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Abstract

Software as a Service (SaaS) in Cloud Computing offers reliable access to software
applications for end users over the Internet without direct investment in infrastructure

and software. SaaS providers utilize resources of internal datacenters or rent resources

from a public Infrastructure as a Service (IaaS) provider in order to serve their customers.
Internal hosting can increase cost of administration and maintenance, whereas hiring

from an IaaS provider can impact quality of service due to its variable performance.

To surmount these challenges, we propose a knowledge-based admission control
along with scheduling algorithms for SaaS providers to effectively utilize public

Cloud resources in order to maximize profit by minimizing cost and improving customers’

satisfaction level. In the proposed model, the admission control is based on Service Level
Agreement (SLA) and uses different strategies to decide upon accepting user requests for

that minimal performance impact, avoiding SLA penalties that are giving higher profit.

However, because the admission control can make decisions optimally, there is a
need of machine learning methods to predict the strategies. In order to model

prediction of sequence of strategies, a customized decision tree algorithm has been

used. In addition, we conducted several experiments to analyze which solution in which
scenario fit better to maximize SaaS provider’s profit. Results obtained through our

simulation shows that our proposed algorithm provides significant improvement

(up to 38.4 % cost saving) compared to the previous research works.

Keywords: Cloud computing; Service Level Agreement (SLA); Admission control;

Software as a service; Scalability of application services; Knowledge-based; Data

mining; Decision tree algorithm

Introduction

Cloud computing has been recognized as one of the new prominent computing para-

digms. The ability of cloud to provide on demand access to software, application plat-

forms and infrastructure in the form of scalable services, has attracted considerable

interest in academic communities and difference industries. It can be viewed as the

transformation into reality of a long held dream called “Utility Computing”, it also

emerged into the market with a huge potential to fulfill this dream. In its fold, com-

panies do not even need to plan for their IT growth in advance with this new “pay as

you go” system. The Cloud model is cost-effective because customers pay for their ac-

tual usage without upfront costs, and scalable because it can be used more or less de-

pending on the customers’ needs. A set of applications is managed and hosted

externally by a third partner and it is delivered over a secure high quality network. It is
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also available anywhere with an internet connection, even when on the move. Cloud

computing is an internet technology that utilizes both central remote servers and inter-

net to manage the data and applications. This technology allows many businesses and

users to use the data and application without an installation. Users and businesses can

access the information and files at any computer system having an internet connection.

Generally, according to the most popular cloud service providers, for example Microsoft

[3], Amazon [7] and salesforce [4]; Cloud-based services can be categorized as:

Application (Software as a Service-SaaS), Platform (Platform as a Service-PaaS) and

Hardware resources (Infrastructure as a Service-IaaS).

Here, we focus on the SaaS layer that allows end users to reliably access applications

over the Internet without the burden of software related cost and annoying effort (such

as software licensing and upgrade). The primary objective of SaaS providers is to

minimize cost and maximize Customer Satisfaction Level (CSL). The above mentioned

cost includes the administration operation cost, infrastructure cost and, finally, penalty

cost incurred by SLA violations. CSL depends on the degree SLA is satisfied. In general,

SaaS providers utilize internal resources of their own datacenters or rent additional re-

sources from another specific IaaS provider. Internal hosting can create administration

and maintenance cost, while renting resources from a single IaaS provider can impact

the service quality offered to SaaS customers due to the variable performance. To over-

come the above constraints, multiple IaaS providers are considered over here and since

acquiring resources from multiple IaaS providers lends a large amount of resources

with different usage policies, price models, performance patterns and availability to sat-

isfy Service Level Agreement (SLA), so an admission control has been used as a general

mechanism to avoid overloading of resources and violation of SLAs. Most current SaaS

providers do not contain admission control mechanism and their method of scheduling

is not known publicly. Thus, the following facts need to be considered to allow efficient

use of resources that is offered by multiple IaaS providers, where the resources can be

