
Knowledge-based approaches in software documentation: A systematic
literature review

Wei Ding a,d, Peng Liang a,c,⇑, Antony Tang b, Hans van Vliet c

a State Key Lab of Software Engineering, School of Computer, Wuhan University, China
b Faculty of Information and Communication Technologies, Swinburne University of Technology, Australia
cDepartment of Computer Science, VU University Amsterdam, Netherlands
dKey Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, China

a r t i c l e i n f o

Article history:

Received 12 August 2013

Received in revised form 9 January 2014

Accepted 18 January 2014

Available online xxxx

Keywords:

Knowledge-based approach

Software documentation

Systematic literature review

Knowledge activity

Software architecture design

a b s t r a c t

Context: Software documents are core artifacts produced and consumed in documentation activity in the

software lifecycle. Meanwhile, knowledge-based approaches have been extensively used in software

development for decades, however, the software engineering community lacks a comprehensive under-

standing on how knowledge-based approaches are used in software documentation, especially documen-

tation of software architecture design.

Objective: The objective of this work is to explore how knowledge-based approaches are employed in

software documentation, their influences to the quality of software documentation, and the costs and

benefits of using these approaches.

Method: We use a systematic literature review method to identify the primary studies on knowledge-

based approaches in software documentation, following a pre-defined review protocol.

Results: Sixty studies are finally selected, in which twelve quality attributes of software documents, four

cost categories, and nine benefit categories of using knowledge-based approaches in software documen-

tation are identified. Architecture understanding is the top benefit of using knowledge-based approaches

in software documentation. The cost of retrieving information from documents is the major concern

when using knowledge-based approaches in software documentation.

Conclusions: The findings of this review suggest several future research directions that are critical and

promising but underexplored in current research and practice: (1) there is a need to use knowledge-

based approaches to improve the quality attributes of software documents that receive less attention,

especially credibility, conciseness, and unambiguity; (2) using knowledge-based approaches with the

knowledge content in software documents which gets less attention in current applications of knowl-

edge-based approaches in software documentation, to further improve the practice of software docu-

mentation activity; (3) putting more focus on the application of software documents using the

knowledge-based approaches (knowledge reuse, retrieval, reasoning, and sharing) in order to make the

most use of software documents; and (4) evaluating the costs and benefits of using knowledge-based

approaches in software documentation qualitatively and quantitatively.

� 2014 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 00

2. Research method . 00

2.1. Context and research questions . 00

2.1.1. Knowledge-based approach . 00

2.1.2. Software documentation . 00

2.1.3. Research questions . 00

2.2. Inclusion and exclusion criteria . 00

http://dx.doi.org/10.1016/j.infsof.2014.01.008

0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: State Key Lab of Software Engineering, School of Computer, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27 68776027.

E-mail address: liangp@whu.edu.cn (P. Liang).

Information and Software Technology xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008
mailto:liangp@whu.edu.cn
http://dx.doi.org/10.1016/j.infsof.2014.01.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2014.01.008

2.3. Search process . 00

2.3.1. Search scope . 00

2.3.1.1. Time period . 00

2.3.1.2. Electronic databases . 00

2.3.1.3. Journals, conferences, and workshops . 00

2.3.2. Search terms . 00

2.3.3. Search strategy . 00

2.4. Data extraction and synthesis . 00

3. Results. 00

3.1. Overview of results . 00

3.2. RQ1: Quality attributes of software documents and knowledge-based approaches . 00

3.2.1. Quality attributes of software documents. 00

3.2.2. How knowledge-based approaches improve quality attributes of software documents . 00

3.2.3. Quality attributes of software documents and their concerned elements in software documents . 00

3.3. RQ2: Knowledge-based approaches in software documentation . 00

3.3.1. Distribution of knowledge-based approaches in software documentation . 00

3.3.2. General and specific knowledge-based approaches . 00

3.3.3. Knowledge-based approaches and documented content . 00

3.4. RQ3: Costs and benefits of using knowledge-based approaches . 00

3.4.1. Costs of using knowledge-based approaches . 00

3.4.2. Benefits of using knowledge-based approaches . 00

3.5. Evidential support . 00

4. Discussion. 00

4.1. Scope of the systematic review . 00

4.2. Study quality assessment . 00

4.3. Validity threats . 00

4.4. Further research . 00

5. Conclusions. 00

Acknowledgements . 00

Appendix A. Primary studies in the review . 00

Appendix B. Abbreviations used in the review. 00

References . 00

1. Introduction

Software is defined as the ‘‘intellectual creation comprising the

programs, procedures, rules, and any associated documentation per-

taining to the operation of a data processing system’’ [6]. Software

documentation (SDt1)2 is a formal writing in both print or electronic

form that supports the efficient and effective use of software in its

intended environment [12]. SDt is regarded as an integral part of

the software development process [54] and has a number of uses

in software lifecycle (e.g., as a communication medium for stake-

holders, information repository for maintainer, and guide for soft-

ware users) [62]. The essence of software development process is

the coordination and communication of ‘‘individuals’’ towards

achieving common and explicitly recognized goals in order to pro-

duce working software [38]. Software documents (SD3) provide an

asynchronous way for the communication among stakeholders,

which overcomes the time and geographical restrictions during soft-

ware development process. Improving the quality of SDt will im-

prove the quality of software accordingly [55].

Software development is a knowledge-intensive activity

[60,72]. In knowledge management (KM) theory, knowledge can

be classified as ‘‘tacit knowledge’’ or ‘‘explicit knowledge’’ [53]. Ex-

plicit knowledge is the knowledge codified in certain form (e.g., a

document or a model). Tacit knowledge resides in people’s head

and is not easily visible and expressible. Explicit knowledge is easy

to use and reuse, while tacit knowledge tends to vaporize over

time, especially when the people who possess the knowledge

leave. From a KM perspective, SDt provides a way to transform ta-

cit knowledge into explicit knowledge, and exchanges the knowl-

edge among individuals and organizations [60].

There are many types of SDt, such as requirements documenta-

tion, design documentation and test documentationwhich are used

extensively across the lifecycle of software development. To achieve

a better focus andmeaningful results in this review,we stress the SD

for architecture design, covering requirements and architecture

documents. The software requirements document (SRD) describes

externally-observable behaviors and characteristics expected of a

software system [22]. The software architecturedocument (SAD) re-

cords architecture design and related architecture information in

e.g., architecture views [20]. SRD and SAD are the software artifacts

produced in the requirements engineering and architecting phase

respectively, two closely-related phases in the software lifecycle.

These two types of documents are typically written in natural lan-

guage with supporting diagrams (e.g., UML use case diagrams and

component diagrams) for the communication between various

stakeholders of the project, such as customers, managers, require-

ments engineers, architects, and developers. Various formats of

SDt are used in practice,most of themare in files (e.g., MSWord doc-

ument), as well as in emails, textmassages, blogs, andwikis [71]. All

these formats of SDt that contain requirements or architectural

information are regarded as SRD or SAD. The quality of SRD contrib-

utes to the successful and cost-effective creation of software [22],

and improving the quality of SAD can facilitate various architecting

activities, such as architecture review [36]. To this end, the quality

aspect of SDt is a research focus in this review.

1 SDt (software documentation) and SD (software document), these two terms and

abbreviations are both used in this paper with different meanings. SD denotes the

document artifact produced by software documentation activity, and SDt represents

both the document artifact and documentation activity.
2 For readability and clarity, we list all the abbreviations used in this paper in

Appendix B for reference.
3 SD is singular as well as plural based on the context in which it is used. This rule is

also applied to abbreviations SRD (software requirements documents), SAD (software

architecture documents), and QA (quality attributes).

2 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

A knowledge-based approach in this context is one that explic-

itly facilitates the development, evolution, and use of knowledge

that is critical to successful software development and evolution

[34]. Knowledge-based approaches can facilitate the understand-

ing and management of documentation [26,39,46]. A rigorous

assessment and review on knowledge-based approaches in SDt is

meaningful and necessary to increase their acceptance and guide

their application in SDt practices.

We decided to use systematic literature review (SLR) method in

this study since we aimed at identifying, evaluating, interpreting,

and synthesizing all available studies to answer particular research

questions, and establishing the state of evidence, with in-depth

analysis [37,57]. The objective of this SLR is to understand what

knowledge-based approaches can be employed to improve the

quality of SDt. We also investigate what quality attributes matter

to SDt, and the costs and benefits of using knowledge-based ap-

proaches in SDt. This work has a special focus on software require-

ments and architecture documentation [56].

To the best of our knowledge, there is currently no survey or

systematic literature review specifically conducted on knowl-

edge-based approaches to SDt. However, there are a number of

surveys and secondary studies (e.g., systematic mapping studies)

on the sub-areas of SDt using specific knowledge (e.g., rationale

knowledge in architecture description) and different aspects of

KM for software development. The studies on using knowledge

or KM in software engineering, information systems, and manage-

ment disciplines are too broad, and are out of the scope of the re-

lated work.

(1) Knowledge in architecture design: Nakagawa et al. used a sys-

tematic mapping to explore, understand, organize, and sum-

marize the research and practices of software architectural

knowledge [51]. Their study focuses on the architectural

knowledge for constructing reference architectures, while

our review pays attention to using knowledge for architec-

ture documentation. Tang et al. employed a survey research

method to get an understanding of architects’ perceptions

on the documentation and use of architectural design ratio-

nale [66], which is an important part of architectural knowl-

edge. In another work, Tang et al. surveyed five architectural

KM tools and made a comparison on their support for archi-

tectural knowledge management and their satisfaction of

the criteria from the architecture description standard [65].

Their work used a comparison method to analyze how and

to what extent an architectural KM tool can support archi-

tecture descriptions. Shahin et al. analyzed existing architec-

tural design decision models to identify their consensus and

differences at the model level [61]. Their work focuses on

architectural design decisions themselves and relevant sup-

porting tools without considering the impact to the archi-

tecting process.

(2) Knowledge in requirements specification: Barmi et al. con-

ducted a systematic mapping study on the alignment of

requirements specification and testing [13]. Nicolás and

Toval systematically reviewed the literature related to the

use of software engineering (SE) models to generate require-

ments specification [52]. These two secondary studies focus

on specific knowledge (e.g., models and alignment knowl-

edge) in requirements specification, but have little discus-

sion about the relationship between general knowledge

and their application in requirements specification.

(3) Knowledge engineering and management techniques for SE:

Briand surveyed the knowledge engineering techniques that

SE problems can benefit from [16]. His study has little dis-

cussion of SD and, as a position paper, it only introduced

the candidate knowledge engineering techniques without

further investigation. Dingsøyr and Conradi conducted a sur-

vey on the literature that reports case studies of using KM

approaches in SE whose results have a high level of evidence

[27]. The definition of KM approaches in their survey is sim-

ilar to the knowledge-based approaches used in this review,

but the scope of their survey is much broader than the scope

of SDt and has a special focus on case studies research.

(4) Software documentation: Biehl made a survey on how

researchers and practitioners document the ‘‘why’’ in archi-

tecture descriptions in the form of design rationale, design

decisions, and architectural knowledge [14]. His survey

stresses software architecture descriptions, but our review

focuses on both software requirements and architecture

documents. Forward and Lethbridge presented a practical

survey that evaluated tools and technologies for SDt [31].

Their survey did not cover the relevance of knowledge to

SDt, and related tools and technologies.

This paper presents the results of a SLR on knowledge-based ap-

proaches in SDt published from January 2001 to September 2011.

The main objectives of this review are the following: (1) systemat-

ically select and review literature, and present a holistic overview

of existing studies on knowledge-based approaches in SDt, with a

special focus on documentation for architecture design (i.e.,

requirements and architecture documents); (2) comprehensively

understand how knowledge-based approaches are employed in

SDt, their influences, and the costs and benefits of using knowl-

edge-based approaches in SDt; (3) identify research challenges

and gaps that require further exploration and investigation in this

area, and provide evidence-based recommendation to the future

research directions on this topic.

The remainder of this paper is organized as follows. In Section 2,

we describe the SLR research method and the review process. The

results of this SLR are presented in Section 3. Section 4 discusses

the scope of this review, the quality assessment of selected studies,

and the threats to the validity of the review results. The conclu-

sions and future directions are outlined in Section 5.

2. Research method

2.1. Context and research questions

2.1.1. Knowledge-based approach

Knowledge is information possessed in the mind of individuals,

and it is personalized information related to facts, procedures, con-

cepts, interpretations, ideas, observations, and judgments [8]. In

KM theory, KM is largely regarded as a process involving various

knowledge activities, including creating, storing/retrieving, trans-

ferring, and applying knowledge [8]. In this review, we define a

knowledge-based approach as any approach which can be applied

in KM and facilitates the knowledge activities in KM. The classifica-

tion of knowledge-based approaches employed in this SLR can be

readily mapped to these basic knowledge activities discussed

below.

According to the definition and analysis of knowledge-based

approaches, we propose a knowledge management process in

SDt, which is shown in Fig. 1. The general KM process proposed

in [8] is shown at the top of Fig. 1. The arrows in this general KM

process denote the sequence of knowledge activities that consti-

tutes a KM process. The KM process in SDt shown in the lower part

of Fig. 1 can be regarded as a specific KM process, one in which

knowledge-based approaches of producing and consuming soft-

ware document knowledge are mapped to knowledge activities

in the general KM process.

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 3

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

The mappings with dashed arrows from knowledge-based ap-

proaches to general knowledge activities are shown in Fig. 1 from

the perspective of the use (production and consumption) of knowl-

edge in SD: (1) Knowledge can be captured from SD. Meanwhile,

captured knowledge can be represented in a certain form (e.g., nat-

ural language or formal models). These activities belong to knowl-

edge capture and knowledge representation (KCR) which can be

mapped to the knowledge storing activity. (2) The activity of

retrieving knowledge from SD belongs to knowledge retrieval

(KRt) (e.g., captured knowledge can be returned in a structured

form), which can be directly mapped to the knowledge retrieval

activity. (3) Knowledge in SD can be shared with other individuals

and organizations. The approach is called knowledge sharing (KS),

and it can be mapped to the knowledge transfer activity. (4)

Knowledge in a SD can be (re)used in another SD, e.g., software

requirements reuse in a product family or architecture patterns

to address similar design issues, which are classified as knowledge

reuse (KR), and it can be mapped to the knowledge application

activity. (5) Implicit knowledge in SD, such as implicit dependen-

cies between parts of a document, can be recovered to become ex-

plicit knowledge, which belongs to knowledge recovery (KRv).

Since this approach creates new (explicit) knowledge, it can be

mapped to the knowledge creation activity. (6) New knowledge

can also be created from existing knowledge in SD through knowl-

edge reasoning (KRs), and this approach can be mapped to the

knowledge creation activity. For example, reasoning on architec-

ture design (i.e., existing architectural knowledge) can be used to

detect design conflicts in architecture (i.e., new knowledge) [69].

Based on Alavi and Leidner’s review on KM and KM systems [8],

the classification of knowledge-based approaches in [42], and the

mapping from the KM process in SDt to general knowledge activi-

ties discussed above, the knowledge-based approaches to SDt can

be classified into knowledge capture and representation, retrieval,

reuse, sharing, recovery, and reasoning, which are further elabo-

rated below:

� Knowledge capture and representation (KCR) aims to extract

knowledge from different types of SD, and represents knowl-

edge in certain forms so that the captured knowledge can be

used by other knowledge-based approaches. The reason we

combine these two approaches (i.e., knowledge capture and

knowledge representation) as an integrated approach is two-

fold. Firstly, knowledge capture is the prerequisite of knowledge

representation. i.e., only captured knowledge from SD is repre-

sented. Secondly, knowledge representation is integrated with

knowledge capture, in the form of natural language or formal

models to represent (describe/specify) explicit knowledge.

KCR is widely used to improve SD quality (e.g., KCR is used to

exploit and integrate existing information and collect new

knowledge to support architectural assessments [49]).

