
Knowledge Base Completion via Search-Based
Question Answering

Robert West*, Evgeniy Gabrilovich†, Kevin Murphy†, Shaohua Sun†, Rahul Gupta†, Dekang Lin†

*Computer Science Department, Stanford University, Stanford, CA 94305
†Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043

*west@cs.stanford.edu
†{gabr, kpmurphy, sunsh, grahul, lindek}@google.com

ABSTRACT
Over the past few years, massive amounts of world knowledge have
been accumulated in publicly available knowledge bases, such as
Freebase, NELL, and YAGO. Yet despite their seemingly huge size,
these knowledge bases are greatly incomplete. For example, over
70% of people included in Freebase have no known place of birth,
and 99% have no known ethnicity. In this paper, we propose a way
to leverage existing Web-search–based question-answering tech-
nology to fill in the gaps in knowledge bases in a targeted way. In
particular, for each entity attribute, we learn the best set of queries
to ask, such that the answer snippets returned by the search engine
are most likely to contain the correct value for that attribute. For
example, if we want to find Frank Zappa’s mother, we could ask the
query who is the mother of Frank Zappa. However, this is likely to
return ‘The Mothers of Invention’, which was the name of his band.
Our system learns that it should (in this case) add disambiguating
terms, such as Zappa’s place of birth, in order to make it more likely
that the search results contain snippets mentioning his mother. Our
system also learns how many different queries to ask for each at-
tribute, since in some cases, asking too many can hurt accuracy (by
introducing false positives). We discuss how to aggregate candidate
answers across multiple queries, ultimately returning probabilistic
predictions for possible values for each attribute. Finally, we eval-
uate our system and show that it is able to extract a large number of
facts with high confidence.

Categories and Subject Descriptors: H.2.8 [Database manage-
ment]: Database applications—Data mining.
General Terms: Algorithms, Experimentation.
Keywords: Freebase; slot filling; information extraction.

1. INTRODUCTION
Large-scale knowledge bases (KBs)—e.g., Freebase [1], NELL [3],
and YAGO [18]—contain a wealth of valuable information, stored
in the form of RDF triples (subject–relation–object). However, de-
spite their size, these knowledge bases are still woefully incom-
plete in many ways. For example, Table 1 shows relevant statistics
for Freebase: in particular, it lists the fraction of subjects of type
PERSON who have an unknown object value for 9 commonly used
relations (also cf. Min et al. [12]); e.g., 71% of the roughly 3 mil-

*Research done during an internship at Google.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568032.

lion people in Freebase have no known place of birth, 94% have
no known parents, and 99% have no known ethnicity. As Table 1
further shows, coverage is quite sparse even for the 100,000 most
frequently searched-for entities. This problem is not specific to
Freebase; other knowledge repositories are similarly incomplete.

The standard way to fill in missing facts in a knowledge base is
to process a large number of documents in batch mode, and then
to perform named-entity disambiguation followed by relation ex-
traction (see, e.g., Ji and Grishman [8] for a recent review). We call
this a ‘push’ model, since it pushes whatever facts it can find across
all documents into the knowledge base. By contrast, in this paper,
we focus on a ‘pull’ model, whereby we extract values for spe-
cific subject–relation pairs by making use of standard Web-search–
based question-answering (QA) technology.

There are several reasons to take such an approach. First, we
can leverage mature Web-search technology to find high-quality
and up-to-date information sources. Second, we can rely on the
returned search snippets as a mechanism for focusing attention on
the parts of the documents that are most likely to contain the an-
swer. Third, this gives us a complementary signal to the stan-
dard ‘push’ approach. The ‘pull’ paradigm enables a targeted, on-
demand method for knowledge base completion; e.g., we could first
run a ‘push’ method to collect as many facts as possible and then
use our ‘pull’ system to retrieve facts that were not already found
by the passive ‘push’ run. Finally, the world is constantly chang-
ing, and KBs must be kept up to date accordingly [19]; the ‘pull’
paradigm seems more appropriate than the ‘push’ paradigm for ver-
ifying whether specific previously entered facts are still valid.

The key question we address in this paper is which questions
we should issue to the QA system. This is not obvious, since the
QA system is expecting natural language as input, but we have no
human in the loop who could formulate our queries. Furthermore,
not all the queries are equally good. For example, suppose we want
to determine the birthplace of the musician Frank Zappa. We could
issue the search query where does Frank Zappa come from, but it
is more effective to ask where was Frank Zappa born, because this
query formulation will be more likely to match phrases appearing
in the Web pages searched by the QA system.

As another example, consider the problem of determining Frank
Zappa’s mother. If we issue the query who is the mother of Frank
Zappa, we will most likely get back snippets about ‘The Mothers
of Invention’, which was the name of his band. In this case, we
should add extra terms to the query, to try to steer the search engine
to return snippets that mention his mother (cf. Collins-Thompson
et al. [4]). One way to do so is to append to the query the name of
the city where Zappa was born (namely, Baltimore), since the place
where one was born is often mentioned in proximity to the names
of one’s parents.

Relation Percentage unknown
All 3M Top 100K

PROFESSION 68% 24%
PLACE OF BIRTH 71% 13%

NATIONALITY 75% 21%
EDUCATION 91% 63%

SPOUSES 92% 68%
PARENTS 94% 77%

CHILDREN 94% 80%
SIBLINGS 96% 83%

ETHNICITY 99% 86%

Table 1: Incompleteness of Freebase for some relations that ap-
ply to entities of type PERSON. Left: all 3M Freebase PERSON
entities. Right: only the 100K most frequent PERSON entities.

The main contribution of this paper is to propose a way to learn
which queries to ask the QA system for each kind of subject and
relation. Our system is trained using search-query logs and existing
facts in Freebase. We show that it is better to ask multiple queries
and aggregate the results, rather than rely on the answers to a sin-
gle query, since integrating several pieces of evidence allows for
more robust estimates of answer correctness. At the same time, the
number of queries to ask varies depending on the nature of the re-
lation. On the one hand, relations that expect values from ‘open’
classes with large numbers of instances (e.g., CHILDREN, which ex-
pects values of type PERSON) are sensitive to the number of queries
asked, and asking more than a certain number of queries decreases
performance. The reason is that issuing more and more queries
(of ever decreasing quality) increases the number of false positives,
and if we ask too many queries, the negative impact of false posi-
tives will outweigh the positive impact of aggregating over several
sources of information. On the other hand, if the relation expects
values from a ‘closed’ class with only a limited number of instances
(e.g., NATIONALITY, which expects values of type COUNTRY), the
number of potential false positives is limited, and the performance
will not suffer from asking more queries.

We evaluate our method by using it to fill in missing facts for
1,000 Freebase entities of type PERSON for each of the 9 relations
shown in Table 1. This test set is chosen by stratified sampling
from a larger pool of the 100,000 most frequently searched-for en-
tities; thus, it contains a mix of head and tail entities. We show that
we are able to reliably extract correct answers for a large number
of subjects and relations, many of which cannot be extracted by
conventional ‘push’-type methods.

2. METHODOLOGY
In this section, we describe an end-to-end pipeline that uses a QA
system in order to find new facts to add to Freebase. We first give
a high-level overview—summarized in Fig. 1—before discussing
each separate stage in detail.

In the knowledge base completion task [8], we are given a sub-
ject entity ID S and a relation ID R, and need to find the correct, pre-
viously unknown object entity IDs. For instance, we might be given
subject ID /m/02whj (FRANK ZAPPA) and relation ID /m/01x3gb5
(PARENTS), and would be expected to return object ID /m/01xxvky
(ROSE MARIE COLIMORE) or /m/01xxvkq (FRANCIS ZAPPA).

