
Knowledge-Base Evolution for Product and
Production Planning*

Knut Hinkelmann, Manfred Meyer and Franz

Schmalhofer
DFKI (German Research Center for Artificial Intelligence),

Postfach 2080, 67608 Kaiserslautern, Germany

Email: {hinkelma,meyer,schmalho}@dfki. uni-kl.de

Knowledge-base evolution techniques are shown to be of

critical importance for the successful application of knowl-

edge-based systems in complex domains. By conceptualiz-

ing knowledge-base evolution as theory revision, we can

take advantage of the basic findings from different research

communities. Results from Inductive Logic Programming

(ILP) and Explanation-Based Learning (E B L) provide a set

of techniques that can be used as a foundation for obtaining

new knowledge {knowledge-base exploration). Techniques

from deductive database research might be used for testing

the correctness of a knowledge base (knowledge base verifi-

cation). By an interactive application of these exploration

and verification techniques, domain experts and other users

may similary improve the effectiveness of the knowledge

base (knowledge validation). The application of such se-

lected techniques is then discussed with respect to the spe-

cific problem of improving production parameters.

1. Introduction

It is a long held belief, that micro-worlds, such as

the blocks world, sorting tasks or chess end games

are the drosophila of Artificial Intelligence and

Machine Learning research, where the fundamental

successes are to be achieved and demonstrated. A

quote by Amarel [1, p.258] highlights this view.

'These toy problems provide an excellent para-

digmatic task environment in which essential

aspects of the representation problem can be studied

... They are serving as drosophila of research in the

general area of problem representations, and in the

study of acquisition of problem solving skills'.

Although there cannot be any doubt that many

successes of Machine Learning have been achieved

in these micro-worlds, the utilization of these

*This research was supported by grant 413-5839-ITW9304/

3 from the B M F T .

achievements in complex real world domains (e.g.,

the industrial applications of Machine Learning) is

much more difficult than had been originally

anticipated. Buchanan [10, p.5] for example,

reports that except for simple classification sys-

tems, knowledge-based systems do not yet employ

a learning component to construct parts of the

knowledge bases from libraries of previously

solved cases.

It has been pointed out only recently, that real

world domains have quite different characteristics

than the micro-words where new machine learning

techniques are routinely demonstrated. Com-

plexity, continuous innovations and documentation

as well as incomplete and conflicting knowledge

are the most eminent characteristics [37]. Because

of the dynamic character of real world domains, the

application of knowledge-based systems requires

that the changes in the field can at least be traced

(preferably predicted and discovered) by approp-

riately selected machine learning techniques. Such

updating and revision processes are termed knowl

edge base evolution. Comparable to the human

genome project which also requires additional

resources, above and beyond the discovery of the

genetic mechanisms with the drosophila, the ILP

community must therefore also pay more attention

to applications in complex real world domains.

In order to develop knowledge-base evolution

techniques with respect to complex real world

domains, we first analyzed the requirements of

product and production planning with new

materials by using the specific example of the

manufacturing of bucket seats in the car industry.

The results are summarized in Section 2 of this

paper. Section 3 then describes a respective knowl-

edge-base that is currently being developed by an

iterative application of the CLASSIC methodology

to knowledge engineering [8]. Section 4 will then

show how the knowledge evolution can be

understood as theory revision [33], where the

knowledge-base evolution system and the user

cooperate in a way, similar to an apprenticeship

learning system [40].

Theory Revision has recently been proposed as a

Fig. 1. The manufacturing of a bucket seat with a G M T (reprinted by permission from the l-lastogran GmbH).

general framework, where Explanation-Based

Learning (EBL) and Inductive Logic Programming

(ILP) can be integrated [27]. For mastering the

knowledge evolution requirements of the specific

application, we can thus draw upon the basic

research results from both E B L as well as ILP.

Furthermore, exploration and verification pro-

cesses will be distinguished. A continuous (in-

teractive) improvement of a knowledge base during

its entire life-time starting with the first forma-

lizations (knowledge base seed) and still con-

tinuing along its practical use can thus be achieved

[26].

Expert knowledge from the application domain

is used for constraining the exploration processes,

so that an efficient implementation can be ob-

tained. Expert knowledge will be employed to

determine the representation bias (also known as

'restricted hypothesis space bias') and search bias

(also known as 'preference bias') of induction [32].

More specifically, domain knowledge is used to

specify the representational bias and metaknowl-

edge to determine the search bias. The paper will be

concluded with a general discussion of the role of

knowledge-base evolution for the quality of prac-

tical knowledge bases.

2. Product and Production Planning

In the car industry, like in other modern in-

dustries, the innovation cycles have become

increasingly shorter. Driven by the objectives of

environmental protection laws, hazardous manu-

facturing materials must be replaced by more

adequate new materials. Equally important is the

reduction of cost while the highest possible quality

standard is being maintained. In many branches,

new materials such as glass mat reinforced thermo-

plastics (GMT) are currently introduced and in-

creasingly more used for manufacturing products,

and thereby replacing steel and metal construc-

tions. A G M T is a composite consisting of two

components, namely a thermoplastic rein-forced

by glass fiber. An example is the manu-facturing of

car seats. The high security standards and other

requirements (e.g., concerning wear and tear) can

now be satisfied by using GMTs. For example, the

rear part of a bucket seat for a car can now be

manufactured with GMT, instead of more costly

metal constructions.

Figure 1 shows the production process with

GMTs. It consists of a preparation phase, a pressing

phase and a finishing phase. In the preparation

phase the raw material is put on a conveyer belt that

moves it through the tunnel kiln, where it is heated.

In order to avoid an undesired cooling, the material

is then immediately put into the hydraulic press,

where the geometry of the car seat is pressed before

it is cooled off so that its form is maintained.

During the finishing phase unwanted bumps must

be removed.

The pressing of the material depends on a

number of parameters with complex interrelation-

ships. The temperature of the material influences

the volume per unit time which is responsible that

Production/Recycling

Materials

composite structures

fundamental

materials

Products

Fig. 2. Overall structure of the RPPP knowledge base.

the material reaches every part of the pressing

form. As soon as the material is put into the press,

the press is closed with a speed of about 800 mm/s.

As soon as the press reaches the material the speed

is reduced to a value between 5 and 15 mm/s. After

the press is closed a constant pressing force is

exerted on the material for some duration. After

that, the material is left in the press for some time

to cool off. The duration of cooling depends on the

temperature of the material and the tool, the tool

geometry, the topology of the cooling capillaries of

the tool, etc.

