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. Summary 

As a result of the rapid development in computer science, rule based expert 

systems have entered the application of PC-systems. In connection with the 

research concerning SIMPLEXYS, a toolhox enabling the realization of real time 

expert systems, some debugging tools have been developed for proving the 

correctness of the knowledge base. One of these debugging tools, the semantic 

checker, has been completely revised, resulting in a checker which is capahle of 

systematically checking the rule base for logical completeness {lnd cOllsistency. 

This is done hy using a method, which is mathematically sound and generally 

applicable. 
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Faculty of Electrical Engineering, Eindhoven University of 
Technology, The Netherlands, 1990. 
EUT Report 90-E-240 

iii 



l'~ble of co~tenls 

l. Introduction 1 

2. Expert systems 2. 

2.1 Introduction 2 

2.2 Expert systems: a general approach 2 

2.3 Real time expert systems 4 

3. SIMPLEXYS real time expert systems 5 
3.1 History 5 

3.2 The SIMPLEXYS programming language 5 

3.2.1 Rule types and value assignment 6 

3.2.2 SIMPLEXYS logic 8 

3.2.2.1 Monadic operators 8 

3.2.2.2 Dyadic operators 9 

3.2.2.3 The History operator 9 

3.2.3.4 Priority of operators 10 

3.2.3 The SIMPLEXYS rule base 10 

3.3 The SIMPLEXYS Toolbox 10 

4. Debugging expert systems 13 

4.1 Introduction to expert system debugging 13 

4.l.1 Rule base debugging 13 

4.1.2 Data base debugging 16 

4.1.3 Inference engine debugging 17 

4.2 SIMPLEXYS expert systems debugging tools 17 

4.2.1 The rule compiler 17 

4.2.2 The semantic checker 18 

4.2.3 The protocol checker 20 

5. Designing a semantic checker 22 

5.1 Introduction ?" -"-

5.2 Propositional logic 22 

5.3 The semi-symbolic evaluator 27 

5.3.1 Quine's method 29 

5.4 The semantic checker 31 

5.4.1 The connectivity matrix 31 

5.4.2 Checking for logical completeness 33 

5.4.3 Checking for logical consistency 33 

5.4.3.1 Connict situations 33 

5.4.3.2 Redundancy 44 

5.4.3.3 Subsumption 46 

5.5 Conclusions 48 

iv 

, , 
_ t __ -.'"-,,, A..i~-,-~;Lf.o:--,~.~ -



6. Implementation of the semantic checker 

6.1 Introduction 

6.2 The abstract data structure Expression 

6.3 The semi-symbolic evaluator 

6.4 The method of Quine 

6.5 Conclusions 

7. Conclusions and future work 

References 

v 

49 
49 
49 
SO 
53 

54 

55 

56 
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An expert system is a software system which can provide expert problem solving 

performance in a specific competence domain, by exploiting a knowledge base 
and a reasoning mechanism. 
Expert system technology has developed very fast over the last decade and a huge 
number of application projects has been started. However. while an impressive 

and rapidly growing number of expert systems has been produced, the number of 
real time expert systems is still quite limited. In fact. the development of expert 
systems largely relies on empirical methods and is not supported by sound and 

general methologies. This particularly holds for testing the expert system. Expert 

systems are tested by observing their response in a great number of test cases. 
This, however, does not guarantee that the expert system is absolutely bug free. 

A better approach would be to systematically check the expert system. 
Expert system debugging is generally concerned with debugging the knowledge of 

the expert system. located in the knowledge base. Knowledge base debugging is 

one of the hardest tasks in expert system building. Knowledge base debugging 

could be facilitated if tools were available for systematically checking the 

knowledge base. These tools are, however, real hard to build because to debug 

knowledge you have to understand the meaning of the knowledge (semantics). 

Unfortunately. such tools cannot be built. 

What can. however. be built is a checker which understands logic. (n this paper 

the development of such a semantic checker. which is capable of understanding 

logic and deducing logical consequences is described. By using this checker the 
knowledge base can be checked for logical correctness and completeness in a 

systematic way; a step forward in knowledge base debugging. 
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2.1 Introduction 

When computers first emerged from the rapidly advancing electronics industry in 

the mid-1940s, they were perceived as being nothing more than very large and fast 

calculating machines. They were ideal for making tedious but simple calculations 

which otherwise would have demanded the labour of large teams. 
As storage capacity expanded, it became clear that the computer was capable of 

much more. Von Neumann, Turing and many brilliant pioneers had shown that 

not only could the computer store data, but it could equally well store, retrieve 

and modify instructions. This opened the door for rapid expansion in engineering 

design, information analysis and for research of all kinds. 

All this led to a new development in computer science: Artificial Intelligence. 

The main objective of AI is to develop computer programs that are capable of 

'human reasoning' or 'thinking '. According to Minsky, Artificial Intelligence is 

the science of making machines do things that require intelligence if done by 

humans. 

In the 1960s AI research focused on finding general methods for solving large 

classes of problems, through attempts to simulate the process of thinking. This 

approach appeared to be non-fruitful. The more classes of problems a single 

program could handle, the more poorly it performed on any particular problem. 

It soon became clear that the power of an AI program was mainly determined by 

the richness and pertinence of the knowledge it contained, not the way of 

inferencing. This valuable conclusion was used in AI research and crystallized in 

what has become to be known as expert systems. 

2.2 Expert systems: a general approach 

An expert system has been defined as a computer application that solves 
complicated problems that would otherwise require extensive human expertise. To 

do so it simulates the human reasoni ng process by applying specific knowledge 
and inferences [ Osterweil, 1983]. 

Thus it is a high performance special purpose system which is designed to capture 

and use the skill of an expert. 

Expert systems typically make use of knowledge relating to the domain in 

question. This knowledge is acquired from experts and refined in the light of 

experience. The collection of domain specific knowledge, composed of chunks of 

knowledge, is called the knowledge base. Often this knowledge is represented as 

rules and the knowledge base is then referred to as rule base. Rules are a natural 

formalism for capturing expertise and they have the flexibility required for 
incremental development. 
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A rule based expert system consists of three main components: 

1) The knowledge base / rule base 
It contains all the knowledge of the system, in the form of rules. 
These rules are often heuristics, rules of thumb. 

2) The database 
It contains specific information about the problem which has to be solved. 

3) The inference engine 
In addition to the rules in the rule base, a mechanism is needed for 
manipulating these rules in order to solve the problem given the data base. 
This is done by way of inferencing and the mechanism is referred to as the 
'inference engine'. 

USER 

t 
USER 
INTERFACE 

t 
INF~RENCE 

ENGINE 

• RULE INTERPRETER 
• CONTROL. STRATEGY 

KNOW1..EOGE DATA BASE 

B"E {WORKING MEMORy} 

• RUlES OR • SYSTEM ST.HUS' 
• FRAMES OR • INITIAL STATES 
• SEMANTIC NETS • PRESENT STATE 

ETC. • FACTS 

Figure 2.1 Block diagram of a rule based expert system 

Rule based expert systems have become familiar tools to solve complex problems, 
In this field of AI some successful results have already been achieved, for example 
the medical expert system NEOMYCIN [Hasling, 1984), which can be used by 
doctors for diagnosing certain infectious diseases and recommending appropriate 
drug treatment. 
Another well known example is DENDRAL [Feigenbaum, 1978], a program for 

identification of organic compounds by analysis of mass spectrograms. 
DENDRAL dates from 1965 but is probably one of the most successful expert 
systems ever built. 
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Figure 2.2 An illustration of DENDRAL 

Finding the molecular st,ucture using a mass spectrogram 

[From Mitchie, 1982] 

2.3 Real time expert systems 

Expert systems have been constructed for applications to a wide range of 

problems. For most of these systems, the time aspect is of minor importance. 

There are however real time applications for expert systems (process control, 

aerospace, robotics), where the system has to respond before a certain point in 

time (deadline). An expert system for these real-time problems must, by 

definition, be able to process incoming data sufficiently rapidly to meet the time 

constraints. The data must have been processed before new data is supplied. 

Conventional expert systems, often written in LISP, cannot be used for these 

purposes because they are too slow (they spend about 85 % of the time solely on 

searching for the right chunk of knowledge). An expert system that is capable of 

processing data quickly enough is called a real time expert system. 

Real time expert systems are, due to the speed aspect, hard to build. 

This explains why the quantity of literature on real time expert systems is not 

awesome and why just a few have been built. 

One of the most promising developments in this field started off as a project five 

years ago by the division of Medical Electrical Engineering of the Eindhoven 

University of Technology, under supervision of J.A. BJorn, and evolved to what is 

now called SIMPLEXYS. 

SIMPLEXYS is a contraction of Simple Expert Systems. The 'Simple' refers to 

the ease of using it, not the type of problems it can solve. 

SIMPLEXYS is a toolbox for designing real time expert systems, meant for 

control applications in the medical sector (e.g. patient monitoring). It can, 

however, also be used for other expert system applications, operating in a 
dynamical as well as in a static environment. 
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3.1 History 

SIMPLEXYS was not designed, it grew, out of a need [Blom, 1990]. 
The need arose when research was directed to the design of 'intelligent alarms' in 

anaesthesia. Conventional aiarms are clumsy at best, sometimes even useless. 

Performance had to be improved and this could be done by using an expert 

system. This expert system should, however, have some special features: 

1] Capable of operating in real time. 

2] Easy to use and understand, even for non-programmers. 

3] Compact enough to run on a Pc. 

4] Efficient, fast and above all reliable. 

S] Offer sufficient potentials to check correctness. 

Unfortunately, such a system was not available. Thus a new expert system had to 

be developed, to fulfil the requirements above. 

A special toolbox was created in order to facilitate development. This toolbox 

evolved to what is now called SIMPLEXYS : a toolbox for designing real time 

expert systems. SIMPLEXYS is written in Pascal, although a C version is also 
available. In contrast to LISP, Pascal is a very efficient programming language, 

producing fast executable programs in which no time is wasted on searching, thus 

making real time applications feasible. 

3.2 The SIMPLEXYS programming language 

In order to better understand the remainder of this text, the SIMPLEXYS 

programming language is introduced here. The material presented in this section 

is intended to serve as a review. For a thorough treatment of the subject, see 

[Blom, 1990]. These references can also be used to become more familiar with 

SIMPLEXYS in general. 

SIMPLEXYS is based on three-valued logic. A rule can either have the value 

TR (true), PO (possible or unknown), or FA (false). 

How rules are constructed in SIMPLEXYS is expressed by the following example: 

ADULT: 'The person is an adult' 

ASK 

THEN FA : CHILD 

5 
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The first line denotes the name of the rule (ADULT). Symholic names are used 

instead of numbers to improve readability. 
The second line states the rule type; in this case it is an ask rule. 

