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Knowledge-base evolution techniques are shown to be of 

critical importance for the successful application of knowl-

edge-based systems in complex domains. By conceptualiz-

ing knowledge-base evolution as theory revision, we can 

take advantage of the basic findings from different research 

communities. Results from Inductive Logic Programming 

(ILP) and Explanation-Based Learning ( E B L ) provide a set 

of techniques that can be used as a foundation for obtaining 

new knowledge {knowledge-base exploration). Techniques 

from deductive database research might be used for testing 

the correctness of a knowledge base (knowledge base verifi-

cation). By an interactive application of these exploration 

and verification techniques, domain experts and other users 

may similary improve the effectiveness of the knowledge 

base (knowledge validation). The application of such se-

lected techniques is then discussed with respect to the spe-

cific problem of improving production parameters. 

1. Introduction 

It is a long held belief, that micro-worlds, such as 

the blocks world, sorting tasks or chess end games 

are the drosophila of Artificial Intelligence and 

Machine Learning research, where the fundamental 

successes are to be achieved and demonstrated. A 

quote by Amarel [1, p.258] highlights this view. 

'These toy problems provide an excellent para-

digmatic task environment in which essential 

aspects of the representation problem can be studied 

... They are serving as drosophila of research in the 

general area of problem representations, and in the 

study of acquisition of problem solving skills'. 

Although there cannot be any doubt that many 

successes of Machine Learning have been achieved 

in these micro-worlds, the utilization of these 

*This research was supported by grant 413-5839-ITW9304/ 

3 from the B M F T . 

achievements in complex real world domains (e.g., 

the industrial applications of Machine Learning) is 

much more difficult than had been originally 

anticipated. Buchanan [10, p.5] for example, 

reports that except for simple classification sys-

tems, knowledge-based systems do not yet employ 

a learning component to construct parts of the 

knowledge bases from libraries of previously 

solved cases. 

It has been pointed out only recently, that real 

world domains have quite different characteristics 

than the micro-words where new machine learning 

techniques are routinely demonstrated. Com-

plexity, continuous innovations and documentation 

as well as incomplete and conflicting knowledge 

are the most eminent characteristics [37]. Because 

of the dynamic character of real world domains, the 

application of knowledge-based systems requires 

that the changes in the field can at least be traced 

(preferably predicted and discovered) by approp-

riately selected machine learning techniques. Such 

updating and revision processes are termed knowl

edge base evolution. Comparable to the human 

genome project which also requires additional 

resources, above and beyond the discovery of the 

genetic mechanisms with the drosophila, the ILP 

community must therefore also pay more attention 

to applications in complex real world domains. 

In order to develop knowledge-base evolution 

techniques with respect to complex real world 

domains, we first analyzed the requirements of 

product and production planning with new 

materials by using the specific example of the 

manufacturing of bucket seats in the car industry. 

The results are summarized in Section 2 of this 

paper. Section 3 then describes a respective knowl-

edge-base that is currently being developed by an 

iterative application of the CLASSIC methodology 

to knowledge engineering [8]. Section 4 will then 

show how the knowledge evolution can be 

understood as theory revision [33], where the 

knowledge-base evolution system and the user 

cooperate in a way, similar to an apprenticeship 

learning system [40]. 

Theory Revision has recently been proposed as a 



Fig. 1. The manufacturing of a bucket seat with a G M T (reprinted by permission from the l-lastogran GmbH). 

general framework, where Explanation-Based 

Learning (EBL) and Inductive Logic Programming 

(ILP) can be integrated [27]. For mastering the 

knowledge evolution requirements of the specific 

application, we can thus draw upon the basic 

research results from both E B L as well as ILP. 

Furthermore, exploration and verification pro-

cesses will be distinguished. A continuous (in-

teractive) improvement of a knowledge base during 

its entire life-time starting with the first forma-

lizations (knowledge base seed) and still con-

tinuing along its practical use can thus be achieved 

[26]. 

Expert knowledge from the application domain 

is used for constraining the exploration processes, 

so that an efficient implementation can be ob-

tained. Expert knowledge will be employed to 

determine the representation bias (also known as 

'restricted hypothesis space bias') and search bias 

(also known as 'preference bias') of induction [32]. 

More specifically, domain knowledge is used to 

specify the representational bias and metaknowl-

edge to determine the search bias. The paper will be 

concluded with a general discussion of the role of 

knowledge-base evolution for the quality of prac-

tical knowledge bases. 

2. Product and Production Planning 

In the car industry, like in other modern in-

dustries, the innovation cycles have become 

increasingly shorter. Driven by the objectives of 

environmental protection laws, hazardous manu-

facturing materials must be replaced by more 

adequate new materials. Equally important is the 

reduction of cost while the highest possible quality 

standard is being maintained. In many branches, 

new materials such as glass mat reinforced thermo-

plastics (GMT) are currently introduced and in-

creasingly more used for manufacturing products, 

and thereby replacing steel and metal construc-

tions. A G M T is a composite consisting of two 

components, namely a thermoplastic rein-forced 

by glass fiber. An example is the manu-facturing of 

car seats. The high security standards and other 

requirements (e.g., concerning wear and tear) can 

now be satisfied by using GMTs. For example, the 

rear part of a bucket seat for a car can now be 

manufactured with GMT, instead of more costly 

metal constructions. 

Figure 1 shows the production process with 

GMTs. It consists of a preparation phase, a pressing 

phase and a finishing phase. In the preparation 

phase the raw material is put on a conveyer belt that 

moves it through the tunnel kiln, where it is heated. 

In order to avoid an undesired cooling, the material 

is then immediately put into the hydraulic press, 

where the geometry of the car seat is pressed before 

it is cooled off so that its form is maintained. 

During the finishing phase unwanted bumps must 

be removed. 