In this paper, we propose to use an existing Web-search–based
QA system to perform the KB completion task. Since our QA sys-
tem expects as input a query string, we need a way of lexicalizing
subject–relation pairs to query strings. It is easy to look up one
or more names (aliases) for the subject; the tricky issue is how to

lexicalize the relation. To solve this, we mine a set of query tem-
plates from search query logs in an offline training phase (upper
box of Fig. 1; Section 2.1), using a form of distant supervision [13]
based on Freebase. For each relation R, this procedure constructs
a set Q̄R of templates. For example, parents of __ is a template
for PARENTS; it can be instantiated for a subject S by looking up a
name for S in Freebase and substituting it for the placeholder (e.g.,
parents of Frank Zappa). The same relation could also generate
the template __ mother. We also estimate the quality of each such
template using a labeled training set T R.

In the KB completion phase (lower box in Fig. 1), we process
each subject–relation pair (S,R) in turn. We start by selecting NR

templates {q̄1, . . . , q̄NR} ⊆ Q̄R, based on the estimate of template
quality computed offline, and instantiate them for S, obtaining the
queries {q1, . . . ,qNR} (query template selection, Section 2.2). (A
good value for NR is also found during offline training.)

In the subsequent question answering step, each query qi is fed
to the QA system, which uses Web search to produce a scored list
Ai of answer strings (Section 2.3).

In order to deal with the answers in Freebase, we must link them
to the entities they refer to. This is done in the answer resolution
step (Section 2.4), where each list Ai of answer strings is converted
to a list Ei of answer entities.

In the next phase, answer aggregation (Section 2.5), we merge
all answer rankings Ei—one per query—into a single ranking E .

It is desirable to have an estimate of the probability that the an-
swer is correct. The QA system produces quality scores, but these
are real numbers that cannot be directly interpreted as probabilities.
Hence, in the final answer calibration step (Section 2.6), we trans-
late the output scores to probabilities using a model ΘR that was fit
in the offline training phase, via supervised machine learning.

We now describe the individual system components in detail.

2.1 Offline training
Query templates are constructed in an offline training stage. The
simplest templates consist only of a lexicalization template, i.e., a
search query in which a placeholder has been substituted for the
subject, as in parents of __. We first describe how we construct
the set of lexicalization templates from Web-search logs, and then
introduce a class of slightly more complex templates that allow for
appending additional terms to a query.

Mining lexicalizations from search logs. Since our search-based
QA system is geared to work on search queries entered by humans,
we mine the lexicalization templates from logs of such queries, us-
ing a version of distant supervision [13] on Freebase. Our goal is to
count for each relation–template pair (R, q̄) how often the relation
R is expressed by the lexicalization template q̄ in the search-engine
logs. To do so, we iterate over the logs, performing the following
steps for each query q (e.g., parents of Frank Zappa).

1. Perform named-entity recognition on q, and link the result-
ing mentions to entities using approximate string matching
techniques. (Note that standard entity linkage methods are
of limited use here, as queries have little disambiguating con-
text.) If q does not contain exactly one entity, discard it.

2. Let S (e.g., FRANK ZAPPA) be the subject entity contained
in q. The template q̄ is obtained by replacing the name of S
with a placeholder string in q (e.g., parents of Frank Zappa
becomes parents of __).

3. Run the QA system on q, obtaining the top-ranked answer
string a (e.g., Francis Zappa). Link a to Freebase to get en-
tity A. (When matching the answer entities, we have more

Query
Template
Selection

Answer
Resolution

Answer
Aggregation

Answer
Calibration

Set of
instantiated

queries

Set of
answer

rankings
(strings)

Set of
answer

rankings
(entities)

Aggregate
answer
ranking

Probabilistic
predictions

WWW

Question
Answering

(with performance estimates)

OFFLINE TRAINING

KB COMPLETION

Offline
Training

Subject–
relation pair

90 Mothers of Invention
81 Ray Collins
30 American rock band

66 Rose Marie Colimore
51 Francis Vincent Zappa
33 Gail

. . .

63 Francis Zappa
60 Rose Marie

90 the mothers of invention

81 ray collins

30 musical ensemble

66 rose marie colimore

51 francis zappa

33 gail zappa

. . .

63 francis zappa

60 rose marie colimore

42 rose marie colimore

38 francis zappa

27 ray collins

11 gail zappa

87% rose marie colimore

79% francis zappa

32% ray collins

 9% gail zappa

(frank zappa,

parents)

Distant supervision

Sec. 2.2 Sec. 2.3 Sec. 2.4 Sec. 2.5 Sec. 2.6

Sec. 2.1

Figure 1: Overview of the pipeline for knowledge base completion, illustrated by the Frank Zappa example of Table 2. The set Q̄R

of query templates and the optimal number NR of queries to use are relation-specific. The square boxes contain references to the
sections in which the respective stages of the pipeline are described.

context, so we can use more sophisticated entity linkage meth-
ods, which we discuss in Section 2.4.)

4. If (S,A) is linked by a relation R (e.g., PARENTS) in Freebase,
increase the count of (R, q̄) by one.

For each relation R, we may then pick the most frequent tem-
plates as Q̄R, the set of lexicalization templates for R. Some of the
most frequent lexicalization templates for PARENTS and PLACE OF
BIRTH are listed as the horizontal axis labels of Fig. 2.

Query augmentation. The quality of such templates may vary
depending on the subject. For instance, the query Frank Zappa
mother retrieves mostly snippets that do not contain the answer,
since most snippets are included because they mention Zappa’s
band, which was called ‘The Mothers of Invention’ (cf. row 1 of
Table 2). However, adding more words to the query can shift the
focus to more relevant documents. For example, the query Frank
Zappa mother Baltimore will produce results of much higher qual-
ity, since passages that mention where someone was born are more
likely to also contain who they were born to (cf. row 2 of Table 2;
Zappa was born in Baltimore). This is also useful for disambigua-
tion; e.g., birthplace of Michael Jackson World Guide to Beer is
more likely to find the birthplace of the renowned late beer somme-
lier (and author of the ‘World Guide to Beer’; cf. row 4 of Table 2)
than the plain query birthplace of Michael Jackson, which retrieves
mostly snippets about the late King of Pop (cf. row 3 of Table 2).

We refer to the process of attaching extra words to a query as
query augmentation. Henceforth, when speaking of a query tem-
plate, we mean a pair of a lexicalization template and an augmen-
tation template. Augmentation templates simply specify a property
(relation) for which a value is to be substituted. For instance, the
query template consisting of the lexicalization template __ mother
and the augmentation template PLACE OF BIRTH can be instanti-
ated for the subject FRANK ZAPPA to Frank Zappa mother Bal-
timore. We also allow the empty augmentation template (i.e., no
terms are appended to the lexicalization). If no value of the relation
specified by the augmentation template is known for the subject,
the query template cannot be instantiated.

While we currently focus on augmentations as above, where we
append the name of an entity the subject is known to be in relation
to, several other kinds of augmentation are conceivable. We discuss
some of them in Section 5.

Manual template screening. In practice, we manually select 10
lexicalization templates from the top candidates found by the log-
mining approach outlined above, and 10 augmentation templates
from the relations pertaining to the subject type at hand; e.g., the
augmentation templates for PARENTS and PLACE OF BIRTH are
shown on the vertical axes of Fig. 2. Manual screening is not nec-
essary but was done to reduce the number of queries during devel-
opment and to facilitate ad-hoc result inspection.