In product and production planning, 'system

development' and 'parameter optimization' are

distinguished as two separate phases, which can

also be called primary and secondary engineering

[23]. In the primary phase, a prototype of the

product and the corresponding manufacturing

process is developed. In some previous research it

was already shown how machine learning tech-

niques can be applied for supporting the primary

engineering phase [31]. More specifically, it was

shown how an explanation based abstraction

method [36] can be used for abstracting planning

schemata from success cases of the real world [37].

In the secondary phase, appropiate parameters

must be found for the respective primary design. In

this paper, we are solely concerned with this

secondary design phase. In particular, we propose a

knowledge base and knowledge evolution tech-

niques for documenting and maintaining all

available information and knowledge. This knowl-

edge concerns the various parameters and how they

determine the desired characteristics of the

product.

3. A Recycling-Oriented Product and Pro

duction Planning Knowledge Base

In some previous work, the selection of recy-

clable materials in product design and the process

planning for manufacturing and recycling such

products were identified as a promising application

domain for knowledge base evolution. In [3] a

materials knowledge base is discussed as an in-

tegral part of a declarative knowledge base for

recycling-oriented product and production plan-

ning (RPPP). The overall structure of this knowl-

edge base consists of a module representing the

materials, a second one representing production

and recycling knowledge and a third module

containing products that have been manufactured

from these materials (see Fig. 2).

3.1. The Materials Knowledge Base

Materials constitute the substance of production

and recycling. Materials can bedivided into fun-

damental and composite materials. The main

problem when building a knowledge base is

'finding the right way to break the domain into

objects and their relationships'. One solution

approach is given by the 'Knowledge Engineering

Methodology for C L A S S I C [8]. This metho-

dology suggests to formalize the domain

QzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA elastomer") ^hermoplastiĉ t̂herrnoseQ

Q abs ^ ^polyamirT) ^polypropylene ^

Fig. 3. A taxonomy of materials.

knowledge using some kind of terminological

knowledge represen-tation in the spirit of K L - O N E

[7] or a frame-like, object-centered knowledge

represen-tation system using an inheritance hier-

archy. The methodology consists of a sequence of

design steps. We are using an iterative application

of this methodology by allowing multiple iterations

of two or more of the following consecutive steps:

1. Relevant object types are enumerated. As a re-

sult the relevant objects are determined to be

particular plastics and composite materials,

classes of such materials, qualitative and quan-

titative properties of the materials, numbers etc.

2. The obtained descriptions are divided into ob-

jects and properties, which are later mapped to

concepts and roles. In our case, classes of mate-

rials are concepts, whereas most of the proper-

ties correspond to roles.

3. Concepts are organized into a taxonomy. This

step yielded the hierarchy of the fundamental

and composite materials. Part of this hierarchy

is presented in Fig. 3.

4. Then, the key individuals are isolated and asso-

ciated to the concepts they belong to.

5. In order to obtain the internal structure of the

concepts, a list of relevant properties must be

determined for each concept. These properties

include intrinsic and extrinsic properties and

part-of relations. In this step, the properties of

the plastics have been adopted from the exist-

ing C A M P U S database [9], which contains all

the plastics produced by 22 European chemical

industries. An important property for G M T is

thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA modulus of elasticity (e-modulus).

The part-of relation is the main relation for dis-

tinguishing composite materials. A G M T con-

sists of a thermoplastic which is reinforced with

glass fibers to enhance its e-modulus. There are

two types of glass fibers in the form of papers

or mats and two types of thermoplastics poly

propylene and polyamid. Thus we get four

types of GMTs. The e-modulus increases as the

percentage of glass fibers increases.

6. In the remaining steps of the CLASSIC meth-

odology, the restrictions of the properties for

each concept are acquired in detail. As a result

of this step, the particular types of possible val-

ues and the cardinality of values have been de-

termined.

For the representation of the materials knowl-

edge base we propose a respective hierarchical rep-

resentation in a terminological representation lan-

guage.

3.2. The Product Knowledge Base as Case Base

The Product Knowledge Base is a Case Base. It

contains the actual parameters of the success cases

of manufacturing car seats with different materials.

It also represents cases, where certain quality

requirements have not been satisfied by the prod-

uct of the industrial manufacturing process. These

success and failure cases are denoted byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA e
+

jk and e~.p

where k is an index for referencing the specific

case and / identifies that the case resulted from

indus-trial experience.

In addition to these industrial cases, the results

from systematic experimentation, that is performed

in material sciences research institutes, should also

be stored in the Product Knowledge Base. In order

to determine the thermodynamic behavior of

GMTs during the pressing process, researchers

may for instance perform experiments, where

several different parameters are systematically

manipulated to determine their influence upon

some criterion variable. Such scientific research

may determine, 'which influences different pro-

duction parameters have on the work done on the

material and what kind of flow characteristics

different GMT-materials show' [22]. Such experi-

ments may investigate how the closing speed of the

tools, the press force and the specific material

determine the size of the pressed material. The

experimental results can provide very useful

information for the product engineer, who is

interested in manufacturing some specific car seat.

The actual data from such experiments should

therefore also be stored in the case base. We denote

such cases from scientific experimentation by e
+

k,

where the index s indicates that this result was

achieved by science research and k is an index that

denotes the specific experiment.

5.3. The Production Knowledge Base

The pressing of materials depends on a large

number of parameters. There are complex relation-

ships among these parameters, as well as between

these parameters and the material and the quality

requirements. As already mentioned in Section 2,

there is relatively little knowledge available about

which parameter values achieve the desired result.

Even for an expert it is nearly impossible to find

exact adjustments at once. To find the depen-

dencies between various parameters, the product

engineer usually tries several possibilities. The

results of these trials are represented in the Product

Knowledge Base. In the Production Knowledge

Base, we will thus represent the regularities which

are (supposedly) valid for the production process,

in general. More specifically, we are concerned

with the different parameter values for manu-

facturing G M T products with a hydraulic press

(see Fig. 1).

The results of such scientific experiments are

most often summarized by a linear equation, that is

obtained by a regression analysis or by an Analysis

of Variance [23]. Such an equation may for instance

take the form:

Although such numeric equations are quite

useful and have a broad field of application in

research and industrial practice, there are also a few

disadvantages, which can be compensated by a

more abstract and qualitative description. One

problem lies in the fact, the each experiment yields

a new equation and it may be quite difficult for any

practitioner (and even researcher) to derive a set of

general regularities from the various equations.

Secondly, these equations hold only within certain

limits.This is, however, not directly represented by

the equation. For instance, increasing the pressing

force beyond certain limits wil l not increase the

surface area in the way that is predicted by the

linear equation, but may instead damage the press.

In other words, there is an upper and lower bound

on the parameters as well as on the values of the

criterion variable (e.g., the surface area).

