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 
Abstract—The accurate identification of malignant lung 

nodules on chest CT is critical for the early detection of lung 

cancer, which also offers patients the best chance of cure. Deep 

learning methods have recently been successfully introduced to 

computer vision problems, although substantial challenges remain 

in the detection of malignant nodules due to the lack of large 

training datasets. In this paper, we propose a multi-view 

knowledge-based collaborative (MV-KBC) deep model to separate 

malignant from benign nodules using limited chest CT data. Our 

model learns 3D lung nodule characteristics by decomposing a 3D 

nodule into nine fixed views. For each view, we construct a 

knowledge-based collaborative (KBC) submodel, where three 

types of image patches are designed to fine-tune three pre-trained 

ResNet-50 networks that characterize the nodules’ overall 

appearance, voxel and shape heterogeneity, respectively. We 

jointly use the nine KBC submodels to classify lung nodules with 

an adaptive weighting scheme learned during the error back 

propagation, which enables the MV-KBC model to be trained in 

an end-to-end manner. The penalty loss function is used for better 

reduction of the false negative rate with a minimal effect on the 

overall performance of the MV-KBC model. We tested our method 

on the benchmark LIDC-IDRI dataset and compared it to five 

state-of-the-art classification approaches. Our results show that 

the MV-KBC model achieved an accuracy of 91.60% for lung 

nodule classification with an AUC of 95.70%. These results are 

markedly superior to the state-of-the-art approaches.  

 
Index Terms—Lung nodule classification, deep learning, 

collaborative learning, computed tomography (CT)  

 

 

I. INTRODUCTION 

HE 2015 Global Cancer Statistics show that lung cancer 

accounts for approximately 13% of 14.1 million new 

cancer cases and 19.5% of cancer-related deaths each year [1]. 

The 5-year survival for patients who present with advanced 
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stage IV lung cancer is less than 5 %, but it is at least 60 % if 

the diagnosis is made early when the primary tumor is small and 

before it has spread [2]. Early lung cancer detection therefore 

offers the best chance for cure. 

The National Lung Screening Trial [2, 3] shows that 

screening with CT results in a 20% reduction in lung cancer 

deaths through the identification of early disease. A “spot on 

the lung” on a chest CT is defined as a lung nodule, and it can 

be benign or malignant [4]. Most lung cancers arise from small 

malignant nodules. Radiologists typically read chest CT scans 

for malignant nodules on a slice-by-slice basis, and such an 

approach requires a high degree of skill and concentration, and 

is time-consuming, expensive, and prone to operator bias. 

Although computer-aided diagnosis systems (CADs) have been 

employed to assist radiologists in reading chest CT scans, 

automated identification of benign and malignant nodules on 

chest CTs remains problematic due to at least two reasons: the 

difficulty of lung nodule delineation caused by a large range of 

nodule shape and texture variation and the visual similarities 

shared by malignant and benign nodules. As a results, non-

professionals can have difficulty in separating them.  

Lung CADs typically: (1) segment nodules from the 

background, (2) extract features from each segmented nodule 

and, (3) use the features to train a classifier to characterize the 

nodule as benign or potentially malignant. Traditional lung 

nodule segmentation methods involve lung segmentation and 

the detection and segmentation of a region of interest (ROI) that 

includes the nodule. These methods can be generally 

categorized as morphologic [5, 6, 7], region growing [8], energy 

optimization [9, 10] and statistical learning based methods [11, 

12]. To address the difficulty in nodule segmentation caused by 

attachments between nodules and other lung structures, Diciotti 

et al. [5] applied an automated correction method, which is 
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based on a local shape analysis using 3D geodesic distance map 

representations, to an initial rough segmentation of nodules. 