� Knowledge retrieval (KRt) seeks to return knowledge in a struc-

tured form, such that the knowledge can be used in a meaning-

ful way to support software development [68]. For example, a

SAD can be annotated and stored to a knowledge base, so that

concerned stakeholders can retrieve architectural knowledge

more efficiently for various purposes [25].

� Knowledge reuse (KR) reuses captured document knowledge in

software processes (e.g., security requirements knowledge in

requirements specifications can be reused in large projects

[45]).

� Knowledge sharing (KS) exchanges knowledge (e.g., require-

ments, frameworks, or design decisions) in SD among stake-

holders of software projects.

� Knowledge recovery (KRv) recovers knowledge that is not expli-

cit in existing SD (e.g., architectural knowledge acquired from

an existing SAD is used to understand a new SAD).

� Knowledge reasoning (KRs) draws conclusions and gets new

knowledge from existing knowledge in SD (e.g., knowledge of

design decision in a SAD is visualized to reason about new

knowledge [40]).

2.1.2. Software documentation

Poor software documentation is the cause of many errors and

reduces efficiency in software development and use. How to pro-

duce and use SDt has been a critical issue in software development

[55]. As mentioned earlier, the scope of this SLR is SDt for architec-

ture design, concerning SRD and SAD. The QA of SD define the eval-

uation of the quality of SDt [22]. In order to find which QA of SD are

affected by using knowledge-based approaches, we survey and

collect the QA of SD from existing literature and standards on

SRD and SAD [1,2,22,36], and derive an initial set of QA used in

this review, including completeness, understandability, traceability,

Knowledge-

based Approach

Fig. 1. Using knowledge management process in software documentation.

4 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

clarity, consistency, evolvability, conciseness, and reusability. This ini-

tial set of QA of SD is refined continuously when new QA are iden-

tified and added to the set during the process of this SLR, which is

detailed in the answer to RQ2 in Section 3.2.

2.1.3. Research questions

We conduct this SLR by following the guidelines for performing

SLR in SE proposed by Kitchenham and Charters [37]. To under-

stand existing research and practices on knowledge-based ap-

proaches in SDt, the following research questions (RQs) are

formulated with their rationale, following the recommendations

in [37] about defining RQs of a SLR:

RQ1: What software document (SD) quality attributes (QA) are

influenced by knowledge-based approaches?

Rationale: The quality of SDt has indirect impact on the quality

of software [55]. Improvements on the quality of SDt can be re-

flected and evaluated through the improvements of specific QA

of SD. We first classify QA of SD collected during the search process

(see Section 2.3), and further identify the QA that are affected by

using knowledge-based approaches, and how these approaches

improve the QA of SD. Answering this RQ can help identify various

aspects of improving the overall quality of SDt with different

knowledge-based approaches.

RQ2: What knowledge-based approaches are employed in soft-

ware documentation (SDt)?

Rationale: Answers to this RQ tell us what the current knowl-

edge-based approaches are. We analyze these knowledge-based

approaches to identify the gaps for further investigation, for exam-

ple the knowledge-based approaches in SDt that received less

attention in selected studies.

RQ3: What are the costs and benefits of using knowledge-based

approaches in software documentation (SDt)?

Rationale: Applying knowledge-based approaches in SDt has

certain benefits but not without costs. Answering this RQ can help

to understand their trade-off.

The answers to these three RQs can be directly linked to the

objective of this SLR: an understanding of how knowledge-based

approaches are employed in SDt (RQ2), their influences (RQ1),

and their costs and benefits (RQ3).

2.2. Inclusion and exclusion criteria

We defined the following inclusion and exclusion criteria to se-

lect studies from the search results based on the SLR guidelines

[37]:

Inclusion criteria:

I1: The theme of the study is documentation for software archi-

tecture design, including requirements and architecture

documents.

I2: The study presents one or more knowledge-based

approaches to address problems in SDt or use SDt to support

other software development activities.

Exclusion criteria:

E1: If two papers publish the same study, the less mature one is

excluded.

E2: Any paper whose full text is not accessible is excluded.

E3: If a paper introduces an approach to address problems in

SDt activity or use SD to support other software development

activities, but this approach is not knowledge-based as classi-

fied in Section 2.1.1, the paper is excluded.

E4: A paper without evidential support (i.e., ‘‘no evidence’’ as

classified in [10]) is excluded.

E5: A paper, that introduces a method for specifying and verify-

ing requirements or architecture using formal representations,

is excluded. We introduce this exclusion criterion because this

SLR focuses on how human-understandable knowledge can be

used in SDt. Techniques for specifying and verifying require-

ments or architecture using formal representation focus on

machine-processible knowledge (including formal require-

ments specification and architecture description languages),

which is intentionally left out of the scope of this SLR to achieve

meaningful and focused review results.

2.3. Search process

We design a SLR protocol to guide the search process based on

the SLR guidelines [37]. Relevant papers are retrieved automati-

cally from the databases (i.e., through a database search), as well

as manually from target journals, conferences, and workshops as

a supplementary source to the database search. The study selection

process in both databases and target venues consist of the follow-

ing three phases:

Phase 1: The first author applies the search strategy, which is

elaborated in Section 2.3.3, to identify potential primary stud-

ies. Two of the authors check the titles of all potential primary

studies against inclusion and exclusion criteria. If it is difficult

to decide whether one paper should be included or not by title,

this paper will be included for the next phase of paper selection.

Phase 2: Two of the authors check the abstracts of the selected

papers of Phase 1 against inclusion and exclusion criteria. Dis-

agreements about paper selection results are discussed and

resolved by all the participants of this review. If a disagreement

about a study cannot be resolved (e.g., we cannot decide

whether an approach proposed in the study is knowledge-based

or not), the study will be included for the next phase of

selection.

Phase 3: Two of the authors read the full text of the papers

selected after Phase 2 and use the inclusion and exclusion crite-

ria to decide whether the papers will be finally included or not.

Reference search is performed in this phase to check whether

the references of selected papers in Phase 3 should be included

or not. Reference search is a supplementary search in addition

to database search and manual search. The additional studies

obtained from the references search in Phase 3 will undergo

the selection process in Phases 2 and 3.

The finally-selected studies are a combination of the selected

studies from database, manual, and reference searches.

Fig. 2 illustrates the search process and the number of papers

included at each stage. Duplicate papers are removed in Phase 1

of the database search when results are retrieved from different

databases and in Phase 3 when the search results of database

search and manual search are merged. In Phase 1, the search re-

trieved a total of 31,840 papers in databases and 12,725 papers

in target journals, conferences, and workshops. They are captured

in the reference management tool EndNote. This tool is also used

in the subsequent steps for storing and sorting retrieved papers.

After reading and checking the titles of these papers, 410 papers

are included for further selection in Phase 2. As we can see in

Fig. 2, a huge number of papers are excluded in Phase 1, and the

number of included papers is decreased from 44,565 to 410. We

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 5

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

found that most of the excluded studies in Phase 1 are due to the

interference of general search terms, such as description, decision,

and reusable. In Phase 2, we include and exclude studies by reading

further their abstracts, and 155 studies are retained for full text

screening in Phase 3 to ensure that their major contribution is in-

deed related to the topic of this SLR. To make the search process

more comprehensive, we also iteratively scan (i.e., snowball) the

references of selected studies got in Phase 3. The SLR guidelines

proposed by Kitchenham and Charters suggest that the creditabil-

ity of a study is based on the type of experiment [37]. In order to

make this SLR credible, the studies without any validation were

intentionally excluded (i.e., exclusion criteria E4) according to the

Exclude studies

based on title

Exclude studies

based on abstracts

Exclude studies

based on full-text

Final selection

Exclude studies

based on title

Exclude studies

based on abstracts

Exclude studies

based on full-text

242

112

49

168

43

11

Studies from

references

60

P
h

a
s
e

 1
P

h
a

s
e

 2

Search in

databases using

search terms

Manual

search

31840 12725

P
h

a
s
e

 3

Electronic database
Target journals, references,

and workshops

Fig. 2. Study search and selection results in three phases of paper selection.

Table 1

Electronic databases included in this SLR.

Electronic databases

DB1 IEEE Xplore

DB2 ACM Digital library

DB3 ScienceDirect

DB4 EI Compendex

DB5 ISI Web of Science

DB6 SpringerLink

DB7 Wiley InterScience

DB8 EBSCO

DB9 Google Scholar

Table 2

Journals, conferences, and workshops included in this SLR.

Journal

J1 IEEE Transactions on Software Engineering (TSE)

J2 Empirical Software Engineering (ESE)

J3 IEEE Software (IEEE SW)

J4 International Journal of Software Engineering and Knowledge Engineering (IJSEKE)

J5 Journal of Systems and Software (JSS)

J6 Information and Software Technology (IST)

J7 Software Process Improvement and Practice (SPIT)

J8 Software and System Modeling (SoSyM)

J9 Software Quality Journal (SQJ)

J10 Automated Software Engineering (ASE)

J11 Software: Practice and Experience (SPE)

Conference

C1 International Conference on Software Engineering and Knowledge Engineering (SEKE)

C2 International Conference on Software Engineering (ICSE)

C3 Working IEEE/IFIP Conference on Software Architecture (WICSA)

C4 European Conference on Software Architecture (ECSA)

C5 International Conference on the Quality of Software Architectures (QoSA)

C6 IEEE/ACM International Conference on Automated Software Engineering (ASE)

C7 International Requirements Engineering Conference (RE)

C8 International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ)

C9 ACM Symposium on Document Engineering (DocEng)

Workshop

W1 Workshop on SHAring and Reusing architectural Knowledge (SHARK)

W2 International Workshop on Managing Requirements Knowledge (MaRK)

W3 International Workshop on Empirical Requirements Engineering (EmpiRE)

6 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

evidence levels described in Section 2.4. In the end, 60 papers are

finally selected to be further analyzed in this SLR.

Note that, of the 11 papers finally obtained through manual

search, 10 are retrieved by manually browsing the target journals,

conferences, and workshops listed in Table 2, and the remaining

paper is retrieved by manually browsing the references of the se-

lected papers.

One of the papers obtained through manual search [S34] cannot

be retrieved from the databases (see Table 1). Five of the papers

[S30, S40, S44, S50, S59] are published in 2011, which may have

not been indexed in the databases when we started this SLR. The

remaining five papers [S5, S8, S25, S32, S42] of the manual search

results can be retrieved by database search, but were overlooked in

the selection process. We suppose that this is partly because these

5 papers can only be retrieved in IEEE or ACM databases, which re-

turned a large number of search results in Phase 1, and conse-

quently negatively affected participants’ focus and judgement in

paper selection. The sources and reasons of the selected studies

got by manual search are illustrated in Fig. 3.

2.3.1. Search scope

2.3.1.1. Time period. We specify the time period of published stud-

ies for this SLR from January 2001 to September 2011, when we

started this SLR. As mentioned in the Introduction section, there

is currently no survey or SLR on knowledge-based approaches in

SDt. Forward and Lethbridge made a general survey on SDt, and re-

lated tools and techniques, covering the studies published before

2001 [31]. In order to reduce repetitive effort and make use of

existing work, we set the starting time of the published studies in-

cluded in this SLR to January 2001.

2.3.1.2. Electronic databases. According to the suggestion in [18],

the following databases are selected as the primary study sources

(Table 1). INSPEC database has been merged into EI Compendex

database, consequently INSPEC is excluded in the search process.

2.3.1.3. Journals, conferences, and workshops. We apply two criteria

for selecting journals, conferences, and workshops (Table 2) as the

target venues for manual search: (1) they should be highly relevant

to cover research areas of SDt or both SDt and KM; (2) they are the

leading journals, conferences, and workshops in the review areas,

including SE, intersection of SE and KM, requirements engineering,

and software architecture. Note that, the selection of journals, con-

ferences, and workshops for the manual search may not be com-

prehensive since we regarded the manual search as a

supplementary, but not exhaustive, source to the database (auto-

matic) search. Considering the two criteria, C3, C4, C5, and W1

are top conferences or workshops on software architecture, which

are relevant to SAD. C7, C8, W2, and W3 are included because they

are conferences and workshops on requirements engineering and

requirements knowledge, which have a close relationship to SRD.

Furthermore, publications on SE venues or both SE and KM venues

are potentially relevant to SDt. These venues include journals J1, J2,

J3, J4, J5, J6, J7, J8, J10, J11, and conferences C1 and C2. J9 is in-

cluded because the publications in this journal focus on software

quality, which may contain the studies on improving the quality

of SDt.

2.3.2. Search terms

We use population, intervention, comparison, and outcome

(PICO) criteria to define the search terms for database search in this

SLR based on the SLR guidelines [37].

Population: The population in this SLR is ‘‘SDt’’. We use the

words that are relevant to SDt as the population (e.g., documen-

tation, specification, and description). In order to cover as many

studies as possible, the word ‘‘software’’ is not included in the

population.

Intervention: The intervention is ‘‘knowledge-based

approaches’’. We use the word ‘‘knowledge’’ and its synonyms

for the intervention (e.g., knowledge, semantic, rationale, and

decision).

Comparison: Since there is no compared approach for this

review according to the SLR guidelines [37], the part of compar-

ison specified in PICO is not considered in the construction of

search terms.

Outcome: The outcome we focus on in this SLR by applying

knowledge-based approaches is the ‘‘QA of SD’’.4 As discussed

in Section 2.1.2, we survey and collect the QA of SD from existing

literature and standards on SRD and SAD [1,2,22,36], and derive

the initial set of the outcomes, which is composed of the follow-

ing QA: completeness, understandability, traceability, clarity, consis-

tency, evolvability, conciseness, and reusability, Newly identified

QA of SD and their synonyms are added to the outcome during

the search process (e.g., comprehensibility, unambiguity, retriev-

ability, modifiability, correctness, credibility, and maturity). We

decide that a study addresses a certain QA of SD if the QA term

is explicitly mentioned in the paper and the term is related to

SD. Meanwhile, some synonyms of QA are excluded in the search

process because these terms cause a high number of search

results (e.g., consist, correct, and clear). Note that, the QA maturity

can be divided into three sub-QA: completeness, correctness, and

consistency as suggested in [36]. With this consideration, maturity

is also included as a search term in the outcome in order to

retrieve relevant papers more comprehensively.

Studies not retrieved
from the databases

1 Studies published in
2011

5

 Studies by manual
search

Studies by manual
browsing

Studies from
references

10 1

11

Source

Reason Overlooked studies in
database searches

5

Fig. 3. Sources and reasons of the selected studies retrieved by manual search.

4 More precisely, improved QA of SD mean the improved ‘‘value’’ of QA of SD. For

conciseness, we use the phrase ‘‘improved QA of SD’’ in the rest of the paper.

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 7

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

The final list of the search terms in population (P), intervention

(I), and outcome (O) are presented in Table 3.

2.3.3. Search strategy

The search strategy, describing how to combine the search

terms, is used in this SLR to obtain a fair and comprehensive liter-

ature review. The search strategy that supports the search process

in three phases is described below:

(1) An initial set of search terms is proposed according to the

description of search term identification in PICO specified

in Section 2.3.2.

(2) Various combinations of search terms are used in trial

searches. The search terms are revised according to the

results of the trial searches. Boolean operators ‘‘OR’’ and

‘‘AND’’ are used to join search terms. The search terms

within the population, intervention, and outcome are joined

with ‘‘OR’’ (e.g., for intervention, joined search term is

‘‘knowledge OR semantic OR rationale OR decision’’). We fol-

lowed the guidelines in [37] to reach the search string by

formulating a combination of population, intervention, and

outcome, which is ‘‘P AND I AND O’’. Google Scholar restricts

the length of search strings, due to which the search string

‘‘P AND I AND O’’ is broken into three sub search strings:

‘‘P AND I’’, ‘‘P AND O’’, and ‘‘O AND I’’. Meanwhile, this data-

base only supports paper searches by either full-text or title

of a paper, and the former case leads to too many search

results (e.g., using ‘‘P AND I’’ to search in Google Scholar by

full-text returned 1,890,000 papers), consequently we

decided to use three sub search strings to search in Google

Scholar by title. Although the Google Scholar database con-

tains many duplicated search results from other databases

(i.e., DB1 to DB8), it still contributes several selected studies

which are not indexed by any other database (e.g., [S16] is

not indexed in DB1 to DB8).