In addition to such numerical representations, we

therefore propose a more abstract and qualitative

description for representing the general knowledge

from the various cases. Unlike the numerical

equation, we assume upper and lower bounds for

the criterion variable, whose values are denoted

qualitatively, like for instance by Targe', 'medium'

or 'small'. In other words, there is for instance no

value that is smaller than 'very small' and no value

that is larger than 'very large'. As a consequence of

these bounds, the qualitative addition operation,

which we denote by ©, can no longer be a closed

operation. In order to embody these limitations, we

define the qualitative addition operation in the

following way. Let A denote a set of qualitative de-

scriptors, likezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a 9ava3 ... an, which we could for

instance also call <z =very small, a2=small, a3=

medium, ... a=very large. We postulate that the set

A is weakly ordered. Since the cartesian product

A x A contains all logically possible qualitative

additions of the form a®b, where a and b are in A,

those that can actually be formed must constitute a

Production

comprehensive theory

with successive versions

T \ T ' \ „ .

Theory formation

: Materials

composite
ŝtructures

fundamental

k materials

Theory revision

summary of
experimental

results

' s l ' & s2

summary of
practical

experiences

e ,e ,
i l ' i2

Fig. 4. Formation and revision of the production knowledge base.

subsetzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B of A *A. Thus, i f (a,ft) is in 5, then a and b

can be qualitatively added and so a®b is in A. This

means that the operation © is a function from B into

A. In order to account for the fact, that not all

qualitative additions are possible, we define a

qualitative structure <A,y,B,®>, where associa-

tivity and monotonicity are somewhat modified. In

order to accomplish this, we impose the following

limitations on A and B: If a yb, we assert the exis-

tence of a c in A such that (c,ft) is in B and a >-c®b.

The requirements on the proposed qualitative

structure, which are summarized in the following

definition, provide important integrity constraints

for the production knowledge base (Fig. 4).

Integrity constraints for qualitative structures.

Let A be a nonempty set of qualitative descriptors

(such as 'small', 'medium', 'large') or avav...,an,

a binary relation on A, B a nonempty subset of A
x

 A and © a binary function from B into A. The qua-

druple <A,>z,B9®> is a qualitative structure if the

following six conditions are satisfied for all a, ft, c

e A:

1. <Ay >z > is a weak order.

2. IfzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (a9b) e B and (a®b,c) e 5, then (ft,c) e 5, (a,

ft © c) G 5, and (a © ft) © c >= a © (6 © c).

3. If € 5 and a t ft, then (c,ft) G 5 and a © c

>= c ® ft.

4. If a >- ft, then there exists G /I such that (ft,*:/)

G 5 and # — b ® d.

5. If (a,ft) G fl, then a © ftW/.

6. a ;>... G /4 is a strictly bounded and finite

standard sequence if for n~2 an = a ; j

and it is only strictly bounded if for some ft G A

and for all an in the sequence, ft>- an.

4. Knowledge Base Evolution as Theory Revision

4.1. The Knowledge Base Evolution Scenario

Knowledge base evolution covers not only the

maintenance of an existing K B [13], but also the

continous improvement of the K B , its structure and

content. Knowledge-base evolution operates on the

K B of a knowledge-based system. Thus, for an

overall description of knowledge base evolution in

the RPPP context we distinguish two main units

(Fig. 5): the knowledgebase itself (RPPP) and the

knowledge-evolution system (KES).

The KES operates as a meta-level system on the

object level K B . Reasoning in the knowledge

evolution system is performed by the exploration

and verification components.

- Similar to discovery systems the knowledge ex

plorer scans the K B in search for interesting

K E S

Fig. 5. The RPPP knowledge base evolution architecture.

patterns. Exploration can be seen as an iterative

process starting with the generation of a pattern

hypothesis, proceeding with a search for the

pattern in the K B , and resulting in a possible

interactive assimilation of the discovered pat-

tern into the K B . Thus, inductive techniques

play a major role for knowledge exploration.

- ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA knowledge verifier can perform verification

and with appropriate user assistance also vali-

dation. It examines the K B to detect structural

or functional defects. Validation and verifica-

tion can also be seen as an iterative process

starting with the generation of a defect suspi-

cion, proceeding with a check for a defect w.r.t.

the suspicion in the K B , and resulting in a pos-

sible defect description or repair suggestion.

Here, techniques for checking integrity con-

straints become most relevant.

The iteration cycles can be arbitrarily inter-

leaved, permitting evolution to consist of dual

verification and exploration processes. Together

they form a heuristic, approximative process that

alternates focusing and processing phases and

improves the K B any time a sufficient amount of

knowledge for an update (i.e., assimilation or

repair) is accumulated within the KES or provided

by the user. For example, assume that the verifier

has identified a rule whose premises cannot be

satisfied in a given K B . The explorer could then try

to generalize that particular rule or to complete the

missing knowledge reachable from its premises.

Conversely, after the explorer has discovered a

pattern (e.g., a new or generalized rule) the verifier

may be asked to verify the K B , focused on the

assimilated pattern.

4.2. Theory Revision

The problem of building up a knowledge base

(knowledge acquisition) can be seen as a two-phase

process [16]: In the first phase the knowledge

engineer builds an initial model (i.e., the seeding of

the knowledge base). In the second phase this

initial knowledge base is refined or revised into a

high performance knowledge base. During the

further practical use of the knowledge-base, the

dynamically changing world may cause the

knowledge base to become invalid in one of the

following senses:

- New developments may cause new problem

cases not being covered by the knowledge base.

This results in the K B S not being able to solve

these problems. For example, neglecting the ef-

fects of changing parameter values determined

by recent experiments would leave the RPPP

system incapable to find the best production

process.

- Some knowledge stored in the knowledge base

may become out of date and should no longer

be used as it would lead to solutions that for

some reasons are no longer valid in the current

application environment. For example, a fluent

additive that has become known to be noxious

should no longer be used or be used only in

closed-circle production and recycling proc-

esses.

In the first situation we have a new application

case (i.e., a positive example) that is not yet

derivable from the knowledge base. In the second

situation, we can derive a specific solution from the

knowledge base which is no longer admissible

(e.g., because of new environmental protection

laws). This is consequently called a negative

example.

From a more formal point of view, this means

that a given knowledge base KB has to be revised

using positive examples E
+ (positive experiments to

be included) and/or negative examples E (failing

experiments to be excluded), such that all the

positive examples but none of the negative

examples are covered by the resulting knowledge

basezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA KB'.

Taking the knowledge base as a Horn theory T =

F u R consisting of facts F and rules R and

satisfying a set of integrity constraints /C , the

exploration task of theory revision is to change T

into T such that T \- e Vee E
j and T \-i e Vee E .