The third line is optional, but can be used as extra information, which becomes 
available as soon as the rule is assigned a value. In this case it states that if 

ADULT is true, then CHILD has to be false. 

3.2.1 Rule types and value assignment 

The collection of rules (rule base) can be converted into a semantic network. 

A set of junctions (the rules) are mutually connected. The connection represents 
the relationship between rules. There are two kinds of rules in SIMPLEXYS : 

1] Primitive lUles 
These rules are independent of other rules and get their value by some sort of 

direct assignment. 

2] Evaluation lUles 
These rules operate on a higher level and are dependent of other rules (either 

primitive or other evaluation rules). 

This can best be illustrated by an example: 

TIGER: 'The animal is a tiger' 

MAMMAL and CARNIVORE and TAWNY and BLACKSTRIPED 

If all of the 4 properties (mammal, carnivore, tawny, blackstriped) have the 

value TR (true), then the animal is considered a tiger. 

Rulel 

1 1 
Rule2 II RuleJ 

! I 
Rule4 

I 1 L 1 1 1 

/Rules! IRule6! IRule7! IRules! IRule9! 

Figure 3.1 Semantic network of lUles 

Rules 1 to 4 are evaluation lUles, lUles 5 to 9 are primitive niles 

Rules are evaluated only once in SIMPLEXYS. This is done in a recursive way. 

In order to determine the value of an evaluation rule, the values of the 
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constituent rules have to be obtained first. When these are evaluation rules 
themselves, evaluation is again in order. This recursive process ends when the 
primitive rules are reached. which get their value by direct assignment (Le. the 
result of a test, the answer to a question). This type of evaluation is called 
backward chaining. 

El :'rule El' 
PI and P2 

E2 :'rule E2' 
P3 or P4 

E3 :'rule E3' 
El and E2 and P5 

Figure 3.2 Evaluation of E3 using backward chaining 
E denotes evaluation rule, P primitive rule 

A rule can also be given a value by forward chaining: 

CAR :' The object is a car' 
ASK 
THEN GOAL: VOLKSWAGEN 

The combination then goal states that if CAR becomes true, rule 
VOLKSWAGEN should be evaluated. 

The collection of then/else/ifpo (if possible) is called thelses, and is used in 

combination with TR/PO/FA or GOAL (e.g. else tr, then goal, ifpo then fa). 
Powerful rule bases can be built by using forward- as well as backward chaining. 

Primitive rules are assigned a value in a way that depends on the type of the rule. 
In SIMPLEXYS five different primitive rules types are used : 

1] Fact rules (FACT), which have a constant and unchanging value (TR,PO,FA). 

2] Ask rules (ASK), which are given a value by asking the user (TR,PO,FA). 

The answer is entered by using the keyboard. 

7 



3] Test rules (TEST), used for testing data through Pascal interfacing. The result 

of the test is either TR, PO or FA. Test rules are useful in control applications. 

A special test rule is the binary test (BTEST), which can only result in TR or 

FA. 

4] Memo rules, used as memory, can only be given a value by other rules e.g. 

through a then tr. Memo rules can either be TR, PO or FA. 

5] State rules, denoting a context, assigned a value initially or via the protocol. 

State rules are either TR or FA, but never PO. For more details see 

[Lammers,1990]. 

In the next section the logic used in SIMPLEXYS will be discussed. 

3.2.2 SIMPLEXYS logic 

The logic used in SIMPLEXYS is very much like boolean logic. Boolean logic is 

easy to use and fast, which makes it suitable for real time applications. 

Opposed to boolean logic, SIMPLEXYS uses three-valued logic instead of two­

valued logic (TR/FA). The use of three valued logic can be justified by the fact 

that it agrees better with human reasoning, for not everything is TR or FA in the 

real world. Sometimes we just don't know and that is where the third value PO 

fits in. Possible is used whenever a rule is neither provably true or provably false. 

Expressions in SIMPLEXYS consist of two entities, propositions (also called 

variables) and operators. The operators are either monadic (one argument) or 

dyadic (two arguments). 

3.2.2.1 Monadic operators 

Simplexys has the following monadic operators: 

NOT R : The negation of R 

MUST R : R is guaranteed to be tlUe 

POSS R : No definite value can be found for R 

in which R represents a role of any type. 

Table 3.1 Troth table monadic operators 

x not x must x poss x 

TR FA TR FA 

FA TR FA FA 

PO PO FA TR 
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3.2.2.2 Dyadic operators 

SIMPLEXYS supports the following dyadic operators: 

AN~ UCAN~O~ UCO~ALT 

AND and OR are already known from boolean algebra. The difference between 
AND and UCAND is that the latter is evaluated unconditionally. In x AND y, Y is 
not evaluated if x equals FA; by using x UCAND y both will be evaluated. The 
same holds for OR and UCOR if x equals TR. 
The AL T operand is not known in boolean algebra. AL T stands for 'logically 
equivalent alternative'. In the expression x ALT y, Y is used as an alternative for x 
whenever the value of x cannot be determined (x has the value PO). The 

arguments of an AL T operator may never take on opposite values, for they have 
to be logically equivalent. 

Table 3.2 Truth table dyadic operators 

7 TIl FA PO 7 TIl FA PO 7 TIl FA PO 

x • • 
TIl TIl FA PO TIl TIl TIl TIl TIl TIl 00 TIl 

FA FA FA FA FA TIl FA PO FA 00 FA FA 

PO PO FA PO PO TIl PO PO PO TIl FA PO 

ud/ucaad 

3.2.2.3 The History operator 

Each rule has a history counter, which contains the period, in seconds, during 
which its value has remained unchanged. Thus we are able to answer questions 
like 'how long has rule x been true ?'. 
History operators are used as follows: rule history-op (numerical expression) 
For example, the value of the expression 

HIGHBLOODPRESSURE > (120) 

is true if the blood pressure has been high for more then 120 seconds. 
Six history operators can be used in SIMPLEXYS : 

= equal < > 
> greater than > = 
< less than < = 

not equal 
greater than or equal 
less than or equal 

One application of history operators is, that rules can be used to detect stable 
situations. 
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3.2.2.4 Priority of operators 

In SIMPLEXYS, history operators have the highest priority, followed by the 

monadic operators (which all have tbe same priority) which again have higher 

priority than the dyadic operators (which all have the same priority too). 

Priority however can be forced in SIMPLEXYS by using parentheses: 

( X and Y ) or (not Z and (U alt V» 

Parentheses should be used whenever one is not sure about the correct priority, to 
prevent an incorrect evaluation. 

Note that in boolean logic the priority of the AND is usually taken to be higher 

then the OR. This is not the case in SIMPLEXYS. 

3.2.3 The SIMPLEXYS rule base 

In the previous section the SIMPLEXYS programming language syntax was 

discussed. Rules in the rule base have to be expressed according to this syntax. 

The rule base however is composed of more than just rules; in fact the rule base 
consists of up to 7 sections, each indicated by a special keyword: 

1] DECLS 

2] INITG 
3] INITR 

4] EXITR 

5] EXITG 

6] RULES 

: Declarations 

: Global initializations 
: Run initializations 

: Run exit code 

: Global exit code 

: Rule definitions 
7] PROCESS : Protocol, describing the dynamics of the system. 

The first 5 sections are optional, section 6 and 7 are mandatory. 

Use and function of each section will only be discussed if relevant for this 
document. 

3.3 The SIMPLEXYS Toolbox 

Once the rule base has been created, it has to be linked with the inference engine 

to obtain a working expert system. Conversion from rule base to expert system is 

done by the SIMPLEXYS Toolbox. This toolbox does three things: 

1] It converts the rule base into an appropriate form for the inference engine. by 
using a rule compiler. 

\0 



2) It checks the rule base for correctness and completeness. 
This is an very important aspect, for errors in the rule base will lead to 
erroneous behaviour of the expect system which of course is unacceptable. 

3) It builds the expert system by linking the (compiled) rule base with the 

inference engine. 

These three aspects are incorporated in the following six tools which together 

form the SIMPLEXYS toolbox: 

RULE BASE r- ruses .qqq 

f- rinfo.qqq 

r I- nest .qqq 

RULE COMPILER I f- rdodo.qqq 

f- rinex .qqq 

r SEMANTIC CHECKER 1 L... rhist.qqq 

I 

I PROTOCOL CHECKER 1 
I 

r OPTION GENERATOR I 
roptions.qqq 

I 

I INFERENCE ENGINE 1 

1 ~ I Tracer / Debugger 
EXPERT SYSTEM 

Figure 3.3 The SIMPLEXYS toolbox 

1] The rule compiler 

The rule compiler translates the rule base into an internal representation of six so 
called qqq-files : 

1) rinfo.qqq : Contains all the arrays and tables used for representing the 

rules and their mutual connectivity. 

2) rtest.qqq : Contains all the test sections defined in the test rules. 

3) rhist.qqq : Contains the information about the history sections. 

4) rdodo.qqq : Contains the collection of DO sections used in the rule base. 

5) rinex.qqq : Contains the initialization sections and exit sections. 

6) ruses.qqq : Contains the Turbo Pascal units used by the rule base. 

11 



The compiler also checks for the following syntax errors and some very simple 

semantic errors: 

- mistakes in rule constructions. 

- duplicate rule names. 

- internal overflow. 

- unconnected rules. 
- incomplete rule set. 

- no state rule initially true. 

2) The semantic checker 

The semantic checker performs several semantic checks and generates 

appropriate messages if errors are detected. Semantic checking is a 

powerful tool for (partially) proving rule base correctness. 

3) The protocol checker 

The protocol checker is used for detecting errors in the process description part 

or the protocol. Protocol checking is done quite extensively and covers syntax, 

topology, as well as dynamic errors. For more details see [Lammers, 1990). 

4) The option generator 

With the option generator several run time options can be selected for the 

inference engine. 

5) The inference engine 

The SIMPLEXYS inference engine actually builds the expert system by 

combining the output of the rule compiler with inference processes into one 

program. In this phase the Pascal compiler checks the Pascal sections for 

correctness. The expert system is now ready to run. 

6) The tracer/debugger 

The tracer/debugger is a tool to examine the inferencing process of the expert 
system while it processes symbolic information. The tracer/debugger can be 

used after the expert system has been built. 

For more details see [Philippens, 1990). 

A rule base that passes step 1 to 5 can be converted into a working expert system. 

This however does not necessarily mean that the expert system will function in a 

correct fashion. There might still be bugs in the system, undetectable (yet) for the 

SIMPLEXYS toolbox. 

Finding these bugs and fixing them is called debugging and will be discussed in 
the following chapter. 

12 
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4.1 Introduction to expert system debugging 

Expert systems are used for various applications. Some of these applications even 
involve critical decision making, where the user totally relies upon the judgement 
and competence of the system. Therefore expert systems have to be absolutely 
fail-safe; they may never give an incorrect solution or recommend an erroneous 
course of action. 