2.2 Query template selection
Since query templates are defined as pairs of a lexicalization tem-
plate and an augmentation template, the query space may be thought
of as the Cartesian product of the set of lexicalizations and the set
of augmentations. Many queries can be constructed in this two-di-
mensional space. We show individual examples of good vs. bad
queries in Table 2. Below we discuss how to choose the good
queries. But first we address the question: why not ask the QA
system all the queries we can construct?

Dangers of asking too many queries. Issuing all possible queries
is problematic, for two reasons. First, it is computationally chal-
lenging, since QA systems typically involve significant resources,
such as CPU time, database lookups, or even, as in our case, Web-
search queries. Second, it may be detrimental statistically: not all
queries are equally good, so by asking all possible queries, we are
likely to also ask many poor queries, which may dilute the result
with false positives.1 It is worth pointing out that the notion of a
query’s being poor is conditioned on the QA system’s quality. By
construction (cf. Section 2.1), all queries are good from the per-

1We use the term ‘false positive’ to denote a bad answer candidate
that gets a high score from the QA system.

Query specification Top result snippets (candidate answer strings in bold)
Subject–relation pair:
(FRANK ZAPPA, PARENTS)

True answer: ROSE MARIE COLIMORE
Template: (__ mother, [no augmentation])
Query: Frank Zappa mother

[1] The Mothers of Invention – Wikipedia, the free encyclopedia
The Mothers of Invention were an American rock band from California that served as the
backing musicians for Frank Zappa, a self-taught composer and performer [. . .]
[2] Ray Collins of Frank Zappa’s Mothers of Invention Dies | Billboard
Ray Collins, a singer who co-founded the Mothers of Invention with Frank Zappa but left when
“too much comedy” started appearing in the band’s songs, died on Monday [. . .]

Subject–relation pair:
(FRANK ZAPPA, PARENTS)

True answer: ROSE MARIE COLIMORE
Template: (__ mother, PLACE OF BIRTH)
Query: Frank Zappa mother Baltimore

[1] Frank Zappa – Wikipedia, the free encyclopedia
Frank Vincent Zappa was born in Baltimore, Maryland, on December 21, 1940. His mother, Rose
Marie Colimore [. . .]; his father, Francis Vincent Zappa [. . .]
[2] Frank Zappa statue to be dedicated in September – The Baltimore Sun
Frank Zappa statue to be dedicated in September. [. . .] His mother, Rose Marie Colimore, was
a librarian, and his widow, Gail, lobbied to have the bust placed near a city library.

Subject–relation pair:
(MICHAEL JACKSON (WRITER), PLACE OF BIRTH)

True answer: LEEDS
Template: (birthplace of __, [no augmentation])
Query: birthplace of Michael Jackson

[1] Michael Jackson – Wikipedia, the free encyclopedia
Michael Jackson was born on August 29, 1958, in Gary, Indiana. He was the eighth of ten chil-
dren in an African-American working-class family [. . .] in Gary, an industrial city near Chicago.
[2] Michael Jackson’s House – Gary, IN – Yelp
8 Reviews of Michael Jackson’s House “WTF. this place is kind of a bummer. Streets aren’t
labeled, potholes aren’t filled. The house is the only place on the block that was properly painted.

Subject–relation pair:
(MICHAEL JACKSON (WRITER), PLACE OF BIRTH)

True answer: LEEDS
Template: (birthplace of __, WORKS WRITTEN)
Query: birthplace of Michael Jackson World Guide
to Beer

[1] Michael Jackson (writer) – Wikipedia, the free encyclopedia
Jackson was born in Leeds, West Yorkshire and spent his early years in nearby Wetherby. [. . .]
Jackson, Michael (1977). The World Guide to Beer [. . .]
[2] The Unique Michael Jackson | Philly Beer Scene
He was born in Wetherby in the city of Leeds. [. . .] Compensation eventually was awarded in
1988, when his agent [. . .] negotiated a fee on the re-write as The New World Guide to Beer.

Table 2: Example queries for two subject–relation pairs, alongside top result snippets retrieved by the search-based QA system
(candidate answer strings in bold). The FRANK ZAPPA queries demonstrate how augmentation can shift the focus to more relevant
snippets, the MICHAEL JACKSON (WRITER) queries, how augmentation can be useful for disambiguation.

spective of human users, but some of them are poor for our pur-
poses because the QA system does not do well on them.

Heatmap representation of template quality. A compact way
of visualizing query quality is afforded by the heatmaps in Fig. 2,
which shows the query space for the PARENTS and PLACE OF BIRTH
relations. Lexicalization templates are shown on the horizontal
axes, while augmentation templates span the vertical axes. (Note
that we only show the manually selected subsets of lexicalization
and augmentation templates, but many more are possible.) The
color encodes the average quality of queries instantiating the re-
spective template, computed on the supervised training set T R.
Quality is measured in terms of mean reciprocal rank (MRR, cf.
Section 3.1.2) of the true answer in the answer ranking (after the an-
swer resolution phase, cf. Section 2.4), i.e., larger values (brighter
colors) are better. We see that, on average, some lexicalizations are
better than others (e.g., the colloquial __ mom performs worst for
PARENTS) and that some augmentations increase query quality over
augmentationless queries (e.g., PLACE OF BIRTH helps for PAR-
ENTS, as in the Frank Zappa example from Section 2.1), whereas
others decrease it (e.g., CHILDREN hurts for PARENTS).

Query selection strategies. A heatmap as in Fig. 2 may be com-
puted for every relation (based on a training set of subjects for
which the ground-truth answers are known in Freebase) and may
subsequently serve as the basis for deciding which queries to send
to the QA system. Given a heatmap of query quality, the exact
choice of queries is determined by two factors.

First, we can decide how to pick templates from the heatmap.
One option is to act greedily, always picking the templates with
the largest values in the heatmap. Another option would be to add
some diversity to the queries. A simple way to do this is to sample
(without replacement) from the heatmap, by converting it to a prob-
ability distribution. A standard way to obtain such a distribution is
to pass the values through the softmax function:

Pr(q̄) ∝ exp(γ MRR(q̄)) . (1)

In the above equation, γ is like an inverse ‘temperature’ parameter,
which controls the degree of greediness. To set γ = 0 is to choose
templates uniformly at random, and as γ is increased, ever more
probability mass is shifted onto the highest-valued template.

Second, given γ, we can choose how many queries to pick. We
are interested in finding the number NR that optimally trades off the
advantages of many queries (more pieces of evidence) against those
of few queries (fewer false positives) when aggregation is done. In
practice, we run the full pipeline on the training set T R for a wide
range of values and choose as NR the value that yields the aggre-
gated answer rankings with the highest MRR (cf. Section 3.1.2).

An exploration of the effects of varying the degree of greediness
and the number of queries is presented in Section 3.

2.3 Question answering
In this paper, we use an in-house natural-language QA system.
Since the system is proprietary, we cannot give all the details, but
we outline the basic approach below (see also Paşca [14]).

Input. A search query that can be answered by short phrases.
It may be a natural-language question, such as who was Frank
Zappa’s mother, or a terser query, as in Frank Zappa mother Balti-
more (the latter is used as an example in this section).

Output. A list of candidate answer strings, ranked according to an
internally computed answer quality score.

Step 1: Query analysis. Find the head phrase of the query (mother).
When applying the QA system in our pipeline, we can set the head
phrase explicitly, as we generate the queries given a relation.

Step 2: Web search. Issue the input query to the search engine,
retrieving the top n result snippets, where n is a tuneable parame-
ter (we choose n = 50). Two snippets for the query Frank Zappa
mother Baltimore are reproduced in row 2 of Table 2.