The resulting theory T must, of course, still satisfy

the given integrity constraints, i.e., IC u T must be

consistent. This integrity checking represents the

verification task of theory revision and thus again

demonstrates the interleaved exploration and

verification principle.

The main task, however, remains how to obtain

the revised theory T. In principle, there are two

possibilities:

- First, we can modify the rules /?, for instance by

using generalization or specialization tech-

niques,

- or we can extend the set of facts F, where the

additional facts can be found by abduction.

In the following section we will discuss some

selected techniques from the fields of inductive

logic programming and deductive databases, which

could be applied within the proposed theory

revision framework.

5. Selected Methods for Knowledge Base

Evolution

Generalization techniques are the basic tech-

niques of Inductive Logic Programming and also

Theory Revision. Generalization operators per-

form two basic syntactic operations on a clause:

- apply an inverse substitution to a clause;

- remove a literal from the body of a clause.

In this section we will first review the least

general generalization and generalized sub-

sumption frameworks defined by Plotkin and

Buntine, respectively, before we will then extend

these techniques for the needs of theory revision in

practical applications like the evolution of the

RPPP knowledge bases.

5.1. Least General Generalization

Least general generalization was originally

introduced by Plotkin [29J. It is the opposite of

most general unification [34]; therefore it is also

called anti-unification. Given two atomic formulas

p(f(a),x) and /?(/(v),/?), unification computes their

most general specialization p(f(a)Ji) while anti-

unification computes their most special gen-

eralization p(f(y),x).

In addition to the generalization of literals,

Plotkin also describes an algorithm for the least

generalization of clauses. A clause C\ generalizes a

clause C, (denoted by C\ < (\), if C\ subsumes C ,

i.e., there exists a substitution 0such that C\9cz C\.

This is also called &-subsumption [11]. A gen-

eralization C of a clause C\ can thus be ob-tained

by applying a f3-subsumption-based genera-

lization operator p that maps a clause C\ to a set of

clauses p(C\) which are generalizations of C\.

Informally speaking, if clause C ^-subsumes

clause D, then D can be converted to C by (1)

dropping premises and (2) turning constants to

variables. A clause C is a least generalization of a

set of clauses if

1. C generalizes each clause in S: V F e S : C < E

2. C is the smallest clause satisfying condition 1:

(3 D V F G S,D<E)=*D<C

5.2. Generalized Suhsumption

The definition of generality presented so far is

local to the set S of clauses. Referring to im-

plication instead of the weaker subsumption rela-

tionship would also consider generalization w.r.t.

current knowledge. In [31] a generalization rela-

tive to a set of clauses P is defined as follows: A

clause C generalizes a clause I) relative to a set of

clauses P if there exists a substitution 0 such that P

1= V (C6 —> D). Buntine defines generalized suh

sumption of definite Horn clauses as an extension

of f9-subsumption with the restriction that the cor-

responding clause heads must be about the same

concept [11]. Informally speaking, if a clause C

generally subsumes clause /), then C can be con-

verted to D by (1) turning variables to constants or

other terms, (2) adding atoms to the body, and (3)

partially evaluating the body by resolving some

clause in P with an atom in the body. The third

conversion process is additional to the conversion

for f3-subsumption.

5.3. Generalization for Knowledge Base Evolution

The condition of covering in the definition of

generalized subsumption has the effect, that

generalization depends on the actual representation

of the clauses. Defining generalization in terms of

implication (see Plotkin's definition [30]) instead

of subset-relation would be more suitable. This

would lead to a combination of techniques from

inductive logic programming (ILP) and ex-

planation-based learning (EBL) [27] by using

deduction when deciding the generalization of

clauses.

Unfortunately, doing so, the test for genera-

lization becomes undecidable. On the other hand

Buntine states that generalized subsumption is

semidecidable, although it is guaranteed to term-

inate i f P contains no recursion. Generalized sub-

sumption w.r.t. a D A T A L O G program, however, is

decidable.

Also, for practical applications, least general

generalization as defined by Plotkin [29] can still

be too general. Consider the least generalization of

the two literals /,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA = additive(ppn_1060, fluent) and

t = additive(r_5320, flame-retardent) for which

we get the very general term additive(X,Y) loosing

nearly all information from and connection to the

original terms that have been generalized.

Thus, in order to overcome the problems raised

by theory revision with background knowledge,

namely its undecidability and its results being too

general, we study two approaches in the following:

- First, we investigate how to incorporate more

knowledge within the generalization process,

i.e., how to control generalization. This will en-

able us to specify when and where to general-

ize.

- Second, we discuss how to extend the language

itself by introducing new representational fea-

tures for expressing generalization results. This

will enable us to specify how to generalize and

to represent the generalized term.

Finally, we wil l present an alternative to 0-sub-

sumption based on terminological reasoning which

preserves decidability by restricting deduction to

the terminological calculus.

5.3.1. Partial Least General Generalization

The first extension is partial least general gen

eralization (plgg) and allows us to only partially

generalize two literals: we can say that we want to

generalize two literals or terms, but can require

some arguments to be fixed, i.e., that the two

literals must have unifying values at that specific

argument position. Thus, partial least general gen-

eralization is a combination of unification and anti-

unification.

Consider again the following literals

t] = additive(ppn_1060, flame-retardent)

= additive(ppn_1060, fluent)

/, = additive(r_5320, flame-retardent)

and the following application:

/;/g#('r^additive($,-))

additive(ppn_1060, X)

Here we only want to generalize over the fluent

additives of identical materials: the generalization

pattern additive($,-) restricts generalization to the

second argument position, while the first argument,

marked ' $ \ cannot be generalized but has to be

unifiable. Consequently, plgg can be regarded as a

combination of anti-unification (for those argu-

ment positions marked and unification (for the

remaining argument positions). As unification can

fail, plgg may fail too, but, of course, in the non-

generalized argument positions only. Thus, the

above generalization of t] and succeeds, but the

generalization of t2 and t} using the same gen-

eralized pattern fails.

We can also restrict generalization by requiring

some arguments to be of a particular type. In this

case we would use a type or sort identifier at the

position of the meta-symbol $ in the previous

example. Thus, exact match as done for $ is now

replaced by sorted unification for the non-gen-

eralized argument positions.