Song et al. [8] proposed a novel toboggan based growing 

automatic segmentation approach (TBGA), which included 

automatic initial seed point selection, multi-constraints 3D 

lesion extraction, and lesion refinement. Farag et al. [9] fused 

the image intensity statistical information in a variational level 

set framework for lung nodule segmentation. Wu et al. [11] 

used a conditional random field (CRF) model that incorporates 

texture, gray-level intensities, shape, and edge cues to improve 

the segmentation of nodule boundaries. Tao et al. [12] presented 

a multi-level statistical learning-based framework for 

automated detection and segmentation of ground glass nodules 

(GGN). After segmentation, feature extraction translates the 

lung nodule into a feature vector. Most commonly used features 

include texture descriptors, such as the gray level co-occurrence 

matrix (GLCM)-based features [13, 14, 15], local binary pattern 

(LBP) [16] and histogram of oriented gradients (HOG) [13], 

and shape descriptors such as the Fourier shape descriptor [17, 

18] and spherical harmonics [19]. The extracted visual features 

can then be sued to train a classifier, such as the support vector 

machine (SVM) [20], K-nearest neighbor (KNN) [21], back 

propagation neural network (BPNN) [22, 23], and random 

forest [24]. Despite their prevalence, these lung CADs reply 

heavily on handcrafted features and classifiers. 

Recently, deep learning techniques have achieved profound 

success in computer vision, since they provide a uniform 

feature extraction-classification framework to free users from 

troublesome handcrafted feature extraction [25, 26, 45, 52-56]. 

This success has prompted many investigators to employ deep 

convolutional neural networks (CNNs) in medical image 

analysis. For image segmentation, the fully convolutional 

network (FCN), which involves up-sampling layers to make the 

size of output match that of the input image, provides a new 

direction. Recently, Ronneberger et al. [27] reported a new 

FCN called U-Net for biomedical image segmentation with 

promising results. For lung nodule classification, Hua et al. [28] 

applied the deep CNN and deep belief network (DBN) to 

separate benign from malignant lung nodules and reported that 

deep learning achieved better discrimination. Kumar et al. [57] 

used auto-encoders and CNNs to classify lung nodules as 

malignant or benign, with an accuracy of 77.52%. Shafiee et al. 

[58] leveraged stochastic sequencers, consisting of three 

stochastically-formed convolutional layers, to obtain an 

accuracy of 84.49%. Hussein et al. [29] used an end-to-end 

trainable multi-view CNN (MV-CNN) for lung nodule 

characterization. Shen et al. [59] proposed a multi-scale CNN 

that captures lung nodule heterogeneity via extracting 

discriminative features from alternatingly stacked layers. They 

further extended this model to a multi-crop CNN [30] that is 

able to automatically extract salient nodule information via 

cropping different regions from convolutional feature maps and 

applying max-pooling at varying times. Hussein et al. [31] 

proposed 3D CNN multi-task learning for lung nodule 

characterization. 

Although these deep learning techniques are more accurate 

than handcrafted features-based methods, they have not 

achieved the same performance on routine lung nodule 

classification as they have done in the ImageNet Challenge. The 

suboptimal performance is attributed mainly to the overfitting 

of deep models caused by inadequate training data, as there is 

usually a small dataset in medical image analysis and this 

relates to the work required in acquiring the image data and then 

in image annotation. 

There are many attempts in the deep learning community to 

address the small data issue. First, it has been reported that the 

image representation ability learned from large-scale datasets, 

such as the ImageNet, can be transferred to generic visual 

recognition tasks, which have limited training data [32]. Hu et 

al. [33] proposed a deep transfer metric learning method to 

transfer discriminative knowledge from a labeled source 

domain to an unlabeled target domain to overcome this 

limitation. Shen et al. [34] used insufficient lung nodule data 

and formulated a domain-adaptation framework that learns 

transferable DCNN-based features for patient-level prediction 

of malignant lung nodules. 