The pressing of the material depends on a 

number of parameters with complex interrelation-

ships. The temperature of the material influences 

the volume per unit time which is responsible that 
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Fig. 2. Overall structure of the RPPP knowledge base. 

the material reaches every part of the pressing 

form. As soon as the material is put into the press, 

the press is closed with a speed of about 800 mm/s. 

As soon as the press reaches the material the speed 

is reduced to a value between 5 and 15 mm/s. After 

the press is closed a constant pressing force is 

exerted on the material for some duration. After 

that, the material is left in the press for some time 

to cool off. The duration of cooling depends on the 

temperature of the material and the tool, the tool 

geometry, the topology of the cooling capillaries of 

the tool, etc. 

In product and production planning, 'system 

development' and 'parameter optimization' are 

distinguished as two separate phases, which can 

also be called primary and secondary engineering 

[23]. In the primary phase, a prototype of the 

product and the corresponding manufacturing 

process is developed. In some previous research it 

was already shown how machine learning tech-

niques can be applied for supporting the primary 

engineering phase [31]. More specifically, it was 

shown how an explanation based abstraction 

method [36] can be used for abstracting planning 

schemata from success cases of the real world [37]. 

In the secondary phase, appropiate parameters 

must be found for the respective primary design. In 

this paper, we are solely concerned with this 

secondary design phase. In particular, we propose a 

knowledge base and knowledge evolution tech-

niques for documenting and maintaining all 

available information and knowledge. This knowl-

edge concerns the various parameters and how they 

determine the desired characteristics of the 

product. 

3. A Recycling-Oriented Product and Pro

duction Planning Knowledge Base 

In some previous work, the selection of recy-

clable materials in product design and the process 

planning for manufacturing and recycling such 

products were identified as a promising application 

domain for knowledge base evolution. In [3] a 

materials knowledge base is discussed as an in-

tegral part of a declarative knowledge base for 

recycling-oriented product and production plan-

ning (RPPP). The overall structure of this knowl-

edge base consists of a module representing the 

materials, a second one representing production 

and recycling knowledge and a third module 

containing products that have been manufactured 

from these materials (see Fig. 2). 

3.1. The Materials Knowledge Base 

Materials constitute the substance of production 

and recycling. Materials can bedivided into fun-

damental and composite materials. The main 

problem when building a knowledge base is 

'finding the right way to break the domain into 

objects and their relationships'. One solution 

approach is given by the 'Knowledge Engineering 

Methodology for C L A S S I C [8]. This metho-

dology suggests to formalize the domain 
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knowledge using some kind of terminological 

knowledge represen-tation in the spirit of K L - O N E 

[7] or a frame-like, object-centered knowledge 

represen-tation system using an inheritance hier-

archy. The methodology consists of a sequence of 

design steps. We are using an iterative application 

of this methodology by allowing multiple iterations 

of two or more of the following consecutive steps: 

1. Relevant object types are enumerated. As a re-

sult the relevant objects are determined to be 

particular plastics and composite materials, 

classes of such materials, qualitative and quan-

titative properties of the materials, numbers etc. 

2. The obtained descriptions are divided into ob-

jects and properties, which are later mapped to 

concepts and roles. In our case, classes of mate-

rials are concepts, whereas most of the proper-

ties correspond to roles. 

3. Concepts are organized into a taxonomy. This 

step yielded the hierarchy of the fundamental 

and composite materials. Part of this hierarchy 

is presented in Fig. 3. 

4. Then, the key individuals are isolated and asso-

ciated to the concepts they belong to. 

5. In order to obtain the internal structure of the 

concepts, a list of relevant properties must be 

determined for each concept. These properties 

include intrinsic and extrinsic properties and 

part-of relations. In this step, the properties of 

the plastics have been adopted from the exist-

ing C A M P U S database [9], which contains all 

the plastics produced by 22 European chemical 

industries. An important property for G M T is 

thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA modulus of elasticity (e-modulus). 

The part-of relation is the main relation for dis-

tinguishing composite materials. A G M T con-

sists of a thermoplastic which is reinforced with 

glass fibers to enhance its e-modulus. There are 

two types of glass fibers in the form of papers 

or mats and two types of thermoplastics poly

propylene and polyamid. Thus we get four 

types of GMTs. The e-modulus increases as the 

percentage of glass fibers increases. 

6. In the remaining steps of the CLASSIC meth-

odology, the restrictions of the properties for 

each concept are acquired in detail. As a result 

of this step, the particular types of possible val-

ues and the cardinality of values have been de-

termined. 

For the representation of the materials knowl-

edge base we propose a respective hierarchical rep-

resentation in a terminological representation lan-

guage. 

3.2. The Product Knowledge Base as Case Base 

The Product Knowledge Base is a Case Base. It 

contains the actual parameters of the success cases 

of manufacturing car seats with different materials. 

It also represents cases, where certain quality 

requirements have not been satisfied by the prod-

uct of the industrial manufacturing process. These 



success and failure cases are denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA e
+

jk and e~.p 

where k is an index for referencing the specific 

case and / identifies that the case resulted from 

indus-trial experience. 

In addition to these industrial cases, the results 

from systematic experimentation, that is performed 

in material sciences research institutes, should also 

be stored in the Product Knowledge Base. In order 

to determine the thermodynamic behavior of 

GMTs during the pressing process, researchers 

may for instance perform experiments, where 

several different parameters are systematically 

manipulated to determine their influence upon 

some criterion variable. Such scientific research 

may determine, 'which influences different pro-

duction parameters have on the work done on the 

material and what kind of flow characteristics 

different GMT-materials show' [22]. Such experi-

ments may investigate how the closing speed of the 

tools, the press force and the specific material 

determine the size of the pressed material. The 

experimental results can provide very useful 

information for the product engineer, who is 

interested in manufacturing some specific car seat. 