Consider the taxonomy shown in Fig. 3. Trying

to generalize t and t3 requiring the first argument

of the resulting literal to be of type novodur1 would

fail since the least general generalization of

ppn_J060 and r_5320 is the type thermoplastic,

which is too general, i.e., not within the required

type novodur:

'Novodur is a registered trademark of the Bayer A G .

plggizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA /2,fzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,additive(novodur,_)) fall

However, i f we only require the generalized

material to be of type plastic, the generalization of

/, and t? would succeed and result in the least gen-

eralized material type thermoplastic:

Jp/gg(^,r3,additive(plastic,_))
additive(thermoplastic, X)

5.3.2. Finite Domain Generalizations

A second extension of generalization is by enu-

merating the occurring values in a finite domain

term instead of replacing them by a variable. A

logic programming extension with finite domain

terms is presented in [5]. In this case anti-unifi-

cation of t] and t1 results in the literal

additive(ppn_1060,dom[flame-

retardent,fluentl)

where the second term is the finite domain con-

taining both original constants flame-retardent

and fluent. This does not induce new knowledge

but only compresses the information of two literals

into one. However, if we anti-unify all three terms

into one we do obtain an inductive generalization.

The resulting fact

additive(dom[ppn_1060,r__53201,dom[flame-

retardent,fluent|)

with two finite domains really represents four facts,

which we get by combining each value of the first

with each of the second domain. In addition to the

two original clauses we get that novodur r_5320

has the fluent additive fluent. In order to decide

whether this hypothesis is actually true we again

require validation.

5.3.3. An Alternative to 6-Subsumption Based on

Terminological Reasoning

As has been shown by Plotkin, the general

subsumption problem for Horn clauses is unde-

cidable. Essentially, this negative result is due to

the fact that subsumption can be reduced to logical

implication, ^-subsumption is one approximation

of the 'logical' subsumption that is based on

instantiations of Herbrand terms and set inclusion.

In principle, there are two ways how to get a

decidable rule ordering:

- One can restrict the expressiveness of the un-

derlying knowledge representation language

such that logical implication becomes de-

cidable, e.g., Buntine's generalized subsump

tion with restriction to D A T A L O G .

- Alternatively, the rule ordering can be defined

using only a weak approximation of logical im-

plication. For example, the subset test used for

9-subsumption is such a sound but incomplete

operationalization of logical implication.

In the former case, as a side effect, the class of

knowledge that can be learned will be very

restricted, too. In the latter approach, the learning

algorithms cannot be optimal, since they are always

based on a suboptimal rule ordering. However, the

class of knowledge that can be learned remains

unconstrained in that case.

9-subsumption relies on the instantiation order-

ing of Herbrand terms which implies additional

deficits: There are 'too many' terms that are in-

comparable w.r.t. the instantiation ordering of

Herbrand terms (e.g.,/(a,6), f{b,b), f{b,a) are

all incomparable). The weakness is also indicated

by the fact that there are linear decision procedures

for the instantiation problem of Herbrand terms.

These deficits are somehow inherent to the

underlying Horn logic. As an alternative, Hanschke

and Meyer [17] propose a rule-formalism based on

terminological logics (TL). This enables us to

define a rule ordering much like 0-subsumption,

but which is based on terminological inferences

instead of instantiating Herbrand terms. As ter-

minological reasoning formalisms are tuned to be

similarly expressive while remaining tractable or at

least decidable, we gain a more fine-grained rule-

ordering. In particular, more rules will become

comparable. Moreover, we obtain a more intuitive

knowledge representation.

We will first briefly introduce the assertional

formalism (A-box) and the terminological for-

malism (T-box) of the concept languagezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ALCF as a

prototypical representative for the family of

terminological formalisms [6] that originated with

K L - O N E [7]. A terminology of the T-box consists

of a set of concept definitions C = t where C is the

newly introduced concept name and t is a concept

term constructed from concept names, roles, and

attributes using the following concept forming

operators:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA conjunction, disjunction, negation,

value-restriction, and exists-in restriction. In an A-

box (assertional box) concepts, roles, and attributes

can be instantiated by individuals. Formally, an A -

box is a finite set of role assertions ((/,/) : /•),

membership assertions (/.7), and equalities (/=/),

where / and j are individual names, r is a role or

attribute name, and t is a concept term The

subsumption problem for A-boxeszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ofALCF can be

effectively decided [17].

Two individuals / and j are directly linked in an A -

box iff the A-box contains a role assertion of the

form (iJ):R or (jj):R. Linked is the transitive

reflexive closure of directly linked An A-box is

called rooted bv (individuals)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a* x , n > 0, iff

every individual in the A-box is linked to at least

one of the x and all v occur in the A-box.

The rule language is now based on the ter-

minological formalism. Its operational semantics

can be based on a C L P scheme [21,38]. A rule

takes the form

p{)(x
m

) <-p{(£
u

)<...>pn(£
n)

), A(x
{{)

\...,x
{fl)

).

where the p. are predicate symbols with arities nr

the x
(l} are tuples of individuals (A ^ , . . . ^) , and

A(x
i0

\...,x
in)

) is an A-box rooted by the individuals

in the x
ii}

. It is interpreted as a logical formula in the

obvious way.

The idea behind the rule ordering is essentially

the same as for ^-subsumption. The only difference

is that instead of searching for a substitution 6 that

acts as a witness for the instantiation relation, we

now employ the A-box subsumption of the termi-

nological formalism. The resulting rule ordering is

called TL-subsumption. Assume that two rules

P ^) ^ P ^
X)

) ^ H ^

over disjoint sets of variables are given. The /?-rule

is more general than the </-rule w.r.t. TL-subsump-

tion (<) iff there is a substitution a such that the

following holds:

1. /?0(*
(0)) crand q0(y

<i})

) are equal,

2. {ptf") G9...j>n(j£«) a) c {q}m^qm^)l
and

3. the A-box A(x
[{)

\...,x
(n)

)o subsumes the

B(x
(0

\...,x
{m)

) w-1"-1- a . . . , A U) a.

As the terminological formalism provides attrib-

utes and a complement operator it is possible to

map Herbrand terms into the set of A-boxes that are

rooted by one individual such that two Herbrand

terms s and t are unifiable iff s(X) A 7{ Y) A X = Y is

satisfiable, where s and T are the images under the

mapping from concept terms into first-order for-

mulas as defined in [17]. This embedding naturally

extends to a mapping from Horn rules to the rule

formalism. It has been shown in [17] that T L -

subsumption is at least as powerful as f>-subsump-

tion, i.e., given two Horn rules r and /%, r{ is more

general than r, w.r.t. 0-subsumption iff r{ <n /%.

5.4. Abduction

Generalization as described before is applied to

the clauses of a theory, i.e., facts and rules, result-

ing in more general rules. We have also developed

a new technique for abduction. In addition to the

Horn-clause theory T consisting of facts F and

rules R and a set of integrity constraints IC. we also

postulate a set of distinguished ground literals A

called abducibles and a goal G which drives the

abduction process.

