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ABSTRACT

We present the general design of a system to control urban
street traffic signals. It is based on cooperating, learning, real-
time, distributed expert systems. We also describe the
operation of a running prototype program which, while using
several simplifying assumptions, has proven the technical
feasibility of the approach. It has also attained a 36%
improvement in the traffic flow under non-saturated
conditions. Current developments include the design of a
general-purpose system that can be customized to most street
configurations. Finally, we draw conclusions concerning the
distributed planning and problem solving methodology.

INTRODUCTION

Traffic engineers have been using different tools of
mathematics, statistics and computer science to devise
systems that can improve the traffic conditions of our
congested cities [4-6]. Some techniques of Artificial
Intelligence have also been employed to generate, for
example, better constant control of street traffic lights and
real-time expert systems controlling street traffic lights
centrally in a dynamic fashion [7]. Distributed and dynamic
control, however, has not been used although it can offer
several advantages as follows [1-3]:

• Spatially and chronologically local conditions are usually
more relevant to the decisions to be made. Traffic
accidents, the ending of a major sport event, road repair or
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an "unscheduled" holiday are examples of local changes
that cannot be considered by a centrally controlled regime.

• The rate of change in local conditions is usually very high.
Even if high-performance sensors are available for data
input, communication and computational bottlenecks
would not allow the existence of a timely and responsive
control environment.

• A centrally organized, real-time planning technique of
satisfactory quality is not feasible because of the
overwhelming amount of data to be processed and the
large number of decisions to be made and communicated
to the traffic lights.

• Changes to a distributed control system are easy and
inexpensive to make, when the "permanent" traffic
environment changes.

THE APPROACH

The following working conditions and assumptions have been
established for our long-term efforts:

• There is one processor at each intersection, which
communicates directly with the four processors at the
adjacent intersections.

• The communicated information is three-fold:
• raw data (essentially, the number and the speed of cars

going in each of the four directions at an intersection),
• processed information (the type and the rate of change

of certain traffic flow features),
• expert advice (e.g., "lengthen the period of green light

in the East-West direction").
It should be noted that the latter two categories of
information can propagate over an indefinite number of
intersections but with gradually changing contents. Such
"combined" information coming from many intersections
along a given direction is the weighted average of the
contributing information — the farther away the source,
the less important its contribution is.

• The operation of the whole system is based on
. a set of cooperating real-time expert systems which

work in conjunction with a simulation-based planning
system,
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• a limited amount of noisefree communication which
triggers both gradual and sudden changes in the traffic

light control regime.
. There are several possible criteria of operation or measures

of effectiveness which represent the objective function to
be minimized. These can be the average travel time, the
maximum waiting time at intersections, the average

number of stops during travel, etc.
. The system would attain local and global optima within

moving "time windows" through learning programs. The
learning programs work in two phases and along different

dimensions, as discussed later.

Such system for traffic control is to produce several
benefits, such as faster traffic How, more efficient usage of
available roads, fewer accidents, lower driver frustration,

reduced air pollution and fuel consumption.

ON THE CONTROL STRATEGIES

There are different strategies possible for the control — each
with its own set of rules to follow. In the explanation, we will
employ the average travelling velocity of cars going though
an intersection as the objective function to be minimized. (The
terms intersection and traffic light are used interchangeably.)

The control variables for the traffic light are:

. the length of the cycle;

. the length of "active time" (sum of the periods of amber
and green lights in one or the other direction); a related
entity is the "cycle split" — the ratio of the green periods in

the two directions;
. the point of time when the cycle starts.

We parenthetically note that traffic experts do not vary
the time period for the amber phase, fa- Its duration (3 to 5
seconds) depends on several factors, such as the usual car
speed and average deceleration rate in that direction, the
width of the intersection, and so on. A good rule of thumb is

to keep it at
tjsec] = 0.1

where vmax is the speed limit.
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There are three basic strategies, depending on the
prevailing local traffic pattern. The third strategy can be
further divided into three substrategies, with reference to the
type of control variable referenced. We present the strategies
in the order of usage priority.

Strategy I: The Semiactuated Regime

This strategy is to be used when the traffic flow in one of the
intersecting streets is extremely small. The light stays green
in the busier direction until one or more cars approach the
intersection in the less busy street. Then the light turns green
in the latter direction as needed, up to a predetermined
maximum time.