dynamically expanded and reduced on demand. The facts are: 1) accepting new re-

quests without impacting accepted requests, 2) mapping various user requests with dif-

ferent QoS parameters to VMs, 3) deciding upon whether the new request should be

assigned to available resources or new VM must be initiated. In some existing systems

such as [14, 11, 18], they proposed mechanisms which considered this facts but there

are some drawbacks in their methods which must be solved. For example in [14]

they use various profit maximization algorithms such as maximizing the profit by

minimizing the number of VMs (ProfminVM), maximizing the profit by rescheduling

(ProfRS), maximizing the profit by exploiting the penalty delay (ProfPD). In admis-

sion control phase of these algorithms, they use the following four strategies for re-

quest acceptance:

1. Initiate new VM strategy

In this strategy, first checks for each type of VMs in each resource provider in

order to determine whether the deadline of new request is long enough

comparing to the estimated finish time. The estimated finish time depends on the

estimated start time, request processing time, and VM initiation time. If the new

request can be completed within the deadline, the investment return is calculated.

If there is value added according to the investment return, and then all related
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information (such as resource provider ID, VM ID, start time and estimated finish

time) are stored into the potential schedule list.

2. Wait strategy

In this strategy, first verifies each VM in each resource provider if the deadline time

of new request is enough to wait all accepted requests in vmil to complete. If new

request can wait for all accepted requests to complete, then the investment return is

calculated and the remaining steps are the same as those in initiate new VM strategy.

3. Insert strategy

In this strategy, first checks verifies if any accepted request uk according to latest

start time in vmil can wait the new request to finish. If there is an already accepted

request uk that is able to wait for the new user request to complete, the strategy

checks if the new request can complete before its deadline. If so, unew gets priority

over uk, then the algorithm calculates the investment return and the remaining steps

are the same as those in initiate new VM strategy.

4. Penalty delay strategy

In this strategy, first checks if the new user request’s budget is enough to wait

for all accepted user requests in vmi to complete after its deadline, and then the

investment return is calculated and the remaining steps are the same as those in

initiate new VM strategy.

Between their proposed algorithms, the “ProfPD” algorithm is more efficient. The

Pseudo-code of this algorithm is showed in Fig. 1.

One of the drawbacks in [14] is strength of the algorithms by handling errors in dy-

namic scenario of cloud environment, another drawback is that their algorithms used a

static sequence of strategies for each request in each resource provider to check

whether new request can be accepted or not. While, maybe, running another sequence

of strategies for a request can have a better answer. For example, “Initiate new VM”

strategy in resource provider 1 is runnable for the new request and for this request in

resource provider 2, “Wait” strategy is runnable too. So in this situation, if the “ProfPD”

algorithm runs, the first solution is selected for the new request, but is this really the

best solution? Which of them is the best? So this algorithm cannot always have an opti-

mal solution. In [18] there is a drawback too.

They used a machine learning method to predict the strategies and produce the ac-

cording resources but since the status of each resource provider is not static all time

and in a period of time, the predicted resource provider may not be available so this

method cannot be good in every time, too.

In this paper, we provide a solution to the above problems by proposing an adaptive and

cost-effective knowledge-based admission control technique and scheduling algorithm to

maximize the profit of SaaS provider. This proposed solution is aimed to maximize the

number of efficient placement of user requests on VMs rented from several IaaS providers.

We consider various customers’ QoS requirements and heterogeneity of infrastructure.

The key contributions of this study can be considered as follows: 1) a system model

is provided for SaaS providers to satisfy customer’s requirements, 2) an admission con-

trol and scheduling algorithm for maximizing the SaaS provider’s thereby minimizing

cost and maximizing CSL is proposed, 3) a Data Mining method such as Microsoft

Decision Tree algorithm to train up the system for dynamic scenario improving the
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performance rate of the system is utilized, 4) the system is evaluated, 5) conclusion and

future direction are discussed.