Unfortunately expert systems are developed by humans, and humans make 
mistakes, which implies that expert systems can make mistakes too. Checking for 
erroneous behaviour of the system and fIXing it is called debugging and is one of 
the hardest tasks in expert system development. 

One way of debugging an expert system is by observing the system's behaviour in 
a great number of test cases. Although this is an essential part of testing the 
expert system, it will never guarantee that all bugs will be detected (unless of 
course the amount of test cases is exhaustive). 
Reliability can be improved by using debugging tools (programs especially 
designed for detecting certain kind of bugs), which check the expert system 
systematically. 

Debugging tools are much more powerful than test cases; systematically checking 
enables them to detect all the bugs (of the kind in question) in the system. 
Unfortunately debugging tools can only be realised for certain kinds of bugs. 
Debugging should therefore incorporate both, debugging tools as well as test 
cases, to achieve maximal reliability. 

Debugging rule based expert systems can be divided into three parts : 

1) Rule base debugging 

2) Data base debugging 

3) Inference engine debugging 

Each part will be discussed; the emphasis, however, is on rule base debugging. 

4.1.1 Rule base debugging 

The rule base represents the knowledge of the expert system; therefore rule base 
debugging is equivalent to knowledge base debugging. Knowledge base debugging 
can be better understood if we know how the knowledge is acquired. 
Knowledge for an expert system is acquired from one or more experts in the 
domain. Gathering and organizing the knowledge into a appropriate form is the 

job of the knowledge engineer {Frenze~ 1987J. 
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A knowledge engineer is a unique individual. That person is not an expert in the 

domain of the expert system, but is capable of understanding the domain and 

learning the problem solving process within it. A knowledge engineer knows and 

understands expert systems and can take knowledge in its various forms and 
convert it into rules appropriate for the expert system. Knowledge engineers are 

scarce, but they are absolutely essential to the creation of an expert system. This 
is particulary true for medium to large expert systems. 

The first task of a knowledge engineer is to find a person who is an expert in the 

domain. Next thing to do is extracting the knowledge from the expert. This is 

done by interviewing. Obviously in most cases one interview is not enough. In fact, 

the knowledge acquisition process generally will take many weeks or even months. 

The knowledge engineer will conduct a series of interviews with the expert, while 

defining the scope of knowledge, identifying the kind of problems being solved 

and determining the knowledge and approaches required to solve them. These 

sessions will be of the question - answer type. 

Another approach is to present the expert with one or more problems to solve. 

Given the problem, what does the expert think and do to solve it? The knowledge 

engineer must try to get at the thought process to determine what information is 

required to solve the problem and how that information is related to the 

knowledge the expert has. 

There is usually a specific sequence of information processing and problem 

solving. Important to remember in interviewing an expert is that most experts do 

not truly fully understand how they go about solving their problems. In fact it has 

been said that the better the experts, the less they know about their actual 

problem solving technique. Superior experts have years of experience and in-depth 

knowledge about the domain and the problem solving process is a natural, 

integrated thing that is difficult to uncover. The danger in interviewing experts is 

that you will force them to think of the problem solving process they use. They 

probably do not understand it themselves but they will attempt to give some 
approach or sequence. The knowledge engineer will accept this but must examine 
it sceptically. 

Once the knowledge engineer has gathered enough information, he can start 

organizing it, make sense out of it, and ultimately convert it into rules. 

Conversion of knowledge into rules is a complex and time consuming task. There 

is no general approach to use, although some guidelines can be given. Subdividing 

the knowledge into smaller parts, so-called chunks of knowledge, can for instance 

make things easier for the knowledge engineer. Step-wise development of the 

knowledge base is another good idea; catching errors is always easier in the early 

development stages. 

Five types of problems explain most of the errors in rule base construction: 

1/ The expert neglected to express IUles to cover all the special cases that arise. 

2/ The knowledge engineer's interpretation of the expert's knowledge is 

erroneous. 

3/ The knowledge engineer overlooked some of the expel1's advice. 
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4J Some of the knowledge could not be expressed in the form of rules. 

5 J Syntax errors like misspelled words, illegal rule construction or handwriting 

slips. 

Keeping this in mind while constructing a rule base will probably result in fewer 
errors. 

KNOWLEDGE 

EXPERT 

t 
FEEDBACK 

Figure 4.1 Knowledge acquisition 

I KNOWLEDGE ENGI NEER I 

I 

The next step to foUow is debugging the rule base. This process involves testing 
and refining the rule base in order to discover and correct a variety of errors that 
can arise during the knowledge acquisition phase. 

Regardless of how an expert system is developed, its developers can profit from a 

systematic check on the rule base. This can be accomplished by a program that 
checks the rule base for completeness and consistency during the system's 
development. 

Checking for completeness 

Incompleteness of the knowledge is the result of missing rules. If rules are missing 
then a situation exists in which a particular inference is required, but there is no 
rule that succeeds in that situation and produces the desired conclusion. In other 
words: Does the rule base contain all the rules needed to produce the desired 
conclusions? 
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The program that must check the rule base has, in general, no knowledge of the 

problem domain and is not capable of checking the semantics in the rule base. 

Therefore such a program cannot guarantee a completely correct rule base; it can 

only improve our confidence in a correct behaviour. 

Checking for consistency 
When knowledge is represented in rules, inconsistencies in the rule base appear 

as follows: 

1) Conflicts: A conflict occurs when two or more rules succeeding in the same 

situation give conflicting results. This situation can lead to inconsistent or even 

erroneous behaviour of the expert systems. 

2) Redundancies: Redundancy occurs when two or more rules succeed in the 

same situation and give the same results. Although this case normally does not 

cause erroneous behaviour, it points out that the knowledge base can be 

simplified. 

3) Subsumption : Subsumption occurs when two or more rules have the same 

results, but one contains additional restrictions on the situations in which it will 

succeed. In some situations this will lead to redundancy. 

Of the three types of inconsistency described above, only conflicts are guaranteed 

to be true errors. In practice, redundancy and subsumption may not cause 

problems. Nevertheless, it may be interesting to find redundant rules or 
subsumptions, because they usually indicate an implementation error, or otherwise 

they points out that the rule base can be simplified. 

Once the rule base has been debugged and put into its final form, it can be used 

for building an expert system. However, its development does not end here. Most 

domains are dynamic and new knowledge must be added constantly. This means 

that the rule base has to be modified. Usually new rules will be added,while old 

rules will be deleted or modified. Maintenance and updating are however 

dangerous, because new rules may lead to conflicting situations in a rule base. 

This is often the case if maintenance and updating is done by several people. A 

rule base which has been modified should therefore be tested again for 

completeness and inconsistency to ensure correctness. 

4.1.2. Database debugging 

Another important part of an expert system is the data base. The data base 

contains all specific information about the problem to solve. Data base debugging 

however is not concerned with the expert system itself, but with errors in the 

problem definition. A problem that is not well defined, will lead to an incorrect 

solution. Therefore special attention should be paid to formulating the problem 

and converting it into an appropriate form for the expert system. The same holds 

when consulting a real expert; if you cannot define your problem properly, he will 
most likely give an incorrect answer. 
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Most of the problems in expert systems, though, are caused by an incomplete or 
incorrect problem definition. This is, however, a user's problem, not an expert 
system's problem, and therefore it should be solved by the user. 

4.1.3. Inference engine debugging 

The inference engine uses the knowledge stored in the rule base to solve the 
problem given in the data base. Now assume that the rule base is correct and 
complete and the problem in the data base is well defined. Then the inference 

engine should come up with the right solution. I say 'should' because the inference 
engine may contain some bugs, leading to incorrect inferences and thus inaccurate 
solutions. Bugs in the inference engine however can easily be traced because the 
inference processes can be described mathematically. 

Regarding the problem of debugging expert systems, we may conclude that rule 
base debugging is the most important one and also the most difficult one. 
Bugs in the inference engine can easily be detected by using common sense and 
applying logic, while bugs in the rule base are harder to trace. 

In the next section we will discus the debugging tools designed for SIMPLEXYS. 

4.2 SIMPLEXYS expert systems debugging tools 

The SIMPLEXYS toolbox is equipped with several debugging tools: 

4.2.1 The rule compiler 

Apart from compiling the rule base the rule compiler also performs the following 

checks on the rule base: 

• There are no rules. 
• There are no STATE rules. 

• illegal rule syntax. 
• duplicate rule names. 
• no STATE rule is INITIALLY TR. 
• There are no ON statements. 

• A FROM or TO list contains a non STATE rule. 
• A rule is unconnected (in no way used by other rules). 

• Incomplete rule set; a rule is needed for evaluation but has not been defined. 

These checks are, although very simple, qui te useful. Many of the common errors 

in the rule base are detected by the rule compiler. 
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4.2.2 The semantic checker 

The SIMPLEXYS semantic checker performs several semantic checks on the rule 

base by using the information stored in rinfo.qqq. The six semantic errors checked 
by this program are : 

I] Self referencing evaluation loops : 

RI : PI and P2 and P3 and Rl 

Figure 4.2 A self-referencing evaluation loop 

Whenever a rule is part of its own evaluation expression, evaluation is never­

ending. Loops will seldomly occur in a rule base, but they can be hidden by the 
extent of the rule base. 

2] Thelses loops: 

then fa then tr 

R 1 then tr R2 R2 thcn fa R I 

Figure 4.3 A thelse loop 

Thelses can also form loops. In this example a conflict occurs: If rule R 1 

evaluates to true then rule R2 becomes true, thus setting R 1 to false (opposite 
assignment). 
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3] Conflicting thelses .' 

then fa then tr 

RI then tr R2 Rl then fa R2 

Figure 4.4 Conflicting thelses 

We get a conflict if we try to make a rule true and false at the same time. 

4] Tlzelses to successor .' 

RI : (PI and P2) or R2 
RI then tr R2 

Figure 4.5 Tlzelses to successors 

I 

Rule RI uses rule R2 for its evaluation and does a then tr to it. This may result in 

a conflict (Le. if PI=tr, P2=tr, R2=fa). 

Note: There will be no conflict if the rule is a memo, because an assignment to 

a memo rule is postponed to the start of the next run. State rules are syntactically 

forbidden in such constructs. 
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5] Thelses to predecessors: 

RI : PI and P2 and R2 

R2 then tr Rl 

Figure 4.6 Thelses to predecessOl~' 

Rule R I uses rule R2 for its evaluation and R2 does a then tr to R 1. This may 

result in a conflict (i.e. if PI = fa, P2=fa, R2=tr). 

6] Unconnected non-STATE rules: 

A warning will be generated if a certain rule is in no way used in the process: 

• The rule is not used in any evaluation. 

• The rule is not thelsed by any rule. 