(3) Formal searches are performed in two sub-steps sequen-

tially, the automatic search in databases and manual search

in target venues:

(a) We search potentially relevant primary studies in dat-

abases. We limit the search on papers in computer sci-

ence (we can set up the domains in the search of

databases, including ScienceDirect, EI Compendex, ISI

Web of Science, and SpringerLink) and on papers written

in English (we can constrain the languages of published

papers in the search of databases, including EI Compen-

dex, ISI Web of Science, SpringerLink, and Google Scho-

lar). Papers that are not in the domain of computer

science or written in English, are manually excluded in

the search results of the databases which cannot con-

strain subject domains and publication languages.

(b) We perform manual browsing to identify the potentially

relevant primary studies in target journals, conferences,

and workshops.

The detailed search process using the search strategy and

search terms has been elaborated in the beginning of Section 2.3.

Selected studies from both database and manual search were

recorded in an Office Excel spreadsheet for duplication check and

further analysis. Each entry of a selected study records the follow-

ing information: authors’ name, year of publication, title of publi-

cation, source (journal, conference, or workshop name), and

publication type (journal paper, conference paper, workshop pa-

per, book, book chapter, technical report, or others).

2.4. Data extraction and synthesis

To answer the RQs defined in Section 2.1.3, we extract specific

data from the selected studies. Table 4 describes the data items

(D1 to D8) extracted for the analysis in this review. D1 and D2 pro-

vide clues for the distribution of knowledge-based approaches over

years and venues of publication. D3 (i.e., improved QA of SD) di-

rectly contributes to the answers of RQ1. D4 (i.e., knowledge-based

approaches) can be used to answer RQ2. D5, D6, and D7 contribute

to the answer of RQ3 and further discussion of knowledge-based

approaches in SDt in Sections 3 and 4. To ensure that the data

extraction results are unbiased, two authors performed the data

extraction independently, and then one checked the data extrac-

tion results of the other, and finally they discussed and reached a

consensus on the data extraction results. Since the evidence level

of the selected studies is critical information for understanding

the existing practice in the review topic, we employed a six-level

classification for evidence evaluation proposed by Alves et al.

Table 3

List of search terms in population, intervention, and outcome.

Search terms

Population (P) Documentation, document, documenting, specification, specify, specifying, description

Intervention (I) Knowledge, semantic, rationale, decision

Outcome (O) Completeness, understandability, understandable, comprehensibility, comprehensible, traceability, traceable, clarity, consistency, modifiability,

evolvability, evolutionary, conciseness, concise, reusability, unambiguity, retrievability, correctness, credibility, maturity, communicability

Table 4

Data items extracted from each study.

Item name Description Relevant RQ

D1 Publication year In which year was the study published? Study

overview

D2 Venue What is the name of the journal, conference, or workshop that the paper was published? Study

overview

D3 Quality attribute(s) Which QA of SD does the proposed approach in the study try to improve? RQ1

D4 Knowledge-based

approach(es)

Which knowledge-based approach(es) is employed in the study to address the problem(s) in SDt? RQ2

D5 What problem(s) addressed What specific problem(s) concerning the QA of SD does the study try to address by knowledge-based

approach(es)?

RQ3

D6 Benefit(s) What are the benefit(s) of the knowledge-based approach(es) in SDt? RQ3

D7 Cost(s) What are the cost(s) in relation to the knowledge-based approach(es) in SDt? RQ3

D8 Evidence level What is the evidence level of the evaluation of the proposed approach? Study quality

8 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

[10]. The evidence levels (fromweakest to strongest) are defined as

follows:

Level 0: No evidence (0.0).

Level 1: Evidence obtained from demonstration or toy examples

(0.2).

Level 2: Evidence obtained from expert opinions or observations

(0.4).

Level 3: Evidence obtained from academic studies, e.g., con-

trolled lab experiments (0.6).

Level 4: Evidence obtained from industrial studies, e.g., causal

case studies (0.8).

Level 5: Evidence obtained from industrial practice (1.0).

In order to identify the evidence level in a quantitative way, we

assign 0.2 point to represent an increase of evidence level. The evi-

dence levels from weakest (Level 0) to strongest (Level 5) are

accordingly 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, as shown in parentheses

of relevant evidence level listed above.

3. Results

3.1. Overview of results

After three phases of paper selection as shown in Fig. 2 and 60

studies (listed in Appendix A) are finally included in the review re-

sults. In this section, we answer the research questions from Sec-

tion 2.1.3 by analyzing and synthesizing the extracted data from

the selected studies.

Fig. 4 presents a systematic map of the applications of knowl-

edge-based approaches for SDt, distributed over three dimensions:

year of publication, knowledge-based approaches employed, and

improved QA of the SD. The left part in Fig. 4 denotes the relation-

ship between studies and year of publication. The number in a

bubble represents the number of studies on a specific QA improved

by knowledge-based approaches published in a certain year. The

right part of Fig. 4 shows the relationship between studies and

knowledge-based approaches. Similarly, the number in a bubble

represents the number of studies applying a certain knowledge-

based approach to improve a specific QA of the SD. In this system-

atic map, only three knowledge-based approaches are included:

KCR, KRv, and KRs, because only the approaches that produce

knowledge (as shown in Fig. 1) can enrich the content of SD and

further improve the QA of SD. The remaining knowledge-based ap-

proaches: KRt, KS, and KR are approaches that only consume

knowledge from the SD without making any change or improve-

ments to the SD, are not included in this figure, and these knowl-

edge-based approaches use SD to support other software

development activities except for documentation. Note that, the

sum of the numbers of studies on the column labeled KCR (103) ex-

ceeds the total number of selected studies (60), because one study

may improve several QA. This situation is further elaborated in the

third paragraph of Section 3.2. The analysis of this systematic map

(Fig. 4) is also presented in Section 3.2.

Table 5 presents the distribution of selected studies over publi-

cation sources, including the publication name, type, count (i.e.,

the number of selected studies from each source), and the percent-

age of selected studies. The 60 selected studies are distributed over

36 publication sources, suggesting knowledge-based approaches

Quality

Attributes

Year Knowledge-based approaches

2010200920082007200620052004200320022001

KCR = Knowledge Capture & Representation

KRv = Knowledge Recovery

KRs = Knowledge Reasoning

KCR KRv KRs

Consistency

Traceability

Clarity

General KM

activity

Completeness

2011

Conciseness

Reusability

Credibility

Correctness

Modifiability

Retrievability

Unambiguity

7

19

23

3

2 3

3 2 8

2 4 3 6 4

2 23

4

3

6

8

9

3

3 2 3 6

6

Understandability

2 2

2

3

2

16

2

5

4

5

3

3

6

2

3

8

2

9

5

2

1

1 1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1 11

1 1

1

1

1 1 1

1

1

1

Fig. 4. Applications of knowledge-based approaches for software documentation (due to the space limitation of the bubbles, the study IDs in each bubble of this systematic

map can be found in http://www.cs.vu.nl/~liangp/project/KbSDt/systematicmap.htm).

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 9

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://www.cs.vu.nl/~liangp/project/KbSDt/systematicmap.htm
http://dx.doi.org/10.1016/j.infsof.2014.01.008

for SDt have been a widespread concern in the research commu-

nity. As shown in Table 5, the leading venues in this study topic

are JSS, WICSA, RE, and SHARK. WICSA is a leading conference in

the software architecture community. RE is the flagship conference

in the requirements engineering community, and JSS is a major

journal on software systems. This result is to be expected since

the topic of this SLR focuses on requirements and architecture doc-

umentation of software systems.

Fig. 5 shows the distribution of selected studies over year of

publication from 2001 to 2011. The number of studies applying

knowledge-based approaches in SDt has been increasing in the last

decade (only 2 studies relevant to using knowledge-based ap-

proaches in SDt published in 2004, and this number grows to 17

in 2011. The number of studies increases since 2006 with a small

variation in 2009). As shown in Fig. 6, more QA of SD are improved

through knowledge-based approaches from 2001 to 2011 (the

number of QA improved by knowledge-based approaches is 2 in

2002, and this number increases to 31 in 2011).

3.2. RQ1: Quality attributes of software documents and knowledge-

based approaches

3.2.1. Quality attributes of software documents

In this RQ, we focus on the influence of using knowledge-

based approaches to the quality of SDt. The three approaches

Table 5

Distribution of selected studies over publication sources.

Publication source Type Count %

Journal of System and Software (JSS) Journal 8 13.3

The Working IEEE/IFIP Conference on Software Architecture (WICSA) Conference 7 11.7

International Requirements Engineering Conference (RE) Conference 5 8.3

European Conference on Software Architecture (ECSA) Conference 3 5.0

SHAring and Reusing Architectural Knowledge (SHARK) Workshop 3 5.0

International Journal of Software Engineering and Knowledge Engineering (IJSEKE) Journal 2 3.3

Asia–Pacific Software Engineering Conference (APSEC) Conference 2 3.3

International Conference on Software Engineering (ICSE) Conference 2 3.3

Managing Requirements Knowledge (MaRK) Workshop 2 3.3

Relating Software Requirements and Architectures Book 1 1.7

Decision Support Systems (DSS) Journal 1 1.7

IEEE Software (IEEE SW) Journal 1 1.7

IET Software Journal 1 1.7

Information and Software Technology (IST) Journal 1 1.7

International Journal of Cooperative Information Systems (IJCIS) Journal 1 1.7

Journal of Software Maintenance and Evolution: Research and Practice (JSME) Journal 1 1.7

Requirements Engineering (RE) Journal 1 1.7

Software Process: Improvement and Practice (SPIP) Journal 1 1.7

European Conference on Software Maintenance and Reengineering (CSMR) Conference 1 1.7

International Conference of the Web Services (ICWS) Conference 1 1.7

International Conference on Advances in Semantic Processing (SEMAPRO) Conference 1 1.7

International Conference on Applied Computer Science (ACS) Conference 1 1.7

International Conference on Design of Communication (SIGDOC) Conference 1 1.7

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) Conference 1 1.7

International Conference on Program Comprehension (ICPC) Conference 1 1.7

International Conference on the Quality of Software Architectures (QoSA) Conference 1 1.7

International Conference on Software Engineering Research and Practice (SERP) Conference 1 1.7

International Multi-Conference Software Engineering (SE) Conference 1 1.7

International Symposium on Empirical Software Engineering (ISESE) Conference 1 1.7

Proceedings of Innovation for Enterprise Software (PRIMIUM) Conference 1 1.7

Software Engineering and Knowledge Engineering (SEKE) Conference 1 1.7

Cooperative and Human Aspects on Software Engineering (CHASE) Workshop 1 1.7

Engineering of Computer Based Systems (ECBS) Workshop 1 1.7

Recommendation Systems for Software Engineering (RSSE) Workshop 1 1.7

Software Engineering for Secure Systems (SESS) Workshop 1 1.7

Total 60 100

Fig. 5. Distribution of selected studies over time period.

Fig. 6. Number of QA of SD improved by knowledge-based approaches over time

period.

10 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

(KCR, KRv, and KRs) included in Fig. 4 are the approaches that

may have an impact on the quality of SDt (i.e., the intervention

of the SLR topic), and the QA of SD are the result of the interven-

tion (i.e., the outcome). We collected the QA of SD from the lit-

erature and standards [1,2,22,36] as an initial set of QA. This list

of QA is refined iteratively during the search process. For exam-

ple, the QA maturity is further decomposed into the QA correct-

ness, consistency, and completeness in [36]. According to the

systematic map shown in Fig. 4, the following QA of SD are af-

fected and improved by using knowledge-based approaches:

understandability [22,36], unambiguity [1,22,36], clarity [2], con-

ciseness [1], retrievability [36], traceability [22,36], modifiability

[1], correctness [22,36], consistency [22,36], completeness [1], reus-

ability [22], and credibility [36]. The meaning of these QA in the

context of SD, and more specifically in SRD and SAD is elabo-

rated below:

� Understandability: When stakeholders have different back-

grounds, the language and concepts used to describe the

requirements and architecture might not be understandable

to everyone. It requires that the stakeholders can comprehend

the meaning of the requirements with a minimum of expla-

nation in SRD [22]. It is also a QA of the SAD. It means that

an SAD conveys the intentions of the author when others

read it [36].

� Clarity: It refers to the property that the document structure is

simple and clear, which is a QA of SRD [2], but it can also be

applied to the SAD and general SD.

� Unambiguity: denotes that each requirement stated has only

one possible interpretation [1]. The difference between unambi-

guity and clarity is that clarity focuses on the structure of docu-

ments and unambiguity stresses the meaning of its contents.

� Conciseness: means that there is no redundancy and anomaly in

the documentation [7]. It is a QA of general SD.

� Retrievability: How easy requirements or architecture informa-

tion relevant to an information need can be obtained from the

SRD or SAD. For example, annotated architectural knowledge

provides an easy way to retrieve information from architecture

documents [36].

� Traceability: represents the ability to describe and follow the

life of a requirement in both a forward and backward direc-

tion in the SRD [19]. It is also a QA of the SAD, denoting

the relationship of one architecture entity to other entities

[3]. The traceability of documents can improve the retrievabil-

ity and modifiability in SD.

� Modifiability means that any necessary changes in document

structure and content can be made easily, completely, and con-

sistently [1].

� Consistency means no subset of individual statements is in con-

flict [1]. It is a QA of SD, SRD, and SAD. The QA correctness and

completeness are relative attributes to consistency in assessing

the maturity of SD.

� Correctness may have specific meanings in different contexts.

For example, every requirement represents something required

of system to be built in a SRD [23]; an architectural decision in a

SAD actually leads to a solution that meets the requirement

[70]. It is a QA of SRD, SAD, and also a QA of general SD.

� Completenessmeans what the software is supposed to do and all

the elements for understanding the requirements are included

in the SRD [23]. For SAD, it means that all elements for under-

standing an architecture design are provided [1,4].

� Reusability means that elements, sentences, paragraphs, and

sections can be easily adopted and adapted for use in a subse-

quent SD (e.g., requirements in requirements specifications

[22] and viewpoints in architecture descriptions [4]). It is a

QA of SAD, SRD, and SD.

� Credibility means that high accuracy is required for the content

in SD [41]. It is a general QA of SD, including SAD and SRD. For

instance, how reliable is the knowledge in a SAD when it

evolves with changes in the implementation and requirements

[36]. Credibility can improve the reusability of SD.

3.2.2. How knowledge-based approaches improve quality attributes of

software documents

In the right-hand side of Fig. 4, we present the distribution of

selected studies from the perspective of the QA of SD that are im-

proved by various knowledge-based approaches. As shown in this

figure, consistency, traceability, and understandability are the major

QA of SD that are affected by using knowledge-based approaches,

and the number of studies using various knowledge-based ap-

proaches differs dramatically. Detailed analysis of the QA of SD im-

proved by different knowledge-based approaches is presented

below.

KCR is widely employed for improving all QA of SD, but a signif-

icant difference exists in the numbers of studies using KCR for

improving specific QA. KCR is mostly used to improve consistency,

traceability, understandability, and reusability. This is because cap-

tured knowledge in SD, e.g., using models, can improve the consis-

tency and traceability of SD, and knowledge representation

improves the understandability and reusability of SD. KCR is less of-

ten used to address unambiguity, conciseness, and credibility. This is

because conciseness and credibility are seldom considered as critical

QA in SDt practice [41], and there is no consensus on whether

accepting unambiguity as an indispensable QA of SD. For example,

requirements specifications in a certain context deliberately intro-

duce ambiguity in order to provide room for better stakeholder dis-

cussion and communication [47]. On the other hand, unambiguity

of SAD is an important QA to improve the understandability of

the architecture design [36].