Related works

Research on market driven resource allocation and admission control has started as

early as 1981 [14]. Most of the market-based resource allocation methods are either

non-profit-based [13] or designed for fixed number of resources. Fig. 2, showed a category

of the resource management techniques.

In Cloud, IaaS providers focusing on maximize profit and many works [9, 8, 2] pro-

posed market based scheduling approaches. For instance, Amazon [10] introduced spot

instance way for customers to buy those unused resources at bargain prices. This is a

way of optimizing resource allocation if customers are happy to be terminated at any

Fig. 1 The Pseudo-code of “ProfPD” algorithm [14]
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time. However, our goal is not only to maximize profit but also satisfy the SLA agreed

with the customer. However, research at the SaaS provider level is still in its infancy,

because many works do not consider maximizing profit and guaranteeing SLA with the

leasing scenario from multiple IaaS providers, where resources can be dynamically ex-

panded and contracted on demand. Yeo and Buyya in [1] presented algorithm to handle

penalties in order to enhance the utility of the cluster based on SLA, although they

have outlined a basic SLA with four parameters in cluster environment, multiple re-

sources and multiple QoS parameters from both user and provider sides are not ex-

plored. Jaideep and Varma in [6] proposed learning-based admission control in Cloud

computing environments. Their work focuses on the accuracy of admission control but

does not consider software service providers’ profit. Bichler and Setzer in [7] proposed

an admission control strategy for media on demand services, where the duration of

service is fixed. Our approach allows a SaaS provider to specify its expected profit ratio

according to the cost, for example; the SaaS provider can specify that the service

request, which can increase the profit in two times, will be accepted. Popovici et al in

[4], mainly focused on QoS parameters on resource provider’s side such as price and

offered load. However, our work differs on QoS parameters from both users’ and SaaS

providers’ point of view, such as budget, deadline, and penalty rate. In [2] they first es-

tablish a cloud service request model with SLA constraints and then present a new

optimization algorithm for profit driven service request scheduling based on dynamic

reuse, which takes account of the personalized SLA characteristics of user requests and

current system workload. Their proposed algorithm constructs an on demand resource

pool of dynamic virtual machines, attains optimal cloud service request scheduling in

sensible time and thus considerably reduces operational costs of cloud service providers

thereby increase profits of CSPs. In their model, one resource provider is used and their

work is not price-based.

Linlin et al. in [14] propose an innovative admission control and scheduling algo-

rithm for SaaS providers to effectively utilize public Cloud resources to maximize profit

by minimizing cost and improving customer satisfaction level. In their system, they use

various profit maximization algorithms such as Maximizing the profit by minimizing

the number of VMs (ProfminVM), Maximizing the profit by rescheduling (ProfRS),

Fig. 2 A category of the resource management techniques
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Maximizing the profit by exploiting the penalty delay (ProfPD). Between these algo-

rithms, the algorithm “ProfPD“ is more efficient, but this algorithm is not optimized

because it always use a static sequence of strategies for each request in each IaaS pro-

vider for request acceptance. While, running another sequence of strategies for a re-

quest may have better answer. So we use a knowledge-based admission control and

scheduling algorithms in order to cause more efficiently and can provide substantial

improvement. Our admission control uses knowledge process to decide which se-

quence of strategies can be run for a new request to checking it can be accepted or

not. Mohana et al. in [18] present a dynamically adaptable admission control and

scheduling algorithms for efficient resource allocation to maximize profit and CSL for

SaaS providers. They use a machine learning technique such as SVM and Artificial

Neural Network (ANN) to train up the system for dynamic scenario improving the

performance rate of the system. They use the same strategies of us, In their work, the

machine learning method used to predict the strategies and produce the according re-

sources but since the status of each resource provider is not static in all time and the

predicted resource provider may not be available in a period of time, so this method

cannot be good in every time too. In the Table 1, the summary of related works are

presented.