The actual data from such experiments should 

therefore also be stored in the case base. We denote 

such cases from scientific experimentation by e
+

k, 

where the index s indicates that this result was 

achieved by science research and k is an index that 

denotes the specific experiment. 

5.3. The Production Knowledge Base 

The pressing of materials depends on a large 

number of parameters. There are complex relation-

ships among these parameters, as well as between 

these parameters and the material and the quality 

requirements. As already mentioned in Section 2, 

there is relatively little knowledge available about 

which parameter values achieve the desired result. 

Even for an expert it is nearly impossible to find 

exact adjustments at once. To find the depen-

dencies between various parameters, the product 

engineer usually tries several possibilities. The 

results of these trials are represented in the Product 

Knowledge Base. In the Production Knowledge 

Base, we will thus represent the regularities which 

are (supposedly) valid for the production process, 

in general. More specifically, we are concerned 

with the different parameter values for manu-

facturing G M T products with a hydraulic press 

(see Fig. 1). 

The results of such scientific experiments are 

most often summarized by a linear equation, that is 

obtained by a regression analysis or by an Analysis 

of Variance [23]. Such an equation may for instance 

take the form: 

Although such numeric equations are quite 

useful and have a broad field of application in 

research and industrial practice, there are also a few 

disadvantages, which can be compensated by a 

more abstract and qualitative description. One 

problem lies in the fact, the each experiment yields 

a new equation and it may be quite difficult for any 

practitioner (and even researcher) to derive a set of 

general regularities from the various equations. 

Secondly, these equations hold only within certain 

limits.This is, however, not directly represented by 

the equation. For instance, increasing the pressing 

force beyond certain limits wil l not increase the 

surface area in the way that is predicted by the 

linear equation, but may instead damage the press. 

In other words, there is an upper and lower bound 

on the parameters as well as on the values of the 

criterion variable (e.g., the surface area). 

In addition to such numerical representations, we 

therefore propose a more abstract and qualitative 

description for representing the general knowledge 

from the various cases. Unlike the numerical 

equation, we assume upper and lower bounds for 

the criterion variable, whose values are denoted 

qualitatively, like for instance by Targe', 'medium' 

or 'small'. In other words, there is for instance no 

value that is smaller than 'very small' and no value 

that is larger than 'very large'. As a consequence of 

these bounds, the qualitative addition operation, 

which we denote by ©, can no longer be a closed 

operation. In order to embody these limitations, we 

define the qualitative addition operation in the 

following way. Let A denote a set of qualitative de-

scriptors, likezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a 9ava3 ... an, which we could for 

instance also call <z =very small, a2=small, a3= 

medium, ... a=very large. We postulate that the set 

A is weakly ordered. Since the cartesian product 

A x A contains all logically possible qualitative 

additions of the form a®b, where a and b are in A, 

those that can actually be formed must constitute a 
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Fig. 4. Formation and revision of the production knowledge base. 

subsetzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B of A *A. Thus, i f (a,ft) is in 5, then a and b 

can be qualitatively added and so a®b is in A. This 

means that the operation © is a function from B into 

A. In order to account for the fact, that not all 

qualitative additions are possible, we define a 

qualitative structure <A,y,B,®>, where associa-

tivity and monotonicity are somewhat modified. In 

order to accomplish this, we impose the following 

limitations on A and B: If a yb, we assert the exis-

tence of a c in A such that (c,ft) is in B and a >-c®b. 

The requirements on the proposed qualitative 

structure, which are summarized in the following 

definition, provide important integrity constraints 

for the production knowledge base (Fig. 4). 

Integrity constraints for qualitative structures. 

Let A be a nonempty set of qualitative descriptors 

(such as 'small', 'medium', 'large') or avav...,an, 

a binary relation on A, B a nonempty subset of A 
x

 A and © a binary function from B into A. The qua-

druple <A,>z,B9®> is a qualitative structure if the 

following six conditions are satisfied for all a, ft, c 

e A: 

1. <Ay >z > is a weak order. 

2. IfzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (a9b) e B and (a®b,c) e 5, then (ft,c) e 5, (a, 

ft © c) G 5, and (a © ft) © c >= a © (6 © c). 

3. If € 5 and a t ft, then (c,ft) G 5 and a © c 

>= c ® ft. 

4. If a >- ft, then there exists G /I such that (ft,*:/) 

G 5 and # — b ® d. 

5. If (a,ft) G fl, then a © ftW/. 

6. a ;>... G /4 is a strictly bounded and finite 

standard sequence if for n~2 an = a ; j 

and it is only strictly bounded if for some ft G A 

and for all an in the sequence, ft>- an. 

4. Knowledge Base Evolution as Theory Revision 

4.1. The Knowledge Base Evolution Scenario 

Knowledge base evolution covers not only the 

maintenance of an existing K B [13], but also the 

continous improvement of the K B , its structure and 

content. Knowledge-base evolution operates on the 

K B of a knowledge-based system. Thus, for an 

overall description of knowledge base evolution in 

the RPPP context we distinguish two main units 

(Fig. 5): the knowledgebase itself (RPPP) and the 

knowledge-evolution system (KES). 

The KES operates as a meta-level system on the 

object level K B . Reasoning in the knowledge 

evolution system is performed by the exploration 

and verification components. 

- Similar to discovery systems the knowledge ex

plorer scans the K B in search for interesting 
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Fig. 5. The RPPP knowledge base evolution architecture. 

patterns. Exploration can be seen as an iterative 

process starting with the generation of a pattern 

hypothesis, proceeding with a search for the 

pattern in the K B , and resulting in a possible 

interactive assimilation of the discovered pat-

tern into the K B . Thus, inductive techniques 

play a major role for knowledge exploration. 

- ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA knowledge verifier can perform verification 

and with appropriate user assistance also vali-

dation. It examines the K B to detect structural 

or functional defects. Validation and verifica-

tion can also be seen as an iterative process 

starting with the generation of a defect suspi-

cion, proceeding with a check for a defect w.r.t. 

the suspicion in the K B , and resulting in a pos-

sible defect description or repair suggestion. 

Here, techniques for checking integrity con-

straints become most relevant. 

The iteration cycles can be arbitrarily inter-

leaved, permitting evolution to consist of dual 

verification and exploration processes. Together 

they form a heuristic, approximative process that 

alternates focusing and processing phases and 

improves the K B any time a sufficient amount of 

knowledge for an update (i.e., assimilation or 

repair) is accumulated within the KES or provided 

by the user. For example, assume that the verifier 

has identified a rule whose premises cannot be 

satisfied in a given K B . The explorer could then try 

to generalize that particular rule or to complete the 

missing knowledge reachable from its premises. 

Conversely, after the explorer has discovered a 

pattern (e.g., a new or generalized rule) the verifier 

may be asked to verify the K B , focused on the 

assimilated pattern. 

4.2. Theory Revision 

The problem of building up a knowledge base 

(knowledge acquisition) can be seen as a two-phase 

process [16]: In the first phase the knowledge 

engineer builds an initial model (i.e., the seeding of 

the knowledge base). In the second phase this 

initial knowledge base is refined or revised into a 

high performance knowledge base. During the 

further practical use of the knowledge-base, the 

dynamically changing world may cause the 

knowledge base to become invalid in one of the 

following senses: 

- New developments may cause new problem 

cases not being covered by the knowledge base. 

This results in the K B S not being able to solve 

these problems. For example, neglecting the ef-

fects of changing parameter values determined 

by recent experiments would leave the RPPP 

system incapable to find the best production 

process. 

- Some knowledge stored in the knowledge base 

may become out of date and should no longer 

be used as it would lead to solutions that for 

some reasons are no longer valid in the current 

application environment. For example, a fluent 

additive that has become known to be noxious 

should no longer be used or be used only in 

closed-circle production and recycling proc-

esses. 

In the first situation we have a new application 

case (i.e., a positive example) that is not yet 

derivable from the knowledge base. In the second 

situation, we can derive a specific solution from the 

knowledge base which is no longer admissible 

(e.g., because of new environmental protection 

laws). This is consequently called a negative 

example. 

From a more formal point of view, this means 

that a given knowledge base KB has to be revised 

using positive examples E
+ (positive experiments to 

be included) and/or negative examples E (failing 

experiments to be excluded), such that all the 



positive examples but none of the negative 

examples are covered by the resulting knowledge 

basezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA KB'. 

Taking the knowledge base as a Horn theory T = 

F u R consisting of facts F and rules R and 

satisfying a set of integrity constraints /C , the 

exploration task of theory revision is to change T 

into T such that T \- e Vee E
j and T \-i e Vee E . 

The resulting theory T must, of course, still satisfy 

the given integrity constraints, i.e., IC u T must be 

consistent. This integrity checking represents the 

verification task of theory revision and thus again 

demonstrates the interleaved exploration and 

verification principle. 

The main task, however, remains how to obtain 

the revised theory T. In principle, there are two 

possibilities: 

- First, we can modify the rules /?, for instance by 

using generalization or specialization tech-

niques, 

- or we can extend the set of facts F, where the 

additional facts can be found by abduction. 

In the following section we will discuss some 

selected techniques from the fields of inductive 

logic programming and deductive databases, which 

could be applied within the proposed theory 

revision framework. 

5. Selected Methods for Knowledge Base 

Evolution 

Generalization techniques are the basic tech-

niques of Inductive Logic Programming and also 

Theory Revision. Generalization operators per-

form two basic syntactic operations on a clause: 

- apply an inverse substitution to a clause; 

- remove a literal from the body of a clause. 

In this section we will first review the least 

general generalization and generalized sub-

sumption frameworks defined by Plotkin and 

Buntine, respectively, before we will then extend 

these techniques for the needs of theory revision in 

practical applications like the evolution of the 

RPPP knowledge bases. 

5.1. Least General Generalization 

Least general generalization was originally 

introduced by Plotkin [29J. It is the opposite of 

most general unification [34]; therefore it is also 

called anti-unification. Given two atomic formulas 

p(f(a),x) and /?(/(v),/?), unification computes their 

most general specialization p(f(a)Ji) while anti-

unification computes their most special gen-

eralization p(f(y),x). 

In addition to the generalization of literals, 

Plotkin also describes an algorithm for the least 

generalization of clauses. A clause C\ generalizes a 

clause C, (denoted by C\ < (\), if C\ subsumes C , 

i.e., there exists a substitution 0such that C\9cz C\. 

This is also called &-subsumption [11]. A gen-

eralization C of a clause C\ can thus be ob-tained 

by applying a f3-subsumption-based genera-

lization operator p that maps a clause C\ to a set of 

clauses p(C\) which are generalizations of C\. 

Informally speaking, if clause C ^-subsumes 

clause D, then D can be converted to C by (1) 

dropping premises and (2) turning constants to 

variables. A clause C is a least generalization of a 

set of clauses if 

1. C generalizes each clause in S: V F e S : C < E 

2. C is the smallest clause satisfying condition 1: 

( 3 D V F G S,D<E)=*D<C 

5.2. Generalized Suhsumption 

The definition of generality presented so far is 

local to the set S of clauses. Referring to im-

plication instead of the weaker subsumption rela-

tionship would also consider generalization w.r.t. 

current knowledge. In [31] a generalization rela-

tive to a set of clauses P is defined as follows: A 

clause C generalizes a clause I) relative to a set of 

clauses P if there exists a substitution 0 such that P 

1= V (C6 —> D). Buntine defines generalized suh

sumption of definite Horn clauses as an extension 

of f9-subsumption with the restriction that the cor-

responding clause heads must be about the same 

concept [11]. Informally speaking, if a clause C 

generally subsumes clause /), then C can be con-

verted to D by (1) turning variables to constants or 

other terms, (2) adding atoms to the body, and (3) 

partially evaluating the body by resolving some 

clause in P with an atom in the body. The third 



conversion process is additional to the conversion 

for f3-subsumption. 