By abduction we want to find a set of hypotheses

H c A such that we can derive the (positive)

example e e E* from TzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA u H. In the context of

theory revision T u H gives the new theory T

which again must be consistent with K\ the set of

integrity constraints:

TuH \-e

T u H u IC is consistent

Consider the following example where we have

two rules for the recyclability of polypropylenes:

recyclable(closed_circle,Plastic_Id) <—

polypropylene(Plastic_Id),

additive(Plastic_Id,flame_retardent)

recyclable(unrestricted,Plastic_Id) <—

polypropylene(Plastic_Jd), pure(Plastic_Id)

polypropylene(X) <— hostalen2 (X)

additive(ppk__1060,flame-retardent)

hostalen(ppk_1060)

The first rule expresses that a polypropylene can

be recycled only in a closed circle, i f it contains a

2Hostalen is a registered trademark of the H O E C H S T A G .

flame retardent agent as a fluent additive. This is

because the flame retardent agent produces toxic

dioxin on ultimate thermic treatment. For a pure

polypropylene there is no restriction a recyclability.

In two facts we also have that hostalenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ppk__1060

contains a flame retardent fluent additive.

If we declare additive and pure as abducibles

and ask the query how ppk_1060 can be recycled

?- recyclable(RecKind,ppk_1060)

we get two answers: The first, unconditional answer

RecKind - closed-circle

n

says that ppk_1060 can be recycled in a closed

circle. The second, conditional answer

RecKind = unrestricted

{pure(ppk_1060)}

is an abductive solution: under the condition that

ppk_1060 is pure, it can be recycled unrestricted.

5.4.1. Bottom-up Abduction

In order to achieve abduction, deduction tech-

niques can be employed in a top-down as well as in

a bottom-up manner: with top-down reasoning one

skips some subgoals instead of proving them if they

are in the set of abducibles. If the goal only consists

of abducibles, top-down reasoning stops. The set of

remaining goals is the set of hypotheses explaining

the toplevel goal.

On the other hand, there are a number of optimi-

zation strategies that allow query answering by

bottom-up evaluation. Generalized Magic Sets re-

writing is such an optimization technique that has

been developed for query answering in deductive

databases [2]. We have adapted this rewriting tech-

nique to achieve bottom-up abduction of Horn

knowledge bases [12].

The scheme of our abduction rewriting approach

is presented in Fig. 6. Given a theory and a goal we

first perform a Generalized Magic Sets rewriting.

In a second step we further transform this rulebase

with respect to the set of abducibles. Evaluating the

resulting abduction rulebase by bottom-up evalu-

ation wil l compute all abductive solutions.

The transformation can be regarded as a specia-

Generalized Magic-Sets

Rewriting

?
Abductive Solution

Fig. 6. Bottom-up abduction by knowledge base rewriting.

lization of a partially evaluated upside-down meta-

interpreter originally presented by Stickel [39] (see

also [19]). Compared to Stickers approach we have

a number of advantages:

- Only the rules of the knowledge base are trans-

formed; rewriting of the ground facts in the

knowledge base is avoided. This is very impor-

tant when the ground facts change frequently or

if they reside on secondary storage like in de-

ductive databases.

- There is no need for enumeration of all the pos-

sible hypotheses. Thus, the approach is applica-

ble i f the set of possible hypotheses is infinite.

- Hypotheses will be derived only i f they are not

already contained as facts in the knowledge

base.

- By normalization meta predicates are removed,

resulting in improved performance.

Most important: this set-oriented approach is

usable also for large sets of facts. This is supports

our objective to develop techniques suitable not

only for toy examples but also for complex real

world problems with databases and large knowl-

edge bases.

5.4.2. Using Abduction for Generalization

As mentioned before, generalization of Horn

clauses can be done in different ways, e.g., by

generalizing some terms (argument positions) or by

dropping entire literals (removing conditions).

Thus, the decision about which generalization

operation should be applied is still a problem.

Abduction can provide considerable help for

making this decision. Consider again the recy-

clability example introduced in the last paragraph.

If we recognize the fact that hostalenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ppk_1060

can be recycled unrestricted (no matter of its

pureness) then we have to revise our theory to now

cover this (positive) example. By processing the

query

?- recyclable(unrestricted,ppk_l060)

we obtain the abductive solution

yes

(pure(ppk_1060)}

which gives rise to generalize the recyclable rule

for ppk_1060 by dropping this pureness condition.

Thus, we substitute the original rule

recyclable(unrestricted,Plastic_Id) <—

polypropylene(Plastic_Id), pure(Plastic_Id)

by the following generalized one:

recyclable(unrestricted,Plastic_Id) <-

polypropylene(PlasticJd)

Although this is only one example of how

abduction and generalization can cooperate in the

theory revision framework, it already shows the

combined potential for our application.

5.5. Knowledge Base Verification

It has already been pointed out that only those

generalizations and abductive solutions are

accepted which are consistent with the integrity

constraints IC. Integrity constraints encode nega-

tive or disjunctive knowledge. These integrity

constraints are represented as denials, i.e., clauses

with an empty head. Eshghi and Kowalski use this

kind of integrity constraints for their abduction

procedure [15]. We can also represent them as

clauses with the special atom false as conclusion

[25].

An obvious integrity constraint is that i f a

material contains a fluent additive it is no longer

pure. This is represented by the following rule: i f a

material PI has a fluent additive and the same

material is pure then there is an inconsistency:

false <- additive(Pl,X), pure(Pl)

Consider for example, that the following facts

and rules would be contained in a knowledge base.

hostalen(ppk_1060)

novodur(r_5320)

additive(ppk_l 060, flame-retardent)

polypropylene(X) <— hostalen(X)

absc(X) <— novodur(X)

In Section 5.4 we have found by abduction that

Hostalen PPK 1060 could be recycled without any

restriction i f it was pure. So we can tentatively add

this information to the knowledge base as an

additional fact: pure(ppk_1060).

A naive method for integrity checking would be

to use a proof-finding approach and ask the query

?- false

This procedure would invoke all integrity con-

straints in backward direction even i f they are

independent from the new fact. However, it would

be much more efficient to derive only those facts

that are consequences of this new assertion. In [15]

it is argued to do this kind of constraint checking by

forward reasoning starting with the new fact. But

forward reasoning from one fact alone is not

sufficient. The following integrity constraint says

that 'polypropylenes and ABSCs must not be

components of a single composite product'.

false <- composite(PU,P12),

polypropylene(Pll),

absc(P12)

Adding the new fact composite(ppk__1060,

r_5320) would lead to an inconsistency which will

not be detected by forward chaining this fact alone.