System Model

In this section, a model of the SaaS provider will be introduced which consists of the

actors and admission control and scheduling and knowledge process components. In

this model, the name of “adaptable scheduler”, refers to the last three components

depicted in Fig. 3. The actors are users, SaaS providers, and IaaS providers. The system

consists of application layer and platform layer functions. Users request the software

from a SaaS provider by submitting their QoS requirements. The platform layer uses

admission control to interpret and analysis the user’s QoS parameters and decides

whether to accept or reject the request based on the capability, availability and price of

VMs. Admission control decisions are based on its knowledge, which gathers from

knowledge process component. Then, the scheduling component is responsible for allo-

cating resources based on admission control decision and sending decision results to

knowledge process to be saved in knowledge database.

Actors

The participating actors involved in the process are discussed below along with their

objectives and constraints:

User: On users’ side, a request for an application is sent to a SaaS provider’s

application layer with QoS constraints, such as, deadline, budget and penalty rate.

Then, the platform layer utilizes the admission control and scheduling algorithms to

admit or reject this request. If the request is accepted, a formal agreement (SLA) will

be signed between both parties to guarantee QoS requirements such as response

time, etc. The SLA with Users includes the following properties:

� Deadline: Maximum time user would like to wait for the result.

� Budget: How much user is willing to pay for the requested services.
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Table 1 The summery and comparison of the related work in cloud computing area

Related works Admission
control

Resource
management
(scheduling)

Profit
driven

Resource
characteristics

Knowledge
based

Price-based SLA
oriented

QoS

For users For saas provider

Reig,.et al. [17] Yes Yes No NA No No Yes Deadline Nothing

Bicher, Setzer [7] Yes No Yes NA No No Yes Budget Nothing

Wu et al. [14] Yes Yes Yes Multiple resource
provider

No No Yes Deadline, Budget, Request
Length, Penalty rate

Vm Initiation time,
Data Transfer Time

Wu. et al. [15] No Yes Yes Multiple Resource
Provider

No No Yes Request type, product type,
account type, contract length,
number of accounts

VM Type, Product
Type, Account Type

Zhipiao Liu, Qibo Sun [16] No No Yes One resource
provider

No No Yes Budget, Deadline VM Type, Vm Price

N. Ani Brown [11, 20] Yes Yes Yes Multiple resource
provider

No Yes Yes Deadline, Budget, Request
Legnth, Penalty Rate

Vm Initiation time,
Data Transfer Time

Mohana. et al. [18] Yes Yes Yes Multiple resource
provider

No Yes Yes Deadline, Budget, Request
Legnth, Penalty
Rate

Vm Initiation time,
Data Transfer Time

Choi and Lim [19] No No Yes One resource provider No Yes Yes Nothing total expence

Our Work Yes Yes Yes Multiple resource
provider

Yes No Yes Deadline, Budget, Request
Legnth, Penalty Rate

Vm Initiation time,
Data Transfer Time
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� Penalty Rate Ratio: A ratio for consumers’ compensation if the SaaS provider misses

the deadline.

� Input File Size: The size of input file provided by users.

� Request Length: How many Millions of Instructions (MI) are required to be

executed to serve the request?

SaaS provider: a SaaS provider rents resources from IaaS providers and leases software

as services to users. SaaS providers aim at minimizing their operational cost by

efficiently using resources from IaaS providers, and improving Customer Satisfaction

Level (CSL) by satisfying SLAs, which are used to guarantee QoS requirements of

accepted users. From SaaS provider’s point of view, there are two layers of SLA with

both users and resource providers. It is important to establish two SLA layers, because

the SLA with users can help the SaaS provider to improve the customer satisfaction

level by gaining users’ trust of the quality of service; SLA with resource providers can

enforce resource providers to deliver the satisfied service. If any party in the contract

violates its terms, the defaulter has to pay for the penalty according to the clauses

defined in the SLA.