• The rule is not a trigger rule. 

4.2.3 The protocol checker 

The protocol checker is designed for detecting errors in the process description 

part or the protocol of the rule base. It checks the protocol on three different 
types of errors: 

I} Syntax errors: 

- No start states; no rules are initially tr. 

- No end states; no ON statement has an empty TO list. 

- Conflicts at states; two transitions have equal FROM lists and the same 
trigger. 

- Empty prestate; each state must be in at least one TO list. 

- Empty poststate; each state must be at least one FROM list. 

2} Topology errors: 

- Self loops; the FROM list and the TO list of an ON statement are not 
disjunct. 

- Identical ON statements; two ON statements have the same FROM list and 
the same TO list. 
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- Identical states. 
- Net part not connected to start state. 
- Net part not connected to end state. 

3/ Dynamic errors; 

- Deadlock; there is a firing sequence resulting in a context where no further 
change of state is possible. 

- Non safe state; a non safe state is a state that becomes true due to firing of a 
transition while that state was already true before firing. 

- System cannot stop; there is no firing sequence making only end states true. 
- Not all transitions can fire at least once. 
- Conflicts; conflicts arise when the FROM lists have a non empty 

intersection. 

Protocol checking is quite extensive and one has to be familiar with Petri-nets to 

understand it. This will not be discussed here; for more details see 
[Lammers, 1990). 

The three knowledge base debugging-tools discussed here (rule compiler, 
semantic checker, protocol checker), have been proven to be very useful. 
The semantic checks, however, are very limited. The semantic checker can, 
however, become the most valuable tool in debugging, if properly expanded. 
In the following chapter such a semantic checker, with a much better 
performance, will be discussed. 
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5.1 Introduction 

As we saw in the previous chapter, many errors can arise in the process of 

transferring expertise from a human expert to a rule base. It is therefore very 

important to check the correctness of the rule base. Unfortunately no formal 
mathematical methods are available to analyze the deep knowledge of the rule 

base. Nevertheless we would like to have a tool to check the rule base for 

consistency and completeness. Not many of these tools are available, and when 

they are, their quality is not always adequate. 

The same holds for the semantic checker. It can handle only a few conflict 

situations and the overall performance could be improved. 

How well a semantic checker can perform depends upon the structure of the rules 

themselves and the rule base as a whole. What we would like to achieve is that 

the semantic checker checks for consistency hy not only checking for conflicts, but 

also for redundancy and subsumption. The SIMPLEXYS language used in the 

rule base offers enough potential to make this feasible. A true semantic checker 

can however never be built, for 'semantics' refers to the meaning of the rule and a 

checker will never be able to 'understand' the rules. 

What we can do, is to make the semantic checker 'logically understand', thus 

restricting correctness checking to checking for logical completeness and consistency 

of the rule base. 

In practice, however, checking for logical correctness is almost equal to checking 

for correctness because the rule base is logically constructed. 
Logical correctness checking can be done if the semantic checker understands 

logic and is able to make logical deductions. 

Propositional logic describes the relationship between logic and the way how rules 

are represented and some insight in to proportional logic could be useful for 

designing a semantic checker that understands logic. Therefore this topic will be 

discussed in the next section. . 

5.2 Propositional logic 

Logic, which was one of the first representations schemes used in AI, has two 

important and interlocking branches. The first is consideration of what can be 

said, what relations and implications one can formalize. These are called the 

axioms of the system. The second is the deductive structure, the rules of inference 
that determine what can be inferred if certain axioms are taken to be true. 

Logic is quite literally a formal endeavour; it is concerned with the form, or 

syntax, of statements and with the determination of truth by syntactic manipulation 

of formulas. The expressive power of a logic-based representational system results 

from incremental development. One starts with a simple notion (like that of truth 

or falsehood) and, by inclusion of additional notions (like conjunctions and 

predication) develops a more expressive logic; one in which more subtle ideas can 
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be represented. The SIMPLEXYS rule base is also built in this manner. 
The most fundamental notion in logic is that of truth. A properly formed 
statement or proposition has one of two different possible truth values TRUE or 
FALSE (Note: In SIMPLEXYS another value is allowed: PO , but the influence 
of this will be discussed later). 
Typical propositions are Bob's car is blue, John is Mary's uncle or the patient is not 

breathing. Note that each of the sentences is a proposition, not to be broken down 
into its constituent parts. Thus. we could assign the truth value TRUE to the 
proposition John is Mary's uncle with no regard for the meaning of John is Mary's 

uncle, that is that John is the brother of one of Mary's parents. 
Propositions are those things that we can call TRUE or FALSE. Terms such as 
Bob's car, breathing would not be propositionals, as we cannot assign a truth value 
to them. Pure disjoint propositions are not very interesting. Many of the things we 

say and think about can be represented in propositions that use sentential 

connectives to combine simple propositions. 
There are five commonly employed connectives : 

AND 1\ 

OR V 
NOT ., 

IMPLIES 
EQUIVALENT • 

The use of the sentential connectives in the syntax of propositions brings us to the 

simplest logic. propositional calculus, in which we can represent statements like the 

patient needs respiration or if the blood pressure is to high then increase SNP flow. If 

X and Yare any two propositions then: 

X A Y is: TRUE if X is TRUE and Y is TRUE; otherwise X A Y is FALSE. 

x V Y is : TRUE if either X is TRUE or Y is TRUE or both; otherwise FALSE. 

"X is: TRUE if X is FALSE, and FALSE if X is TRUE. 

X - Y is : TRUE if Y is TRUE or X is FALSE; otherwise FALSE. 

X • Y is: TRUE if both X and Yare TRUE, or both X and Yare FALSE; 

otherwise FALSE. 

The following table summarizes these definitions. 
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Table 5.1 Truth table of some connectives 

x Y X/\y XVY X-V X-Y "X 

T T T T T T F 

T F F T F F F 

F T F T T F T 

F F F F T T T 

From syntactic combination of variables and connectives, we can build sentences 

of proportional logic, just like tbe expressions in human language. Some typical 

sentences are: 

(l)X - (Y ;1Z)) • ((X - Y);1 (X -Z)) 

(2) ,(X V Y) • ,(, X ;1 ,Y) 

(3) (X;1 Y) V(,Y;1Z) 

Sentence 1 is a tautology; it states, 'Saying X implies Y and Z is the same as 

saying that X implies Y and X implies Z'. Tautologies are very special because 

they are always true no matter what propositions are substituted for X, Y and Z. 

This can be compared to the sentence 'Tomorrow it will rain or it will not rain', 

logically represented by (X V ., X). 

We do not have to wait for tomorrow to say that the sentence is true; we are able 

to say that it is true beforehand. This is the strength of tautologies; the actual ' 

values of the propositions do not have to be known to assign a truth value to the 
sentence. 

Sentence 2 is a contradiction. No matter what assignment of values is used, the 
sentence is always false. 

Sentence 3 is neither a tautology nor a contradiction, we have to know the values 
of X, Y and Z to determine its truth value. 

Using tautologies and contradictions seems to be absurd but they are very useful 

for checking the rule base, as we will see later on. 

In propositional calculus, we also encounter the first /Ules of inference. An 

inference rule allows the deduction of a new sentence from previously given 

sentences. The power of logic lies in the fact that the new sentence is assured to 

be true if the original sentences were true. The best known inference rule is 

modus ponens. It states that if we know that X is TRUE and we know X-V then 

we know that Y is TRUE. For example, if we know that the sentence John is an 

uncle is true and we also know that all uncles are male then we can conclude that 
John is a male. 
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The SIMPLEXYS language used in the rule base is quite similar to propositional 
calculus. We can therefore apply theorems of the propositional calculus to the 

rule base. 

Table 5.2 Theorems in propositional logic 

(1) X-V = -'XVY 

(2) X·Y = (X-Y)t\(Y-X) 

(3) X·Y = (-'XVY)t\( -'YVX) 
(4) -'-'X = X 
(5) Xt\Y = Yt\X 
(6) XVY = YVX 

(7) -'(Xt\Y) = -'XV-.y 

(8) -'(XVY) = -'Xt\-.y 

ad 1 : This can be verified by examining the truth table 

Table 5.3 Truth table of (X - Y) and ( ~X VY) 

X Y ( X - Y) (-'Xt\Y) 

T T T T 

T F F F 

F T T T 

F F T T 

ad 2 : X is equivalent to Y if X implies Y and Y implies X. This can be verified 

by examining the truth table. 

ad 3 : This directly follows from (1) and (2). 

ad 5,6 : The commutative law. 

ad 7,8 : De Morgan's laws. 

We will conclude this paragraph with some important definitions and theorems, 

which will later be used for proving consistency of a knowledge base. 

Definition: A sentence is said to be a tautology if and only if it is true under all 

interpretations. 
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Definition: A sentence is said to be a colllradictiol1 if and only if it is false under 

all interpretations. 

Theorem 1 : If two sentences. X and Y. are logically equivalent then ( X R Y ) is 

a tautology. (Proof by definition). 

Theorem 2 : If a sentence X implies another sentence Y then ( X - Y ) is a 

tautology. (Proof by definition). 

Theorem 3 : If a sentence. containing only the connectives 1\, V", is a tautology or 

contradiction then at least one of the propositions in the sentence 

has to occur in a positive sense as well as a negative sense. 

Proof 

A term occurs in a negative sense when it is part of a not expression 

e.g. not (PI and P2), where both PI and P2 occur in a negative 

sense. 

Lets assume that each proposition ( P, Q, R, S, V, .... ) in the sentence E occurs in 

a positive sense or in a negative sense. but not both. then theorem 3 states that E 

cannot be a tautology or contradiction. 

Proof a : E cannot be a tautology 

The sentence E can be written as E ( P, Q. ' R, S. ' V •... 1\, V ). 

Now without loss of generality we may assign the value false to the propositions 

occurring in a positive sense and the value true to the propositions occurring in a 

negative sense. We then get E (fa. fa. 'tr. fa. 'tr •... 1\. V ). 

By now substituting fa for 'tr we get E (fa. fa, fa. fa. fa .... 1\. V ) which represents 

a sentence with the value false; thus E cannot be a tautology. 

Proof b : E cannot be a contradiction 

The sentence E can be written as E ( p. Q. ' R. S. ' V •... 1\. V ). 

Now without loss of generality we may assign the value true to the propositions 

occurring in a positive sense and the value false to the propositions occurring in a 

negative sense. We then get E (tr. tr. ,fa. tr. ,fa .... 1\. V ). 

By now substituting tr for ,fa we get E (tr. tr. tr. tr. tr, ... 1\, V ) which represents a 

sentence with the value true; thus E cannot be a contradiction. 