KRv is mostly used to improve the following QA: understand-

ability, traceability, and retrievability. As described in Section 2.1.1,

KRv focuses on recovering knowledge which is not explicit. The

understandability of SD can be improved when the knowledge in

SD is made explicit. Recovered knowledge in SD can help trace

back to the source where the recovered knowledge originally

comes from (e.g., from recovered design decision to design arti-

fact), therefore KRv can improve traceability and retrievability in

SDt.

KRs is mainly used to improve the following QA: understandabil-

ity, retrievability, traceability, completeness, and consistency. As de-

scribed in Section 2.1.1, KRs stresses drawing a conclusion (i.e.,

new knowledge) from existing knowledge through inference. The

traceability relationships between existing knowledge and new

knowledge in SD can be recorded during the knowledge reasoning

process, consequently KRs can improve the traceability and retriev-

ability of SD. Meanwhile, identification of the knowledge reasoning

process in SD can improve the understandability of SD, e.g., the rea-

soning process from a design decision to a design solution can im-

prove the understanding of the solution [67]. When knowledge

reasoning is performed on architecture documentation, a concep-

tual model can be used to check whether a specific architectural

knowledge element is missing, while the completeness of architec-

ture documents can be assessed and improved [36]. KRs can also

improve the consistency of SD since reasoning can be used to check

consistency in SD [36].

3.2.3. Quality attributes of software documents and their concerned

elements in software documents

The QA of SD improved by knowledge-based approaches are

concerned with various content elements of SD, i.e., the building

blocks in a SD, for example, requirements in SRD and architecture

design in SAD. We present the relationship between the QA of SD

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 11

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

and the elements in SD in order to understand which QA of SD is

mostly concerned with which SD elements. We select the six dom-

inant QA of SD, consistency, traceability, understandability, reusabil-

ity, completeness, and retrievability, and present the major content

elements in SD concerning these QA in a descending order of the

number of studies in each category shown in Table 6. The example

studies listed in the table are elaborated below.

Consistency: Some knowledge-based approaches are used to

improve the consistency between requirements, between archi-

tectural design decisions, and between requirements and archi-

tectural design decisions. For example, [S7] proposes a model-

based object-oriented approach for requirements engineering

(MORE) to improve the maintenance and consistency of

requirements documents. Requirements documents in natural

language are converted into objects and classes using ROMs

(Requirement Object Models), which provide precise specifica-

tion of the requirements semantics to prevent inconsistency

of requirements.

Traceability: Some knowledge-based approaches are used to

improve the traceability from requirements to architecture

design, between requirements, and from architectural design

decisions to architecture design. For instance, [S4] developed

an architecture design decision support system (ADDSS) to codify

design decisions that link requirements to architecture design.

Understandability: Knowledge-based approaches are frequently

used in understanding architecture design, architectural design

decisions, and requirements. For example, the domain architec-

tural knowledge model constructed in [S19] is used to annotate

architecture documentation, which improves the understand-

ability of architecture design with design decisions.

Reusability: Knowledge-based approaches are used to improve

the reusability of architecture design, functional requirements,

and architectural design decisions. For instance, [S57] proposes

a documentation framework consisting of four viewpoints to

document architectural design decisions, which can facilitate

the reuse of architecture design and design decisions (i.e., archi-

tectural solutions) in similar projects.

Completeness: Knowledge-based approaches are used to

improve the completeness of requirements, architecture design,

and non-functional requirements. For example, [S28] intro-

duces the concept of ‘‘domain knowledge seed’’ in requirements

evolution of agile development, which provides the core fea-

tures in a given domain. The completeness of requirements

specifications can be improved during system evolution when

the seed (i.e., the domain knowledge) is evolved.

Retrievability: Knowledge-based approaches are used to

improve the retrievability of architecture design, architectural

design decision, and design rationale. For instance, [S19]

employs a domain architectural knowledge model to annotate

text-based architecture documents into semantically-enriched

knowledge instances and store them in a knowledge repository,

which can facilitate the retrieval of architectural knowledge,

including architecture design and design decisions.

3.3. RQ2: Knowledge-based approaches in software documentation

3.3.1. Distribution of knowledge-based approaches in software

documentation

The knowledge-based approaches classified in Section 2.1.1 are

all used in SDt, either producing knowledge to SDt or consuming

knowledge from SDt, including KCR, KRt, KR, KS, KRv, and KRs.

We get the distribution of selected studies over knowledge-based

approaches used in SDt as shown in Fig. 7.

KCR is the most frequently used approach in SDt. The reason of

this result is that the output of KCR provides input to other knowl-

edge-based approaches. For example, only when specific knowl-

edge in SD is captured and represented, the knowledge can be

readily shared, retrieved, and reused. The KCR approach is used

in 54 studies, which means 90% of the total studies employ this

knowledge-based approach in SDt, either improving various QA

of SD or using SDt to support other development activities. For

example, [S56] uses KCR to represent requirements knowledge

and improve the correctness, completeness, and consistency of

requirements specifications through KRs. [S41] uses different do-

main knowledge representations to support comprehensive

description and domain knowledge reuse in requirements elicita-

tion. Besides KCR, the most popular knowledge-based approach

in SDt, all other approaches are evenly employed in SDt. There

are 20 studies (33.3%) that employ KRs in SDt. For instance, [S25]

uses formal reasoning with a knowledge base to check consistency

Table 6

Relationship between QA of SD and their concerned documented elements.

QA of SD Concerned documented elements

Most studied Second most studied Third most studied

Consistency Between requirements S2, S7, S22, S26, S37, S44,

S50, S55 [8 studies]

Between architectural design decisions

S11, S21, S27, S57 [4 studies]

Between requirements and architectural design

decision S6, S14, S25 [3 studies]

Traceability From requirements to architecture design S4, S20,

S24, S29, S34, S38, S48, S53, S54, S58 [10 studies]

Between requirements S30, S32, S36,

S39, S44 [5 studies]

From architectural design decision to

architecture design S4, S38, S39, S54, S58 [5

studies]

Understandability Architecture design S1, S9, S10, S11, S19, S20, S45,

S46, S47, S48, S52, S54 [12 studies]

Architectural design decision S9, S11,

S19, S20, S46, S52, S54, S57 [8 studies]

Requirements S10, S15, S45, S46, S48, S50 [6

studies]

Reusability Architecture design S5, S18, S21, S43, S51, S57 [6

studies]

Functional requirements S30, S33, S43,

S44 [4 studies]

Architectural design decision S5, S18, S21, S57

[4 studies]

Completeness Requirements S15, S23, S28, S40 [4 studies] Architecture design S16, S19, S40 [3

studies]

Non-functional requirements S22, S49, S56 [3

studies]

Retrievability Architecture design S5, S19, S27, S31, S34 [5 studies] Architectural design decision S5, S19,

S27, S31 [4 studies]

Architectural design rationale S5, S27, S31 [3

studies]

Fig. 7. Distribution of selected studies over knowledge-based approaches used in

SDt.

12 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

between design and functional requirements specifications. KS and

KR are both employed in 18 studies (30%). For example, [S16]

developed Ontobrowser, a tool based on ontologies and semantic

wikis, to share knowledge about software architecture and pro-

vides a collaborative way for architecture documentation. [S5] pre-

sents a model to represent and record rationale in architecture

design, which can be reused and facilitates architecture under-

standing in new projects. KRt is used in 14 studies (23.3%). For

example, [S54] developed a lightweight ontology and uses seman-

tic annotation and query to improve the indexing and retrieval of

software architectural knowledge. KRv is used in 14 studies

(23.3%). For example, latent semantic indexing technique is used

in [S34] to recover implicit semantic relationships between SDt

and source code.

Note that the number of studies using certain knowledge-based

approach in Fig. 7 is not equal to the sum of the numbers of the

same knowledge-based approach in Fig. 4 (e.g., the number of

studies using KCR is 54 in Fig. 7 and 103 in Fig. 4). The reason is

that one knowledge-based approach (e.g., KCR, KRv, and KRs) can

possibly impact several QA of SD. Meanwhile, the total number

of studies (138) using various knowledge-based approaches in

Fig. 7 is larger than the number of selected studies (60). This is

due to the fact that one study may apply several knowledge-based

approaches in SDt.

3.3.2. General and specific knowledge-based approaches

Specific knowledge-based approaches can be refined and classi-

fied by analyzing the six general knowledge-based approaches used

in selected studies (i.e., KCR, KRs, KRv, KR, KS, and KRt). A specific

knowledge-based approach employs a knowledge technique to sup-

port general knowledge-based approaches. Classification of the spe-

cific knowledge-based approaches is helpful in understanding the

underlying characteristics and realizationmechanismof the general

knowledge-based approaches used in SDt. For example, conceptual

modeling can be used to support all general knowledge-based ap-

proaches. Table 7 presents the studies classified in two dimensions:

employed specific knowledge-based approach and general knowl-

edge-based approach. For example, [S38] uses conceptualmodeling,

tactic traceability information models (TTIMs), to capture and repre-

sent the traceability links from architecture design to architectural

design decisions in architecture documents. As shown in the second

column of Table 7, conceptual modeling and natural language pro-

cessing are two mostly used specific knowledge-based approaches

for capturing and representing knowledge in SDt. The example stud-

ies of using specific knowledge-based approaches to realize general

knowledge-based approach are elaborated below.

Conceptual modeling is the activity of formally describing some

aspects of the physical and social world around us for the purpose

of understanding and communication [50].

� KCR: [S39] develops a traceability model to capture and repre-

sent knowledge elements that are essential to comprehensively

manage changes in software development and documentation,

e.g., product, rationale, and version.

� KRv: [S17] constructs an argumentation model based on IBIS

(issue-based information system) notations, including concepts

Issue, Position, Argument, and Decision, to express tacit knowl-

edge in argumentation of requirements engineers, which can

help stakeholders to better understand the evolution of

requirements.

� KRs: [S53] develops a conceptual model with reasoning rules

and concept relationships implemented in an ontology to sup-

port reasoning from requirements to architecture design.

� KRt: [S4] employs specific attribute templates developed in

architecture design decision support system (ADDSS) to character-

ize and store architectural knowledge, e.g., architecture styles,

which can be further retrieved as design solutions to satisfy var-

ious user needs.

� KR: [S33] uses an activity-based quality model (ABQM) to get

normalized requirements for reusing in requirements

documents.

� KS: [S16] employs a service-oriented architecture (SOA) ontology

to share SOA knowledge to domain experts and technique

people.

Natural language processing aims to convert human language

into a formal representation that is easy for computers to manipu-

late [21].

� KCR: [S34] employs Latent Semantic Indexing, a specific natural

language processing technique, to capture and mathematically

represent information from requirements or architecture doc-

umentation, which can be used to identify traceability links

between documentation and code.

� KRv: [S36] uses Latent Semantic Indexing to recover implicit

traceability links between requirements in requirements docu-

mentation by combining textual and structural information.

� KRs: [S25] proposes an approach to translate functional require-

ments specifications expressed in natural language into UML

models with supporting axioms, which can facilitate consis-

tency checking between requirements and design specifications

through reasoning.

Annotation in documentation is an activity to tag the content in

documents with various tags, for example in a folksonomy multi-

ple users tag particular content with a variety of terms. Semantic

annotation using ontology is that experts tag instance data (e.g.,

text in documents) with ontology classes [58].

� KCR: [S19] uses concepts (e.g., Requirement, Design Decision) in a

domain architectural knowledge model to annotate architec-

ture documents explicitly into architectural knowledge

instances in order to improve understandability of architecture

documents.

� KRv: [S54] develops a lightweight ontology to semantically

annotate architecture documents, such as requirements, archi-

tecture design, and design decisions, which leads to improved

retrievability and traceability of knowledge in architecture

documentation.

� KRs: [S53] develops and uses an ontology to semantically anno-

tate the traceability links between architecture requirements

and design with reasoning rules in order to support the co-evo-

lution between architectural requirements and design.

� KRt: [S37] develops the 4everedit tool to support structured

text-based documentation, e.g., architecture and requirements

documents, by annotation with extended XML. The knowledge

annotated from documents can then be retrieved by stakehold-

ers for various purposes, e.g., checking structural and internal

consistency of documents.

� KR: Architecture properties are used in [S43] to annotate archi-

tecture documents, and annotated architecture design in archi-

tecture documents can be reused by searching these properties.

� KS: [S31] uses an advanced mapping quality prediction model

(AMQPM) to predict the sharing quality of architectural knowl-

edge that is annotated from architecture documents by domain

experts.

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 13

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

3.3.3. Knowledge-based approaches and documented content

Knowledge-based approaches to SDt are used with various

requirements and architectural knowledge content in SD. To fur-

ther understand the relationship between knowledge-based ap-

proaches and SD knowledge content, the selected studies are

classified in two dimensions: knowledge-based approach and SD

knowledge content, as presented in Table 8. The number of studies

for each category is shown in each cell of Table 8, for example, KCR

is mostly used to capture and represent architecture design in SD,

which includes 28 studies. Besides documenting the basic knowl-

edge desired in a typical SRD and SAD, i.e., requirements and archi-

tecture design respectively, knowledge-based approaches have also

been used to capture architectural design decisions and architectural

design rationale, i.e., the core of architectural knowledge [24]. The

use of knowledge-based approaches in SDt can be extended to

the content of requirements knowledge [43], especially require-

ments decisions and requirements rationale [44].

3.4. RQ3: Costs and benefits of using knowledge-based approaches

Using a bottom-up approach by analyzing the data items D5,

D6, and D7 in Table 4, we identify the following categories of costs

and benefits of using knowledge-based approaches in SDt, which

are elaborated in this section.

3.4.1. Costs of using knowledge-based approaches

The cost of knowledge-based approaches in SDt refers to the

expenditure of employing knowledge-based approaches in SDt,

e.g., time, money, and labor. We identify four cost categories from

SDt literature [15,17,41]: the cost of document creation [41], doc-

ument maintenance and evolution [17], information retrieval from

documents [15], and document distribution [17]. Since few studies

evaluate the cost of using knowledge-based approaches in SDt

quantitatively, we categorize the cost of SDt qualitatively in this

SLR, i.e., identifying the types of cost relevant to using knowl-

edge-based approaches in SDt. Note that, four studies did not

explicitly discuss the cost of knowledge-based approaches in SDt

[S8, S10, S47, S49].

Document creation: Studies in this category focus on the cost of

development of documents using various documentation

approaches according to the needs of document users. For

instance, recording only domain-specific architectural knowl-

edge in architecture documents using the model-driven develop-

ment approach reduces the cost of document creation [S18].

Savolainen and Mannisto present an approach of considering

stakeholder conflicts in architecture documentation [S46]. They

develop a conflict-centric architectural view to document archi-

tecture trade-offs in quality requirements that are traditionally

scattered among multiple architectural views. When the most

important conflicts have been described, the documentation

process will stop, which will consequently reduce document

creation cost.

Document maintenance and evolution: Document content is

prone to change quickly and needs to be updated and synchro-

nized with other changed software artifacts. Meanwhile, SD

should be organized to make them more accessible. Studies in

this category focus on the cost caused by the abovementioned

activities. For instance, knowledge assisted agile requirements

evolution (K-gileRE) presents a ‘‘domain knowledge seed’’ for

given domain and associated knowledge elements [S28]. The

correctness, consistency, and completeness of requirements

specifications are improved when analysts modify the seed

according to the online recommendation, which can reduce

the document maintenance cost. Scenario-based documenta-

tion and evaluation method (SceMethod) can indicateT
a
b
le

7

C
la
ss
ifi
ca
ti
o
n
o
f
st
u
d
ie
s
b
y
sp

e
ci
fi
c
k
n
o
w
le
d
g
e
-b
a
se
d
a
p
p
ro
a
ch

a
n
d
g
e
n
e
ra
l
k
n
o
w
le
d
g
e
-b
a
se
d
a
p
p
ro
a
ch

.