Step 3: Snippet analysis. Score each phrase in the result snip-
pets with respect to how good an answer it is to the input query.

[no augmentation]

children

education

ethnicity

nationality

place of birth

profession

religion

siblings

spouses

na
m

e
of

 _
_'s

 fa
th

er

na
m

e
of

 _
_'s

 m
ot

he
r

who
 is

 th
e

fat
he

r o
f _

_

who
 is

 th
e

m
ot

he
r o

f _
_

who
 w

er
e

__
 p

ar
en

ts

__
 fa

th
er

__
 m

om

__
 m

ot
he

r

pa
re

nt
s o

f _
_

0.10

0.15

0.20

0.25

0.30

(a) PARENTS

[no augmentation]

children

education

ethnicity

nationality

parents

profession

religion

siblings

spouses

bir
th

pla
ce

 o
f _

_

bir
th

pla
ce

 _
_

wha
t c

ity
 w

as
 _

_
bo

rn
 in

whe
re

 d
oe

s _
_

co
m

e
fro

m

whe
re

 is
 _

_
bo

rn

whe
re

 _
_

was
 b

or
n

__
 b

irt
h

pla
ce

__
 b

irt
hp

lac
e

__
's

bir
th

pla
ce

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(b) PLACE OF BIRTH

Figure 2: Heatmaps for the (a) PARENTS and (b) PLACE OF BIRTH relations, capturing the performance (mean reciprocal rank; cf.
Section 3.1.2) of a number of query templates on the training set. Each combination of lexicalization template (horizontal axes) and
augmentation template (vertical axes) defines a query template. Brighter colors signify higher MRR, i.e., better performance.

Each phrase is represented as a vector of features, and the score is
computed as a weighted sum of these features, with weights fitted
ahead of time via supervised machine learning. For instance, Rose
Marie Colimore is a good candidate because it is contained in a
highly ranked snippet, is a noun phrase, has high inverse document
frequency, appears close to the query term mother, and is highly
related to the head phrase mother of the query (since both typically
appear in person-related contexts in large text corpora).

Step 4: Phrase aggregation. The same phrase may appear sev-
eral times across all snippets (e.g., Rose Marie Colimore appears
twice in row 2 of Table 2), and each instance is scored separately
in step 3. This step computes an aggregate score for each distinct
phrase, again via machine learning, based on features such as the
number of times the phrase appears and the average and maximum
values (over all instances of the phrase) of the features from step 3.

2.4 Answer resolution
For each query qi, the QA system returns a list Ai of answer strings,
but what we want is a list of entities Ei. For this, we use standard
entity linkage techniques, such as [6], which takes into account the
lexical context of each mention, and [7], which takes into account
other entities near the given mention, using joint inference. For
example, if we see the string Gail, it could refer to GAIL, a river in
Austria, but if the context is Zappa married his wife Gail in 1967, it
is more likely to be referring to the person GAIL ZAPPA (cf. Fig. 1).

Since we know the type of answer we are looking for, we can use
this as an additional constraint, by discarding all incorrectly typed
answer entities (e.g., THE MOTHERS OF INVENTION and MUSICAL
ENSEMBLE in Fig. 1).

2.5 Answer aggregation
After the answer resolution step, we have one ranking of correctly
typed answer entities for each query. But since, in general, we issue
several queries per subject–relation pair to the QA system, we need
to merge all of their rankings into a single answer ranking.

We adopt a simple yet effective approach, computing an entity’s
aggregate score as the mean of its ranking-specific scores. Assume
we asked the QA system NR queries q1, . . . ,qNR for the subject–
relation pair (S,R), resulting in NR rankings E1, . . . ,ENR . Let Ω be
the set of entities occurring across all these rankings. Each entity
E ∈Ω has a score in each ranking Ei, referred to as si(E); if E does

not appear in Ei, we set si(E) = 0. Now, E’s overall score s(E)
is computed as its average score across all rankings, i.e., s(E) =

1
NR ∑

NR

i=1 si(E). The answer entities Ω alongside the scores s define
the aggregated ranking E for (S,R).

This eliminates false positives that are ranked high in a single
ranking (e.g., RAY COLLINS in Fig. 1), possibly because the respec-
tive query was of low quality. On the contrary, entities appearing
in many rankings, but not necessarily on top, are generally ranked
high in the aggregate ranking, as they contribute fewer ranking-spe-
cific scores of zero (e.g., ROSE MARIE COLIMORE in Fig. 1).

2.6 Answer calibration
The goal of the answer calibration step is to turn the scores attached
to entities in the aggregate ranking into probabilities that tell us how
likely an entity is to be the true object. Such interpretable scores
are important if we want to make informed decisions on how to
act upon a proposed answer: whether we want to discard it imme-
diately; how we should prioritize it for validation by humans; or
what weight to give it in a knowledge fusion algorithm for merging
evidence from different fact extraction methods.

To map QA scores to probabilities, we apply logistic regression
to the QA scores (a standard technique called Platt scaling [16]);
the model was trained on an independent development set. We in-
vestigated more sophisticated features, such as the number of times
each entity appeared across multiple query responses, but this did
not seem to help. Note that multiple answers can be correct (e.g.,
people can have multiple parents and spouses), so the probabilities
do not sum to 1 across answers; rather, each individual calibrated
answer is a number between 0 and 1.

3. EMPIRICAL EVALUATION
Having described the full pipeline in Section 2, we now evaluate it.
We proceed by first introducing our test data and quality metrics.
Then, we evaluate our answer rankings, and last, we investigate the
quality and quantity of our final, probabilistic predictions.

3.1 Experimental setup

3.1.1 Training and testing data
For testing our method, we consider the 9 relations of Table 1. To
be able to train and test our method, we need to have, for each rela-

M
ea

n
re

ci
pr

oc
al

 r
an

k

Number of queries

1 2 4 8 16 32 64

0.
35

0.
40

0.
45

0.
50

0.
55

Greedy
Random
All

(a) SPOUSES

M
ea

n
re

ci
pr

oc
al

 r
an

k

Number of queries

1 2 4 8 16 32 64

0.
55

0.
60

0.
65

0.
70

Greedy
Random
All

(b) PLACE OF BIRTH

M
ea

n
re

ci
pr

oc
al

 r
an

k

Number of queries

1 2 4 8 16 32 64

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Greedy
Random
All

(c) NATIONALITY

Figure 3: Performance in terms of MRR for three representative relations (with bootstrapped 95% confidence intervals). For
performance and curve shape of the remaining test relations, cf. Table 3. The (logarithmic) x-axes show the number of queries fed
to the QA system. Solid red: Greedily selecting the query templates that perform best on the training set. Dashed black: Selecting
queries uniformly at random. Dotted blue: Selecting all available queries.

tion R, a number of subjects alongside the ground-truth objects they
are connected to by R. We obtain this ground truth from Freebase
by sampling subjects with known values for R.

Hereby, we make what we call the ‘local closed-world assump-
tion’: Assume Freebase has a non-empty set of objects O for a
given subject–relation pair (S,R). The local closed-world assump-
tion then posits that O contains all ground-truth objects for (S,R).

In selecting subjects, we restrict ourselves to the 100,000 most
frequently searched-for persons. We repeat the following stratified
sampling procedure twice, to construct (1) the training sets T R and
(2) test sets for each R: For each relation, consider only the subjects
(from the base set of 100,000 persons) for which the objects are
known. Divide this subject set into 100 percentiles (with respect to
frequency) and randomly sample 10 subjects per percentile, for a
total of 1,000 subjects per relation.