5.3. Generalization for Knowledge Base Evolution 

The condition of covering in the definition of 

generalized subsumption has the effect, that 

generalization depends on the actual representation 

of the clauses. Defining generalization in terms of 

implication (see Plotkin's definition [30]) instead 

of subset-relation would be more suitable. This 

would lead to a combination of techniques from 

inductive logic programming (ILP) and ex-

planation-based learning (EBL) [27] by using 

deduction when deciding the generalization of 

clauses. 

Unfortunately, doing so, the test for genera-

lization becomes undecidable. On the other hand 

Buntine states that generalized subsumption is 

semidecidable, although it is guaranteed to term-

inate i f P contains no recursion. Generalized sub-

sumption w.r.t. a D A T A L O G program, however, is 

decidable. 

Also, for practical applications, least general 

generalization as defined by Plotkin [29] can still 

be too general. Consider the least generalization of 

the two literals /,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA = additive(ppn_1060, fluent) and 

t = additive(r_5320, flame-retardent) for which 

we get the very general term additive(X,Y) loosing 

nearly all information from and connection to the 

original terms that have been generalized. 

Thus, in order to overcome the problems raised 

by theory revision with background knowledge, 

namely its undecidability and its results being too 

general, we study two approaches in the following: 

- First, we investigate how to incorporate more 

knowledge within the generalization process, 

i.e., how to control generalization. This will en-

able us to specify when and where to general-

ize. 

- Second, we discuss how to extend the language 

itself by introducing new representational fea-

tures for expressing generalization results. This 

will enable us to specify how to generalize and 

to represent the generalized term. 

Finally, we wil l present an alternative to 0-sub-

sumption based on terminological reasoning which 

preserves decidability by restricting deduction to 

the terminological calculus. 

5.3.1. Partial Least General Generalization 

The first extension is partial least general gen

eralization (plgg) and allows us to only partially 

generalize two literals: we can say that we want to 

generalize two literals or terms, but can require 

some arguments to be fixed, i.e., that the two 

literals must have unifying values at that specific 

argument position. Thus, partial least general gen-

eralization is a combination of unification and anti-

unification. 

Consider again the following literals 

t] = additive(ppn_1060, flame-retardent) 

= additive(ppn_1060, fluent) 

/, = additive(r_5320, flame-retardent) 

and the following application: 

/;/g#('r^additive($,-)) 

additive(ppn_1060, X) 

Here we only want to generalize over the fluent 

additives of identical materials: the generalization 

pattern additive($,-) restricts generalization to the 

second argument position, while the first argument, 

marked ' $ \ cannot be generalized but has to be 

unifiable. Consequently, plgg can be regarded as a 

combination of anti-unification (for those argu-

ment positions marked and unification (for the 

remaining argument positions). As unification can 

fail, plgg may fail too, but, of course, in the non-

generalized argument positions only. Thus, the 

above generalization of t] and succeeds, but the 

generalization of t2 and t} using the same gen-

eralized pattern fails. 

We can also restrict generalization by requiring 

some arguments to be of a particular type. In this 

case we would use a type or sort identifier at the 

position of the meta-symbol $ in the previous 

example. Thus, exact match as done for $ is now 

replaced by sorted unification for the non-gen-

eralized argument positions. 

Consider the taxonomy shown in Fig. 3. Trying 

to generalize t and t3 requiring the first argument 

of the resulting literal to be of type novodur1 would 

fail since the least general generalization of 

ppn_J060 and r_5320 is the type thermoplastic, 

which is too general, i.e., not within the required 

type novodur: 

'Novodur is a registered trademark of the Bayer A G . 



plggizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA /2,fzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,additive(novodur,_)) fall 

However, i f we only require the generalized 

material to be of type plastic, the generalization of 

/, and t? would succeed and result in the least gen-

eralized material type thermoplastic: 

Jp/gg(^,r3,additive(plastic,_)) 
additive(thermoplastic, X) 

5.3.2. Finite Domain Generalizations 

A second extension of generalization is by enu-

merating the occurring values in a finite domain 

term instead of replacing them by a variable. A 

logic programming extension with finite domain 

terms is presented in [5]. In this case anti-unifi-

cation of t] and t1 results in the literal 

additive(ppn_1060,dom[flame-

retardent,fluentl) 

where the second term is the finite domain con-

taining both original constants flame-retardent 

and fluent. This does not induce new knowledge 

but only compresses the information of two literals 

into one. However, if we anti-unify all three terms 

into one we do obtain an inductive generalization. 

The resulting fact 

additive(dom[ppn_1060,r__53201,dom[flame-

retardent,fluent|) 

with two finite domains really represents four facts, 

which we get by combining each value of the first 

with each of the second domain. In addition to the 

two original clauses we get that novodur r_5320 

has the fluent additive fluent. In order to decide 

whether this hypothesis is actually true we again 

require validation. 

5.3.3. An Alternative to 6-Subsumption Based on 

Terminological Reasoning 

As has been shown by Plotkin, the general 

subsumption problem for Horn clauses is unde-

cidable. Essentially, this negative result is due to 

the fact that subsumption can be reduced to logical 

implication, ^-subsumption is one approximation 

of the 'logical' subsumption that is based on 

instantiations of Herbrand terms and set inclusion. 

In principle, there are two ways how to get a 

decidable rule ordering: 

- One can restrict the expressiveness of the un-

derlying knowledge representation language 

such that logical implication becomes de-

cidable, e.g., Buntine's generalized subsump

tion with restriction to D A T A L O G . 