S
p
e
ci
fi
c
k
n
o
w
le
d
g
e
-b
a
se
d
a
p
p
ro
a
ch

G
e
n
e
ra
l
k
n
o
w
le
d
g
e
-b
a
se
d
a
p
p
ro
a
ch

K
C
R

K
R
v

K
R
s

K
R
t

K
R

K
S

C
o
n
ce
p
tu
a
l
m
o
d
e
li
n
g

S
1
,S

2
,S

3
,S

4
,S

5
,S

6
,S

7
,S
1
0
,

S
1
1
,
S
1
2
,
S
1
6
,
S
1
7
,
S
1
9
,
S
2
0
,

S
2
1
,
S
2
2
,
S
2
3
,
S
2
4
,
S
2
6
,
S
2
7
,

S
2
9
,
S
3
0
,
S
3
2
,
S
3
5
,
S
3
8
,
S
3
9
,

S
4
0
,
S
4
1
,
S
4
2
,
S
4
4
,
S
4
5
,
S
4
6
,

S
4
7
,
S
4
8
,
S
4
9
,
S
5
1
,
S
5
2
,
S
5
3
,

S
5
4
,
S
5
5
,
S
5
7
,
S
5
8
,
S
5
9
,
S
6
0

[4
4
st
u
d
ie
s]

S
4
,
S
6
,
S
1
5
,
S
1
7
,
S
1
9
,
S
2
0
,

S
2
1
,
S
2
7
,
S
3
3
,
S
3
6
,
S
5
4
,
S
6
0

[1
2
st
u
d
ie
s]

S
4
,
S
5
,
S
1
6
,
S
1
9
,
S
2
6
,
S
2
7
,

S
3
2
,
S
3
5
,
S
4
0
,
S
4
8
,
S
4
9
,
S
5
2
,

S
5
3
,
S
5
4
,
S
5
7
,
S
5
8
,
S
6
0
[1
7

st
u
d
ie
s]

S
2
,
S
4
,
S
1
7
,
S
2
8
,
S
3
3
,
S
4
4
,

S
5
1
,
S
5
3
,
S
5
4
,
S
5
7
[1
0

st
u
d
ie
s]

S
4
,
S
5
,
S
7
,
S
1
2
,
S
1
7
,
S
1
8
,

S
1
9
,
S
2
1
,
S
2
9
,
S
3
2
,
S
3
3
,
S
3
8
,

S
4
1
,
S
5
7
,
S
5
8
[1
5
st
u
d
ie
s]

S
4
,
S
5
,
S
1
0
,
S
1
6
,
S
1
8
,
S
2
0
,

S
2
1
,
S
2
7
,
S
3
0
,
S
3
2
,
S
4
5
,
S
5
1
,

S
5
4
,
S
5
8
,
S
6
0
[1
5
st
u
d
ie
s]

N
a
tu
ra
l
la
n
g
u
a
g
e
p
ro
ce
ss
in
g

S
8
,
S
9
,
S
1
5
,
S
2
3
,
S
2
5
,
S
3
4
,

S
3
6
,
S
5
0
,
S
5
6
[9

st
u
d
ie
s]

S
9
,S

1
5
,S

3
4
,
S
3
6
[4

st
u
d
ie
s]

S
2
5
,
S
5
0
,
S
5
6
[3

st
u
d
ie
s]

A
n
n
o
ta
ti
o
n

S
1
4
,
S
1
9
,
S
3
7
,
S
4
3
,
S
5
3
,
S
5
4

[6
st
u
d
ie
s]

S
1
9
,
S
5
4
[2

st
u
d
ie
s]

S
1
9
,
S
5
3
,S
5
4
[3

st
u
d
ie
s]

S
1
4
,
S
3
7
,
S
5
3
,
S
5
4
[4

st
u
d
ie
s]

S
1
8
,
S
4
3
[2

st
u
d
ie
s]

S
1
8
,
S
3
1
,
S
5
4
[3

st
u
d
ie
s]

14 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

‘‘what’’-‘‘how’’-‘‘why’’ features for architectural design deci-

sions [S6]. It keeps the architectural knowledge complete and

consistent during architectural evolution, which can reduce

document maintenance and evolution cost.

Information retrieval from documents: Studies in this category

focus on the cost of retrieving useful information from SD. For

instance, capturing architecturally significant traceability links

through annotating and extracting information from existing

architecture documents can reduce the time of information

retrieval from documents [S38]. Using the latent semantic

indexing technique requires less preprocessing and manipula-

tion effort to support information retrieval from source code

and associated documentation [S34]. The architecture proper-

ties are represented as an XML file which provides an easy

way to search in the documents [S43].

Document distribution: Studies in this category focus on the cost

of dissemination and sharing of the documents to various users

who need the documents. For instance, by enhancing the tradi-

tional object-oriented programming paradigm, the approach

proposed in [S45] enables adaptable SD as part of the source

code. SD and code can be disseminated simultaneously which

consequently reduces the cost of document distribution. The

4everedit tool uses a pre-defined document structure to repre-

sent document knowledge, which can be used to maintain

structural and internal consistency of SD in a team-based docu-

mentation environment [S37]. In such an environment, this tool

can further reduce document distribution and sharing cost

among documentation users.

Table 9 presents the summary of selected studies over cost cat-

egories, including the selected studies and percentage of selected

studies in each category. As shown in Table 9, the cost of retrieving

information from documents is the major concern of using knowl-

edge-based approaches in SDt. The costs of creating, maintaining,

and evolving documents are also important factors when applying

knowledge-based approaches in SDt. Note that, one study (e.g.,

[S54]) may cover several cost categories of using knowledge-based

approaches in SDt, and consequently the sum of the percentages of

studies from each category exceeds 100% in Table 9.

3.4.2. Benefits of using knowledge-based approaches

The benefits discussed in this section indicate that some activ-

ities in software development are supported by using knowledge-

based approaches in SDt, with a focus on requirements engineering

or architecting activities. Nine benefit categories are identified

from selected studies.

Requirements elicitation: Studies in this category focus on

improving the efficiency of requirements elicitation. For

instance, Li et al. propose a model-based approach, which pro-

vides a high level of requirements abstraction in a domain spe-

cific model to elicit requirements in scientific computing. This

approach makes the elicited requirements easier to understand

and reduces the learning effort for domain scientists [S30].

Requirements analysis: Studies in this category focus on detect-

ing and resolving conflicts between requirements, discovering

boundary of a software system and interaction with its environ-

ment [5]. For instance, the model-based object-oriented approach

(MORE) proposed in [S7] can capture and model domain knowl-

edge, which is used to evaluate the consistency, completeness,

traceability, and reusability in requirements analysis. TExtual

aSSIstent (TESSI) is a requirements specification and analysis

tool, which is used to transform requirements specification

and its constraints into a problem ontology, and further checks

inconsistency in requirements specification through ontology

reasoning [S26].

Requirements comprehension: Studies in this categories focus on

facilitating understanding of requirements. For instance, [S2]

proposes a way of structuring and representing the require-

ments specifications to improve requirements comprehension.

In this approach, the requirements specifications consist of rig-

orous description of different views, e.g., use case view, context

view with underlying domain model, which is helpful for

understanding requirements.

Requirements evolution: Studies in this category focus on

changes in requirements after initial requirements have been

elicited. Changes in requirements can be adding to, removing,

or modifying existing requirements [63]. For example, [S39]

integrates software configuration management with a trace-

ability model, which can represent knowledge elements that

are essential to comprehensively manage changes, to support

change management during the evolution of requirements

artifacts.

Requirement traceability: Studies in this category focus on the

ability to describe and follow the life of a requirement, in both

a forward and backward direction [33]. For instance, [S36]

develops a method to recover traceability links in requirements

documentation using a combination of textual and structural

information.

Co-evolution of requirements and architecture: Studies in this cat-

egory focus on bridging the gap between requirements and

architecture. For instance, the Language for Integrated Software

Architecture (LISA) model links requirements decisions to archi-

tectural elements, which maintains consistency between

requirements and architecture views [S58]. Tang et al. intro-

duce a generic ontology model with a semantic wiki to support

the co-evolution between architecture requirements and design

[S53]. The semantic wiki developed in this work supports the

traceability ontology model and semantic annotation, which

help users to retrieve co-evolved requirements and architecture

designs.

Architecture understanding: Studies in this category focus on

better understanding of architecture design through architec-

tural knowledge. For instance, de Boer and van Vliet employ

latent semantic analysis technique to discover the semantic

structure in a set of architecture documents, which provides a

reading guide for architecture documents and further improves

architecture understanding [S9].

Architecture evolution: Studies in this category focus on adapting

an existing architecture to cope with the evolution require-

ments [11]. For instance, [S59] proposes an approach to support

architecture evolution (generation of a list of tasks maintainers

can perform to evolve the system) of software product lines

using required architectural knowledge, which is codified in a

meta-model.

Architecture recovery: Studies in this category focus on recover-

ing architecture design and related architectural knowledge

that is not explicit in existing architecture documents. For

instance, Feilkas et al. proposed to recover and refine implicit

architectural knowledge (e.g., violations between current archi-

tecture and the intended architecture) through nonconfor-

mance checking and discussion between the two architectures

represented in XML [S14]. Architectural design decision recovery

approach (ADDRA) uses a template based on a conceptual model

to recover and document architectural design decisions after

the fact [S20].

Table 10 presents the summary of selected studies over benefit

categories, including the selected studies and percentage of se-

lected studies in each category. As shown in this table, using

knowledge-based approaches in SDt mainly supports the follow-

ing activities: architecture understanding (41.7%, 25 studies),

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 15

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

requirements elicitation (21.7%, 13 studies), and co-evolution of

requirements and architecture (15.0%, 9 studies). Similar to the

cost categories, one study (e.g., [S52]) may cover several benefit

categories of using knowledge-based approaches in SDt, and con-

sequently the sum of the percentages of studies from each category

also exceeds 100% in Table 7.

Fig. 8 presents the distribution of selected studies over the ben-

efit categories for requirements engineering and architecting activ-

ities. We find that knowledge-based approaches in SDt are evenly

used in and benefit both requirements engineering and architect-

ing activities (34 vs. 35 studies). This result shows that knowl-

edge-based approaches are promising and appropriate to support

the documentation from requirements to architecture. Note that

one study may benefit both requirements engineering and archi-

tecting activity (e.g., [S54], to support co-evolution from require-

ments to architecture), and consequently the sum of the studies

in this figure (69) exceeds the number of selected studies (60).

3.5. Evidential support

According to the criteria to identify the evidence level of a study

provided in Section 2.4, we evaluated the evidence level of all the

selected studies and show the distribution of studies in each evi-

dence level in Fig. 9. For instance, [S17] introduces an approach

which adapts the IBIS (issue-based information system)

argumentation model to characterize and capture tacit require-

ments knowledge (e.g., requirements rationale) in order to im-

prove requirements documentation, but this work only

demonstrates the application of the approach with a toy example

(Evidence level 1). 4everedit is a tool that represents document

knowledge following a pre-defined document structure, which

facilitates maintenance of structural and internal consistency of

SD [S37]. Twenty-six editors, from more than five companies, have

successfully applied this tool in a large process engineering project

for one year; consequently the evidence level of [S37] is obtained

from industrial practice (Evidence level 5). From Fig. 9, we find that

more than 50% (33 out of 60) studies on using knowledge-based

approaches in SDt are supported by academic studies (Evidence le-

vel 3). Only 13.3% (8 out of 60) studies have been validated in

industrial practice (Evidence level 5). The results are understand-

able because of the high cost and risk of evaluating knowledge-

based approaches in SDt through industrial practices. No evidence

is obtained from expert opinions or observation (Evidence level 2).

The reason is that there are no consistent criteria for experts to

evaluate the quality of SDt.

Fig. 10 presents the distribution of selected studies in two

dimensions: evidence level and knowledge-based approach em-

ployed in SDt. The number in a bubble represents the number of

studies that use certain knowledge-based approach and are sup-

ported by a specific evidence level (e.g., the biggest bubble denotes

Table 8

Classification of studies by knowledge-based approach and SD knowledge content.

Knowledge content in SD Knowledge-based approach

KCR KRv KRs KRt KR KS

Architecture design S1, S3, S4, S5, S6, S9, S14, S16, S19,

S20, S21, S27, S29, S34, S38, S40, S42,

S43, S45, S46, S47, S48, S51, S52, S53,

S54, S58, S59 [28 studies]

S4, S6, S9,

S19, S20, S21,

S27, S34, S54

[9 studies]

S4, S5, S16, S19,

S27, S40, S48,

S52, S53, S54,

S58 [11 studies]

S4, S14, S51, S53

S54 [5 studies]

S4, S5, S18, S19,

S21, S29, S43,

S58 [8 studies]

S4, S5, S10, S13,

S16, S18, S20, S21,

S27, S31, S45, S51,

S58 [13 studies]

Architectural design

decision

S3, S4, S5, S6, S9, S11, S12, S19, S20,

S21, S27, S29, S38 S39,, S46, S52, S53,

S54, S57, S58, S59 [21 studies]

S4, S6, S9,

S19, S20, S21

S27 S54 [8

studies]

S4, S5, S19, S27,

S40, S52, S53,

S54, S57, S58 [10

studies]

S4, S53, S54, S57

[4 studies]

S4, S5, S12, S18,

S19, S21, S29,

S38, S57, S58

[10 studies]

S4, S5, S13, S18,

S20, S21, S27, S31,

S54, S58 [10

studies]

Architectural design

rationale

S4, S5, S6, S17, S20, S27, S38, S39, S48,

S52, S57, S58 [12 studies]

S4, S20, S27

[3 studies]

S5, S16, S27, S48,

S52, S57, S58 [7

studies]

S4, S57 [2 studies] S4, S5, S38, S57,

S58 [5 studies]

S5, S13, S20, S27,

S31, S54, S58 [7

studies]

Architectural view S4, S6, S20, S43 [4 studies] S4, S6, S20 [3

studies]

S4 [1 study] S4, S18, S43 [3

studies]

S4, S18, S20 [3

studies]

Architectural pattern S16, S38, S43, S60 [4 studies] S4, S60 [2

studies]

S4 [1 study] S4, S43 [2

studies]

S4, S16, S60 [3

studies]

Architecturally significant

requirement

S3, S38, S58, S10, S43, S46, S53 [7

studies]

S53, S58 [2

studies]

S53 [1 study] S38, S43, S58 [3

studies]

S58 [1 study]

Requirement S2, S6, S8, S12, S15, S19, S23, S25, S26,

S34, S36, S37, S39, S40, S41, S45, S48,

S50, S55 [19 studies]

S4, S15, S19,

S34, S36, S54

[6 studies]

S19, S25, S26,

S40, S50 [5

studies]

S2, S4, S28, S37 [4

studies]

S4, S12, S19,

S32, S41 [5

studies]

S4, S10, S32, S45 [4

studies]

Functional requirement S7, S11, S22, S30, S35, S43, S44, S52,

S53, S54, S56 [11 studies]

S33, S54 [2

studies]

S35, S52, S53

S54, S56 [5

studies]

S33, S44, S53, S54

[4 studies]

S7, S33, S43 [3

studies]

S30, S31, S54 [3

studies]

Non-functional

requirement

S7, S11, S22 S30, S38, S44, S46, S52,

S53, S54, S56 [11 studies]

S33, S54 [2

studies]

S32, S49, S52,

S53, S54, S56 [6

studies]

S33, S44, S53, S54

[4 studies]

S7, S32, S33,

S38, S43 [5

studies]

S30, S31, S54 [3

studies]

Requirements rationale S17, S53 [2 studies] S33 [1 study] S32, S53 [2

studies]

S17, S33, S53 [3

studies]

S17, S32, S33 [3

studies]

S32 [1 study]

Table 9

Classification of studies by cost categories of using knowledge-based approaches.