Proven by 1.M.A. Lutgens. R.P. Nederpelt Ph.D. (Eindhoven University of 

Technology, department of mathematics ). because this could not be found in the 

literature. 
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Theorem 3 can be extremely useful because by using it, a quick inspection of the 
sentence will reveal whether or not it can be a tautology or contradiction. 

Example: 

( X 1\ -. Y 1\ Z ) V U - cannot be a tautology or contradiction because none of 
the propositions occurs in a positive as well as in a 
negative sense 

( X 1\ Y 1\ -. X ) - can be a tautology or contradiction because the 
proposition X occurs in a positive as well as in a negative 
sense (This sentence is a contradiction). 

Theorem 4 : If a sentence X is a tautology then -. X is a contradiction. 
(Proof by definition). 

5.3 The semi-symbolic evaluator 

The theorems of proportional calculus, as described in the previous section, 

provide us with a mathematical foundation for checking the logic of the rule base. 
Besides this, another important mechanism is needed for checking the rule base : 

a semi-symbolic evaluator [Quine, 1958]. The semi-symbolic evaluator can best be 

explained by giving an example: 

Assume that a rule has an evaluation expression '( X and Y) or Z'. Also assume 

that we know that the value of Z is always TR. Then we can enter this knowledge 
into the expression by writing it as '(X and Y) or TR'. Such an expression that 
includes at least one constant value (TR or FA) is called a semi-symbolic 
expression. A purely symbolic expression like' P or Q or S' does not contain such 
constant values. 
The semi-symbolic evaluator now tries to simplify the expression by using the 

follOwing eight obvious simplification rules: 

Table 5.4 Simplification rules 

(TR and ANY) - A.."IY (TR or Al"lY) - TR 

(Al"IY and TR) - ANY (Al"IY or TR) - TR 

(ANY and FA) - FA (ANY or FA) - Al"IY 

(FA and ANY) - FA (FA or Al"lY) - Al"IY 

Where ANY is any expression 
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By using these simplification rules, we immeuiately see that the expression 

'(X and Y) or TR' reuuces to TR. The advantage of semi-symbolic evaluation is 

clear; we uo not have to know the values of X anu Y to assign a value to the 

expression. The semi-symbolic evaluator logically reuuces the expression. 

By using a symbolic evaluator it is possible to reason with incomplete knave/edge. 

A good example of this is given to me by J.A. Blom Ph.D. (Einuhoven University 
of Technology, department of Electrical Engineering) : 

We have three boxes, A, B, anu C. Box A is known to be white, box C is known 

to be not white. The color of box B is unknown. The question is : 

Is there a white box next to a non-white box? 

white ? not white 

After a little thought it is clear that the answer is yes. 

If box B is white, then B anu C are the white and the not-white boxes next to 

each other. If box B is not-white, then A anu B are the white and not-white boxes 
next to each other. 

In order to obtain this answer, some reasoning is required. This reasoning process 
can also be done by a symbolic evaluator: 

Define the following primitives: 

A = = box A is white, value = true. 

B = = box B is white, value = unknown. 

C = = box C is white, value = false. 

The problem is then: 

(A and not B) or (not A and B) or (B and not C) or (not B and C) 

Naive insertion of the values leads to 

(TR and not ?) or (not TR and ?) or (? and not FA) or (not? and FA) 

(? or FA or ? or FA) = ? or? = ? (unknown) 
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Symbolic evaluation leads to 

(TR and not 8) or (not TR and 8) or (8 and not FA) or (not 8 and FA) = 

(not 8 or FA or 8 or FA) = not 8 or 8 = TR (true) 

We can see that symbolic evaluation leads to the correct answer, whereas naive 

insertion does not. 

By using symbolic evaluation it is possible to make logical deductions, and that is 
just what we need for checking the rule base. Using the symbolic evaluator in' the 

semantic checker, the checker 'understands' logic. 

5.3.1 Quine's method 

The semi-symbolic evaluator is a valuable tool for simplifying semi-symbolic 

expressions. In the SIMPLEXYS rule base, however, semi-symbolic expressions do 

not occur, only purely symbolic expressions. 

The question now is 'How can the semi-symbolic evaluator be used for simplifying 
purely symbolic expressions '? 

i.e. say that we want to know if the symbolic rule (or expression) : 

(nOlO and R) or (P and 0) or (nolR and P) or (nolP and R) or (nolP and S) or (nolR and nOIS) 

is a tautology or not. 

One way to examine this is by simply inserting all possible combinations of 
propositions. If the outcome of the expression is always true then the expression is 

considered a tautology. 

Table 5.5 Insertion of all possible values 

p Q R S Expression 

T T T T T 

T T T F T 

T T F T T 

T T F F T 

T F T T T 

T F T F T 

T F F T T 
T F F F T 
F T T T T 

F T T F T 

F T F T T 
F T F F T 

F F T T T 

F F T F T 

F F F T T 

F F F F T 
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Conclusion: the expression is a tautology. 

This method is, however, impractical. The number of combinations which have to 

be inserted is exponentially related to the number of propositions in the 
expression (2"). 

If e.g. the expression contains 30 propositions (which is not unlikely in a rule 

base), then we would have to check 230 
- 1 billion combinations. If we need 0.01 

second to insert a certain combination and evaluate the expression, then it would 
take 125 days to examine all combinations. 

A better way to check for tautologies is by using Quine's method [Quine, 1958]. 
This method implements the following idea: 

• Select a proposition that occurs in the expression. 

• Replace that proposition by the value TR, use tbe semi-symbolic evaluator to 

simplify the expression and note the resulting sub-expression. 

• Replace the same proposition by the value FA, use the semi-symbolic evaluator 

to simplify the expression and note the resulting sub-expression. 

• Repeat this until all sub-expressions are propositions themselves or constant 
values (TR or FA). 

The following example demonstrates Quine's method: 

(notO and R) or (P and 0) or (notR and P) or (nolP and R) or (notP and S) or (notR and notS) 

I 
P = TR 

Simplify 

1 
(notO and R) or 0 or (notR) or (notR and notS) 

I 
R = TR 

Simplify 

~ 
(notO) or 0 

0= TR 

Simplify 

~ 
TR 

I 
0= FA 

Simplify 

~ 
TR 

R = FA 

Simplify 

~ 
TR 

P = FA 

Simplify 

! 
(notO and R) or R or S or (notR and not 5) 

R = TR 

Simplify 

~ 
TR 

R = FA 

Simplify 

~ 
S or (not S) 

S = TR S = FA 

Simplify Simplify 

+ ~ 
TR TR 

Figure 5.1 Evaluation according to Quine"s method 

We can see that all outcomes are TR , so the expression is a tautology. 

By using Quine's method the number of steps which have to be taken is limited. 
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In the example above the number of possible outcomes reduced from the usual 2' 
(by simple insertion) to only 6 (these are underlined in figure 5.1). By using the 
semi-symbolic evaluator after each replacement, part of the expression disappears, 
thus limiting the number of outcomes. This becomes even more important for 

larger expression (more will disappear after substituting an proposition). 

A good substitution strategy is to choose the proposition that has the greatest 
number of repetitions and also occurs in a positive as well as in a negative sense; 

this strategy tends to hasten the disappearance of propositions and thus to 
minimize the work. Furthermore the process can stop without finding a tautology 
as soon as one of the sub-expressions evaluates to a constant value that differs 
from earlier found values or when a sub-expression is found that cannot possibly 
represent a tautology (theorem 3). 

Quine's method is very useful; although simplifying the expression takes more 

time, this method is much faster than checking for all combination (for checking a 
medium rule base on the average 10000 times faster). 

5.4 The semantic checker 

Given the three new tools (Theorems in propositional logic, the semi-symbolic 

evaluator and Quine's method), we can now build a semantic checker that checks 

the knowledge base for logical completeness and Gorrectness. 

As input the checker only needs the rinfo.qqq file, which contains almost all the 
arrays and tables representing the rules and their mutual connectivity. 

In the rule base we can distinguish two kinds of rules: evaluation rules and 

primitive rules. 

The checker must necessarily assume that all primitives are semantically 

independent. It is therefore recommended to structure the knowledge base in such 

a way, that primitives are indeed independent, so that the relations between rules 
become visible for the checker. 
Furthermore the checker will only check the symbolic code, not the Pascal code 

of the rule base. 

5.4.1 The connectivity matrix 

To facilitate checking of the rule base, useful information about the rules is stored 

into a separate matrix: the connectivity matrix [N x N/ (N = number of rules). 
The connectivity matrix contains all the information about the logical network and 

about the thelses. The matrix is filled by using the information stored in rinfo.qqq. 
Each matrix element can have one or more of the following values: 
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Conmatrix [i, jj = 

uscode 

ttcode 

tfcode 

tpcode 

tgcode 

etcode 

efcode 

epcode 

egcode 
itcode 

ifcode 

tpcode 

tgcode 

Example: 

Rl : R2 

indicates that rule i needs rule j for its evaluation. 

indicates that rule i does a then tr to rule j. 
indicates that rule i does a then fa to rule j. 
indicates that rule i does a then possible to rule j. 
indicates that rule i does a then goal to rule j. 
indicates that rule i does an else tr to rule j. 
indicates that rule i does an else fa to rule j. 
indicates that rule i does an else possible to rule j. 
indicates that rule i does an else goal to rule j. 
indicates that if possible rule i then tr rule j. 
indicates that if possible rule i then fa rule j. 
indicates that if possible rule i then possible rule j. 
indicates that if possible rule i then goal rule j. 

Rl R2 R3 R4 R5 
Rl us 

R2: R3 and R4 

R3 then tf R4 

R4 then fa R5 

R2 

R3 
R4 

us us 

tt 

If 

R5 

CONMATRIX 

us = uscode, tt = ttcode, tf= tfcode 

As we can see rule R 1 uses R2, and rule R2 uses R3 and R4; thus R 1 also uses 
R3 and R4. 

Expanding of the connectivities in this way is done by building the transitive 

closure, using the following algorithm: 

Procedure closure; 

var i,j,k .. l..N; 
begin 

for i .. = 1 to N do 

for j .. = 1 to N do 

if connected [i, j / then 

for k .. = 1 to N do 

if connected /j, kJ then connected [i, kJ .. = true; 
end; 
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Also R3 does a then tr to R4. and R4 does a then fa to R5; thus R3 does a then 
fa to R5. 

For the thelses another (modified) transitive closure procedure is executed. which 
forms a combination through appropriate matching. 
For more details see [Blom. 1990]. 

After the transitive closures the connectivity matrix is : 

R1 R2 R3 R4 R5 
R1 us us us 

R2 us us 

R3 It If 

R4 If 

R5 

Now all connections between rules are available and can be quickly accessed. 

5.4.2 Checking ror logical completeness 

One of the aspects of checking the knowledge base is a logical check for 
completeness. This can be interpreted as checking for missing rules; rules which 

are referenced but not defined. Missing rule detection is however already covered 

by the rule compiler and thus checking for this in the semantic checker would be 

superfluous. 