IaaS provider: an IaaS provider offers VMs to SaaS providers and is responsible for

dispatching VM images to run on their physical resources. The platform layer of SaaS

provider uses VM images to create instances. It is important to establish SLA with a

resource provider, because it enforces the resource provider to guarantee service

quality. Furthermore, it provides a risk transfer for SaaS providers, when the terms are

violated by resource providers. In this work, the compensation given by the resource

Fig. 3 A high level KBRP system for application service scalability using multiple IaaS providers in Cloud
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provider is not considered because 85 % resource providers do not in fact currently

provide penalty enforcement for SLA violation [12]. The SLA with IaaS providers

includes the following properties:

� Service Initiation Time: How long it takes to deploy a VM.

� Price: How much a SaaS provider has to pay per hour for using a VM from a

resource provider?

� Input Data Transfer Price: How much SaaS providers has to pay for data transfer

from local machine (their own machine) to resource provider’s VM.

� Output Data Transfer Price: How much a SaaS provider has to pay for data transfer

from resource provider’s VM to local machine.

� Processing Speed: How fast can the VM process. Machine Instruction per Second

(MIPS) of a VM as processing speed is used.

� Data Transfer Speed: How fast the data is transferred. It depends on the location

distance and the network performance.

Adaptable Scheduler

The adaptable scheduler is used to analyze whether or not a new request can be accepted

based on the QoS requirements and resource capabilities. This scheduler contains the

components such as admission control, scheduling and knowledge process. The admission

control uses different strategies to decide which of the users’ requests can be accepted

in order to cause minimal performance impact, avoiding SLA penalties. For each new

request, it sends the request’s characteristic to knowledge process, then the know-

ledge process uses a decision tree algorithm to decide which sequence of strategies

should be run for this request for getting maximum profit for SaaS provider and then

returns the best sequence’s number of strategies to the admission control. Afterward,

the admission control based on the result returned from the knowledge process, runs

strategies for the request. The scheduling part of this system determines where and which

type of VMs will be used by incorporating the heterogeneity of IaaS providers in terms of

their price, service initiation time, and data transfer time. After that, it will send the result

of scheduling to the knowledge process to be stored in the knowledge base.

Algorithm and strategies

In this section, we use the four strategies which is presented in [14] to analyze whether

a new request can be accepted or not based on the QoS requirements and resource

capability and an algorithm has been introduced that utilizes these strategies based on

its knowledge to allocate resources. In this algorithm, the admission control part uses

different strategies for each request to decide which user requests would be accepted.

The knowledge process component forecasts which sequence of these strategies should

be run for each request and it is contributed to the admission control component to

run the best sequence, and finally the scheduling component is responsible for allocat-

ing resources and scheduling based on the admission control result.

Strategies

The strategies that admission control uses to decide which of the users’ requests can be

accepted are introduced as follows: 1) Initiate new VM 2) Wait Strategy 3) Insert
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Before strategy and 4) Penalty Delay Strategy. Inputs of all strategies are QoS parame-

ters of the new request and resource providers’ related information. Outputs of all

strategies are admission control and scheduling related information, for example, which

VM and in which resource provider the request can be scheduled. In our algorithm,

first strategy is represented as “canInitiateNewVM ()” and second strategy is repre-

sented as “canWait ()” and third strategy is represented as “canInsertBefor ()” and fi-

nally, fourth strategy is represented as “canPenaltyDelay ()”.

Different Sequences of Strategies

In this section, we will present three different sequences of strategies which are used by

admission control for user requests. Three different sequences of strategies in each re-

source provider is depicted in Fig. 4.

As seen in Fig. 4, in sequence1, in each resource provider, four strategies are checked

to find the best strategy to processing the new request, in other words, in the first re-

source provider, first it checks if the new request can wait all accepted requests to

complete in any initiated VM in this resource provider, If the request cannot wait, then

it checks if the new request can be inserted before any accepted request in any already

initiated VM, otherwise the algorithm checks if the new request can be accepted by initiat-

ing a new VM provided by any resource provider or by delaying the new request with pen-

alty compensation; if a strategy is found, checking is stopped and the result will pass to

Fig. 4 Three sequence of running strategies in resource providers
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scheduling part, but if no strategy is found, the same scenario runs in the next resource

provider to find a suitable strategy. If a SaaS provider does not make sufficient profit by

any strategy, the new request will be rejected. Otherwise, the request is accepted and

scheduled based on the entry in “PotentialScheduleList” which gives the maximum return.