Cost categories Selected studies %

Information retrieval from documents S2, S3, S9, S14, S15, S20, S23, S24, S25, S26, S29, S31, S34, S36, S38, S40, S43, S44, S51, S53, S54, S58, S60 38.3

Document creation S1, S4, S5, S6, S11, S12, S17, S18, S20, S21, S22, S30, S43, S45, S48, S50, S54, S55, S57 31.7

Document maintenance and evolution S4, S6, S7, S14, S16, S19, S27, S28, S35, S39, S41, S42, S46, S52, S56, S59, S60 28.3

Document distribution S13, S19, S31, S32, S33, S37, S45 11.7

16 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

that 27 studies use KCR in SDt and are evaluated by academic stud-

ies). Note that there is a difference between the sum of all the bub-

bles (i.e., numbers of studies) in Fig. 10 (138) and number of

selected studies (60), because one study may employ several

knowledge-based approaches in SDt. From Fig. 10 we find that

all knowledge-based approaches are evaluated in at least four

studies with industrial evidence (i.e., industrial studies or indus-

trial practice), but all the knowledge-based approaches used in

SDt are mainly supported by evidence obtained from academic

studies, except for KRt.

4. Discussion

4.1. Scope of the systematic review

This SLR focuses on how knowledge-based approaches are em-

ployed in SDt, in terms of improving the quality of SDt and use SD

to support software development activities.

When conducting this SLR, we consider the QA of SD in the

search process as part of the search terms (i.e., the outcome in

the PICO criteria of a SLR) collected from standards and literature

on SD, SAD, and SRD, so that the results and conclusions of this

SLR can be applied to SAD and SRD. Meanwhile, we use the most

general term ‘‘knowledge’’ as part of the search terms to maximize

the coverage of potentially-relevant studies retrieval and conse-

quently ensure that the results of this SLR can cover all studies that

use certain knowledge or knowledge-based approaches.

This SLR focuses on studies that elaborate knowledge-based ap-

proaches, not on studies that only introduce knowledge-based

tools. For instance, KaitoroBase is an architecture documentation

tool, which provides support for non-linear navigation and visual-

ization of SAD through an underlying conceptual model [64]. This

work only introduces the structure of the tool and its application,

without any description of the employed knowledge-based ap-

proach that the tool implements. This study is therefore excluded

from this SLR.

4.2. Study quality assessment

The quality of data extraction and synthesis of the selected

studies of this SLR are assessed in this section. An assessment

instrument is presented in Table 11, which is adapted from the cri-

teria for study quality assessment proposed in [9,28]. We include

five questions in this instrument to assess the quality of extracted

data. Q1, Q2, and Q5 are adopted from [9,28] while Q3 and Q4 are

proposed according to the scope and RQs of this SLR. This instru-

ment uses a three-grade scale score (Yes = 1 point, No = 0 point,

and Partially = 0.5 point) to answer Q2 to Q5. The score of Q1 is di-

rectly collected from the data item D8 of Table 4, i.e., evidence le-

vel. The sum of the scores of all the assessment questions for a

study can reflect the quality of a study.

The quality assessment on the selected studies is also useful to

increase the accuracy of the data extraction results. The quality

assessment results are showed in Table 12 according to the assess-

ment questions described in Table 11. The scores of all the studies

are no less than 3.10 and the average score is 4.17. The overall

quality of the selected studies is acceptable. Since we use the inclu-

sion and exclusion criteria specified in Section 2.2 when selecting

studies, the scores of Q2, Q3, and Q4 are high. i.e., the average

scores of Q2 and Q3 are both greater than 0.93 and all the studies

get full scores on Q4. The high scores of Q2 and Q3 also show that

the results of data extraction are in line with the two key concepts

of this SLR, i.e., impact to software documentation and knowledge-

based approaches employed. Meanwhile, the studies that get low

total score in Table 12 are checked again against the inclusion

and exclusion criteria, e.g., [S32], to guarantee the quality of study

selection results.

4.3. Validity threats

According to the guidelines for analyzing the validity threats to

SE methods and processes [73], four types of validity threats are

identified. We discuss these potential threats that influence the

data extraction and the findings of this SLR in this section.

Construct validity: The main constructs in this review are the

two basic concepts ‘‘knowledge-based approaches’’ and ‘‘soft-

ware documentation’’. For the first concept, we use term

‘‘knowledge’’ and its synonyms to make sure that all selected

studies are relevant to knowledge-based approaches or using

knowledge. For the second concept, QA of SD can reflect the

effect of intervention to SDt. QA of SD and their synonyms,

Table 10

Classification of studies by benefit categories of using knowledge-based approaches.

Benefit categories Selected studies %

Architecture understanding S1, S3, S4, S5, S6, S9, S10, S13, S18, S19, S24, S27, S31, S38, S40, S42, S43, S46, S47, S48, S51, S52, S57, S58, S60 41.7

Requirements elicitation S15, S17, S22, S23, S30, S33, S37, S41, S44, S45, S49, S50, S56, 21.7

Co-evolution of requirements and

architecture

S3, S11, S12, S18, S24, S36, S53, S54, S58 15.0

Requirements comprehension S2, S8, S32, S33, S34, S35, S39, S55 13.3

Architecture evolution S1, S6, S16, S19, S21, S52, S59 11.7

Requirements analysis S7, S15, S25, S26, S50, S56 10.0

Requirements evolution S11, S28, S39, S45, S50 8.3

Architecture recovery S14, S20, S60 5.0

Requirements traceability S29, S36 3.3

Fig. 8. Distribution of studies over the benefit categories for requirements

engineering and architecting activities.

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 17

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

collected and refined from SDt standards and literature, are

used to ensure high coverage of potentially-relevant studies

on the influence to SDt from database search. Meanwhile,

manual search from literature sources is performed comple-

mentary to database search to ensure that relevant studies

are covered as much as possible. Specific journals and

conferences on KM are not included in the literature sources

for the manual search due to the limitation of our knowl-

edge, which may cause the missing of related studies. This

threat is partially mitigated by including the general interven-

tion term ‘‘knowledge’’ in the search terms for the database

search.

Internal validity in a SLR focuses on whether a research is ade-

quately designed and executed to produce reliable findings,

and particularly whether the results really follow from the data

[30]. As a threat to the internal validity, researchers may end up

with different data extraction and analysis results. The data

extraction is performed collaboratively by two authors, and

any conflicts are discussed and resolved by all the authors. In

this way, we try to mitigate the threats due to personal bias

on study understanding.

External validity is concerned with establishing the generaliz-

ability of the SLR results, which is related to the degree to which

the primary studies are representative for the review topic. In

order to mitigate external threats, the search process described

in Section 2.3 is defined after several trial searches. We tested

the coverage and representativeness of retrieved studies,

including automatic database search, manual search, and refer-

ences scan.

Reliability: It is possible that some studies excluded in this

review should have been included. To mitigate the threats to

reliability, the selection process and the inclusion and exclusion

criteria are carefully designed and discussed by authors to min-

imize the risk of exclusion of relevant studies.

4.4. Further research

This SLR has illuminated several promising research directions

that are critical but underexplored in current research and

practice:

(1) How to employ knowledge-based approaches to improve

the QA of SD. This area has not received much attention

and the claims lack evidential support. For instance, the

assertions to use knowledge-based approaches to improve

credibility, conciseness, and unambiguity of SD are hardly sup-

ported. There are still many open questions to be answered,

e.g., how to define the quantitative metrics for evaluating

credibility, conciseness, and unambiguity of SD. Furthermore,

text retrieval approaches have been used to evaluate concise-

ness of queries to software artifacts from a system [35], and

the approaches may be adapted to evaluate conciseness of

Fig. 9. Distribution of selected studies over evidence levels.

Evidence level

Knowledge-based approaches

KCR = Knowledge Capture & Representation KS = Knowledge Sharing

KRt = Knowledge Retrieval KRv = Knowledge Recovery

KR = Knowledge Reuse KRs = Knowledge Reasoning

KCR KRt KS KRv KRsKR

Demonstration

 / toy examples (0.2)

Expert opinions

/ observations (0.4)

Academic studies (0.6)

Industrial studies (0.8)

Industial practice (1.0)

10

5

4

3

5

4

5

9

2

6

2

4

3

27 6

7

7

13

3

3

32 3 2

Fig. 10. Distribution of studies by evidence level and knowledge-based approach.

Table 11

Questions on study quality assessment.

Questions

Q1 In which evidence level the proposed approach of the study is evaluated? (the answer of this question can be collected from data item D8 of Table 4)

Q2 Is there a clear statement of the benefits and costs for software documentation in this study?

Q3 Is there a clear statement of what the knowledge-based approach employed is in the study?

Q4 Is there an adequate description of what QA of SD are improved by the knowledge-based approach employed?

Q5 Are the limitations of this study discussed explicitly?

18 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

content in SD. We may also use the definition of conciseness

for ontology evaluation [32] to evaluate conciseness of e.g.,

ontology-based SDt [25].

(2) How knowledge-based approaches can improve design prac-

tice by better use of knowledge content in SD. For instance,

architectural patterns and architecturally significant

requirements do not receive much attention in the current

applications of knowledge-based approaches in SDt (see

Table 8). To further improve the practice of SDt activity,

for example how KRv can be used to recover architecturally

significant requirements in SAD, which can be made explicit

in the current project or reused in other projects. A decision-

centric approach is presented in [48] to recover design deci-

sions and their semantically rich traceability links from

architecturally significant requirements to architectural

components, in which knowledge recovery is supported by

machine learning techniques (e.g., classifier training). This

approach may be employed and adapted to recover other

knowledge content in SD.

(3) How to better apply SD. As shown in Table 7 and Table 8,

we can see that much work has been done on using KCR

to capture and represent knowledge in SD. However, the

application of SD largely depends on the knowledge-based

approaches: KR, KRt, KRs, and KS. The amount of research

on applying SD knowledge is much less than SD knowl-

edge capture and representation. This is to be expected

since knowledge capture and representation is a prerequi-

site to using SD knowledge. The research community

needs to focus more on how SD application can facilitate

cost-effective software development with these knowl-

edge-based approaches in order to make the most use

of SD.

(4) How to measure the costs and benefits of using knowledge-

based approaches in SDt in a qualitative or quantitative way.

The cost and benefit categories identified in this SLR are clas-

sified without qualitative or quantitative comparison since

most studies did not explicitly discuss this issue or provide

such information. Hence we need more research on the

qualitative or quantitative measurement of the costs and

benefits of using knowledge-based approaches in SDt. For

example, Dzidek et al. study the costs and benefits of using

UML documentation in software maintenance [29]. They

introduce six dependent variables (e.g., time, correctness,

and design quality in maintenance tasks) to evaluate quanti-

tatively and qualitatively the costs and benefits of using

UML documentation (i.e., the treatment in controlled exper-

iments). These dependent variables and extension of them

can be potentially used for the measurement of the costs

and benefits of using knowledge-based approaches (the

treatment) in SDt.

5. Conclusions

Software documentation (SDt) is a core artifact as well as an

important and prevalent activity in the software lifecycle [62],

even in agile practices [59]. When SDt improves in quality, the soft-

ware quality will improve too [55], but the costs and benefits of

SDt determine how much documentation is needed [15,17,41].

Knowledge-based approaches have been extensively employed in

software development for decades, as well as in SDt. In this work,

we try to understand how knowledge-based approaches are used

in SDt through a SLR. More specifically, the major objective of this

SLR is to understand how knowledge-based approaches are

employed in SDt, their influences, and the costs and benefits of

Table 12

Quality assessment results of selected studies.

Study ID Q1 Q2 Q3 Q4 Q5 Total score Study ID Q1 Q2 Q3 Q4 Q5 Total score

S1 0.2 1.0 1.0 1.0 0.0 3.2 S31 1.0 1.0 1.0 1.0 1.0 5.0

S2 0.2 1.0 1.0 1.0 0.0 3.2 S32 0.6 0.5 1.0 1.0 0.0 3.1

S3 0.6 1.0 1.0 1.0 1.0 4.6 S33 1.0 0.5 1.0 1.0 1.0 4.5

S4 0.6 1.0 1.0 1.0 1.0 4.6 S34 0.6 1.0 1.0 1.0 1.0 4.6

S5 0.6 1.0 1.0 1.0 0.0 3.6 S35 0.6 0.5 1.0 1.0 1.0 4.1

S6 0.8 1.0 0.5 1.0 1.0 4.3 S36 0.6 1.0 1.0 1.0 1.0 4.6

S7 0.2 0.5 1.0 1.0 1.0 3.7 S37 1.0 1.0 1.0 1.0 1.0 5.0

S8 0.2 1.0 0.5 1.0 0.5 3.2 S38 1.0 0.5 1.0 1.0 0.0 3.5

S9 0.6 1.0 1.0 1.0 1.0 4.6 S39 0.6 0.5 1.0 1.0 1.0 4.1

S10 0.8 1.0 1.0 1.0 0.5 4.3 S40 0.6 1.0 1.0 1.0 0.0 3.6

S11 0.6 1.0 0.5 1.0 1.0 4.1 S41 0.6 1.0 1.0 1.0 1.0 4.6

S12 0.6 1.0 1.0 1.0 0.0 3.6 S42 0.8 1.0 1.0 1.0 1.0 4.8

S13 0.6 1.0 1.0 1.0 1.0 4.6 S43 0.2 1.0 1.0 1.0 1.0 4.2

S14 0.8 0.5 1.0 1.0 1.0 4.3 S44 0.6 1.0 1.0 1.0 1.0 4.6

S15 0.6 0.5 0.5 1.0 1.0 3.6 S45 0.2 1.0 1.0 1.0 0.0 3.2

S16 0.2 1.0 1.0 1.0 0.0 3.2 S46 0.6 1.0 1.0 1.0 1.0 4.6

S17 0.2 1.0 1.0 1.0 0.0 3.2 S47 0.6 1.0 1.0 1.0 1.0 4.6

S18 0.2 1.0 1.0 1.0 0.5 3.7 S48 0.6 1.0 0.5 1.0 1.0 4.1

S19 0.8 1.0 1.0 1.0 1.0 4.8 S49 0.6 1.0 1.0 1.0 1.0 4.6

S20 0.6 1.0 1.0 1.0 1.0 4.6 S50 0.6 1.0 1.0 1.0 1.0 4.6

S21 0.6 1.0 1.0 1.0 0.5 4.1 S51 0.6 1.0 1.0 1.0 1.0 4.6

S22 0.6 1.0 1.0 1.0 1.0 4.6 S52 1.0 1.0 1.0 1.0 1.0 5.0

S23 0.6 1.0 1.0 1.0 1.0 4.6 S53 0.6 1.0 1.0 1.0 0.0 3.6

S24 0.2 1.0 1.0 1.0 1.0 4.2 S54 0.2 1.0 1.0 1.0 0.0 3.2

S25 0.2 1.0 1.0 1.0 0.0 3.2 S55 0.2 1.0 1.0 1.0 0.0 3.2

S26 0.6 1.0 0.5 1.0 1.0 4.1 S56 1.0 1.0 1.0 1.0 1.0 5.0

S27 0.2 1.0 1.0 1.0 1.0 4.2 S57 0.8 1.0 1.0 1.0 1.0 4.8

S28 0.8 1.0 1.0 1.0 1.0 4.8 S58 0.8 1.0 1.0 1.0 0.0 3.8

S29 1.0 1.0 1.0 1.0 1.0 5.0 S59 0.6 1.0 1.0 1.0 1.0 4.6

S30 0.6 1.0 1.0 1.0 0.0 3.6 S60 1.0 1.0 1.0 1.0 1.0 5.0

Q1 Q2 Q3 Q4 Q5 Total

Average score 0.59 0.93 0.95 1.00 0.70 4.17

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 19

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

using knowledge-based approaches in SDt, especially in the con-

text of architecture design.

