7] one can
say that b and c define the same notion. But this is not the case for questions b and e
because they are disinguished by the knowledge state {a,b, c} and this means b and
e test different skills. As pointed out above solution dependencies can exist between
problems of a certain field of knowledge. In our case question e in TabldI] relies on
question a and hence from a correct response to question e we should infer a correct
response to a, i.e., we say that we surmise mastery of question a from mastery of
question e. In general we want to infer from the knowledge of one question the complete
knowledge of at least one set of questions among some list of sets. We call these sets
the clauses for the original question g. For example let (Q denote the set of questions in
table|l|and v a mapping that associates to any element g in Q a non-empty collection
v(q) of subsets of Q as given in Figur Here question a has only one clause which

1.v(a) = {{c}} 2.v(0) =0 3.v(c)=0
4.v(d) = {{a,c}, {b}} 5. v(e) = {{a,b,c}}

Fig. 1. Solution dependencies for the questions in TabldT}

is that of ¢ and question b has the empty set as its only clause. What this means is that



there is only one way to know question a which is through the acquisition of question
c while there is no prerequisite for b.

Definition 1 A surmise system on a finite set Q is a mapping v that associates to any
element q in Q a nonempty collection v(q) of subsets of Q and satisfies the following
conditions;

1. Any clause for question g contains q

2. If o € C, with C a clause for question q, there exists some clause C' for ¢ satisfying
c' CcC

3. Any two clauses for question g are incomparable in the sense that neither is in-
cluded in the other.

We denote a surmise system by (Q, v).

2.1 MS/Neighbourhood Semantics

Montague-Scott semantics, also known as Neighbourhood semantics is considered the
most general kind of possible worlds semantics in the sense that it is compatible with
retaining the classical truth-table semantics for the truth-functional operators. In this
section we outline the main ingredients of neighbourhood semantics needed to develop
a framework for knowledge assessment.

Definition 2 A neighbourhood model is a structure
M= (W, V)

where W is a set of worlds and 7t(w) is a truth assignment to the primitive propositions
for each state w € W. Intuitively w(p) = {w,wa} represents the fact that p is true at
wi,wy and false at W\{wy,w}. v(w) is a mapping from W to sets of subsets of W,
ie, v:W — @o(o(W)). (W, v) is called a neighbourhood frame.

The basic idea of this definition is that each world w of W has associated with it a set
v(w) of propositions that are necessary at w. Since a proposition in possible worlds se-
mantics is a subset of V\\fﬂthe set of propositions necessary at w, V(w), is a set of subsets
of w. There are no assumptions about v except that it is a function from W — @(£(W))
and v(w) may be any set of propositions including the empty set. When interpreted in
terms of knowledge in agent-systems the members of v(w) can be considered as the
propositions an agent knows. We will talk more about this knowledge interpretation in
the next section. Inorder to state the truth conditions of a neighbourhood model we need
to take care of the definition of a truth set.

Definition 3 The truth set,|| A ||#, of the formula A in the model ./ is the set of worlds
in M at which A is true; formally

A= {win A : M w=A}

4 In possible worlds semantics (any kind) a proposition is identified with a set of possible worlds.



Definition 4 (Truth Conditions) Let w be a world in a model # = (W, 7, V).

— M ,w=0AS||A e viw)
- Mw=OCAE (W—|[A[[7) & v(w)

Example 1 Let W = {a,b,c}, n(p) = {a,b},n(q) = {b,c} and v(a) = {{b},{a,c}},
v(b) ={{a,c},{a},{a,b}} and v(c) = {0,{a},{b,c}} be a neighbourhood model A
according to Definition |2| Then some of the formulae that are satisfied by .# are
MbEDp  (since|] pl[*= {a,b} € vi(b)

AMbE=p (since {a,b,c}— || p ||"” = {a,b,c} — {a,b} = c & v(b))
M,cl=00p  (since || Op |[¥={b,c} € v(c))

M,al=00p  (since || Op ||”={b} € v(a))

Mycl=DOL (since || L ||[“=0¢c v(c))

M ,a=0(pAg) (since || pAg||7={b} € v(a))