Strategy II: The Platooning Regime

In moderate traffic, it is a good idea to encourage cars to
travel in "platoons" — in small groups separated by gaps.
Ideally, the light should be green when the cars are coming to
cross the intersection, and red when the gaps appear. (Note
that the staggering of the traffic lights to attain this effect can
be easily controlled also by a static and global control
system.) Since it is more effective to stagger the traffic lights
to handle platoons than to follow one of the lower priority
schemes to be described below, the platooning scheme should
be followed when possible.

Strategy III: The Regime To Control Individual Characteristics
Separately

This mode of operation can be based on three sets of rules.
Each set controls a different variable. We rank them again in
the order of usage priority.

Substrategy Ilia: Modify Cycle Length

As a general heuristic, it has been found that when the
traffic flow is heavy (say, above 1300 cars/lane/hour), longer
cycle lengths speed traffic. In turn, when traffic is lighter,
shorter cycle lengths are advisable. However, cycles of longer
than 180 seconds or shorter than 40 seconds are inefficient
and should not be used.
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Substrategy Illb: Change Cycle Splits

The cycle should, in general, be split so that the direction with
heavier traffic flow receives the longer green light.

Substrategy IIIc: Change Cycle Start Time

If it is found that too high a proportion of cars arrive on the
red light or they have to wait longer than seems appropriate
with the given the flow and cycle split, the cycle start time
should be adjusted to reduce waiting time. Depending on the
prevailing traffic pattern, such a measure may be of long-
term help or may improve the situation only temporarily.

THE INFORMATION COMMUNICATED BETWEEN CONTROLLERS

The following symbolic and numerical information is the
result of some calculation on locally sensed data, which must
then be transmitted to the appropriate adjacent processor:

. a car crossed the intersection in the direction in question

when the light turned green;
. the number of cars having crossed the intersection in the

direction in question;
• data on cycle length, cycle start time, and cycle split time;
• a congestion is being experienced at the controlled

intersection, which is moving toward the adjacent one;
• a congestion is moving from the adjacent intersection

toward the controlled one;
. a severe congestion is being experienced at the controlled

intersection, which is moving toward the adjacent one;
• a severe congestion is moving from the adjacent

intersection toward the controlled one;

In the above, flow is the number of cars clearing the
intersection per minute and per lane, congestion occurs when
a car must wait a whole cycle before clearing the intersection,
and severe congestion occurs when a car must wait at least
two cycles before clearing the intersection.

RULES AND META-RULES TO CONTROL THE TRAFFIC LIGHTS

There is a possible natural segmentation of the rules. Each of
the strategies and substrategies listed above corresponds to a
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particular mode of operation whose controlling rules belong to
a distinct rule segment. (Different rule segments may have a
small but necessary overlap of membership). We have also
identified a set of meta-rules that, in response to the current
traffic pattern and the characteristic period, point to the rule
segment to be applied until the environment changes.

ON SCENARIO GENERATION

A large number of experiments needs to be performed in
trying to optimize the rule base of the distributed,
cooperative expert systems. Each series of experiments has to
be provided with an overall traffic pattern that applies to a
characteristic period of the day (e.g., early morning rush hour,
mid-day traffic, late afternoon rush hour, evening traffic and
night traffic), of the day of the week (e.g., workday, Saturday,
Sunday, other holiday) and, possibly, of the season of the year
(e.g., vacation time).

In our explanation, we will refer to the Manhattan grid
(see Figure 1) as the generic basis of city maps. (This was also
used in our first simplified prototype program.) The following
idea enables us to study only a relatively small segment of
the whole network, without losing information and risking
unrealistic traffic situations. Let us call a rectangle cut out
from an indefinitely large Manhattan grid the area of
concern. If the number of intersections in the E-W direction is
w (width) and in the N-S direction is d (depth), we can name
each intersection within the area of concern by a number as
shown in Figure 2.