Sixty studies on the review topic are finally included, in which

twelve QA of SD, four cost categories, and nine benefit categories

of using knowledge-based approaches in SDt are identified. Three

categories of benefits out of the nine identified categories are

achieved by using knowledge-based approaches in SDt: architec-

ture understanding, requirements elicitation, and co-evolution of

requirements and architecture. The cost of retrieving information

from documents is the major concern when using knowledge-

based approaches in SDt. The review results show that knowl-

edge-based approaches are promising and appropriate to support

the documentation from requirements to architecture.

In this review, we find an increasing trend in the number of

studies on using knowledge-based approaches in SDt over the last

decade. Among various knowledge-based approaches, KCR is the

most frequently studied approach in SDt, which can be employed

to improve all the twelve QA of SD. The usefulness of KRt and

KRv in SDt is demonstrated, but these two approaches require

more research work. The results of this SLR are also beneficial for

practitioners. They can compare various knowledge-based ap-

proaches in their focused content, applications, and evidence levels

in SDt, and then select or combine the approaches that are suitable

for specific SDt (e.g., requirements or architecture documents) in

their context.

Acknowledgements

This work has been partially sponsored by the Natural Science

Foundation of China (NSFC) under the Grant No. 61170025, KeS-

RAD: Knowledge-enabled Software Requirements to Architecture

Documentation and the Dutch ‘‘Regeling Kenniswerkers’’ Project

KWR09164, ‘‘Stephenson: Architecture knowledge sharing prac-

tices in software product lines for print systems’’.

Appendix A. Primary studies in the review

[S1] A. Alti, A. Boukerram, A. Smeda, S. Maillard, M. Oussalah,

COSABuilder and COSAInstantiator: an extensible tool for archi-

tectural description, International Journal of Software Engineer-

ing and Knowledge Engineering 20(3) (2010) 423–455.

[S2] E. Astesiano, G. Reggio, Knowledge structuring and repre-

sentation in requirement specification, in: Proceedings of the

14th International Conference on Software Engineering and

Knowledge Engineering (SEKE), 2002, pp. 143–150.

[S3] G. Buchageher, R. Weinreich, Automatic tracing of deci-

sions to architecture and implementation, in: Proceedings of

the 9th Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2011, pp. 46–55.

[S4] R. Capilla, J.C. Duenas, F. Nava, Viability for codifying and

documenting architectural design decisions with tool support,

Journal of Software Maintenance and Evolution: Research and

Practice 22(2) (2010) 81–119.

[S5] M.C. Carignano, S. Gonnet, H. Leone, A model to represent

architectural design rationale, in: Proceedings of the 7th Work-

ing IEEE/IFIP Conference on Software Architecture (WICSA),

2009, pp. 301–304.

[S6] M. Che, D.E. Perry, Scenario-based architectural design

decisions documentation and evolution, in: Proceedings of the

18th IEEE International Conference andWorkshops on the Engi-

neering of Computer-Based Systems (ECBS), 2011, pp. 216–225.

[S7] W.C. Chu, C.H. Chang, C.W. Lu, Model-based object-

oriented requirement engineering and its support to software

documents integration, in: Proceedings of the 6th International

Conference on Software Engineering Research and Practice

(SERP), 2008, pp. 431–436.

[S8] A.L. Correa, C.M.L. Werner, Precise specification and valida-

tion of transactional business software, in: Proceedings of the

12th International Requirements Engineering Conference (RE),

2004, pp. 16–25.

[S9] R.C. de Boer, H. van Vliet, Architectural knowledge discov-

ery with latent semantic analysis: Constructing a reading guide

for software product audits, Journal of Systems and Software

81(9) (2008) 1456–1469.

[S10] R.C. de Boer, H. van Vliet, Writing and reading software

documentation: How the development process may affect

understanding, in: Proceedings of the 2nd ICSE Workshop on

Cooperative and Human Aspects on Software Engineering

(CHASE), 2009, pp. 40–48.

[S11] D. Falessi, G. Cantone, M. Becker, Documenting design

decision rationale to improve individual and team design deci-

sion making: an experimental evaluation, in: Proceedings of the

5th ACM/IEEE International Symposium on Empirical Software

Engineering (ISESE), 2006, pp. 134–143.

[S12] D. Falessi, G. Cantone, P. Kruchten, Value-based design

decision rationale documentation: Principles and empirical fea-

sibility study, in: Proceedings of the 7th Working IEEE/IFIP Con-

ference on Software Architecture (WICSA), 2008, pp. 189–198.

[S13] R. Farenhorst, P. Lago, H. van Vliet, EAGLE: Effective tool

support for sharing architectural knowledge, International Jour-

nal of Cooperative Information Systems 16(3&4) (2007) 413–

437.

[S14] M. Feilkas, D. Ratiu, E. Jurgens, The loss of architectural

knowledge during system evolution: an industrial case study,

in: Proceedings of the 17th IEEE International Conference on

Program Comprehension (ICPC), 2009, pp. 188–197.

[S15] R. Gacitua, P. Sawyer, V. Gervasi, On the effectiveness of

abstraction identification in requirements engineering, in: Pro-

ceedings of the 18th International Requirements Engineering

Conference (RE), 2010, pp. 5–14.

[S16] H.J. Happel, S. Seedorf, M. Schader, Ontology-enabled doc-

umentation of service-oriented architectures with ontobrowse

semantic wiki, in: Proceedings of Innovation for Enterprise Soft-

ware (PRIMIUM), 2009, pp. 61–80.

[S17] M.A. Hissen, Facilitating tacit-knowledge acquisition

within requirements engineering, in: Proceedings of the 10th

WSEAS International Conference on Applied Computer Science

(ACS), 2010, pp. 27–32.

[S18] T. Holmes, H. Tran, U. Zdun, S. Dustdar, Model-driven and

domain-specific architectural knowledge view for compliance

meta-data in process-driven SOAs, in: Proceedings of the 5th

Workshop on SHAring and Reusing Architectural Knowledge

(SHARK), 2010, pp. 1–7.

[S19] A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching software

architecture documentation, Journal of System and Software

82(8) (2009) 1232–1248.

[S20] A. Jansen, J. Bosch, P. Avgeriou, Documenting after the

fact: Recovering architectural design decisions. Journal of Sys-

tems and Software 81(4) (2008) 536–557.

[S21] A. Jansen, J. van der Ven, P. Avgeriou, D.K. Hammer, Tool

support for architectural decisions, in: Proceedings of the 5th

Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2007, pp. 4–13.

[S22] H. Kaiya, M. Saeki, Using domain ontology as domain

knowledge for requirements elicitation, in: Proceedings of the

14th International Requirements Engineering Conference (RE),

2006, pp. 189–198.

[S23] H. Kaiya, Y. Shimizu, H. Yasui, K. Kaijiri, M. Saeki, Enhanc-

ing domain knowledge for requirements elicitation with web

20 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

mining, in: Proceedings of the 17th Asia–Pacific Software Engi-

neering Conference (APSEC), 2010, pp. 3–12.

[S24] A.W. Kiwelekar, R.K. Joshi, Ontological analysis for gener-

ating baseline architectural descriptions, in: Proceedings of the

4th European Conference on Software Architecture (ECSA),

2010, pp. 417–424.

[S25] A. Kozlenkov, A. Zisman, Are their design specifications

consistent with our requirements? in: Proceedings of the 10th

International Requirements Engineering Conference (RE),

2002, pp. 145–154.

[S26] P. Kroha, R. Janetzko, J.E. Labra, Ontologies in checking for

inconsistency of requirements specification, in: Proceedings of

the 3rd International Conference on Advances in Semantic Pro-

cessing (SEMAPRO), 2009, pp. 32–37.

[S27] P. Kruchten, P. Lago, H. van Vliet, Building up and reason-

ing about architectural knowledge, in: Proceedings of the 2nd

International Conference on the Quality of Software Architec-

tures (QoSA), 2006, pp. 43–58.

[S28] M. Kumar, N. Ajmeri, S. Ghaisas, Towards knowledge

assisted agile requirements evolution, in: Proceedings of the

2nd International Workshop on Recommendation Systems for

Software Engineering (RSSE), 2010, pp. 16–20.

[S29] P. Lago, E. Niemela, H. van Vliet, Tool support for traceable

product evolution, in: Proceedings of the 8th European Confer-

ence on Software Maintenance and Reengineering (CSMR),

2004, pp. 261–269.

[S30] Y. Li, N. Narayan, J. Helming, M. Koegel, A domain specific

requirements model for scientific computing, in: Proceedings of

the 33rd International Conference on Software Engineering

(ICSE), 2011, pp. 848–851.

[S31] P. Liang, A. Jansen, P. Avgeriou, A. Tang, L. Xu, Advanced

quality prediction model for software architectural knowl-

edge sharing, Journal of Systems and Software 84(5) (2011)

786–802.

[S32] C. Lopez, L.M. Cysneiros, H. Astudillo, NDR ontology: Shar-

ing and reusing NFR and design rationale knowledge, in: Pro-

ceedings of the 1st International Workshop on Managing

Requirements Knowledge (MaRK), 2008, pp. 1–10.

[S33] M. Luckey, A. Baumann, D. Méndez, Reusing security

requirements using an extended quality model, in: Proceedings

of the 6th ICSE Workshop on Software Engineering for Secure

Systems (SESS), 2010, pp. 1–7.

[S34] A. Marcus, J.I. Maletic, A. Sergeyev, Recovery of traceabil-

ity links between software documentation and source code,

International Journal of Software Engineering and Knowledge

Engineering 15(5) (2005) 811–836.

[S35] A.B.B. Martínez, J.J.P. Arias, A.F. Vilas, On the interplay

between inconsistency and incompleteness in multi-perspec-

tive requirements specifications, Information and Software

Technology 50(4) (2008) 296–321.

[S36] C. McMillan, D. Poshyvanyk, M. Revelle, Combining tex-

tual and structural analysis of software artifacts for traceability

link recovery, in: Proceedings of the 31st International Confer-

ence on Software Engineering (ICSE), 2009, pp. 41–48.

[S37] M. Meisinger, A. Rausch, M. Sihling, 4everedit – team-

based process documentation management, Software Process:

Improvement and Practice 11(6) (2006) 627–642.

[S38] M. Mirakhorli, J. Cleland-Huang, Transforming trace infor-

mation in architectural documents into re-usable and effective

traceability links, in: Proceedings of the 6thWorkshop on SHAr-

ing and Reusing Architectural Knowledge (SHARK), 2011, pp.

45–52.

[S39] K. Mohan, P. Xu, L. Cao, B. Ramesh, Improving change

management in software development: Integrating traceability

and software configuration management, Decision Support Sys-

tems 45(4) (2008) 922–936.

[S40] B. Orlic, R. Mak, I. David, J. Lukkien, Concepts and diagram

elements for architectural knowledge management, in: Pro-

ceedings of the 5th European Conference on Software Architec-

ture (ECSA), 2011, pp. 1–10.

[S41] A. Osada, D. Ozawa, H. Kaiya, K. Kaijiri, The role of domain

knowledge representation in requirements elicitation, in: Pro-

ceedings of the 25th IASTED International Multi-Conference:

Software Engineering (SE), 2007, pp. 84–92.

[S42] J.A.D. Pace, J.P. Carlino, M. Blech, A. Soria, M.R. Campo,

Assisting the synchronization of UCM-based architectural docu-

mentation with implementation, in: Proceedings of the 7th

Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2009, pp. 151–160.

[S43] D. Rambabu, T.V. Prabhakar, On archiving architecture

documents, in: Proceedings of the 12th Asia–Pacific Software

Engineering Conference (APSEC), 2005, pp. 351–358.

[S44] R. Rauf, M. Antkiewicz, K. Czarnecki, Logical structure

extraction from software requirements documents, in: Proceed-

ings of the 12th International Requirements Engineering Con-

ference (RE), 2011, pp. 101–110.

[S45] E. Rubin, H. Rubin, Supporting agile software develop-

ment through active documentation, Requirements Engineering

16(2) (2011) 117–132.

[S46] J. Savolainen, T. Mannisto, Conflict-centric software archi-

tectural views: Exposing trade-offs in quality requirements,

IEEE Software 27(6) (2010) 33–37.

[S47] H.H. Schoonewille, W. Heijstek, R.V. Michel, K. Thomas, A

cognitive perspective on developer comprehension of software

design documentation, in: Proceedings of the 30th ACM Inter-

national Conference on Design of Communication (SIGDOC),

2011, pp. 211–218.

[S48] M. Shahin, P. Liang, Z.Y. Li, Architectural design decision

visualization for architecture design: Preliminary results of A

controlled experiment, in: Proceedings of the 4th European

Conference on Software Architecture: Companion Volume

(ECSA), 2011.

[S49] E. Sharifi, R.A. Moghadam, F. Bobillo, M.M. Ebadzadeh, A

fuzzy framework for semantic web service description, match-

making, ranking and selection, in: Proceedings of the 8th Inter-

national Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), 2011, pp. 621–625.

[S50] R. Sharma, and K.K. Biswas, Using courteous logic based

representations for requirements specification, in: Proceedings

of the 4th International Workshop on Managing Requirements

Knowledge (MaRK), 2011, pp. 12–16.

[S51] M.T. Su, J. Hosking, J. Grundy, Capturing architecture doc-

umentation navigation trails for content chunking and sharing,

in: Proceedings of the 9th Working IEEE/IFIP Conference on

Software Architecture (WICSA), 2011, pp. 256–259.

[S52] A. Tang, Y. Jin, J. Han, A rationale-based architecture

model for design traceability and reasoning, Journal of Systems

and Software 80(6) (2007) 918–934.

[S53] A. Tang, P. Liang, V. Clerc, H. van Vliet, Traceability in the

co-evolution of architectural requirements and design, in:

Relating Software Requirements and Architectures, Springer,

2011, pp. 35–60.

[S54] A. Tang, P. Liang, H. van Vliet, Software architecture doc-

umentation: the road ahead, in: Proceedings of the 9th Working

IEEE/IFIP Conference on Software Architecture (WICSA), 2011,

pp. 252–255.

[S55] J.T.E. Timm, G.C. Gannod, Specifying semantic web service

compositions using UML and OCL, in: Proceedings of the 14th

International Conference of the Web Services (ICWS), 2007,

pp. 521–528.

[S56] J.J.P. Tsai, A. Liu, Experience on knowledge-based software

engineering: a logic-based requirements language and its

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 21

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://dx.doi.org/10.1016/j.infsof.2014.01.008

industrial applications, Journal of Systems and Software 82(10)

(2009) 1578–1587.

[S57] U. van Heesch, P. Avgeriou, R. Hilliard, A documentation

framework for architecture decisions, Journal of Systems and

Software 85(4) (2011) 795–820.

[S58] R. Weinreich, G. Buchgeher, Towards supporting the soft-

ware architecture life cycle, Journal of Systems and Software

85(3) (2011) 546–561.

[S59] D. Weyns, B. Michalik, Codifying architecture knowledge

to support online evolution of software product lines, in: Pro-

ceedings of the 6th Workshop on SHAring and Reusing architec-

tural Knowledge (SHARK), 2011, pp. 37–44.

[S60] Y. Zhang, R. Witte, J. Rilling, V. Haarslev, Ontological

approach for the semantic recovery of traceability links

between software artifacts, IET Software 2(3) (2008) 185–203.