- Alternatively, the rule ordering can be defined 

using only a weak approximation of logical im-

plication. For example, the subset test used for 

9-subsumption is such a sound but incomplete 

operationalization of logical implication. 

In the former case, as a side effect, the class of 

knowledge that can be learned will be very 

restricted, too. In the latter approach, the learning 

algorithms cannot be optimal, since they are always 

based on a suboptimal rule ordering. However, the 

class of knowledge that can be learned remains 

unconstrained in that case. 

9-subsumption relies on the instantiation order-

ing of Herbrand terms which implies additional 

deficits: There are 'too many' terms that are in-

comparable w.r.t. the instantiation ordering of 

Herbrand terms (e.g.,/(a,6), f{b,b), f{b,a) are 

all incomparable). The weakness is also indicated 

by the fact that there are linear decision procedures 

for the instantiation problem of Herbrand terms. 

These deficits are somehow inherent to the 

underlying Horn logic. As an alternative, Hanschke 

and Meyer [17] propose a rule-formalism based on 

terminological logics (TL). This enables us to 

define a rule ordering much like 0-subsumption, 

but which is based on terminological inferences 

instead of instantiating Herbrand terms. As ter-

minological reasoning formalisms are tuned to be 

similarly expressive while remaining tractable or at 

least decidable, we gain a more fine-grained rule-

ordering. In particular, more rules will become 

comparable. Moreover, we obtain a more intuitive 

knowledge representation. 

We will first briefly introduce the assertional 

formalism (A-box) and the terminological for-

malism (T-box) of the concept languagezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ALCF as a 

prototypical representative for the family of 

terminological formalisms [6] that originated with 

K L - O N E [7]. A terminology of the T-box consists 

of a set of concept definitions C = t where C is the 

newly introduced concept name and t is a concept 

term constructed from concept names, roles, and 



attributes using the following concept forming 

operators:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA conjunction, disjunction, negation, 

value-restriction, and exists-in restriction. In an A-

box (assertional box) concepts, roles, and attributes 

can be instantiated by individuals. Formally, an A -

box is a finite set of role assertions ((/,/) : /•), 

membership assertions (/.7), and equalities (/=/), 

where / and j are individual names, r is a role or 

attribute name, and t is a concept term The 

subsumption problem for A-boxeszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ofALCF can be 

effectively decided [17]. 

Two individuals / and j are directly linked in an A -

box iff the A-box contains a role assertion of the 

form (iJ):R or (jj):R. Linked is the transitive 

reflexive closure of directly linked An A-box is 

called rooted bv (individuals)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a* x , n > 0, iff 

every individual in the A-box is linked to at least 

one of the x and all v occur in the A-box. 

The rule language is now based on the ter-

minological formalism. Its operational semantics 

can be based on a C L P scheme [21,38]. A rule 

takes the form 

p{)(x
m

) <-p{(£
u

)<...>pn(£
n)

), A(x
{{)

\...,x
{fl)

). 

where the p. are predicate symbols with arities nr 

the x
(l} are tuples of individuals ( A ^ , . . . ^ ) , and 

A(x
i0

\...,x
in)

) is an A-box rooted by the individuals 

in the x
ii}

. It is interpreted as a logical formula in the 

obvious way. 

The idea behind the rule ordering is essentially 

the same as for ^-subsumption. The only difference 

is that instead of searching for a substitution 6 that 

acts as a witness for the instantiation relation, we 

now employ the A-box subsumption of the termi-

nological formalism. The resulting rule ordering is 

called TL-subsumption. Assume that two rules 

P ^ ) ^ P ^
X )

) ^ H ^ 

over disjoint sets of variables are given. The /?-rule 

is more general than the </-rule w.r.t. TL-subsump-

tion (< ) iff there is a substitution a such that the 

following holds: 

1. /?0(*
(0)) crand q0(y

<i})

) are equal, 

2. {ptf") G9...j>n(j£«) a) c {q}m^qm^)l 
and 

3. the A-box A(x
[{)

\...,x
(n)

)o subsumes the 

B(x
(0

\...,x
{m)

) w-1"-1- a . . . , A U ) a. 

As the terminological formalism provides attrib-

utes and a complement operator it is possible to 

map Herbrand terms into the set of A-boxes that are 

rooted by one individual such that two Herbrand 

terms s and t are unifiable iff s(X) A 7{ Y) A X = Y is 

satisfiable, where s and T are the images under the 

mapping from concept terms into first-order for-

mulas as defined in [17]. This embedding naturally 

extends to a mapping from Horn rules to the rule 

formalism. It has been shown in [17] that T L -

subsumption is at least as powerful as f>-subsump-

tion, i.e., given two Horn rules r and /%, r{ is more 

general than r, w.r.t. 0-subsumption iff r{ <n /%. 

5.4. Abduction 

Generalization as described before is applied to 

the clauses of a theory, i.e., facts and rules, result-

ing in more general rules. We have also developed 

a new technique for abduction. In addition to the 

Horn-clause theory T consisting of facts F and 

rules R and a set of integrity constraints IC. we also 

postulate a set of distinguished ground literals A 

called abducibles and a goal G which drives the 

abduction process. 