The rationale for restricting ourselves to the top 100,000 persons
was that such frequent entities tend to be of higher interest to the
general user, while at the same time, Freebase is still rather incom-
plete even in this regime (cf. Table 1). Also, it is important to note
that, although our base set encompasses only about 3% of Free-
base’s roughly 3 million person entities, most of them are likely to
be unknown to most users (for example, the tail of the top 100,000
contains persons such as BIRTHE KJÆR, a Danish singer, or MO-
HAMMAD-REZĀ LOTFI, a Persian classical musician).

We manually select 10 lexicalization templates for each relation.
As augmentation templates, we use 10 relations: our 9 test relations
(see above) plus RELIGION. Of course, when testing on relation R,
we are not allowed to use R itself for query augmentation, so there
are 10×(10−1) = 90 candidate templates per subject–relation pair
(not all of which can be necessarily instantiated for every subject,
since the relation specified by an augmentation template might not
be known for every subject).

3.1.2 Ranking metrics
Next, we introduce the ranking metrics used to quantify perfor-
mance. Consider a subject–relation pair (S,R) with the set O =
{O1, . . . ,On} of ground-truth objects, and assume we want to eval-
uate an entity ranking E . Let r1 < .. . < rn be the ranks of the
elements of O in E , in ascending order. The rank of elements of O
not appearing in E is defined as infinity. Then, the reciprocal rank
(RR) of E is defined as the reciprocal of the rank of the highest-
ranked true answer, i.e., as 1/r1. Averaging over several rankings

yields the mean reciprocal rank (MRR). The reciprocal of the MRR
is the harmonic mean rank of the highest-ranked true answers.

If the emphasis is on retrieving each, rather than any, true answer
from O, another useful metric is average precision (AP), defined
as 1

n ∑
n
i=1 i/ri. Averaging over several rankings yields the mean

average precision (MAP).
For both RR and AP, the best possible value is 1, and the worst

possible, 0. RR upper-bounds AP, and if n = 1 (e.g., because R is a
functional relation), RR equals AP.

3.2 Quality of answer rankings
We previously stated the intuition that issuing too many queries to
the QA system may be harmful because of the negative impact of
false positives (answers that get ranked unduly high), and that we
might counteract this effect by asking a smaller set of well selected
queries. The goal of the first part of this section is to show that this
is indeed the case, by evaluating different query selection methods.
In the second part of this section, we illustrate the effects of query
subselection in more detail by performing a more fine-grained anal-
ysis on a per-subject basis.

3.2.1 Subselecting queries for aggregation
We now perform an evaluation of the effects of subselecting queries
for aggregation. Recall that query selection is based on heatmaps
as in Fig. 2 (one per relation), which are computed in an offline
training stage and which quantify, for each template, how well it
performs on our set of 1,000 training subjects. Also recall from
Section 2.2 that we can act at different degrees of greediness when
selecting templates according to these heatmaps. Further, for each
greediness level, we can ask the QA system any number of queries,
up to the number of queries available for the input subject–relation
pair (around 90, cf. Section 3.1.1).

Fig. 3 explores these combinations of greediness level and num-
ber of queries asked. Each panel pertains to one relation and con-
tains one curve for each of two greediness levels: random in dashed
black (γ = 0 in (1)) and greedy in solid red (γ → ∞). The x-axes
show the number NR of queries, the y-axes, performance for the
respective combination of greediness and number of queries (mea-
sured as the MRR across all aggregate rankings, one ranking for
each of the 1,000 test subjects). Finally, the blue dotted horizontal
lines indicate the MRR achieved when aggregating over all avail-
able queries; i.e., if we extended the x-axes as far to the right as

Relation R MRR (NR) MRR (all) MAP (NR) MAP (all) NR Greedy-curve shape Closedness
SPOUSES 0.54 0.47 0.50 0.43 8 inverted U 0.010
PARENTS 0.33 0.28 0.25 0.22 8 inverted U 0.013
SIBLINGS 0.30 0.27 0.24 0.23 8 inverted U 0.015

CHILDREN 0.25 0.20 0.18 0.14 8 inverted U 0.018
PLACE OF BIRTH 0.71 0.67 0.71 0.67 8 inverted U 0.026

EDUCATION 0.83 0.82 0.78 0.77 32 diminishing returns 0.063
PROFESSION 0.58 0.58 0.47 0.46 16 diminishing returns 0.21

NATIONALITY 0.94 0.94 0.93 0.93 32 diminishing returns 0.24
ETHNICITY 0.78 0.77 0.76 0.76 32 diminishing returns 0.28

Table 3: Performance of our system on 9 relations. We show MRR and MAP for two query selection strategies: (1) greedily selecting
the optimal number NR of queries (corresponding to the highest values of the red curves in Fig. 3); (2) selecting all available queries
(corresponding to the horizontal lines in Fig. 3). We also show the closedness for all relations (cf. Section 3.2.1 for a definition).

possible, the curves for all greediness levels would necessarily con-
verge to the horizontal lines. For space reasons, we show plots for
three representative relations only, but the observations that follow
apply equally to the relations not shown in Fig. 3. The results for
all relations are summarized in Table 3.

Greedy is best. The reason we restrict the plots to the two ex-
treme greediness levels is that we found that intermediate levels lie
strictly in between: the more we explore, the more we approach
the performance of random selection. So the first observation is
that greedy query selection works best for all relations (for perfor-
mance metrics, cf. the MRR and MAP columns in Table 3).

Asking too many queries can hurt. As a second point, the greedy
(red) curves also reveal that performance depends on the number
of queries asked. In all cases, we do better by asking the QA
system more than one query. In some cases, it is best not to ask
too many queries, manifest in an inverted-U shape (SPOUSES and
PLACE OF BIRTH in Fig. 3, but also PARENTS, SIBLINGS, CHIL-
DREN). In these cases, we achieve the best performance by asking
8 queries. In other cases, asking more queries is always better,
manifest in a diminishing-returns shape (NATIONALITY in Fig. 3,
but also ETHNICITY, EDUCATION, PROFESSION). The columns
‘NR’ and ‘Greedy-curve shape’ of Table 3 summarize the shapes of
the greedy (red) curves for all test relations. While this table indi-
cates that NR is optimally chosen as 16 or 32 for the relations with
diminishing-returns curves, the MRR and MAP achieved for those
values is only marginally better than for NR = 8 (cf. Fig. 3(c)), so
we conclude that issuing NR = 8 queries is a good choice for all R.

Open vs. closed relations. Whether a relation exposes an inverted-
U or a diminishing-returns shape has to do with the answer type
it expects; e.g., SPOUSES expects an object of type PERSON, an
‘open’ type with a large number of instances. This means that there
are many potential false positives, and by asking more and more
queries of ever poorer quality, we introduce ever more of them into
the aggregate answer ranking, which makes the greedy (red) curve
decrease. On the other extreme, NATIONALITY expects objects of
type COUNTRY, a ‘closed’ type with only around 200 instances,
such that the number of potential false positives is very limited.

To put this intuition in numbers, we compute, for each rela-
tion, the number of unique answer entities contained in all rankings
across all subjects and queries. Similarly, we compute the number
of all unique ground-truth answers across all subjects and queries.
Dividing the second by the first number yields the fraction of all
distinct answers that are ever true answers (akin to the notion of
precision), which we refer to as ‘closedness’. The results of this
calculation are displayed in the ‘Closedness’ column of Table 3.
We see that the closedness is lowest for person-typed relations and

highest for the predicates ETHNICITY and NATIONALITY. The val-
ues are significantly larger for relations with a diminishing-returns
shape than for those with an inverted-U shape.