MaleTp  (since || p = {a,b} & vi(a)

The last two items in the above list needs special mention. Note that .#,a = O(p A q)
but .# ,a [~ Op. In the case of a relational structure if we fix the valuations of p and ¢ it
is not possible to show that O(p A g) is true at @ but Op is false at a. The reason is that
Op is false at a forces a to have an accessible world in which p is false. There is only
one such world (c¢) where p is false. However, if ¢ is accessible from a, then O(p A g)
will no longer be true at a (since if p is false at ¢ then so is p A g). The above example
shows that the axiom O(y A @) — Oy A Og is not valid in the case of neighbourhood
frames. In the next section we will demonstrate why such axioms need to be avoided in
th case of knowledge assessment.

3 Assessing Knowledge

In this section we show how to use the technical apparatus of Neighbourhood models
as outlined above for knowledge assessment. We write the modal connectives as K to
emphasise the knowledge aspect. Initially we do not want to bind K with any properties
but just as a replica of the modal operators.

Consider a neighbourhood model .#Z = (W, 7, v) where W = {a,b, c,d, e} be the
set of questions as given in TablgI]and v be as in Figure. [I] Let 7 be given as follows

n(x) = {a, c}, n(+) = {p}

By 7(x) = {a, ¢} we mean that multiplication is true/holds for questions a and c. For
question e this need not be the case because to solve e one needs the knowledge of both
multiplication and division. Similar argument holds in the case of 7(+) = {b}. Now
we can say that a model .# and question g satisfies the knowledge of multiplication
if and only if the truth set of multiplication is in the /ist of sets related to question g.
Formally

M, a = K(x) < «[|e v(q) 2

To give an example if we substitute question a from Table[I]in place of g we get

M a = K(x) (since || * ||‘///§_Z v(a)) 3)



because || x ||= {a,c} and {a,c} & v(a). From a knowledge assessment perspective
has much to offer. For instance, suppose that we have a collection .2 of knowledge
states as given in (1)) in Section 2. where we have a set {a}. Then (3)) shows the incom-
plete knowledge of a student with respect to multiplication. In other words (3)) helps in
assessing a student’s knowledge in multiplication with respect to (from the viewpoint
of) the answer set provided by him/her. In this case we can assess that a correct response
to question a is not enough for a student to solve (have complete knowledge of) other
questions related to multiplication. In a similar manner from (3)) we can also reason
about a student’s lack of knowledge in division because

MalK(+) (since ||+ |[“¢ v(a)).

It should be kept in mind that it is possible to make the model .# satisty certain con-
ditions so as to fit in with the notion of a surmise system as outlined in the previous
section. For instance, the first item of Definition E] generalises the reflexivity condition
for a relation and we will show later on how to give such conditions for a neighbour-
hood model .Z . Now, let us take d and repeat the same process. This time we can see
that

M,AE=K(x) (since || % || ,ie.,{a,c} e v(d)) )

holds which tells us that a student who has provided the answer set d knows or have
mastered multiplication. From (4] we can also infer

M, AEK(x) (since ||+ || ie,{b} € v(d)) (5)

which shows that a student who has provided the answer set d knows division. At the
same time from (@) and (©) we get

MAEKEAS) (|| xA= |7 ie,{a, b, c} & Vv(d)) (6)

which tells us that from answer set d one cannot assess the knowledge of both multi-
plication and division. For instance, from FigurdI]it can be seen that question d can be
mastered along two different approaches, one implying the mastery of the sole question
b, the other requiring the mastering of questions a and c. In other words, according
to our model, for a student to solve question d he/she needs to know multiplication or
division and not both. (6) shows exactly this and more in the sense that it avoids the
problem of logical omniscience (LOf] [3!8]] which plague knowledge models based on
possible worlds. Now let us consider e;

Mo =KENE) (|[#A+ |7 ie,{a, b, c} ev(e)) 7

shows the mastery/knowledge of a student in multiplication and division with re-
spect to question e or in other words a student who has provided the answer set e
knows both multiplication and division. There are two main reasons for having such

5 LO usually refers to a family of related closure conditions. In the case of (@) we avoid closure
under conjunction, i.e., the condition that if an agent i knows both ¢ and y, then agent i knows

