
Knowledge base management systems-tools for creating verified

intelligent systems

Richard C. Hicks*

Department of MIS and Decision Science, Texas A&M International University, Texas, USA

Received 8 December 2000; revised 8 April 2002; accepted 17 October 2002

Abstract

As automation of business processes becomes more complex and encompasses less-structured domains, it becomes even more essential

that the knowledge used by these processes is verified and accurate. Most application development is facilitated with software tools, but most

business rules and expert systems are developed in environments that provide inadequate verification testing.

This paper describes an emerging class of applications we refer to as Knowledge Base Management Systems (KBMS). The KMBS

provides a full life-cycle environment for the development and verification of business rule and expert systems. We will present an overview

of knowledge base verification, the KBMS life-cycle, and the architecture for a KBMS. We then describe building a small expert system in

the KBMS, with emphasis on the verification testing at each stage. We conclude with a summary of the benefits of a KBMS.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: Verification; Expert system; Computer aided software development; Rapid application development

1. Introduction

In many industries, the key to efficiency is automation.

The first targets for automation were the most structured

problems, such as accounting. Our ability to automate less

structured domains is constrained by our ability to verify the

knowledge used in the automation. Automation of less-

structured domains is achieved with active intelligent

components such as expert systems or business rule

systems. We will refer to these systems in general as

knowledge-based systems.

There are many difficulties in building a useful knowl-

edge-based system, including difficulty in capturing deep

knowledge, lack of robustness and flexibility, inability to

provide deep explanations, difficulties in verification, little

learning from experience [7], and computational efficiency.

Knowledge-based systems are harder to build than most

people perceive them to be because of the dependencies

between rules in the system and the difficulty of verifying

them.

The importance of verification in knowledge-based

systems cannot be overstated. A single bad rule in a medical

expert system could kill a patient, just as a single bad rule in

a business system could put the company out of business. As

we automate more and more processes, the need for

verification becomes even more critical. Many automated

process can perform incorrectly for a long time, as no person

is responsible for checking the process.

In a survey of 40 knowledge-based system tools

conducted in 1997, Murrell [9] concludes “The paper

provides… areas in which the researcher can provide

practitioners with valuable tools for the verification and

validation of knowledge-based systems, where currently

there are none…” It should also be noted that the systems

surveyed were all research systems, and that none are

available to the general public.

Business rules are usually created in a text editor as

program code or database triggers, making the programmer

responsible for verifying the program logic. Expert systems

are usually built in a vendor-supplied tool that translate

specifications into code, but may provide little or no

verification testing of the specifications. At least one expert

system development tool from a major manufacturer will

allow duplicate and conflicting rules to be created, and none

verify the application for all 23 verification criteria.

However, articles about early examples of Knowledge

Base Management Systems (KBMS) software have begun

0950-7051/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -7 05 1 (0 2) 00 0 82 -5

Knowledge-Based Systems 16 (2003) 165–171

www.elsevier.com/locate/knosys

* Corresponding author. Tel.: þ1-(888)-327-9397.

E-mail address: rick@ez-xpert.com (R.C. Hicks).

http://www.elsevier.com/locate/knosys


to appear. Aquinas, in production use at The Boeing

Company, offers many of the functions desirable in a

KBMS. It elicits knowledge directly from the expert into

grids, which are analyzed for completeness and consistency.

It refines the specifications and generates code for several

expert system shells. Complete applications may be created

in less than two hours [2].

EULE is a system developed by Swiss Life that has

functionality ‘in the triangle of Knowledge Representation,

Business Process Modeling, and Knowledge Management.’

This system is designed to automate office tasks in the

insurance industry, and uses an extendable High Level

Language (HLL) to model characteristics such as laws,

regulations, and preconditions for activities. The resulting

system is integrated into Swiss Life’s Organizational

Memory systems, and it is suitable for embedding in

business process models [13].

The purpose of KBMS is to offer computerized

assistance for building knowledge-based systems. A

KBMS:

1. Provides full life-cycle support from knowledge acqui-

sition to delivered code.

2. Guides the user through the development cycle.

3. Detects or prevents verification errors.

4. Algorithmically refines knowledge.

5. Generates code for the knowledge-based system.

We will first consider verification of the knowledge-

based system because of its influence on KBMS life cycle

and the KBMS architecture.

2. Verification of rule-based systems

One of the greatest challenges in building a substantial

knowledge-based system is verification. XCON, a well-

funded, strategically important knowledge-based solution,

has a 95% reliability rating in a deterministic domain [1]. In

an editorial in AI Expert, Eliot reported on an informal

survey he made that examined delivered expert systems.

These systems covered between 60% and 95% of the search

space [3].

Previous efforts at expert systems verification, such as

ONCOCIN [15], CHECK [10], and EVA [14], rely on a

heuristic approach to verification; they perform tests on the

completed code to determine if any symptoms of verifica-

tion problems exist. As they consider the rule base to be a

monolithic mass of knowledge, none of these systems can

test for completeness because of combinatorial explosion.

Preece’s system, COVER, can test for completeness.

However, it tests partitions of the rule base with test cases

instead of testing at the rule cluster level [12].

The Two-Tier Verification (TTV) approach exhaustively

verifies a knowledge-based system rule base for 23

criteria [4]. TTV manages computational complexity by

partitioning both the rule base and the verification criteria.

The rule base is partitioned into rule clusters, grouping them

by their actions. Verification is partitioned into two levels of

tasks. Global Verification verifies that the structure of the

rule base, while Local Verification analyzes each individual

rule cluster. In other words, we analyze the individual

systems (the rule clusters) and the linkages between them.

The classes of Global Verification Criteria are reachability

and domain constraints. The classes of Local Verification

Criteria are completeness, consistency, conciseness, and

domain constraints. As heuristics, business rules are not

subject to completeness testing, but all other verification

criteria apply.

TTV supports exhaustive verification of all the major

criteria, making it an appropriate foundation for the KBMS.

In Section 5, we will demonstrate the life cycle with the

prototype KBMS and show how verification is integrated

into the life cycle. First, we will present the KBMS life cycle

and an overview of the architecture.

3. KBMS life cycle

The KBMS is designed to complement existing and

future delivery environments by providing a full life-cycle

development environment that generates ready to run code

for multiple implementation platforms. The KBMS life-

cycle is presented in detail in Ref. [4], and consists of an

iterative cycle of Definition, Rule Construction, Refine-

ment, Testing, Delivery, Evaluation, and Maintenance.

3.1. Definition

The definition stage consists of two components. First,

we must determine the scope of this iteration of the project

in terms of what knowledge is to be added to the system.

Secondly, we will define the structure of the new project to

the KBMS and populate the Knowledge Dictionary.

A KBMS defines a rule base not as a monolithic mass of

code or rules, but as a well-formed set of related rule

clusters. A rule cluster consists of a well-formed set of

conditions that logically imply a conclusion (or, if

necessary, conclusions).

The structure of the rules must meet the following

criteria. Any conditions that are instantiated by user input or

other data sources are terminals. All other conditions must

be instantiated by another rule cluster that contains the

condition as an action. Referential integrity must hold. The

rule base must contain a goal [4].

When a preliminary structure has been created, ideally in

a knowledge map, the structure should be analyzed for

opportunities for maintenance anomalies [5]. In a well-

formed rule cluster, each condition is independent of the

others, and every condition is required in at least one rule to

determine each of the conclusions. If a condition is

dependent on another condition, this relationship should

R.C. Hicks / Knowledge-Based Systems 16 (2003) 165–171166



https://isiarticles.com/article/5481