Second, although it is straightforward to design 3D CNN for 

medical image analysis [31, 35, 36], extending the use of 2D 

CNN to the analysis of volumetric medical images on a slice-

by-slice basis, together with data augmentation, enables us to 

have more training samples [29, 30, 37, 38]. Volumetric data 

are firstly decomposed into fixed tri-planar views (sagittal, 

coronal, and axial planes). Thereafter, two strategies can be 

performed. First, all multi-view patches can be fed into a 2D 

CNN [29, 30]. Second, as suggested by Setio et al. [37], a 3D 

lung nodule can be decomposed into nine fixed view planes and 

be processed, using a multi-view architecture, in which each 2D 

CNN is trained with the image patches extracted on each plane, 

and the outputs of all CNNs are combined using the late-fusion 

strategy, i.e. performing fusion in a richer feature level. 

Third, the prior domain knowledge can be incorporated into 

(b) Malignant

(a) Benign

 
Fig. 1.  Examples of CT lung nodules in the axial plane. It shows that there is 

a high correspondence between a nodule’s malignancy and its heterogeneity 
in voxel values (HVV) and heterogeneity in shapes (HS) 
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the solution to regularize the deep model. For example, there is 

a high correspondence between a nodule’s malignancy and its 
heterogeneity (see Fig. 1) [39]. In our previous work [17], we 

used the GLCM-based texture descriptors and Fourier shape 

descriptor to explore the nodule’s heterogeneity in voxel values 
(HVV) and heterogeneity in shapes (HS), respectively, and 

combined both descriptors with the information learned by a 

nine-layer DCNN for lung nodule classification at the decision 

level. Although we reported improved accuracy, this method 

still used hand-crafted features to characterize the heterogeneity 

of nodules, and they are less effective. 

In this paper, we propose a multi-view knowledge-based 

collaborative (MV-KBC) deep neural network model for 

benign-malignant lung nodule classification on chest CT. We 

firstly decompose each 3D lung nodule into nine fixed views 

(sagittal, coronal, axial and six diagonal planes) to learn 3D 

nodule characteristics. Then, for each view, we construct a 

knowledge-based collaborative (KBC) submodel, where three 

types of image patches are designed to fine-tune three pre-

trained ResNet-50 networks, aiming to transfer the image 

representation abilities of those ResNet-50 networks to 

characterizing the overall appearance (OA), HVV and HS of 

lung nodules, respectively. Finally, nine KBC submodels are 

used jointly to classify nodules with an adaptive weighting 

scheme learned during the error back propagation, thus 

enabling the MV-KBC model to be trained in an end-to-end 

manner. Furthermore, we also introduce the penalty loss 

function to manipulate the tradeoff between false positive rate 

and false negative rate of the MV-KBC model.  

The contribution of the proposed MV-KBC model is three-

fold: (1) To the best of our knowledge, this work is one of the 

first to incorporate domain knowledge into a deep learning 

model for benign-malignant lung nodule classification. (2) 

Fusing multi-view (i.e. transverse, sagittal, coronal and six 

diagonal planes) / multi-appearance (i.e. OA, HS, and HVV) 

submodels at the decision level enables the entire model to be 

trained in an end-to-end manner, which avoids the troublesome 

setting of weighting coefficients and improves the classification 

accuracy. (3) The results suggest that our model provides a 

substantial performance improvement, and the fast online 

testing suggests that our model could be used in a routine 

clinical workflow. 

A preliminary version of this work was presented in MICCAI 

2017 [40]. In this paper, we have substantially revised and 

extended the original paper. The main extension includes 

decomposing each 3D lung nodule onto nine fixed view planes, 

using the patches extracted on each view plane to train a KBC 

submodel, hierarchical ensemble of 27 ResNet-50 networks and 

replacing the cross-entropy loss with the penalty loss function. 

II. DATASET 

The LIDC-IDRI database [41-43] in the Cancer Imaging 

Archive (TCIA) contains 1018 clinical chest CT scans with 

lung nodules obtained from seven institutions. There is an 

associated XML file that details the locations of nodules on 

each 512×512 slice. The nodule diameters range from 3mm to 

30mm. Each suspicious lesion is categorized as a non-nodule, a 

nodule < 3 mm, or a nodule ≧3 mm diameter in the long axis. 