Further, let the area of concern be surrounded by four
peripheries, each of which contains a sequence of street
intersections. Therefore, the names of the intersections along
the four peripheries are as follows:

Top, E-W direction: 1 2 ... w
Left, N-S direction: 1 w+1 ... (d-l)w+l
Bottom, E-W direction: (d-l)w+l (d-l)w+2 ... d.w
Right, N-S direction: w 2w ... d.w

We represent the characteristic traffic pattern of a
scenario to be generated, as defined before, by two wxd
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matrices. The matrix elements stand for the "source" and
"sink" specifications, respectively, for each intersection -=- i.e.,
the number of cars originating from a given intersection and
coming to it as a destination. The actual values of the
elements, produced by pseudo-random number generators,

have two constraints:

. The sum of the source numbers equals the sum of the sink
numbers, and they both equal a constant representing the

characteristic period.
. The source and the sink numbers associated with the

intersections on the peripheries equal a user-specified
constant times the random numbers obtained. We can thus
take care of the fact that a lot of traffic goes to and comes
from the area of concern across the peripheries.
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Figure 1 — The "Manhattan grid" street pattern used in
the prototype program. There is a processor, P, at every
intersection receiving input data from its own sensors, 5,
and from the four adjacent processors. There are two
lanes in each direction and no left turn is permitted.
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Figure 2 — The area of concern cut out of an indefinitely large
Manhattan grid; the four peripheries bordering it are marked
by heavy lines and the intersections are numbered.

THE OPTIMIZATION OF THE RULE BASE

We have designed two distinct phases of learning. The first is
characterized as laboratory-based and the second field-based
(although some of the computing activity during the two
phases takes place both in the laboratory and in the field).

The phase one, laboratory-based, learning prepares the
optimum rule bases of the expert system for each defined
scenario. It means that the system will be operating in an
optimum manner, assuming the traffic flow to be steady and
equal to the one in the scenario at hand. To arrive at the
optimum rule base requires a two-stage development which
concerns the selection of appropriate set of rules and the best
parametric values of each rule, respectively. The researcher
selects one of the possible measures of effectiveness (the
objective function to be optimized). (Different ones may be
relevant from the viewpoint of traffic flow, air pollution, fuel
economy and driver's psychology.) An important criterion is
also computational appropriateness; that is, the time and
memory requirement of computing the measure of
effectiveness being considered.
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The optimum parametric values is to be determined by
an efficient hill-climbing method (such as the steepest ascent
approach), usual with numerical optimization problems when
the objective function is not available in analytical form.

The following approach is taken for selecting the most
appropriate set of rules. First, one identifies a core set of rules
that are considered indispensable for running the system. The
parametric values of these are optimized and kept constant
during the later development. Next, one rule at a time is
added to the core set from the large total set of possible rules,
its parametric values are optimized and the additional benefit
due to the new rule is evaluated in quantitative terms. The
rule with the best such effect is added to the core set which
now becomes the basic set of rules. This basic set keeps on
growing until the system finds that the addition of the next
best rule is no longer cost-effective; that is, the improvement
it brings about no longer justifies the cost of computing it.

At this point, we have a rule base that has optimum
parametric values and comprises an optimum set of rules
with reference to the average operation within a scenario. In
other words, it is the best control mechanism statistically
speaking. One of the major advantages of the dynamic,
distributed approach is that the control system can respond to
spatially and chronologically local perturbations; i.e., it can
react optimally to a sudden change in the environment (for
example, an accident, the ending of a sport event, a snow
storm) or to a temporary but longer lasting change (for
example, some road repair, strike by public transportation
employees). This is the task of phase two learning.

The response of the control regime to local perturbations
consists of temporary changes in both the set of active rules
and their parametric values. The former means that certain
rules are invoked that were not active in the "equilibrium
operation". Recall the different control strategies for the street
signals and the corresponding sets of rules that become active
when the appropriate traffic pattern prevails. Similarly, we
envisage some special rules that come into action in response
to particular sudden changes in the environment. Further, the
"statistically optimum" parametric values are subject to
temporary modifications to respond to the local perturbations.
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The system is prepared for it — operating in a predictive
mode — because each processor gets information from the
four adjacent processors about the traffic pattern to come.
Another learning mode is about changing rule priorities, when
warranted, for the resolution of conflict between rules with
condition parts matching the current situation.

The above powerful but complex methods must be tried
out and fine-tuned first in the laboratory but the routine,
field operations are also likely to affect them.