In conclusion, the answer to the question whether we can profit
from the robustness of aggregation without injecting too many false
positives is, Yes: by asking a small, well chosen fraction of all avail-
able queries, we do better than by asking a single query and at least
as well as by asking all available queries.

3.2.2 Subject-level analysis
To better understand the effects of aggregating the rankings result-
ing from multiple queries, let us consider Fig. 4. In these plots, each
column (x-value) represents one of 100 randomly sampled test sub-
jects. Within each column, there is one gray circle per query, with
the y-axis showing the corresponding RR (on a logarithmic scale,
i.e., values of 0 do not appear). The per-subject MRR is obtained
by taking column-wise averages, plotted as black dots. Subjects
are sorted on the x-axis in order of increasing MRR (such that the
black curve is descending by design). The blue crosses show the
RR when aggregating over all queries available for the respective
subject (around 90, cf. Section 3.1.1), while the red triangles show
the RR when aggregating 8 greedily chosen queries (since NR = 8
was found to be a good value in Section 3.2.1). That is, the average
of all black dots equals the value of the corresponding black curve
in Fig. 3 at x = 1; the average of all blue crosses equals the value
of the corresponding blue horizontal line; and the average of all red
triangles equals the value of the corresponding red curve at x = 8.

We investigate two representative relations. Fig. 4(a) shows the
results for NATIONALITY, a ‘closed’ relation (diminishing-returns
shape in Fig. 3) on which we do nearly perfectly (MRR 0.94, or
harmonic mean rank 1.1). Fig. 4(b) visualizes performance for
SPOUSES, an ‘open’ relation (inverted-U shape in Fig. 3) on which
performance, while still good (MRR 0.54, or harmonic mean rank
1.9), is well inferior to that on NATIONALITY.

We see that, in the case of NATIONALITY, aggregating all avail-
able queries (blue crosses, often occluded by the red triangles) is
very effective, to the extent that for nearly all subjects, the aggre-
gate ranking has an RR of 1 (for an MRR of 0.94 across all sub-
jects). That is, aggregating over all available queries achieves vir-
tually the same performance as if we chose the single best query
for the respective test input—which is, of course, impossible, since
we cannot know ahead of time which query will perform best (we
only have estimates from the training phase).

As Fig. 4(b) demonstrates, the SPOUSES relation is considerably
harder. While for about 40% of subjects, aggregating over all avail-
able queries (blue crosses) places a true answer at rank 1, there also
is a considerable number of subjects for which aggregating does

0 20 40 60 80 100

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

Subject

R
ec

ip
ro

ca
l r

an
k

Single queries
Mean over single queries
Aggregating all queries
Aggregating 8 greedy queries

(a) NATIONALITY

0 20 40 60 80 100

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

Subject

R
ec

ip
ro

ca
l r

an
k

Single queries
Mean over single queries
Aggregating all queries
Aggregating 8 greedy queries

(b) SPOUSES

Figure 4: Subject-level performance analysis (cf. Section 3.2.2).

not outperform random query selection (where blue crosses lie be-
neath black dots). Although for many of these subjects there is at
least one query for which a true answer gets rank 1 (gray circles),
blindly aggregating all queries (blue crosses) often cannot recover
it. The reason is that, among all available queries, there are many
of poor quality, which overwhelm the aggregate ranking with false
positives. In this case, more careful query selection helps: on aver-
age, the red triangles lie significantly above the blue crosses (MRR
0.54 vs. 0.46). In particular, note that several red triangles achieve
an RR of 1, while their blue-cross counterparts lie further below.

3.3 Quality of calibrated predictions
As motivated in Section 2.6, it is desirable to know for each answer
candidate how likely it is to be correct. Computing this probability
(also called confidence) is the goal of the answer calibration step.
In this section, we evaluate this step, followed by an analysis of the
number of high-confidence predictions our system makes.

Quality of answer calibration. We proceed as follows, for each
relation R separately. For each of the 1,000 test subjects for R, run
the full pipeline (using greedy selection of NR = 8 queries, which
was found to be near-optimal in Section 3.2.1), resulting in one ag-
gregate ranking with calibrated scores per subject. Consider the set
of all answer entities, across all subjects, and partition it accord-
ing to the calibrated scores. For partitioning, we divide the range
[0%,100%] into 20 buckets spanning 5% each. Under perfect cali-
bration, the fraction of true answers in each bucket should lie within
the range that defines the bucket.

Graphically, this translates to the following requirement. If we
plot the 20 probability buckets on the x-axis and the fraction of true
answers per bucket on the y-axis, we want the resulting curve to
lie as close to the diagonal running through the origin as possible.
Fig. 5 visualizes the results of this graphical test for the same three
relations depicted in Fig. 3. For these relations (and equally for the
ones not plotted) the diagonal is followed closely, which implies
that calibration works well.

Number of high-quality answers. Eventually, we are interested
in making a large number of high-quality predictions, since those
are the best candidates to be suggested for Freebase.2 We can get
an idea of the number of high-quality predictions by counting how
many predictions we make with high confidence. The results for
all 9 test relations are summarized in Table 4, which contains the

2In practice, all automatically extracted facts are screened by hu-
man raters before they are added to Freebase.

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

spouses

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

place of birth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nationality

Figure 5: Calibration results (with bootstrapped 95% con-
fidence intervals). Horizontal axes: Predicted probability,
binned in 20 buckets of width 5%. Vertical axes: Fraction of
positive examples in bucket.

numbers of facts extracted above different confidence thresholds.
Since our test set contains 1,000 subjects for each relation, a value
of 1,000 means that we predict one fact per subject on average with
a confidence above the respective threshold, a value of 100 implies
we predict one fact per 10 subjects, etc.

When evaluating the quality of answer rankings returned by our
method (cf. Table 3), we found performance to be lowest on CHIL-
DREN (MRR 0.25; for an explanation, cf. the discussion in Sec-
tion 5). However, we also only extract 8 facts with a confidence
above 50% for CHILDREN, so our system knows that its answers
are poor in this case, which is crucial for making the output action-
able. Our answer rankings are best for NATIONALITY (MRR 0.94),
which is reflected in high confidence values: we extract 366 facts
with a confidence over 90%, i.e., over one per three subjects.

For completeness, each number of extracted facts in Table 4 is
followed (in parentheses) by the fraction of facts that are correct,
such that multiplying the two numbers in each cell yields the total
number of correct facts for the respective confidence threshold.3

Precison and recall. Fig. 6 shows precision–recall curves (interpo-
lated [10]) for the three representative example relations (those also
shown in Figs. 3 and 5). These curves were computed for a single
ranking per relation, formed by listing all predictions for the rela-
tion (across subjects) in order of confidence. As expected, the curve
for NATIONALITY looks best: since it is a closed relation (cf. Sec-
tion 3.2), the impact of false positives is limited, and precision stays
high even as recall is increased. Further, PLACE OF BIRTH is more

3Sometimes we are too confident in our top predictions (e.g., for
PROFESSION, of the facts with a confidence above 90%, only 65%
are correct). But since human raters verify all facts before they are
added to Freebase, perfect precision is not our main concern.