5.4.3 Checking ror logical consistency 

Checking for logical consistency of the knowledge base can be divided into: 

- Checking for conflict situations. 

- Checking for redundancies. 

- Checking for subsumptions. 

We now take a closer look how each of these three are represented in the 
semantic checker. 

5.4.3.1 Conflict situations 

By using the semi-symbolic evaluator and Quine's method. conflict detection can 

be expanded. 

The semantic checker will check for the following conflicts: 
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1/ Self referencing evaluation loops 

An evaluation rule can get its value by means of backward chaining. The 

evaluation is conditional i.e. the evaluation stops as soon as the value of the 

expression can be calculated, but in the worst case all operands must be 

evaluated. An evaluation is ending if its expression is fully reducible to primitive 

rules. An evaluation is never ending if the rule in some way references itself. A 

never ending evaluation is called a loop. 

An example of a loop : 

El : E2 or E3 
E2: PI and P2 
E3: P3 and EI 

so EI: (PI and P2) or (P3 and EI) 

E denotes evaluation rule; P denotes primiti\"c rule. 

Evaluation loops can be detected by checking the diagonal entries of the 

connectivity matrix after the transitive closure has been built. 

If Conmatrix [i, i] contains a uscode then the rule refers to itself: evaluation loop. 

Loop detection was also provided for in the previous semantic checker. But it has 

been modified. Now tbe checker not only reports that a rule is part of a loop but 

also which loop it is a part of, by giving the loop elements. This is very useful if 

the rule base contains several loops. 

2/ thelses loop 

A thelse loop will lead to a conflict if the rule that starts a chain of thelses is 

assigned a conflicting conclusion by that chain. 

An example: 

RI then tr R2 

R2 then fa R3 

R3 else fa RI then true 

else false 

then raise 

This example shows an incorrect small chain that whenever rule R 1 has the value 

TR, also tries to make it FA. 

A thelse loop can also be found by inspecting the diagonal of the conmatrix. 

Just as with evaluation loops, not only will be reported whether a rule is part of a 
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thelse loop but also which thelse loop it is a part of. 

3/ Conflicting AL T arguments 

As stated before the AL T operator is used to indicate that its two arguments are 
logically equivalent. The two arguments may therefore never been assigned an 
opposite value. 

An example: 

EI : PI and P2 

E2 : PI or not P2 

E3 : El alt E2 - E3: (PI and P2) alt (PI or not P2) 

If P2 is false then E3 reduces to (FA alt TR). which is of course a conflict. for the 

two arguments are assigned opposite values. 

Checking for these conflicts is done as follows: 

By definition the arguments of the AL T operator have to be logically equivalent; 

therefore no conflict will occur if ( EI - E2 ) is a tautology (always true). and 

tautologies can be detected by using Quine's method. 

For the given example this yields: 

(I) (EI-E2)-

(2) «PI and P2) - (PI or not P2» - by using (3) of table 5.2 

(3) (not (PI and P2) or (PI or not P2» and (not (PI or not P2) or (PI and P2» 

Applying Quine's method reveals that the latter expression is not a tautology, 

which means that E I and E2 are not logically equivalent: contlicting AL T 

arguments. 

Conflicting arguments of the AL T will be reported to the user in an appropriate 
way, 

Once these conflicts have been removed from the rule base, the AL T can be 

treated as an ordinary operator like Ac'iD and OR. with its own simplification 

rules for semi-symbolic evaluation: 
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Table 5.6 Additional simplification rules of the ALT 

(TR all ANY) - TR 
(ANY all TR) - TR 

(ANY all FA) - FA 

(FA all ANY) - FA 

Where ANY is any expression 

These extra ALT simplification rules will only be added to the simplification list if 

the rule base contains AL T operators. 
If no ALTs are present, adding them would only unnecessarily slow down the 

program (extra simplification rules imply more computing time). 

Conflicting ALT arguments can not be checked if both arguments are primitives. 

4 J Detection of thelses to successors 

If a rule needs infonnation from rules lower in the net, it cannot also already know 

the conclusions of those rules: thelses to successors. 

Detection of thelses to successors is accomplished by inspecting the connectivity 

matrix. If conmatrix [i, ij contains a uscode and con matrix U, ij contains a thelse 

code then there is a thelse to successor: rule j uses rule i , and rule j does a 

thelse to rule i. 

5 J Detection of thelses to predecessors 
If a rule needs infonnation from rules below it in the net, the lower rule cannot 

also know the conclusion of the one above: thelses to predecessors. 
Detection of thelses to predecessors is also accomplished by inspecting tbe 

connectivity matrix. If conmatrix [i, jj contains a uscode and con matrix [i, jj 

contains a thelse code then there is a thelse to predecessor: rule j uses rule i , 

and rule i doe, a thelse to rule j. 

6/ Conflicting source-target thelse 

Thelses are very popular in rule base construction. Depending on the outcome of 

a rule we may assign multiple conclusions to other rules. 
The use of thelses can, however, cause inconsistency. This will be clear if we 

examine the construction of a thelse. A thelse is constructed as follows: 

source - > target 
thebe 

(i.e. CHILD then fa : ADULT) 

Depending upon the value of the source, the target is assigned a value. 

Now consider the following situation, where source and target have common 
variables. 
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El : PI and P2 
E2 : not P2 and P3 
El : then tr E2 

In this case EI is the source rule and E2 is the target rule, and the primitive P2 is 
the common variable. 

Now consider the situation where PI and P2 are both true. If E2 is evaluated first 
and gets the value FA, then evaluating E 1 gives an error: 

E 1 evaluates to TR and activates the thelse that tries to make E2 TR. This is in 
conflict with the value that E2 already has, FA. This type of inconsistency has to 

be detected. 

Checking for these source-target conflicts is done as follows: 

Source and target rule, each fully decomposed into primitives rules, are combined 

in an expression. This expression is constructed in such a way that whenever the 
outcome of the expression is TR, an erroneous source-target thelse is found. 

The combined expression is constructed as follows: 

source thelse target 1 combined expression 

El then tr E2 - (Rl and nol R2) 
El Ihen fa E2 - (Rl and R2) 
El else fa E2 - (nol RI and R2) 
E 1 else tr E2 - (not R 1 and not R2) 

Once the combined expression has been constructed, Quine's method can be used 
to see if the expression can get the value TR (that is : the expression is not a 
contradiction). 

The combined expression for the example is : 

EI and not E2 -

(PI and P2) and not (not PI and P2 and P3) - (written out to primitives) 

Using Quine's method will, indicate that the combined expression is not a 
contradiction, thus a source-target thelse conflict can occur. 

Conflicting source-target thelses are reported to the user. 
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Checking is only necessary if source and target have common primitives. If all 
primitives are independent, this check is complete. 

71 Common target conflict 

Let's consider the following situation in which two different rules assign a value to 
a common target rule by using thelses : 

RI : PI and P2 

R2: P2 and PJ 

RI then tr R3 

R2 then fa R3 

th.n fa 

If two different rules, with common variables, both have a thelse to a common 

target rule and if they both assign a different value to that rule then the situation 
has to be checked, for inconsistency may occur. 

In the example a conflict will occur if both R I and R2 are TR : common target 
conflict; opposite value assignment to the target rule. 

The test, is again, to combine the two source rules R 1 and R2 (decomposed into 

their primitives) into an appropriate expression and then check (by using Quine's 

method) whether or not that expression can get the value TR. If this is possible, 
then a common target conflict can occur. 

The combined expression has to be constructed as follows: 

RI then tr R3} 
Rl and R2 

R2 then fa R3 

RI else tr R.~} 

R2 then fa 
R3 not RI and R2 

RI then tr 

R3} RI and not R2 
R2 else fa R3 

RI else tr 
R3} 

not R I and not R2 
R2 else fa R3 
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If the combined expression is not a contradiction then a common target conflict 

can occur and this is reported to the user. 

8/ Tautologies and contradictions 

Tautologies and contradictions are very peculiar logical sentences. for they are 
always TR, respectively FA. 

A rule base will normally not contain tautologies or contradictions. for it makes 

no sense to add a rule to the rule base that is always TR or FA. 

Tautologies/ contradictions will, however, not cause run time errors; they will be 

evaluated just as other rules. Nevertheless the rule base is checked for occurrence 

of tautologies and contradictions. because a tautology or contradiction usually is 

caused by an implementation error. such as : wrong combination of variables. mis­

interpretation of the expert's knowledge, typing errors. 

Tautologies/ contradictions can therefore be used as an indication for incorrect 

implementation of knowledge. In such a case the rule has to be fLxed. 

If, however, the tautology is not caused by an implementation error then the 

expression can be replaced by its constant value (TR or FA), thereby simplifying 

the rule base: the rule can be removed and all rules that refer to this constant 

rule can be simplified. or, in turn, eliminated as well. 

Checking the knowledge base for contradictions/tautologies is done as follows: 

First decompose the expression into its primitives. 

Then apply Quine's method to verify whether or not the expression is a tautology 

c.q. contradiction. 

Example: 

RI : PI and P2 

R2 : not PI and P3 

R3: RI and R2 

Decompose R3 into its primitives: (PI and P2) and (not PI and P3) 

Applying Quine's method will indicate that the expression is a contradiction; thus 

R3 is a contradiction. 

It is obvious that an expression that is a tautology because of the semantic of the 

primitives will not be found. 

Example: 

PI : BTEST length > 180 

P2 : BTEST length < = 180 

R3 : PI or P2 - R3: BTEST length > 180 or BTEST < = 180 
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R3 is a tautology, but this will not be detected because the Pascal code of the test 

rules is not available to the checker and therefore the checker must neces,arily 

assume that all primitives (including PI and P2) are independent. 

To allow more comprehensive checking, the knowledge engineer should remove 

P2 and replace it by not PI, thus making the tautology visible to the checker. 

9/ Partial tautologies 

A tautology implies that an expression is independent of all its variables. A more 

frequent problem, however, is that through improper combinations of rules, a rule 

becomes independent of one or more of its variables, but not of all of them. 

For example: 

(PI and (P2 and not P2» can be reduced to PI 

(P3 or (P3 and P4)) can be reduced to P3 

Whenever a variable can be removed from the expression we say that the 

expression contains a partial tautology. 

A partial tautology indicates that the expression is independent of one or more of 

its variables. This implies that substituting TR for the variable in question. or 

substituting FA for the variable in question yields the same suo-expression. 