By abduction we want to find a set of hypotheses 

H c A such that we can derive the (positive) 

example e e E* from TzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA u H. In the context of 

theory revision T u H gives the new theory T 

which again must be consistent with K\ the set of 

integrity constraints: 

TuH \-e 

T u H u IC is consistent 

Consider the following example where we have 

two rules for the recyclability of polypropylenes: 

recyclable(closed_circle,Plastic_Id) <— 

polypropylene(Plastic_Id), 

additive(Plastic_Id,flame_retardent) 

recyclable(unrestricted,Plastic_Id) <— 

polypropylene(Plastic_Jd), pure(Plastic_Id) 

polypropylene(X) <— hostalen2 (X) 

additive(ppk__1060,flame-retardent) 

hostalen(ppk_1060) 

The first rule expresses that a polypropylene can 

be recycled only in a closed circle, i f it contains a 

2Hostalen is a registered trademark of the H O E C H S T A G . 



flame retardent agent as a fluent additive. This is 

because the flame retardent agent produces toxic 

dioxin on ultimate thermic treatment. For a pure 

polypropylene there is no restriction a recyclability. 

In two facts we also have that hostalenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ppk__1060 

contains a flame retardent fluent additive. 

If we declare additive and pure as abducibles 

and ask the query how ppk_1060 can be recycled 

?- recyclable(RecKind,ppk_1060) 

we get two answers: The first, unconditional answer 

RecKind - closed-circle 

n 

says that ppk_1060 can be recycled in a closed 

circle. The second, conditional answer 

RecKind = unrestricted 

{pure(ppk_1060)} 

is an abductive solution: under the condition that 

ppk_1060 is pure, it can be recycled unrestricted. 

5.4.1. Bottom-up Abduction 

In order to achieve abduction, deduction tech-

niques can be employed in a top-down as well as in 

a bottom-up manner: with top-down reasoning one 

skips some subgoals instead of proving them if they 

are in the set of abducibles. If the goal only consists 

of abducibles, top-down reasoning stops. The set of 

remaining goals is the set of hypotheses explaining 

the toplevel goal. 

On the other hand, there are a number of optimi-

zation strategies that allow query answering by 

bottom-up evaluation. Generalized Magic Sets re-

writing is such an optimization technique that has 

been developed for query answering in deductive 

databases [2]. We have adapted this rewriting tech-

nique to achieve bottom-up abduction of Horn 

knowledge bases [12]. 

The scheme of our abduction rewriting approach 

is presented in Fig. 6. Given a theory and a goal we 

first perform a Generalized Magic Sets rewriting. 

In a second step we further transform this rulebase 

with respect to the set of abducibles. Evaluating the 

resulting abduction rulebase by bottom-up evalu-

ation wil l compute all abductive solutions. 

The transformation can be regarded as a specia-

Generalized Magic-Sets 

Rewriting 

? 
Abductive Solution 

Fig. 6. Bottom-up abduction by knowledge base rewriting. 

lization of a partially evaluated upside-down meta-

interpreter originally presented by Stickel [39] (see 

also [19]). Compared to Stickers approach we have 

a number of advantages: 

- Only the rules of the knowledge base are trans-

formed; rewriting of the ground facts in the 

knowledge base is avoided. This is very impor-

tant when the ground facts change frequently or 

if they reside on secondary storage like in de-

ductive databases. 

- There is no need for enumeration of all the pos-

sible hypotheses. Thus, the approach is applica-

ble i f the set of possible hypotheses is infinite. 

- Hypotheses will be derived only i f they are not 

already contained as facts in the knowledge 

base. 

- By normalization meta predicates are removed, 

resulting in improved performance. 

Most important: this set-oriented approach is 

usable also for large sets of facts. This is supports 

our objective to develop techniques suitable not 

only for toy examples but also for complex real 



world problems with databases and large knowl-

edge bases. 

5.4.2. Using Abduction for Generalization 

As mentioned before, generalization of Horn 

clauses can be done in different ways, e.g., by 

generalizing some terms (argument positions) or by 

dropping entire literals (removing conditions). 

Thus, the decision about which generalization 

operation should be applied is still a problem. 

Abduction can provide considerable help for 

making this decision. Consider again the recy-

clability example introduced in the last paragraph. 

If we recognize the fact that hostalenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ppk_1060 

can be recycled unrestricted (no matter of its 

pureness) then we have to revise our theory to now 

cover this (positive) example. By processing the 

query 

?- recyclable(unrestricted,ppk_l060) 

we obtain the abductive solution 

yes 

(pure(ppk_1060)} 

which gives rise to generalize the recyclable rule 

for ppk_1060 by dropping this pureness condition. 

Thus, we substitute the original rule 

recyclable(unrestricted,Plastic_Id) <— 

polypropylene(Plastic_Id), pure(Plastic_Id) 

by the following generalized one: 

recyclable(unrestricted,Plastic_Id) <-

polypropylene(PlasticJd) 

Although this is only one example of how 

abduction and generalization can cooperate in the 

theory revision framework, it already shows the 

combined potential for our application. 

5.5. Knowledge Base Verification 

It has already been pointed out that only those 

generalizations and abductive solutions are 

accepted which are consistent with the integrity 

constraints IC. Integrity constraints encode nega-

tive or disjunctive knowledge. These integrity 

constraints are represented as denials, i.e., clauses 

with an empty head. Eshghi and Kowalski use this 

kind of integrity constraints for their abduction 

procedure [15]. We can also represent them as 

clauses with the special atom false as conclusion 

[25]. 

An obvious integrity constraint is that i f a 

material contains a fluent additive it is no longer 

pure. This is represented by the following rule: i f a 

material PI has a fluent additive and the same 

material is pure then there is an inconsistency: 

false <- additive(Pl,X), pure(Pl) 

Consider for example, that the following facts 

and rules would be contained in a knowledge base. 

hostalen(ppk_1060) 

novodur(r_5320) 

additive(ppk_l 060, flame-retardent) 

polypropylene(X) <— hostalen(X) 

absc(X) <— novodur(X) 

In Section 5.4 we have found by abduction that 

Hostalen PPK 1060 could be recycled without any 

restriction i f it was pure. So we can tentatively add 

this information to the knowledge base as an 

additional fact: pure(ppk_1060). 