In sequence 2, in each resource provider for each VM type, the first three strategies

(canWait (), canInsertBefor () and canInitiateNewVM ()) are checked to find the best

strategy for processing the new request. If a strategy is found, checking is stopped and

the result will pass to scheduling part, but if it ends up in not finding any strategies, it

will check the last strategy (canPenaltyDelay ()) in each resource provider and so on.

In sequence3, in each resource provider, the first strategy (canWait ()) is checked, if it

is suitable for processing the new request in any resource providers, the second strategy

is checked in each resource provider and so on.

Proposed Algorithm

A service provider can maximize the profit by reducing the infrastructure cost, which de-

pends on the number and type of initiated VMs in IaaS providers’ datacenter. Therefore,

our algorithms are designed in a way that minimize the number of VMs by maximizing

the utilization of already initiated VMs. In this section, based on the above strategies, we

propose an algorithm, which is a knowledge-based Profit Maximization (KBPM). Algo-

rithm 1 in Fig. 5, describes the knowledge-Based Profit Maximization algorithm, which in-

volves three main phases: 1) admission control, 2) knowledge process, and 3) scheduling.

In the admission control phase, the new user request will be checked if it can be

processed by any strategies. Hence, firstly, it sends the new request’s characteristics to

knowledge process for getting the sequence’ number of running strategies. When the

value is returned from the knowledge process, based on the returned result, it runs

strategies. For example if the returned value is equal to ‘1’, firstly the algorithm checks

if the new request can wait all accepted requests to complete in any initiated VM – in-

voking Wait Strategy. If the request cannot wait, then it checks if the new request can

be inserted before any accepted request in any already initiated VM – using InsertBefor

Strategy. Otherwise the algorithm checks if the new request can be accepted by initiat-

ing a new VM provided using Initiate New VM Strategy or by delaying the new request

with penalty compensation – using Penalty Delay Strategy.

If a SaaS provider does not make sufficient profit by any strategy, the algorithm re-

jects the new request.

Otherwise, the request is accepted and scheduled based on the entry in PotentialSche-

duleList which gives the maximum return.

The scheduling phase is the actual resource allocation and scheduling based on the

admission control result; if the algorithm accepts the new request, the algorithm first

finds out in which IaaS provider (rpj) and which VM (vmi) a SaaS provider can gain the

maximum investment return by extracting information from PotentialScheduleList . If

the maximum investment return is gained by initiating a new VM, then the algorithm

initiates a new VM in the referred resource provider (rpj), and schedule the request to

it. Finally, the algorithm schedules the new request on the referred VM (vmi).

It should be noted that in this algorithm supposed, the available IaaS providers are

ordered by distance. In other words, the IaaS Provider with a minimum distance is con-

sider the first provider.
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Decision Tree Algorithm

The Microsoft Decision Tree algorithm is a classification and regression algorithm pro-

vided by Microsoft SQL Server Analysis Services to be used in the predictive modeling of

both discrete and continuous attributes. For discrete attributes, the algorithm makes pre-

dictions based on the relationships between input columns in a dataset. It uses the values,

known as states, of those columns to predict the states of a column that is designated as

predictable. Specifically, the algorithm identifies the input columns that are correlated

with the predictable column. For example, in a scenario to predict which sequence of

strategies should be run for the new request, if eight out of ten relax requests run with se-

quence 1 and two out of ten tight requests run with sequence 3, so the algorithm infers

that deadline of requests is a good predictor of selecting sequence of strategies.