Example: 

(R3 and (not ( PI and P2» or (not R3 and (not PI or not P2» 

R3 = TR 

Simplify 

! 
not (PI and P2) 

R3 = FA 

Simplify 

! 
not PI or not P2 

These arc logically equivalent (0,-= Morgan's laws) 

Thus the cxprcssiun is indcpcmknl of R3 

Partial tautologies are detected as follows: 

Choose one variable and make two sub- expressions, one with the value TR 
substituted for that variaole and one with the value FA. The expression is now 
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independent of that variable if the sub-expressions are logically equivalent. 

Logical equivalence can be tested by examining whether or not the expression 

(Sub-expression I • Sub-expression 2) 

is a tautology. 

If the expression is a tautology then the variable can be eliminated. 
Partial tautologies occur even when a term does not occur in both positive and 
negative sense in the expression (i.e. PI and (P2 and PI) - PI ). 
This makes finding partial tautologies more time consuming then finding 

tautologies (we can not rule out an expression beforehand as was the case with 

tautologies by using theorem 3). 

101 Unconnected rules 

Sometimes a knowledge engineer defines a rule, but simply forgets to use it. Such 

rules are unconnected. The checker has to remind the knowledge engineer that 
the rule is unused, and therefore it has to be able to detect these unconnected 
rules. 

Rules in SIMPLEXYS are unconnected when: 

• The rule is not used in any expression. 

• The rule is not thelsed by another rule. 

• The rule is not a trigger rule. 

Unconnected rules can be found by inspecting the connectivity matrix; if row i of 

the connectivity matrix is empty then rule i is unconnected. 

III Inference addition 

As opposed to boolean logic. SIMPLEXYS uses a third value: PO (possible, 

unknown). By using the value PO we can reason with incomplete knowledge (see 

the example of the three boxes). 
The value PO can, however, cause undesirable behaviour of the system. 

This can be best illustrated by an example: 

Define the following rule: You will keep dry if it does not rain or it rains but you 

have an umbrella. 

Converting this rule into formal logic yields: 

D : not R or (R and U) 
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where D = 'you will keep dry'; R = 'it rains'; U = 'umbrella' 

Now consider the following question: 

I do not know whether or not it rains (R = PO), but I have got an umbrella 
(U =TR); will I keep dry ? 

The answer is of course 'yes', because you will always keep dry when you have an 
umbrella. 

Solving this question by symbolic evaluation yields: 

D: not R or ( Rand TR) - not Rand R - TR 

The inference engine of SIMPLEXYS, however, cannot handle this expression 
properly: 

D: not R or (R and TR) - not Rand R - not PO and PO - PO 

The inference engine comes up with an incorrect answer. This problem occurs 

because the PO and the not PO are correlated, which the inference engine does 
not know. 

The same holds for the expression 'F : X and (not X or Y)' which is evaluated 
incorrectly by the inference engine if X is PO and Y is FA. 

Note that the problem can only occur when a variable occurs in a positive as well 

as in a negative sense and the value PO is substituted for the variable. 

The problem is that the inference engine incorrectly evaluates the following 
expressions when the value PO is substituted for this variable: 

P and not P - FA (inference engine : PO and not PO - PO); 

P or not P - TR (inference engine : PO or not PO - PO); 

This discrepancy is unsatisfying and must be fixed. 

What we need to see is that the inference engine gives the same results as 
symbolic evaluation would. 

This can be achieved as follows: 

If an expression references a term 'P', both in a positive and in a negative sense 
then we can always rewrite the expression as 
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E : (P and E1) or (not P and E2) or «P and not P) and E3) or E4 

or by using shorthand notation: E = P-E1 + P-E2 + Pii-E3 + E~ 

The inference engine will, however, evaluate this expression erroneous whenever 

this expression reduces to '(P and not P )' or '(P or not P)' and P has the value 
PO, 

The inference engine will evaluate the expression correctly for all values of P, if 

the expression is expanded, resulting in the following new expression (E') : 

E" : (E or (El and E2) ) and ( E1 or E2) 

Logically, the expansion is superfluous, but with it, the inference engine evaluation 

proceeds correctly for ail values of P. If the expression contains more terms in 

both a positive and a negative sense, extra expansions for these terms must be 

introduced as welL With this procedure, a correct result is obtained in all cases. 

Applying this for the two examples given above, yields: 

1) D: not R or (R and U) - rewrite in the form given above. 

D : (R and U ) or not R - expanding - 0': 0 or U 

If now R'= PO and U'= TR are substituted, then the inference engine will give 

the correct solution: 

D' : 0 or U = PO or TR = TR 

2) F: X and (not X or Y) - rewrite in the form given above 

F : (X and Y) or (X and not X) - expanding - F' : F and Y 

If now X = PO and Y = FA are substituted, then the inference engine will 

give the correct solution: 

F' : F and Y = PO and FA = FA 

Note that expansion is only necessary if an expression contains a term in a 
negative as well as in a positive sense and this variable can have the value PO. 

Replacing E by E' whenever needed, solves the problem of incorrect evaluation 

by the inference engine. 

Expanding the expression, however, is only possible if the two sub-expressions E 1 

and E2 are known. General methods for obtaining these sub-expressions are not 
available, 



The semi-symbolic evaluator can however be used to obtain two sub-expressions 

which can replace Eland E2. This is done as follows: 

Given the general form of an expression 

E = P-EI + P-E2 + P-P-E3 + E4 

Set P to TR and substitute this in the expression. 

Then simplify the rule by using the semi-symbolic evaluator, yielding the first sub­

expression (PosExpr), which can be used instead of El : 

PosExpr = TR-EI + FA-E2 + TR-FA-E3 + E4 = EI + E4 

Set P to FA and substitute this in the expression. 

Then simplify the rule by using the semi-symbolic evaluator, yielding the first sub­
expression (NegExpr), which can be used instead of E2 : 

NegExpr = FA-EI + TR-E2 + FA-TR-E3 + E4 = E2 + E4 

We can now use PosErpr and Neg£xpr, instead of E I and E2 to expand the 
expression: 

E· : (E or (PosExpr and NegExpr) ) and ( PosExpr or NegExpr) 

This expansion is logically the same as the one discussed before. Although 

PosExpr and NegExpr cause some computational overhead (due to the extra 

factor E4), they can equally well be used for expanding an expression. 

The great advantage of PosExpr and NegExpr is that they can be obtained easily. 

Whenever an expression needs an expansion. to make sure that the inference 

engine will evaluate it correctly, the semantic checker will report the two sub­

expressions, PosExpr and NegExpr to the user. The user should then replace the 
expression by : 

E* : (E or (PosExpr and NegExpr) ) and ( PosExpr or NegExpr) 

thus yielding correct inference engine evaluation in all cases. 

The semantic checker thus solves an inferencing problem which cannot be solved 
by the inference engine itself. 

5.4.3.2 Redundancy 

Redundancy means that a part of the rule base is superlluous. 

As opposed to conllicts, redundancies will not lead to run time errors or incorrect 

inferencing of the inference engine. Nevertheless we check for redundancy, 

because redundancy usually indicates an implementation error. If not. redundant 
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rules can be removed from the rule base without affecting the operation of the 

expert system; the effect is a more compact rule base, and thus a more efficient 
evaluation. 

The semantic checker checks for two kinds of redundancy in the SIMPLEXYS 
rule base: 

1/ FACT rule reduction 

2/ Equivalent rules 

FACT rule reduction 

FACT rules are primitive rules which have a constant value (TR, PO, FA) during 
the expert system's run. The value of the FACT rule is obtained before the system 

starts up. Whenever an evaluation rule uses a FACT rule, the evaluation rule can 

be simplified by using the semi-symbolic evaluator, thus simplifying the rule base. 

Example: 

Fl : 'Fact rule number l' 

FACT 

E : PI and P2 and (P3 or P4) and FI and PS 

Define Fl = FA ; Semi-symbolic evaluation of E yields 

E: PI and P2 and (P3 or P4) and FA and P5 - FA 

The expression E is now reduced to FA by substituting the FACT rule and 
applying semi-symbolic evaluation. Rule E is now effectively a FACT rule as well, 

and can be eliminated, too. 

Equivalent rules 

A rule in the rule base can be superfluous because it is equivalent to another rule. 

Equivalent rules can be easily detected if they are textually the same. 

Example: 

EI : PI and P2 

E2: PI and P2 

We see that both Eland E2 have the same evaluation expression and are thus 

equivalent. 
It gets more complicated when the rules are not textually the same but logically 
equal. This should also be reported by the semantic checker for their truth tables 

are exactly the same. 
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Two rules 'R I' and 'R2' are logically equal if (R I • R2) is always true 

(tautology). Logically equivalent rules can be detected by first combining the two 

rules in an expression, (R 1 • R2), and then apply Quine's method to it to see 

whether or not the combined expression is a tautology. 

Example: 

E3 : not (P I and P2) 

E4 : not PI or not P2 

combined expression: 

(E3 • E4) - Using (3) of table 5.2 

(not E3 or E4) and (not E4 or E3) - Decomposed in primitives 

(not (not (PI and P2» or (not PI or not P2» and (not (not PI or not P2) or (not (PI and P2))) 

Now applying Quine's method to see whether or not this expression is an 
tautology 

(not (not (PI and PZ» or (not PI or not P2» and (not (not PI or not P2) or (not (PI and P2))) 

I I 
PI =TR 

Simplify 

~ 
(P2 or not P2) and (not P2 or PZ) 

P2 =TR 

Simplify 

1 
TR 

PI = fA 

Simplify 

1 
TR 

The combined expression is a tautology; thus E3 and E4 are logically equivalent. 

5.4.3.3 Subsumption 

Subsumption means that some rule is a special case of another rule (like square 

is a special case of Rectangle; thus when square is TR then rectangle is also TR). 

Subsumption is similar to partial redundancy. Just as with redundancy, 

subsumption does not cause run-time errors. Nevertheless it may be interesting to 

find rules that subsume other rules, because subsumptions define some sort of 

hierarchy in rules. Errors in the hierarchy can be easily detected by inspecting 
subsumptions. 
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Subsumption is the same as 'logically implies' . If rule X implies rule Y then rule 
X also subsumes rule Y. 
Subsumptions can be detected as follows : 

If X subsumes Y then X implies Y (which is the same thing) is always true; thus 
(X - Y) is a tautology. 

Example: 

EI : PI and P2 and P3 
E2: PI and P2 

It is obvious that EI is a special case of E2. This means that El subsumes E2 and 

that (El - E2) must be a tautology. 

(El - E2) - using table 5.2 (1) 

(not El or E2) - decompose into primitives 

(not (PI and P2 and P3) or (PI and P2) 

Applying Quine's method to see if the expression is an tautology is indeed 
affirmative; thus E 1 subsumes E2. 