Relation > 10% > 30% > 50% > 70% > 90% Novel
SPOUSES 1,395 (0.37) 518 (0.64) 293 (0.79) 160 (0.84) 67 (0.91) 14%
PARENTS 1,278 (0.21) 213 (0.48) 78 (0.63) 35 (0.63) 7 (0.57) 38%
SIBLINGS 958 (0.21) 168 (0.50) 66 (0.65) 22 (0.73) 2 (1.00) 19%

CHILDREN 753 (0.20) 62 (0.48) 8 (0.62) 0 (—) 0 (—) —
PLACE OF BIRTH 1,723 (0.38) 766 (0.57) 426 (0.62) 209 (0.67) 52 (0.73) 15%

EDUCATION 2,400 (0.44) 1,222 (0.66) 857 (0.74) 535 (0.78) 173 (0.82) 19%
PROFESSION 2,405 (0.31) 719 (0.53) 388 (0.62) 202 (0.65) 68 (0.65) 30%

NATIONALITY 1,747 (0.53) 1,061 (0.71) 748 (0.79) 557 (0.83) 366 (0.90) 15%
ETHNICITY 1,805 (0.44) 909 (0.63) 601 (0.70) 408 (0.75) 175 (0.85) 31%

Table 4: Numbers of facts extracted above different confidence thresholds, for 1,000 subjects per relation. Parentheses: Precision,
i.e., fraction of correct facts. The column labeled ‘Novel’ contains the percentage of facts extracted with a confidence above 70% that
are found by none of a collection of complementary methods (cf. Section 3.3).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

spouses

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

place of birth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nationality

Figure 6: Precision–recall curves. Horizontal axes: Recall. Ver-
tical axes: Precision.

closed than SPOUSES and achieves higher MRR and MAP (cf. Ta-
ble 3). Therefore, it is not surprising that the precision–recall curve
for PLACE OF BIRTH is more concave than for SPOUSES. Note,
however, that at low levels of recall, SPOUSES achieves higher pre-
cision than PLACE OF BIRTH, i.e., our most confident predictions
for SPOUSES are better than for PLACE OF BIRTH. This demon-
strates that, even if the quality of the uncalibrated answer rankings
for the average subject (which is what MRR and MAP capture) is
worse, there still is value in our overall top predictions across all
subjects when considering the calibrated answer scores.

Novelty of extracted facts. Finally, we compare the overlap of
the facts extracted by the present system with facts extracted by
our in-house state-of-the-art ‘push’ system [5] (which is similar to
Ji and Grishman [8]). Concretely, we consider the predictions we
make with a confidence above 70% and compute the fraction that
are not found by the conventional ‘push’ methods (also with a con-
fidence above 70%). The values range from 14% (SPOUSES) to
38% (PARENTS), with a mean of 23% over all 9 relations. (All val-
ues are listed in the right column of Table 4.) We conclude that our
‘pull’ method adds substantial value over existing ‘push’ methods.

4. RELATED WORK
Related work can be divided into three main areas: papers about
question answering (QA), papers about knowledge base completion
(KBC), and papers about using QA to solve the KBC task. We
briefly review each of these below.

The field of general QA has been popular for a long time. A mile-
stone was the introduction, in 1999, of a specialized track related
to QA into the annual competition held at the Text Retrieval Con-
ference [20]. Many systems in this competition, as well as our own
system, are based on the approach outlined by Paşca [14]. How-
ever, our focus is not developing better QA technology, but rather
addressing the issue of how to use such systems for KBC.

The KBC task has grown in popularity as a research topic af-
ter being introduced as an annual competition in 2008 to the Text

Analysis Conference [11]. Good summaries of the standard ap-
proaches to this task are given by Ji and Grishman [8] and Weikum
and Theobald [21]. Most of these methods process each document
in turn according to a ‘push’ model (cf. Section 1), extracting as
many facts as possible by using named-entity linkage and (super-
vised) relation extraction methods.

In this paper, we focus on a ‘pull’ model, whereby we try to re-
trieve individual documents to fill in specific facts, using QA tech-
nology. While this is a relatively new approach, there are some re-
lated works. The most similar is perhaps Kanani and McCallum’s
[9] work on using reinforcement learning to learn an optimal policy
for efficiently filling in missing values in a KB (they focus on filling
in the email address, job title, and department affiliation of 100 pro-
fessors at UMass Amherst). The actions available are to perform
one of 20 possible types of query (e.g., name, name + “CV”, name
+ “Amherst”), to download one of the n resulting Web pages, or to
extract one of the three relations from the page. By contrast, we
learn the value of each possible query formulation using a myopic
strategy; we always process n = 50 snippets resulting from search;
and we extract the values from each snippet independently.

OpenEval [17] focuses on classifying if a given subject–relation–
object triple is true or not, based on retrieved Web pages, whereas
we focus on returning all high-confidence object values for a given
subject–relation pair based on snippets. A further difference is that
OpenEval glosses over the distinction between entities and their
names, or mentions, which can cause problems due to synonymy.

Another related approach is ‘Conversing Learning’ [15]. Here,
the goal is to formulate natural-language questions about inference
rules (e.g., ‘Is it true that, if X and Y have children in common,
then they must be married?’) used by the NELL system [3], and to
pose these questions to Twitter and Yahoo! Answers, hoping that
humans will answer ‘yes’ or ‘no’ to the questions. By contrast, we
do not ask humans, but instead perform targeted Web searches, and
our questions are about specific facts rather than inference rules.

Finally, Byrne and Dunnion [2] formulate one query per subject–
relation pair, using manually constructed templates, and search a
small collection of documents to retrieve answers. By contrast, we
learn how to formulate the queries, and we search the entire Web.

5. DISCUSSION
The main goal of this paper is to present and evaluate an end-to-
end pipeline for knowledge base completion based on search-based
question answering. While it is fully functional and works well
on our evaluation data, many more improvements can be made.
The purpose of this section is to discuss the separate parts of the
pipeline, pointing out common failure modes and highlighting po-
tential directions for future work.

Query construction (Section 2.1). Several further kinds of aug-
mentation beyond appending known properties are conceivable. For
instance, we could add phrases that tend to co-occur with the cor-
rect answer on Web pages (e.g., the strings hospital or was born in
could help in queries for PLACE OF BIRTH). Also, when choosing
which properties to augment with, we could attempt to pick ones
that disambiguate between entities with similar names; e.g., when
the subject is called Michael Jackson (as in Table 2), appending the
value of PROFESSION is better than appending the value of GEN-
DER, since the latter is shared by the two ambiguous subjects, while
the former distinguishes them.

Another interesting idea for query augmentation would be to ad-
mit the exclusion operator when constructing queries. This could
provide a tool for explicitly reducing the number of bad snippets
retrieved by the QA system. For instance, snippets containing the
word music—most likely about Michael Jackson the singer rather
than the beer sommelier—would be avoided by the query Michael
Jackson birthplace –music.

Query selection (Section 2.2). Currently, query choice is done in
batch mode: for each relation R, we first choose a predetermined
number NR of queries and then feed them to the QA system all
at once. An alternative approach could follow a sequential rather
than a batch paradigm, asking one query at a time, and inspect-
ing the aggregated and calibrated ranking after each query. This
process could continue until the calibrated probabilities of the top-
ranked answers are high enough or the ranking has stayed stable
for a while. Such a setup would be more adaptive with respect to
the number of queries asked and could thus be potentially more
effective at avoiding to ask too many queries (cf. [9]).

Question answering (Section 2.3). It is a strength of our method
that it leverages powerful Web-search machinery for retrieving rel-
evant and up-to-date information that is independent of Freebase.
Nonetheless, in the evaluation (cf. Tables 3 and 4) it became clear
that our system works better on some relations than others. We have
already discussed the different properties of ‘open’ vs. ‘closed’ re-
lations (Section 3.2.1). Still, there remain effects that are not ex-
plained by this distinction. Consider, e.g., the relations SPOUSES
and CHILDREN, both expecting objects of type PERSON. Although
SPOUSES is arguably even more ‘open’ than CHILDREN (cf. Table
3, where SPOUSES has the lowest closedness), our performance is
considerably better for SPOUSES than for CHILDREN (MRR 0.54
vs. 0.25). Error analysis led us to conclude that the effect is due
to the QA system: result snippets that mention the subject’s chil-
dren often also mention their spouse, to the extent that, in some
cases, the spouse appears more often in the snippets than the chil-
dren themselves, so our QA system, which uses frequency of oc-
currence among its main features, may return the spouse in place of
the children. It is also problematic that children are less frequently
mentioned by name than other people the subject is related to.