Fig. 5 Pseudo-code for knowledge based profit maximization algorithm
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Working of Decision Tree

The Microsoft Decision Trees algorithm builds a data mining model by creating a

series of splits in the tree. These splits are represented as nodes. The algorithm adds a

node to the model every time that an input column is found to be significantly corre-

lated with the predictable column. The way that the algorithm determines a split is dif-

ferent depending on whether it is predicting a continuous column or a discrete

column. The predictable column in our system is the sequence’s number of strategies

and input columns are request’s characteristics such as Deadline, Budget, FileSize, and

Length. Fig. 6 shows the used decision tree, it is based on the knowledge database.

Experimental Results

In this paper, CloudSim [13] is used as a Cloud environment simulator and implements

our algorithms within this environment. We observe the performance of the proposed

algorithm from both users’ and SaaS providers’ perspectives. From users’ perspective,

we observe how many requests are accepted and how fast user requests are processed

(we call it average response time). From SaaS providers’ perspective, we observe how

much profit they gain and how many VMs they initiate. Therefore, we use four per-

formance measurement metrics: total profit, average request response time, number of

initiated VMs, and number of accepted users. All the parameters from both users’ and

IaaS providers’ side used in the simulation study are given as [14]. Table 2 shows the

parameter’s value which we used from user’s side and the detail resource’s characteris-

tics which are used for modelling IaaS providers are shown in Table 3. We examine our

algorithm with the total of 300 users. The experimental environment is showed in Fig. 7. As

shown in it, our algorithms is written in java language and so the knowledge process part to

use decision tree, run a “DMX query” for connecting to Analysis Service and scheduling

part for saving the decision of admission control in SQL database used a “SQL Query”.

Fig. 6 The decision tree model for predictiong the sequence number of strategies

Motavaselalhagh et al. Human-centric Computing and Information Sciences  (2015) 5:16 Page 13 of 19



Performance results

In this section, we compare our proposed algorithm with reference algorithm by vary-

ing the number of users. Then, the impact of QoS parameters on the performance met-

rics is evaluated. Then, the impact of QoS parameters on the performance metrics is

evaluated. All of the results present the average obtained by 6 experiment runs. In each

experiment we vary one parameter, and others are given constant mean value. The con-

stant mean, which are used during experiment, are as follows: arrival rate = 300 re-

quests/sec, deadline = 2*estprocT, budget = 1 $, request length = 3×105 MI, and penalty

rate factor (r) =10.

Comparison with Reference Algorithm

To observe the overall performance of our algorithm, we vary the number of users

from 50 to 300 without varying other factors such as deadline and budget. Fig. 8 pre-

sents the comparison of our proposed algorithm with reference algorithm, ProfPD [14],

in terms of the four performance metrics.

When the number of user requests varies from 50 to 300, for each algorithm the total

profit and average response time has increased, because of more user requests. Fig. 8a

shows that our algorithm achieves (30 %) more profit over ProfPD when number of

users changes from 50 to 300. This is because when the number of requests increased,

the number of users being accepted increased by utilizing initiated VM.

Fig. 8b shows that our algorithms’ trends of response time increase from 50 users

to 300 users because of increasing in processing of user requests per VM. When

there is smaller number of requests, the difference between different algorithm’s re-

sponse times becomes significant. For example, with 50 requests, our algorithm gives

users 23 % lower response time ProfPD, and even accept more requests. This is be-

cause in our algorithm, a request can run on an idle Initiated Vm on a resource pro-

vider instead of waiting on a VM of a resource provider. So the response time will be

decrease.

Figure 8c shows that our algorithm initiates 22.22 % less number of VMs and Fig. 8d

shows that our algorithm accepts 12.23 % more user requests. That is because in our

algorithm a request can run on a Vm in a resource provider instead of waiting on a VM

in other resource provider and complete. So other new requests are accepted.