5.4.4. Limitations 

A major limitation to checking is the fact, that the checker has no access to the 
Pascal code. The checker therefore necessarily assumes that all primitives are 
independent. For history rules the same holds, the Pascal code cannot be 
accessed. History operators operationg on the same rule are, however, somehow 
dependent. If we consider all history rules as being independent then some 
tautologies will not be detected : 

(Rl > (3)) or not ( RI > = (3)) 

If all histories were replaced by the rule they operate on, then the tautology 

becomes visible for the checker for it now sees: 

RI or not RI. 

The following rule will then also be detected as an tautology, which it is not. 

(Rt > 10) or (not Rl < 10)) 

We thus have the choice of checking too little, or checking too much. 
The semantic checker chooses the last option, because in practice the number of 
errors reported due to 'over-detection' is limited. 
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5.5 Conclusions 

SIMPLEXYS allows better consistency checks than many other system languages. 
With regard to the semantic checker, we may state that checks have been 
expanded in such a way, that it is now possible to systematically check the 

knowledge base for logical inconsistency and completeness. 

Furthermore the different kinds of checks (conflicts, redundancy, subsumptions) 

are formulated in such a way that we only have to check for tautologies or 
contradictions. 

This can be done almost linear in time by using Quine's method. 

The semantic checker has now become one of the most valuable tools in 
knowledge base debugging. 
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.6 Imple~:~tati()R of the se~aRtic ch~ker 

6.1 Introduction 

In this chapter we will discuss the implementation of the semantic checker, as 
described in chapter 5. The treatment of the implementation in this chapter will 
be global, details are left out in order to not confuse the reader, for the semantic 
checker is a rather complex program. We will discuss the following three items; 

1) An abstract data structure for representing and manipulating rules and 

expressions. 

2) The implementation of the semi-symbolic evaluator, used for simplifying 

expressions. 

3) The implementation of the method of Quine. 

6.2 The abstract data structure Expression 

Intuitively, of course, a logical expression is a collections of propositions or 

variables connected by operators, such as AND, OR, NOT, ALT. The structure of 
a logical expression or rule is stored in rinfo.qqq in a prefix form. The prefIX form 

enables us to easily decompose each rule into its primitives, by simple 
substitution. 

Example: 

EI : and PI P2 
E2 : or EI P3 

(infix form : EI : PI and P2) 
(infix form : E2 : E 1 or P3) 

E2 can now by decomposed into its primitives rules by direct substitution of E 1. 

E2 : or and PI P2 P3 (infix form: E2 : (PI and P2) or P3) 

A rule or logical expression will be represented by a tree structure. Every element 
of the tree is of the type Expression. The type expression contains a pointer to a 

record which describes the properties of that particular junction. 

Expression = .... Exprstruc 

Exprstruc = record 

case kind: kindnames of 

Vbl : (v : variable ); 

Cnst : (c : constant ); 

Cmpst : (op :operator; opnd 1,opndl :expression); 

NotCmpst: (op :operator; opnd : expression ); 

end; 
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Vbl : Variable or proposition in a rule 

Cnst : Constant value, TR or FA 

Cmpst : Composition, composed of a operator, and two operands 

NotCmpst : Not composition composed of an operator and an operand. 

How rules are represented using the tree structure will be explained hy the 
following example: 

Expression: and A not or Band C D 

Cm-'!!it 
op opndl opnd2 

a~ A 
.L 

~ 
NotCmpst 

op lopnd 

notl 

'- Cmpst 

oplopnd Ilopna~ 

orl H I 

Cmpst 

op lopna 11 opna~ 

andl C I D 

Figure 6.1 Data representation of an expression 

Each rule in the rule hase is decomposed into its primitive rules and represented 
hy such a tree structure. 

6.3 The semi-symbolic evaluator 

The semi-symbolic evaluator is used to simplify semi-symbolic expressions. This is 

done by function ApplyProductions, in a recursive way [Wulf, 1981]. 
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Junction ApplyProductions ( E :Expression; L : ReJListoJProductions :Expression); 

pre: The expression E is a semi-symbolic expression and can be simplified by tlsing 

the production list of simplification rules 

post: The expression E is simplified Llsing pattern matching. 

var Changed: Boolean; NewExpr,PrevE:cpr : Expression 

RemainingingProds :ReJListoJProdllction; P :Production 

begin 

NewExpr := Copy (E); 

repeat 

Changed := Jalse; 

iJ Kind (NewExpr) = Cl1Ipst 

then begin 

PrevExpr := NewExpr; 

NewExpr := ConsExpr (Oper (NewExpr). 

ApplyProductions (Operand I (NewExpr ).L); 

ApplyProductions (Operand2 ( New Expr ).L); 
Release (PrevExpr); 

end; 

RemainingProds := L; 

while not IsEmpty (RemainingProds) do 

begin 

Firstltem (RemainingProds.P); 

RemainingProds ;= Tail ( RemainingProds); 

iJ Match (NewExpr.P.Patn) then 

begin 

PrevExpr := NewExpr; 

NewExpr := Replace (NewExpr. P.Repl); 

Release (Pre"Expr); 

Changed := True; RemainingProds := L; 
end; 

end; 

until not Changed; 

ApplyProductions := NewExpr; 
end; 

The simplification is done by traversing the tree structure of a rule until the 

leaves are reached. Starting from the leaves the tree is traversed in reverse order, 

trying to simplify each sUb-expression it encounters by using the simplification 

rules (table 5,4 ). 
If the sub-expression matches one of the patterns of the simplification rules then 

the sub-expression is simplified by substituting the replacement for it. 
Pattern matching is only possible if the sub-expression is semi-symbolic. This is 

done until the root of the tree is reached. 

The simplification rules are stored in a linked list. Each element of the link list 

contains a record composed of a pattern and a replacement. The link list can be 

easily expanded. 
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repl repl re I 

Figure 6.2 Linked list of simplification rnles 

Example: 

Expression: (A and Bj or (C or OJ with 0 = TR 

prefix form: or and A B or C 0 

data structure : 

Cmpst 

op opndl opnd2 

or 

L....., 
Cm pst 

oplopn dl opnd2 

TR or( C 

Cmpst 

op opnd II opnd2 

andl A J H 

Sub-expression C or TR can be simplified by using ANY or TR - TR 

New tree structure: 

Cmpst 

op I opnd II opnd2 

or It ITR 

1 
Cmpst 

op IOpndl opnd2 
an( A B 

52 



Sub-expression (A and B) or TR can be simplified by using ANY or TR - TR 

Conclusion: the expression is TR. 

6.4 The method of Quine 

Quine's method used for simplifying purely symbolic expressions is implemented 

as follows: 

Procedure Quine (Expr :Exprcssion; var Res :Range; var Red: boolean; var Teller: integer ); 

var PosExpr,NegExpr: expression; 

Nextvar : integer; 

Ontk : boolean; 

begin 

if (Res < > Stop) and (not Red) then begin 

case Kind (expr) of 

Cnst : Begin 

Teller: = Teller-I; 

Res:= Check (Expr.Res); 

end; 

Vbl : Res: = Stop: 

else begin 

Ontk : = false; 
ClearAdm (Ontk); 

ChangeAdm (Expr,Ontk); 

Nextvar : = Findvar; 

if Nextvar = empty then Res: = Stop; 

else begin 
NegExpr : = Expr:Po,Expr : = Expr; 

Teller : = Teller + 2; 

MakeNeg (Nextvar); 

NegExpr: = ApplyProductions( NegExpr,Simplist); 

MakePos (Nextvar); 

PosExpr : = ApplyProductions(PosExpr,Simplist); 

Remake (Nextvar); 

Quine (Negexpr, Res, Red, Teller); 

Quine (PosExpr, Res, Red, Teller); 

end; 

end; 

end; 

end; 

if Res = Stop then Red: = true: 
if Teller < = 0 then Red : = true; 

end; 
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Quine's method is implemented as follows: 

If the expression is a composition then a variable is selected for substitution (the 

variable has to be present in positive as well as negative sense and it is the 

variable which occurs the most in the expression). Substituting this variable by 

making it TR yields the PosExpr; Making it FA yields the NegExpr. These two 

sub-expressions are then simplified. Each sub-expression is then tested again if it 

is a tautology or contradiction. This recursive process ends when a sub-expression 

reduces to a variable or a constant value different from the one before. 

6.5 Conclusion 

The semantic checker has been successfully implemented. It is easy to use and 

menu-driven. Several test cases have been applied to the checker. All errors in 

the test-cases were detected by the semantic checker. Systematically checking for 

logical completeness and consistency of the rule base is now possible. During 

development the semantic checker has been used by several people and all of 

them agreed that the semantic checker is a valuable tool for knowledge base 
debugging. 

Furthermore the semantic checker produces an error file with all the errors in the 

rule base summarised in a proper form, which can also be sent to the printer. 
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1 Condusionsandfuturew~~k>·· 

Knowledge base debugging is one of the hardest task in expert system 
development. Therefore any tool which in some way contributes to the correctness 

of the rule base is welcome. The semantic Checker, designed for checking the 
logical completeness and consistency of the rule base is, however. much more 
than an ordinary tool. It systematically checks the rule base for certain errors, thus 
dramatically improving the confidence in the correctness of the knowledge base. 
The semantic checker is easy to use and sufficiently fast. It takes only 5 minutes 

to check a rule base of approximately 180 rules. Numerous test cases have been 

applied and all errors were detected by the semantic checker. 

Furthermore the semantic checker provides the user with a extensive error file, 

needed to directly trace the bugs and fL"< them. 

Many users have experimented with the checker and all agreed that it is a very 

valuable tool for expert system debugging. 
Nevertheless the semantic checker can be improved. One idea is to automatically 

change the rinfo.qqq file whenever a bug is detected; thus yielding bug repair 

without intervention of the user. Of course the user will always be informed about 

the changes. 
A second idea is to integrate the semantic checker with the protocol checker. 

The protocol checker is thus provided with an option for testing the logical 
equivalence of triggers and the semantic checker thus can analyze certain rules 

with regard to their context. Integration has already been partially realized and 

appears to work perfectly. 

The best improvement can be achieved by revealing the Pascal code to the 
checker. but for this the rule compiler should be equipped with a Pascal compiler 

as well. 
A major effort of the checker is that all errors can be converted in such a way 

that we only have to check for tautologies or contradictions. By using this we also 

capture the value PO. because a contradiction ( or tautology) is always a 

contradiction (or tautology) even if PO is substituted for the value of the 

variables. 
The semantic checker currently can handle only rule bases up to approximately 

200 rules. This is not caused by the checker itself but due to the limitations of 

Turbo Pascal. The number of rules is restricted because the connectivity matrix 

may not exceed 64K (largest single structure on the heap). Expanding the 64K 
limit in Turbo Pascal can be done but then memory has to be addressed directly 

which is not recommended. This limitation has not yet caused any trouble because 

no rule base having more then 200 rules has been built yet. 
We may state that the semantic checker has become a very valuable debugging 

tool; a step forward in knowledge base debugging. 
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