We emphasize that we do not rely on the internal details of the
QA system, but merely require that it take a query string as input
and return a scored list of answer strings as output. Treating the QA
system in this black-box fashion means we can in principle replace
it with any QA system with the same input–output signature.

Answer calibration (Section 2.6). A fruitful addition, which could
also help mitigate the problem of SPOUSES vs. CHILDREN from the
previous paragraph, could be to inject world knowledge into the an-
swer calibration step; e.g., if we know from Freebase that Y is sub-
ject X’s husband, we would want the calibration model to learn that
Y is unlikely to also be X’s child. One way to enable this would
be to augment the feature vectors that serve as input to the calibra-

tion step by binary features indicating all known relations between
the subject and the candidate object. Then, the logistic regression
used for calibration could learn which relations are mutually exclu-
sive in Freebase (e.g., it could learn a large negative weight for the
SPOUSES feature of the model for the CHILDREN relation).

Head vs. tail entities. Our test subjects were carefully sampled
in a stratified manner, such that we are covering entities at all lev-
els of popularity (from our base set of the 100,000 most frequently
searched-for people; cf. Section 3.1.1). We originally hypothesized
that performance would be better for more popular subjects. How-
ever, we could not confirm this intuition in our experiments: when
ordering subjects according to popularity rather than MRR on the
x-axis in Fig. 4, no correlation between MRR and popularity could
be discerned. This is important for the following reason.

Recall that, to allow for automated evaluation, we sampled a
test set of subjects for which the ground-truth objects are known
in Freebase. Of course, for the system to be truly useful, it must be
run on subjects for which the object is presently unknown. How-
ever, we found that Freebase is less complete for unpopular than
for popular entities. Thus, and since there are more unpopular than
popular entities in Freebase, it is important that our method works
well on the less popular entities, too.

This being said, there are fundamental limits to any method for
automated knowledge base completion—including ours—, stem-
ming from the fact that many true facts are hard, or even impossible,
to find on the Web. For instance, Freebase lists ROSE MARIE COL-
IMORE as one of FRANK ZAPPA’s parents, and our Web-search–
based QA system successfully retrieves many documents that men-
tion this fact. But what if we chose ROSE MARIE COLIMORE as
the subject whose parents we want to find? Not only is the answer
unknown in Freebase, there currently are not even any Freebase
entities for Colimore’s parents. The reason is that the vast ma-
jority of information on Colimore—whether in Freebase or on the
Web in general—deals with her exclusively in her role as Zappa’s
mother and rarely discusses any other aspects of her life. As a con-
sequence, it is very challenging even for humans—let alone for au-
tomated knowledge base completion methods—to answer the ques-
tion who Colimore’s parents were. This means that, beyond finding
the answer, having it verified by humans is a difficult task, too.

6. CONCLUSIONS
This paper presents a method for filling gaps in a knowledge base.
Our approach is different from a number of prior projects in that
it follows a ‘pull’ model that attempts to find the missing objects
for a given subject–relation pair on demand, rather than as one of
many facts discovered during a full pass over a large corpus (which
we call a ‘push’ model).

Our system uses a question-answering system (as a black box),
which in turn takes advantage of mature Web-search technology
(also as a black box) to retrieve relevant and up-to-date text pas-
sages to extract answer candidates from. We propose an end-to-
end pipeline that lexicalizes subject–relation pairs to Web-search
queries, chooses a good subset of queries, performs Web-search–
based question answering, links candidate answer strings to Free-
base entities, aggregates the results from all queries, and finally
produces probabilistically scored rankings of answer entities.

We show empirically that choosing the right queries—without
choosing too many—is crucial, especially for relations with objects
from ‘open’ types with many instances (such as PERSON). Finally,
we demonstrate that, for several relations, our system makes a large
number of high-confidence predictions; e.g., we predict a national-
ity with a confidence above 90% for one in three test subjects.

7. REFERENCES
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.

Freebase: A collaboratively created graph database for
structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2008.

[2] L. Byrne and J. Dunnion. UCD IIRG at TAC 2010 KBP slot
filling task. In Proceedings of the 3rd Text Analysis
Conference (TAC), 2010.

[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka,
and T. Mitchell. Toward an architecture for never-ending
language learning. In Proceedings of the 24th Conference on
Artificial Intelligence (AAAI), 2010.

[4] K. Collins-Thompson, J. Callan, E. L. Terra, and C. L. A.
Clarke. The effect of document retrieval quality on factoid
question answering performance. In Proceedings of the 27th
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 2004.

[5] X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn,
N. Lao, T. Strohmann, S. Sun, and W. Zhang. Knowledge
Vault: A Web-scale approach to probabilistic knowledge
fusion. In submission, 2014.

[6] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin.
Entity disambiguation for knowledge base population. In
Proceedings of the 23rd International Conference on
Computational Linguistics (COLING), 2010.

[7] X. Han, L. Sun, and J. Zhao. Collective entity linking in Web
text: A graph-based method. In Proceedings of the 34th
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 2011.

[8] H. Ji and R. Grishman. Knowledge base population:
Successful approaches and challenges. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics (ACL), 2011.

[9] P. Kanani and A. McCallum. Selecting actions for
resource-bounded information extraction using
reinforcement learning. In Proceedings of the 5th ACM
International Conference on Web Search and Data Mining
(WSDM), 2012.

[10] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[11] J. Mayfield, J. Artiles, and H. T. Dang. Overview of the TAC
2012 knowledge base population track. In Proceedings of the
5th Text Analysis Conference (TAC), 2012.

[12] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek.
Distant supervision for relation extraction with an
incomplete knowledge base. In Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2013.

[13] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data. In
Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP
(ACL–IJCNLP), 2009.

[14] M. Paşca. Open Domain Question Answering from Large
Text Collections. CSLI Publications, 2003.

[15] S. Pedro and E. Hruschka. Conversing learning: Active
learning and active social interaction for human supervision
in never-ending learning systems. In Advances in Artificial
Intelligence–IBERAMIA. 2012.

[16] J. Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers. MIT Press, 1999.

[17] M. Samadi, M. Veloso, and M. Blum. OpenEval: Web
information query evaluation. In Proceedings of the 27th
Conference on Artificial Intelligence (AAAI), 2013.

[18] F. Suchanek, G. Kasneci, and G. Weikum. YAGO: A core of
semantic knowledge. In Proceedings of the 16th
International World Wide Web Conference (WWW), 2007.

[19] Y. Takaku, N. Kaji, N. Yoshinaga, and M. Toyoda.
Identifying constant and unique relations by using
time-series text. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning
(EMNLP–CoNLL), 2012.

[20] E. Voorhees and D. Tice. The TREC-8 question answering
track report. In Proceedings of the 8th Text Retrieval
Conference (TREC), 1999.

[21] G. Weikum and M. Theobald. From information to
knowledge: Harvesting entities and relationships from Web
sources. In Proceedings of the 29th ACM
SIGMOD–SIGACT–SIGART Symposium on Principles of
Database Systems (PODS), 2010.