Appendix B. Abbreviations used in the review

KCR Knowledge capture and representation

KM Knowledge management

KR Knowledge reuse

KRs Knowledge reasoning

KRt Knowledge retrieval

KRv Knowledge recovery

KS Knowledge sharing

PICO Population, intervention, comparison, and outcome

QA Quality attribute(s)

RQ Research question

SAD Software architecture document(s)

SD Software document(s)

SDt Software documentation

SE Software engineering

SLR Systematic literature review

SRD Software requirements document(s)

References

[1] IEEE, IEEE Std. 830-1984, Guide to Software Requirement Specifications, 1984.
[2] IEEE, IEEE Std. 830-1998, IEEE Recommended Practice for Software

Requirements Specifications, 1998.
[3] IEEE, IEEE Std. 1016-1998, Recommended Practice for Software Design

Description, 1998.
[4] IEEE, IEEE Std. 1471-2000, Recommended Practice for Architectural

Description of Software Intensive Systems, 2000.
[5] IEEE, Guide to the Software Engineering Body of Knowledge (SWEBOK), IEEE

Computer Society, 2004.
[6] ISO, ISO 9000-3:1991, Quality Management and Quality Assurance Standards –

Part 3: Guidelines for the Application of ISO 9001 to the Development, Supply
and Maintenance of Software, International Organization for Standardization,
Geneva, Switzerland, 1991.

[7] V.S. Alagar, K. Periyasamy, Specification activities, in: Specification of Software
Systems, second ed., Springer, New York, 2011, pp. 23–34.

[8] M. Alavi, D.E. Leidner, Review: knowledge management and knowledge
management systems: conceptual foundations and research issues, MIS
Quart. 25 (1) (2001) 107–136.

[9] M.S. Ali, M.A. Babar, L. Chen, K.J. Stol, A systematic review of comparative evidence
of aspect-oriented programming, Inf. Softw. Technol. 52 (9) (2010) 871–887.

[10] V. Alves, N. Niu, C. Alves, G. Valenca, Requirements engineering for software
product lines: a systematic literature review, Inf. Softw. Technol. 52 (8) (2010)
806–820.

[11] O. Barais, A.F. Le Meur, L. Duchien, J. Lawall, Software architecture evolution,
in: Software Evolution, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 233–262.

[12] T.T. Barker, Writing Software Documentation: A Task-Oriented Approach,
second ed., Allyn and Bacon, 2003.

[13] Z.A. Barmi, A.H. Ebrahimi, R. Feldt, Alignment of requirements specification
and testing: a systematic mapping study, in: Proceedings of the 4th
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Berlin, Germany, 2011, pp. 476–485.

[14] M. Biehl, Literature Study on Design Rationale and Design Decision
Documentation for Architecture Descriptions, Technical Report ISRN/KTH/
MMK/R-10/06-SE, Royal Institute of Technology, Stockholm, Sweden, 2010.

[15] D.C. Blair, M.E. Maron, An evaluation of retrieval effectiveness for a full-text
document-retrieval system, Commun. ACM 28 (3) (1985) 289–299.

[16] L.C. Briand, On the many ways software engineering can benefit from
knowledge engineering, in: Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering (SEKE), Ischia, Italy,
2002, pp. 3–6.

[17] L.C. Briand, Software documentation: how much is enough, in: Proceedings of
the 17th European Conference on Software Maintenance and Reengineering
(CSMR), Benevento, Italy, 2003, pp. 13–15.

[18] L. Chen, M.A. Babar, H. Zhang, Towards an evidence-based understanding of
electronic data sources, in: Proceedings of the 14th International Conference
on Evaluation and Assessment in Software Engineering (EASE), Keele, UK,
2010, pp. 135–138.

[19] J. Cleland-Huang, O. Gotel, A. Zisman, Software and Systems Traceability,
Springer, London, 2012.

[20] P. Clements, F. Bachmann, L. Bass, D. Garlan, Documenting Software
Architecutre: Views and Beyond, second ed., Addison-Wesley Professional,
2010.

[21] R. Collobert, J. Weston, A unified architecture for natural language processing:
deep neural networks with multitask learning, in: Proceedings of the 25th
International Conference on Machine Learning (ICML), Helsinki, Finland, 2008,
pp. 160–167.

[22] A. Davis, S. Overmyer, K. Jordan, J. Caruso, Identifying and measuring quality in
a software requirements specification, in: Proceedings of the 1st International
Software Metrics Symposium (METRICS), Baltimore, MD, USA, 1993, pp. 141–
152.

[23] A. Davis, Software Requirments: Objects, Functions, and State, second ed.,
Prentice Hall, Englewood Cliffs, NJ, 1993.

[24] R.C. de Boer, R. Farenhorst, P. Lago, H. van vliet, V. Clerc, A. Jansen,
Architectural knowledge: getting to the core, in: Proceedings of the 3rd
International Conference on the Quality of Software Architectures (QoSA),
Medford, USA, 2007, pp. 197–214.

[25] K.A. de Graaf, A. Tang, P. Liang, H. van Vliet, Ontology-based software
architecture documentation, in: Proceedings of the Joint 10th Working IEEE/
IFIP Conference on Software Architecture & 6th European Conference on
Software Architecture (WICSA/ECSA), Helsinki, Finland, 2012, pp. 121–130.

[26] P. Devanbu, R. Brachman, P.G. Selfridge, B.W. Ballard, LaSSIE: a knowledge-
based software information system, Commun. ACM 34 (5) (1991) 34–49.

[27] T. Dingsoyr, R. Conradi, A survey of case studies of the use of knowledge
management in software engineering, Int. J. Softw. Eng. Knowl. Eng. 12 (4)
(2002) 391–414.

[28] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Inf. Softw. Technol. 50 (9) (2008) 833–859.

[29] W.J. Dzidek, E. Arisholm, L.C. Briand, A realistic empirical evaluation of the
costs and benefits of UML in software maintenance, IEEE Trans. Softw. Eng. 34
(3) (2008) 407–432.

[30] S. Easterbrook, J. Singer, M.A. Storey, D. Damian, Selecting empirical methods
for software engineering research, in: Guide to Advanced Empirical Software
Engineering, Springer, London, UK, 2008, pp. 285–311.

[31] A. Forward, T.C. Lethbridge, The relevance of software documentation, tools
and technologies: a survey, in: Proceedings of the 2nd ACM Symposium on
Document Engineering (DocEng), McLean, Virginia, 2002, pp. 26–33.

[32] A. Gómez-Pérez, Evaluation of ontologies, Int. J. Intell. Syst. 16 (3) (2001) 391–
409.

[33] O.C.Z. Gotel, A.C.W. Finkelstein, An analysis of the requirements traceability
problem, in: Proceedings of the 1st International Conference on Requirements
Engineering (RE), London, UK, 1994, pp. 94–101.

[34] S.J. Greenspan, On the role of domain knowledge-based approaches to
software development, ACM SIGSOFT Softw. Eng. Notes 11 (4) (1986) 34–35.

[35] S. Haiduc, G. Bavota, R. Oliveto, A. Marcus, A. de Lucia, Evaluating the
specificity of text retrieval queries to support software engineering tasks, in:
Proceedings of the 34th International Conference on Software Engineering
(ICSE), Zurich, Switzerland, 2012, pp. 1273–1276.

[36] A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching software architecture
documentation, J. Syst. Softw. 82 (8) (2009) 1232–1248.

[37] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, EBSE Technical Report EBSE-2007-01, Keele
University & University of Durham, 2007.

[38] R.E. Kraut, L.A. Streeter, Coordination in software development, Commun. ACM
38 (3) (1995) 69–81.

[39] P. Kruchten, Documentation of software architecture from a knowledge
management perspective – design representation, in: Software Architecture
Knowledge Management, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 39–57.

[40] P. Kruchten, P. Lago, H. van Vliet, Building up and reasoning about
architectural knowledge, in: Proceedings of the 2nd International Conference
on the Quality of Software Architectures (QoSA), Berlin, Germany, 2006, pp.
43–58.

[41] T.C. Lethbridge, J. Singer, A. Forward, How software engineers use
documentation: the state of the practice, IEEE Softw. 20 (6) (2003) 35–39.

[42] Z. Li, P. Liang, P. Avgeriou, Application of knowledge-based approaches in
software architecture: a systematic mapping study, Inf. Softw. Technol. 55 (5)
(2013) 777–794.

[43] P. Liang, P. Avgeriou, From Architectural Knowledge to Requirements
Knowledge Management, Technical Report RUG-SEARCH-09-L02, SEARCH,
University of Groningen, February, 2009.

[44] P. Liang, P. Avgeriou, K. He, Rationale management challenges in requirements
engineering, in: Proceedings of the 3rd International Workshop on Managing
Requirements Knowledge (MaRK), Sydney, Australia, 2010, pp. 16–21.

22 W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0370
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0375
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0060
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0380
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0385
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0210
http://dx.doi.org/10.1016/j.infsof.2014.01.008

[45] M. Luckey, A. Baumann, D. Méndez, Reusing security requirements using an
extended quality model, in: Proceedings of the 6th ICSEWorkshop on Software
Engineering for Secure Systems (SESS), Cape Town, South Africa, 2010, pp. 1–7.

[46] W. Maalej, M.P. Robillard, Patterns of knowledge in API reference
documentation, IEEE Trans. Softw. Eng. 39 (9) (2013) 1264–1282.

[47] N. Maiden, Cherishing ambiguity, IEEE Softw. 29 (6) (2012) 16–17.
[48] M. Mirakhorli, Tracing architecturally significant requirements: a decision-

centric approach, in: Proceedings of the 33rd International Conference on
Software Engineering (ICSE), Hawaii, USA, 2011, pp. 1126–1127.

[49] M. Mirakhorli, J. Cleland-Huang, Transforming trace information in
architectural documents into re-usable and effective traceability links, in:
Proceedings of the 6th International Workshop on SHAring and Reusing
Architectural Knowledge (SHARK), Hawaii, USA, 2011, pp. 45–52.

[50] J. MyIopoulos, Conceptual modeling and telos, in: Conceptual Modeling,
Databases and CASE: An Integrated View of Information Systems
Development, John Wiley & Sons Inc., New York, USA, 1992, pp. 49–68.

[51] E.Y. Nakagawa, D. Feitosa, K.R. Felizardo, Using systematic mapping to explore
software architecture knowledge, in: Proceedings of the 5th Workshop on
SHAring and Reusing Architectural Knowledge (SHARK), Cape Town, South
Africa, 2010, pp. 29–36.

[52] J. Nicolás, A. Toval, On the generation of requirements specifications from
software engineering models: a systematic literature review, Inf. Softw.
Technol. 51 (9) (2009) 1291–1307.

[53] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation, Oxford University Press, 1995.

[54] D.L. Parnas, Document based rational software development, Knowl.-Based
Syst. 22 (3) (2009) 132–141.

[55] D.L. Parnas, Precise documentation: the key to better software, in: The Future
of Software Engineering, Springer, Zürich, Switzerland, 2011, pp. 125–148.

[56] M.C. Paulk, The Capability Maturity Model: Guidelines for Improving the
Software Process, Addison-Wesley, 1995.

[57] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 2008,
pp. 68–77.

[58] L. Reeve, H. Han, Survey of semantic annotation platforms, in: Proceedings of
the 20th ACM Symposium on Applied Computing (SAC), New York, USA, 2005,
pp. 1634–1638.

[59] E. Rubin, H. Rubin, Supporting agile software development through active
documentation, Requirements Eng. 16 (2) (2011) 117–132.

[60] I. Rus, M. Lindvall, Knowledge management in software engineering, IEEE
Softw. 19 (3) (2002) 26–38.

[61] M. Shahin, P. Liang, M.R. Khayyambashi, Architectural design decision:
Existing models and tools, in: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on Software
Architecture (WICSA/ECSA), Cambridge, UK, 2009, pp. 293–296.

[62] I. Sommerville, Software documentation, Software Engineering: The
Supporting Processes, vol. 2, Wiley-IEEE Press, New York, USA, 2002, pp.
171–186.

[63] G. Stark, P. Oman, A. Skillicorn, C.R. Ameele, An examination of the effects of
requirements changes on software maintenance releases, J. Softw. Maint.: Res.
Pract. 11 (5) (1999) 293–309.

[64] M.T. Su, C. Hirsch, J. Hosking, KaitoroBase: Visual exploration of software
architecture documents, in: Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Auckland, New
Zealand, 2009, pp. 657–659.

[65] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M.A. Babar, A comparative study of
architecture knowledge management tools, J. Syst. Softw. 83 (3) (2010) 352–
370.

[66] A. Tang, M.A. Babar, I. Gorton, J. Han, A survey of the use and documentation of
architecture design rationale, in: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Pittsburgh, Pennsylvania, USA,
2005, pp. 89–98.

[67] A. Tang, Y. Jin, J. Han, A rationale-based architecture model for design
traceability and reasoning, J. Syst. Softw. 80 (6) (2007) 918–934.

[68] A. Tang, P. Liang, H. van Vliet, Software architecture documentation: the road
ahead, in: Proceedings of the 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Boulder, Colorado, USA, 2011, pp. 252–255.

[69] A. Tang, H. van Vliet, Modeling constraints improves software architecture
design reasoning, in: Proceedings of the Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on
Software Architecture (WICSA/ECSA), Cambridge, UK, 2009, pp. 253–256.

[70] J.S. van der Ven, A. Jansen, P. Avgeriou, D.K. Hammer, Using architectural
decisions, in: Proceedings of the 2nd International Conference on the Quality
of Software Architectures (QoSA), Västeras, Sweden, 2006, pp. 1–10.

[71] H. van Vliet, Software architecture knowledge management, in: Proceedings of
the 19th Australian Conference on Software Engineering (ASWEC), Perth, WA,
Australia, 2008, pp. 24–31.

[72] H. van Vliet, Knowledge sharing in software development, in: Proceedings of
the 10th International Conference on Quality Software (QSIC), Zhangjiajie,
China, 2010, p. 2-2.

[73] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering, Springer-Verlag, Berlin,
Heidelberg, 2012.

W. Ding et al. / Information and Software Technology xxx (2014) xxx–xxx 23

Please cite this article in press as: W. Ding et al., Knowledge-based approaches in software documentation: A systematic literature review, Inform. Softw.

Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.01.008

http://refhub.elsevier.com/S0950-5849(14)00019-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0390
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0395
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0280
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0295
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0295
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0300
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0300
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0400
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0315
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0325
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0335
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0335
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://refhub.elsevier.com/S0950-5849(14)00019-6/h0365
http://dx.doi.org/10.1016/j.infsof.2014.01.008

	Knowledge-based approaches in software documentation: A systematic literature review
	1 Introduction
	2 Research method
	2.1 Context and research questions
	2.1.1 Knowledge-based approach
	2.1.2 Software documentation
	2.1.3 Research questions

	2.2 Inclusion and exclusion criteria
	2.3 Search process
	2.3.1 Search scope
	2.3.1.1 Time period
	2.3.1.2 Electronic databases
	2.3.1.3 Journals, conferences, and workshops

	2.3.2 Search terms
	2.3.3 Search strategy

	2.4 Data extraction and synthesis

	3 Results
	3.1 Overview of results
	3.2 RQ1: Quality attributes of software documents and knowledge-based approaches
	3.2.1 Quality attributes of software documents
	3.2.2 How knowledge-based approaches improve quality attributes of software documents
	3.2.3 Quality attributes of software documents and their concerned elements in software documents

	3.3 RQ2: Knowledge-based approaches in software documentation
	3.3.1 Distribution of knowledge-based approaches in software documentation
	3.3.2 General and specific knowledge-based approaches
	3.3.3 Knowledge-based approaches and documented content

	3.4 RQ3: Costs and benefits of using knowledge-based approaches
	3.4.1 Costs of using knowledge-based approaches
	3.4.2 Benefits of using knowledge-based approaches

	3.5 Evidential support

	4 Discussion
	4.1 Scope of the systematic review
	4.2 Study quality assessment
	4.3 Validity threats
	4.4 Further research

	5 Conclusions
	Acknowledgements
	Appendix A Primary studies in the review
	Appendix B Abbreviations used in the review
	References