Additionally, we need to prove whether the pre-

miseszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA polypropylene(ppk_1060) and absc

(r_5320) can be satisfied.

In [25] a model-generation approach has been

applied for this problem. Here, however, we regard

checking of integrity constraints as a consequence-

finding problem [20]. Given an update of a

deductive database or a logic program, conse-

quence finding applies only those rules that are

effected by the update operation. This builds on the

assumption that the database satisfied its integrity

constraints prior to the update. Derivation is

restricted to exactly those facts that depend on an

explicitly given set of initial facts, in our case the

hypotheses found by abduction.

The extended SLDNF resolution of [35] uses the

clauses corresponding to the updates as top-clauses

for the search space and thus achieves the effect of

simplification methods investigated by [14,24,28].

The approach combines forward and backward

chaining depending on whether a positive or nega-

tive literal is resolved upon.

As an alternative to this tuple-oriented method

we have developed a rewriting approach [18]. It is

an extension of the well-known Generalized Magic

Sets rewriting technique [2], which was also the

basis for bottom-up abduction in Section 5.4.1.

Since this technique in some sense integrates

forward and backward chaining, it seems natural to

extend it for consequence finding.

By Generalized Magic Sets rewriting, infor-

mation about variable bindings given by the query

is propagatedzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA down into the bodies of the rules at

compile-time. For consequence finding we do not

have a query but a number of initial facts - the

update information - from which to reason

forward.

Thus, the input to the consequence finding

transformation is a set of initial facts and the rules

of the knowledge base. The transformation algo-

rithm specializes the knowledge base by intro-

ducing additional rules and predicates. It extends

the Generalized Magic Sets rewriting by an up

propagation in addition to the usual down

propagation. When the rewritten knowledge base is

evaluated by a model-generating, bottom-up pro-

cedure, the generation of a complete minimal

model is restricted to the consequences of the

initial facts. Because it is a set-oriented strategy it

is very efficient if facts have to be retrieved from a

database.

6. Conclusion

As knowledge-based systems are brought to

practical applications and knowledge bases are to

be used over years, the problem of knowledge base

evolution naturally comes up: the key issue is how

to ensure that the knowledge base does always

represent all the knowledge that is relevant for

solving tasks, i.e., being "complete", and does not

become out of date or invalid, i.e., remaining

'sound'' with respect to some specific situational

context. Although this is a goal hard to achieve, it

shows the direction in which knowledge base

evolution research should work: to overcome the

(always 'damned but nevertheless done') accu-

mulation of 'small local hacks' causing unfore-

seeable consequences and to find a compromise

between this ad-hoc K B modification approach and

the other extreme of restarting the whole knowl-

edge engineering work ranging from the formal

specification down to the concrete representation

with each K B modification.

In this paper, we have shown that knowledge base

evolution can be regarded as a theory revision

process. Research in Inductive Logic Programming

provides us with a set of techniques that can be

applied to incorporate new knowledge into the

knowledge base (knowledge base exploration),

e.g., by generalization and abduction. On the other

hand techniques from deductive database research

can be used for ensuring the integrity of the

knowledge base, i.e., for solving the knowledge

base verification and validation task.

For both tasks we have developed extensions and

modifications motivated by the special char-

acteristics of the application. The generalization

techniques taken from ILP have been extended

towards the incorporation of meta-knowledge for

guiding the generalization process (plgg) and

towards additional language features for repre-

senting generalization results (e.g., finite domain

terms). Additionally, we have proposed an alter-

native to ^-subsumption based on an extension of

Horn rules incorporating termi-nological knowl-

edge representation and reasoning (TL-sub-

sumption). In order to get efficient evolution

techniques also for large sets of rules and facts we

extended the rewriting techniques from deductive

databases for abduction and integrity checking.

Further work on knowledge base evolution

should not only consider developing more powerful

exploration and verification methods, but should

also focus on the knowledge representation lan-

guage itself. It is obvious that a more powerful but

still semantically clear representation formalism, as

e.g., introduced for TL-subsumption, will be of

great advantage for all kinds of knowledge

evolution techniques. For example, introducing

sorts or types as mentioned in several parts of this

paper can be a first but only intermediate step:

generalization within a sort lattice does already

yield a more fine-grain clause ordering than simple

0-subsumption. However, extending the logic-

based representation language by substituting or

complementing constitutively given sorts by

intensionally defined concepts and concept terms

in the sense of terminological reasoning will be

necessary for finding and expressing 'really least

general' generalizations and thus being able to

support knowledge base evolution over a long

period of time.

Currently only little work is available on tailoring

the knowledge representation formalism to knowl-

edge base evolution needs [4]. But being convinced

that research on this wil l be a key issue for the

success of knowledge base evolution in the future,

we wil l also concentrate on further improving

knowledge representation approaches like T L -

subsumption besides developing the evolution

techniques themselves.

References

[1] S. Amarel (1983): Problems of representation in heuristic

problem solving: Related issues in the development of ex-

pert systems. In M . Groner, R. Groner and W. Bischof

(eds.):zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Methods of Heuristics. Erlbaum, Hillsdale, NJ, pp.

245-350.

[2] Catriel Beeri and Raghu Ramakrishnan (October 1991): On

the power of magic. Journal of Logic Programming, 10:

255-299.

[3] H. Boley, U. Buhrmann and C. Kremer (January 1994): To-

wards a sharable knowledge base on recyclable plastics. To

appear in: TMS'94 Symposium on Knowledge-Based Appli

cations in Material Science and Engineering, Feb/Mar

1994. San Francisco, USA.

[4] Harold Boley (1993): Towards Evolvable Knowledge Rep-

resentation for Industrial Applications. In Knut Hinkelmann

and Armin Laux (eds.): DFKI-Workshop on Knowledge

Representation Techniques. Kaiserslautern, number D-93-

11.

[5] Harold Boley (March 1994): Finite Domains and Exclu-

sions as First-Class Citizens. In Roy Dyckhoff (ed.): Fourth

International Workshop on Extensions of Logic Program

ming. St. Andrews, Scotland, 1993, Preprints and Proceed

ings. LNAI, Springer.

[6] Alexander Borgida, Ronald Brachman, Deborah McGuin-

ness and Lori Resnick (1989): CLASSIC: A structural data

model for objects. In International Conference on Manage

ment on Data. A C M SIGMOD.

[7] R.J. Brachman and J.G. Schmolze (1985): An overview of

the KL-ONE knowledge representation system. Cognitive

Science 9(2): 171-216.

[8] Ronald J. Brachman, Deborah L. McGuinness, Peter F.