Table 3 The summary of resource provider characteristics

Provider VM types VM price ($/hour)

Amazon EC2 Small/Large 0.12/0.48

RackSpace Windows 0.32

Table 2 All the parameters from users’ side used in the simulation study

Number
of users

Deadline Budget Length Penalty rate factor

Vary from
50-300

vary the deadline from “very tight” to
“very relax” (α = 0.5 to α = 2.5)

Random from
“0.1$” to “1$”

Vary from “105

MI” to “5*105 MI”
Vary the mean of r

from “very small” (4)
to “very large” (44).
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Impact of QoS parameters

In the following sections, we examine various experiments by varying both user and re-

source provider side’s SLA properties to analyze the impact of each parameter.

1 Impact of variation in deadline

To investigate the impact of deadline in our algorithms, we vary the deadline, while

keeping all other factors such as budget fixed. Fig. 9a shows that our algorithm

Fig. 8 Algorithm’s performance during variation in number of user requests

Fig. 7 The view of experimental environment
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achieved the highest profit (59.43 % over ProfPD) by accepting 64 % more user requests

(Fig. 9d) and initiating 22.22 % less VMs (Fig. 9c)”. Fig. 9b shows that when deadline is

relaxed, our algorithm results in 22.07 % higher average response time than in the case

of ProfPD.

Our Algorithm has larger response time because of the two factors governing re-

sponse time, i.e., request’s service time and VM initiation time. It can be seen from

Fig. 9d that our algorithm always requires less VMs, to process more requests. Thus,

when service time is comparable to the VM initiation time, the response time will be

lower. When the VM initiation time is larger than the service time, the response time

is affected by the number of initiated VMs.

2 Impact of variation in Budget

Figure 10 shows variation of budget impacts on our algorithm, while keeping all

other factors such as deadline fixed. This figure shows that when budget varies from

“very small” to “large”, in average all the factors except initiated VMs, by two algo-

rithms has slightly increased, and number of initiated VMs is almost constant.Our

Fig. 9 Impact of deadline variation
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algorithm compared with ProfPD achieved the highest profit (59.43 % over ProfPD) by

accepting 66 % more user requests (Fig. 10d) and initiating 22.22 % less VMs (Fig. 10c)”.

Response time is too much higher than ProfPD because of more accepted requests.

Fig. 10b shows that in all budget variations, our algorithm results in 53.97 % higher

average response time than in the case of ProfPD. That is because of request’s service

time and VM initiation time. It can be seen from Fig. 10d that our algorithm always re-

quires less VMs, to process more requests.

3 Impact of variation in service time

Figure 11 shows how service time impacts our algorithm, while keeping all other fac-

tors such as deadline as the same. In order to vary the service time, five classes of re-

quest length (MI) are chosen from “very small” (105MI) to “very large” (5×105MI).

Figure 11a shows that the total profit by two algorithms has slightly increased but

response time increased rapidly when the request length varies from “very small” to

“very large”. Our algorithm achieves the highest profit among ProfPD. For example,

Fig. 10 Impact of budget variation
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in the case of “large” request length scenario, our algorithm generated about 44.26 %

more profit than ProfPD by accepting 31.25 % more requests (Fig. 11d) and initiating

40 % (Fig. 11c) less VMs. Therefore, our algorithm is the best solution for any size of

requests .Moreover, it can be observed from Fig. 11b that our algorithm provides

higher response time (39 %) than ProfPD, because it accepts more user requests with

less VMs, leading to more requests waiting for processing on each VM.

Conclusions and future directions

In this work, we presented a knowledge based adaptable admission control and scheduling

algorithms for efficient resource allocation to maximize profit and CSL for SaaS providers.

Through simulation, we showed the proposed algorithm well in a different kind of scenar-

ios. Our simulation results show that in average our algorithm with reduced SLA violation

and SaaS provider’s cost gives the maximum profit among all other techniques that ultim-

ately focus on fastest response time. In the future we will increase the robustness of our

algorithms by handling such errors dynamically. In addition, due to this performance deg-

radation error, we will consider SLA negotiation in Cloud computing environments to

Fig. 11 Impact of request length variation
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improve the robustness. We will also add different type of services and other pricing strat-

egies such as spot pricing to increase the profit of service provider.
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