OAVY.



an assessment procedure; 1) It is usually the case that in an oral examination teach-
ers strongly reduce the number of questions by making inferences from the collected
answers and 2) because of 1 they can specifically select the next question. These two
features also show the superior efficiency of oral testing over written testing. Any good
automated procedure should encompass these features and exploit them to minimise the
test duration. Our aim in this paper is to give a theoretical model based on modal logic
to account for the above mentioned features. Of course there are other models (prob-
abilistic models) that can account for such an assessment proceudre but the main idea
here is to show the usability of modal logic as a tool for knowledge assessment.

3.1 Models Satisfying certain conditions

So far we have been trying to build a framework based on modal logic for knowledge
assessment so as to decide what formulas should be valid for the knowledge reading
of O (i.e. when we interpret O to be a modality representing knowledge). We did not
impose any constraints on the model .#. Since we want to relate our knowledge as-
sessment model with that of a surmise system we need to make sure that our model
satisfies conditions given in Definition(I] In this section we show how to achieve this.
The following conditions can be given for items 1, 2 and 3 of Definitior[I]

1. X € v(w) = w € X (reflexivity condition)

2. Xeviw)={w eW:X ev(w)} € v(w) (transitivity condition)

3.VX,Y eviw), X #Y = Ix,y:xeX,x¢ Y,y €Y,y ¢ X (Any two clauses are in-
comparable)

It should be kept in mind that given a function v : W — o(W) it is always possible to
define a function f : (W) — (W) such that f(X) = {w:X € v(w)}. In this manner
we can define every function v of Definition [2]in terms of a function like f as follows;

we fX)eXecviw) 3)
Hence truth conditions for OA in terms of f can be given as

Mowl=OAS||A[7eviw)swe f(|A]7), ie.
| DA |7 = f(| A7)

The corresponding model conditions using (8] for reflexivity (f(X) C X) and transitiv-
ity (f(X) C f(f(X)) is much more concise and easy to use. This alternate character-
isation of v-models is nothing more than a notational variant and should not be seen
as a new model. A question which naturally comes to mind then is why not define
conditions like reflexivity, transitivity etc. before hand on the set of questions so as to
have a relational model (A binary relation on the set of questions so as to formalise the
surmise idea). rather than constructing a surmise system as discussed in the previous
sections. One reason for not adopting a relational model as pointed out in [|6] is that the
knowledge structure associated to a surmise relation is closed under intersection and
union whereas that of a surmise system is closed under union alone. Put in other words,
if two students characterised by their knowledge states K and K’ meet and share what



they know they will both end with the union K UK’ as their common knowledge state.
In the case of intersection similar motivation doesn’t exist and the only argument that
could be given is that the two students would decide to retain their common knowledge,
i.e., KN K’ which according to [6] is weak because cognitive development is consid-
ered to be cumulative over time. And from a modal logic point of view we can avoid
the problem of LO which as pointed out earlier is not a good property to have as far as
knowledge assessment is concerned. Also, in the relational model the accessibility re-
lation must be given before defining satisfiability in a world because the satisfiability of
a formula containing a modal operator is defined in terms of the accessibility relation.
We can avoid this using the MS-models.

4 Discussion

We have outlined a modal logic based approach for knowledge assessment where ques-
tions asked and answers collected form the main ingredients and knowledge notions are
defined from these. Our approach is different when compared to other modal logic the-
ories of knowledge in Artificial Intelligence where modelling/reasoning about knowl-
edge is the main focal area. The current work is in the preliminary stages and lot needs
to be done. We have only outlined the syntax and semantics of our framework and have
completely neglected the multi-agent aspect. What we would like to have ideally is to
efficiently uncover, given a student in the population, which member of %" represents
his/her knowledge state. From a multi-agent perspective we can think of modifying v
to v; where i represents an agent and assign the propositions he/she knows. But in the
case of knowledge assessment it is not that simple because we cannot assign randomly
the questions a particular agent/student knows as the assessment is done based on the
questions asked and answers collected. An earlier version of this paper appeared in [9].
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