THE IMPLEMENTATION OF A PROTOTYPE SYSTEM

We have implemented a prototype system to prove the
feasibility and effectiveness of the approach described above.
It consists of five program components: a traffic simulator, a
traffic scenario generator, a graphics display module, a rule-
base coupled with a rule-driver to control the traffic signal
parameters, and a hill-climber optimization module for the
rule parameters. There were certain simplifications
introduced, as compared to the ideas presented before:

• We have used the Manhattan grid as the street pattern. It
means that left turns are prohibited, all streets are two-
way, have two lanes in each direction, cross at right angles,
and run either in the North-South or East-West direction.
(Note that the new system has been designed so that all
realistic features, such as one-way streets, changeable lane
directions, left-turn lanes, can be specified, and an
appropriate computer network can be custom-made for
most existing road configurations.)

• Since left turns are not permitted in the Manhattan grid, a
significant skew developed initially by the overwhelming
number of clock-wise routing patterns. This was then
rectified by some ad hoc techniques involving nodes at the
peripheries of the area of concern as well as suboptimal
routings that compensated for the skew. Also, each
intersection had a traffic signal.

• There was only one quality measure for the rule set, the
average travelling velocity which is equal to the ratio
between the total travel distance and total travel time
during a simulation run (with reference to a certain
scenario).
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To speed up the simulation runs to an acceptable level, it
was necessary to reduce the number of routine calculations
and the number of items the system had to keep track of.
This meant, for example, a uniform formula for the
acceleration and deceleration of cars. (However, the initial
and final speeds, of course, depended on the local
conditions.)
Cars would switch lanes when it is safe to do (a
simplification...) and either they are in the left lane and
wish to make a right turn soon or the occupancy levels of
the two lanes are very uneven. Also, start-up delays after
the signal turns green were made uniform for all first cars
and, to a different degree, for all subsequent cars.
We have decided to speed up execution and use only
compiled (and not interpreted) LISP programs. It meant
that new rules could not be generated automatically by the
program — missing out on a very high-level learning
feature.
A rather significant (and ill-advised) simplification was to
ignore the possibility of several rules satisfying the current
conditions and the need to resolve the conflict among
them. The system simply fired the first applicable rule and
never tried to re-arrange the order of the rules on the
basis of their level of expected success or frequency of
usage. (We have done some re-ordering manually to
respond to certain apparent problems in the results but
this can be only an ad hoc remedy in a prototype system.)
The amount of processed information passed from adjacent
processors was very limited and, therefore, did not yield
the predictive value needed for effective control. Further,
no expert advice/request propagated from other
processors at all. The net result of this preliminary choice
was that, although the the traffic signal at a given
intersection did respond to a suboptimum local traffic flow,
the overall traffic pattern did not get much help.
Only a simplified, quick-and-dirty version of the hill-
climbing method was implemented that could make
simultaneous use of some 30 Apollo workstations
connected in a network(!) It is less than certain that a set
of overall, rather than local, optimum parameter values
have been reached. Table 1 contains the tabulated results
of the hill-climbing optimization process.
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Limitations in computing resources have enabled us to
complete scenario runs that generate only either relatively
light or already saturated traffic flows — neither of which
can really show the strength and flexibility of the proposed
system.
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Table 1 — Comparison of quality measures in moderate traffic
within a 5x5 block area before and after the hill-climbing
optimization process. The waiting time before the optimization
process, averaged over all intersections being 29.41 seconds,
has been reduced to 18.82 seconds — an improvement of 36%.
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SUMMARY

We have discussed an economically important domain of
computer applications — to improve urban traffic flow by
using cooperative, distributed, learning expert systems that
control street traffic signals. This domain has very specific
reliability concerns, quality measures, computational and
communication requirements, timing aspects, geographically
distributed input and output operations, inter-node
cooperation, and a need for reliable and gracefully degrading
performance when some operational and/or computational
units become disabled. All these characteristics point to the
need for the Distributed Planning and Problem Solving
approach, using a network of identical processors.

Some of the knowledge is needed by every node in the
network (e.g., the rules of the control operation), some is
node-specific (e.g., geometrical information about its close
environment). The system works in real-time and requires
satisfactory solutions by certain time. The control task has a
medium-level time-criticality.

Our current efforts aim at generalizing the area of
applicability of the work on the prototype system, eliminating
most of the simplifying assumptions and inefficiencies in it in
order to produce a system that can be custom-made for all
realistic road configurations. The expected benefits are faster
traffic flow, more efficient usage of available roads, lesser cost
of building future roads, reduced air pollution, reduced fuel
consumption, fewer accidents, and lower driver frustration.
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