Patel-Schneider, Lori Alperin Resnick and Alexander

Borgida (June 1990): Living with CLASSIC: When and

How to Use a KL-ONE-Like Language. In Principles of Se

mantic Networks. J. Sowa Morgan Kaufmann Publishers

Inc.

[9] H. Breuer, G. Dupp and J. Schmitz (1990): Einheitliche

Werkstoffdatenbank - eine Idee setzt sich durch. Kunst-

stoffeU): 11.

[10] B.G. Buchanan (1989): Can machine learning offer any-

thing to expert systems? Machine Learning 3(4): 251 254.

[11] W. Buntine (1988): Generalized subsumption and its appli-

cations on induction and redundancy. Artificial Intelligence

36: 149-176.

[12] Gerhard Burgun and Knut Hinkelmann (1994): Knowledge

base rewriting for bottom-up abduction (in preparation).

[13] Frans Coenen and Trevor Bench-Capon (1993): Mainte

nance of Knowledge-based Systems. Academic Press.

[14] Hendrik Decker (April 1986): Integrity enforcement on de-

ductive databases. In Larry Kerschberg (ed.): Proceedings

from the 1st International Conference on Expert Database

Systems. Charleston, South Carolina. The Benjamin/Cum-

mings Publishing Company, Inc., pp. 381-395.

[15] Kave Eshghi and Robert Kowalski (1989): Abduction com-

pared with negation by failure. In 6th International Confer

ence on Logic Programming {ICLP 'S9).

[16] Allen Ginsberg, Sholom M . Weiss and Peter Politakis

(1988): Automatic knowledge base refinement for classifi-

cation systems. Artificial Intelligence 35: 197-226.

[17] Philipp Hanschke and Manfred Meyer (August 1992): An

Alternative to 9-Subsumption Based on Terminological

Reasoning. In Celine Rouveirol (ed.): Workshop on Logical

Approaches to Machine Learning, ECAI 92, Vienna.

[18] Knut Hinkelmann (1994): A consequence-finding approach

for feature recognition in CAPP. In Seventh International

Conference on Industrial & Engineering Applications of

Artificial Intelligence & Expert Systems (IEA/AIE'94)

(forthcoming).

[19] Katsumi Inoue, Yoshihiko Ohta, Ryuzo Hasegawa and

Makoto Nakashima (1993): Bottom-up Abduction by Model

Generation. In Proc. of the 13th IJCAI, pp. 102-108.

[20] Katsumi Inoue (1991): Consequence-finding based on or-

dered linear resolution. In Proc. of the 12th IJCAI. Sidney,

Australia.

[21] Joxan Jaffar and Jean-Louis Lassez (January 1987): Con-

straint logic programming. In Proc. POPL-S7. Munich,

Germany. A C M , pp. 111-119.

[22] Christian Kissinger (1993): EinfluB verschiedener Ver-

arbeitungsparameter aus die PlattengroBe und die Forman-

derungsarbeit 2-dimensionaler verpresster GMT-Halb-

zeuge. Technical Report 93-58. Institut fur Verbund-

werkstoffe GmbH.

[23] J. Krottmaier (1991):zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Versuchsplanung: Der Weg zur

Qualitat des Jahres 2000. Verlag Industrielle Organisation

Zurich.

[24] John W. Lloyd, E.A. Sonenberg and Rodney W. Topor

(1987): Integrity constraint checking in stratified databases.

Journal of Logic Programming A: 331-343.

[25] Rainer Manthey and Francois Bry (1987): SATCHMO: a

theorem prover implemented in prolog. In Conference on

Automated Deduction, CADE.

[26] Manfred Meyer (August 1994): Issues in Concurrent

Knowledge Engineering: Knowledge Sharing and Knowl-

edge Evolution. In Michael Sobolewski (ed.): Proceedings

First International Conference on Concurrent Engineering,

Research and Applications (CERA'94\ Pittsburgh. IEEE

Computer Press.

[27] Raymond J. Mooney and John M . Zelle (1994): Integrating

ILP and EBL. SIGART Bulletin 5(1): 12-21. Special Sec-

tion on Inductive Logic Programming.

[28] Jean-Marie Nicolas (1982): Logic for improving integrity

checking in relational data bases. Acta Informatica 18: 227-

253.

[29] Gordon D. Plotkin (1970): A note on inductive generaliza-

tion. In B. Meltzer and D. Michie (eds.): Machine Intelli

gence, vol. 5. Elsevier North-Holland, New York, pp. 153-

163.

[30] Gordon D. Plotkin (1971): Automatic Methods of Inductive

Inference. PhD thesis, University of Edinburgh.

[31] Thomas Reinartz and Franz Schmalhofer (June 1994): An

integration of knowledge acquisition techniques and EBL

for real-world production planning. Knowledge Acquisition

Journal.

[32] Larry Rendell (1986): A general framework for induction

and a study of selective induction. Machine Learning 1(1):

177-226.

[33] Bradley Richards and Raymond J. Mooney (March 1991):

First-order theory revision. Technical Report A l 91-155.

The University of Texas at Austin, Artificial Intelligence

Laboratory.

[34] J.A. Robinson (1965): A machine-oriented logic based on

the resolution principle. Journal of the Association for

Computing Machinery 12: 23-41.

[35] Fariba Sadri and Robert Kowalski (1988): A theorem-prov-

ing approach to database integrity. In Jack Minker (ed.):

Foundations of Deductive Databases and Logic Program

ming. Morgan Kaufmann Publishers, Inc., Los Altos, CA,

pp. 313-362.

[36] F. Schmalhofer and B. Tschaitschian (June 1993): The ac-

quisition of a procedure schema from text and experiences.

In Proceedings of the 15th Annual Conference of the Cogni

tive Science Society, pp. 883-888.

[37] Franz Schmalhofer, Thomas Reinartz and Bidjan Tschait-

schian (1994): A unified approach to learning in complex

real world domains. Applied Artificial Intelligence (in

press).

[38] G. Smolka (May 1989): Logic Programming over Poly-

morphically Order-Sorted Types. PhD thesis, University of

Kaiserslautern, Germany.

[39] Mark E. Stickel (July 1991): Upside-down meta-interpreta-

tion for the model-elimination theorem-proving procedure

for deduction and abduction. Technical Report TR-664,

ICOT.

[40] G. Tecuci and Y. Kodratoff (1990): Apprenticeship learning

in imperfect domain theories. In Y. Kodratoff and R.S.

Michalski (eds.): Machine Learning: An artificial intelli

gence approach, vol. 3. Morgan Kaufmann, San Mateo,

CA, pp. 514-551.