A naive method for integrity checking would be 

to use a proof-finding approach and ask the query 

?- false 

This procedure would invoke all integrity con-

straints in backward direction even i f they are 

independent from the new fact. However, it would 

be much more efficient to derive only those facts 

that are consequences of this new assertion. In [15] 

it is argued to do this kind of constraint checking by 

forward reasoning starting with the new fact. But 

forward reasoning from one fact alone is not 

sufficient. The following integrity constraint says 

that 'polypropylenes and ABSCs must not be 

components of a single composite product'. 

false <- composite(PU,P12), 

polypropylene(Pll), 

absc(P12) 

Adding the new fact composite(ppk__1060, 

r_5320) would lead to an inconsistency which will 



not be detected by forward chaining this fact alone. 

Additionally, we need to prove whether the pre-

miseszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA polypropylene(ppk_1060) and absc 

(r_5320) can be satisfied. 

In [25] a model-generation approach has been 

applied for this problem. Here, however, we regard 

checking of integrity constraints as a consequence-

finding problem [20]. Given an update of a 

deductive database or a logic program, conse-

quence finding applies only those rules that are 

effected by the update operation. This builds on the 

assumption that the database satisfied its integrity 

constraints prior to the update. Derivation is 

restricted to exactly those facts that depend on an 

explicitly given set of initial facts, in our case the 

hypotheses found by abduction. 

The extended SLDNF resolution of [35] uses the 

clauses corresponding to the updates as top-clauses 

for the search space and thus achieves the effect of 

simplification methods investigated by [14,24,28]. 

The approach combines forward and backward 

chaining depending on whether a positive or nega-

tive literal is resolved upon. 

As an alternative to this tuple-oriented method 

we have developed a rewriting approach [18]. It is 

an extension of the well-known Generalized Magic 

Sets rewriting technique [2], which was also the 

basis for bottom-up abduction in Section 5.4.1. 

Since this technique in some sense integrates 

forward and backward chaining, it seems natural to 

extend it for consequence finding. 

By Generalized Magic Sets rewriting, infor-

mation about variable bindings given by the query 

is propagatedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA down into the bodies of the rules at 

compile-time. For consequence finding we do not 

have a query but a number of initial facts - the 

update information - from which to reason 

forward. 

Thus, the input to the consequence finding 

transformation is a set of initial facts and the rules 

of the knowledge base. The transformation algo-

rithm specializes the knowledge base by intro-

ducing additional rules and predicates. It extends 

the Generalized Magic Sets rewriting by an up 

propagation in addition to the usual down 

propagation. When the rewritten knowledge base is 

evaluated by a model-generating, bottom-up pro-

cedure, the generation of a complete minimal 

model is restricted to the consequences of the 

initial facts. Because it is a set-oriented strategy it 

is very efficient if facts have to be retrieved from a 

database. 

6. Conclusion 

As knowledge-based systems are brought to 

practical applications and knowledge bases are to 

be used over years, the problem of knowledge base 

evolution naturally comes up: the key issue is how 

to ensure that the knowledge base does always 

represent all the knowledge that is relevant for 

solving tasks, i.e., being "complete", and does not 

become out of date or invalid, i.e., remaining 

'sound'' with respect to some specific situational 

context. Although this is a goal hard to achieve, it 

shows the direction in which knowledge base 

evolution research should work: to overcome the 

(always 'damned but nevertheless done') accu-

mulation of 'small local hacks' causing unfore-

seeable consequences and to find a compromise 

between this ad-hoc K B modification approach and 

the other extreme of restarting the whole knowl-

edge engineering work ranging from the formal 

specification down to the concrete representation 

with each K B modification. 

In this paper, we have shown that knowledge base 

evolution can be regarded as a theory revision 

process. Research in Inductive Logic Programming 

provides us with a set of techniques that can be 

applied to incorporate new knowledge into the 

knowledge base (knowledge base exploration), 

e.g., by generalization and abduction. On the other 

hand techniques from deductive database research 

can be used for ensuring the integrity of the 

knowledge base, i.e., for solving the knowledge 

base verification and validation task. 

For both tasks we have developed extensions and 

modifications motivated by the special char-

acteristics of the application. The generalization 

techniques taken from ILP have been extended 

towards the incorporation of meta-knowledge for 

guiding the generalization process (plgg) and 

towards additional language features for repre-

senting generalization results (e.g., finite domain 

terms). Additionally, we have proposed an alter-

native to ^-subsumption based on an extension of 

Horn rules incorporating termi-nological knowl-

edge representation and reasoning (TL-sub-

sumption). In order to get efficient evolution 



techniques also for large sets of rules and facts we 

extended the rewriting techniques from deductive 

databases for abduction and integrity checking. 

Further work on knowledge base evolution 

should not only consider developing more powerful 

exploration and verification methods, but should 

also focus on the knowledge representation lan-

guage itself. It is obvious that a more powerful but 

still semantically clear representation formalism, as 

e.g., introduced for TL-subsumption, will be of 

great advantage for all kinds of knowledge 

evolution techniques. For example, introducing 

sorts or types as mentioned in several parts of this 

paper can be a first but only intermediate step: 

generalization within a sort lattice does already 

yield a more fine-grain clause ordering than simple 

0-subsumption. However, extending the logic-

based representation language by substituting or 

complementing constitutively given sorts by 

intensionally defined concepts and concept terms 

in the sense of terminological reasoning will be 

necessary for finding and expressing 'really least 

general' generalizations and thus being able to 

support knowledge base evolution over a long 

period of time. 

Currently only little work is available on tailoring 

the knowledge representation formalism to knowl-

edge base evolution needs [4]. But being convinced 

that research on this wil l be a key issue for the 

success of knowledge base evolution in the future, 

we wil l also concentrate on further improving 

knowledge representation approaches like T L -

subsumption besides developing the evolution 

techniques themselves. 
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