For this study, we only considered nodules ≧3 mm in diameter, 
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Fig. 2.  Framework of our proposed MV-KBC algorithm. 

TABLE I.  

 MEDIAN MALIGNANCY LEVEL (MML) IN LIDC-IDRI DATASET 

Dataset Benign Uncertain Malignant 

MML 1 2 3 4 5 

# of Nodules 358 943 612 474 170 
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since nodules < 3 mm were not considered to be clinically 

relevant by current screening protocols [14, 15, 29, 30, 37, 44]. 

The malignancy of each nodule was evaluated with a 5-point 

scale, from benign to malignant, by up to four experienced 

thoracic radiologists. Following the procedures used in 

previous studies [14, 15, 29, 30, 44], we selected those nodules 

which were annotated by at least one radiologist for this study, 

calculated the median malignancy level (MML) of each nodule, 

and annotated a nodule whose MML < 3 as benign, a nodule 

whose MML = 3 as uncertain, and a nodule whose MML > 3 as 

malignant. Thus there are 1301 benign, 612 uncertain, and 644 

malignant nodules. To reduce the impact of uncertain 

evaluation of nodule malignancy, we excluded all ‘uncertain 
lung nodules’ from our experiments. The distribution of 
nodules over their MML and annotation is shown in TABLE I. 

III. METHODS  

The proposed MV-KBC algorithm consists of four major 

steps: (1) extracting 2D nodule slices from nine views of planes, 

(2) extracting the OA, HVV and HS patches on 2D nodule slices, 

(3) constructing nine KBC submodels and training each of them 

using the patches extracted on each view of planes, and 

constructing and training the MV-KBC model for lung nodule 

classification. A diagram that summarizes this algorithm was 

shown in Fig. 2. 

A. Multi-View Slice Extraction 

Since chest CT scans have variable spatial resolution, we 

resampled them to a unified voxel size of 1.0×1.0×1.0 mm3 

using the spline interpolation [30]. We assumed that lung 

nodules had been detected, and hence limited the scope of this 

study solely to benign-malignant nodule classification. To 

avoid the inaccuracy caused by nodule detection, we defined 

the location of a nodule as the middle of the nodule’s centers 
given by radiologists. For each lung nodule, we first cropped a 

64×64×64 cube that is centered on its location such that the 

nodule is always contained completely in the cube. Then, we 

extracted nine 2D slices on the transverse, sagittal, coronal and 

six diagonal planes, respectively, where each diagonal plane 

cuts two opposite faces of the cube in diagonal and has two 

opposite edges of the cube and four vertices (see Fig. 2 (a)). 

Thus, we obtained nine views of slices for each nodule. 

 

B. OA, HVV and HS Patch Extraction 

The extraction of OA, HVV and HS patches is based on the 

segmentation of lung nodules on each slice. We adopted the U-

Net network [27], a fully convolutional network (FCN) model, 

to segment the lung nodule. It has a contracting path and an 

expansive path (see Fig. 3). The contracting path follows the 

typical architecture of a convolutional neural network, in which 

there is the repeated application of two 3×3 padded 

convolutional layers, each followed by the ReLU function. Four 

2×2 max pooling layers with a stride of 2 are used to 

downsample the obtained feature maps. Every step in the 

expansive path has an upsampling of the feature maps followed 

by a 2×2 convolutional layer, a concatenation with the 

corresponding feature map from the contracting path and two 

3×3 convolutional layers, each followed by the ReLU function. 

The last layer is a 1×1 convolutional layer, which maps each 

32-component feature vector to the desired number of classes. 

We applied the U-Net to the LIDC-IDRI dataset with the 10-

fold cross validation. Each of the first nine folds has 195 
nodules, and the tenth fold has 190 nodules. Each time, one fold 

of nodules was used for testing, and others were used for 

training the U-Net. Hence, the testing set has never been used 

for U-Net training. All training images and their segmentation 

maps, defined as the intersection of the areas marked by 

radiologists, were used to train the network in an end-to-end 

manner to minimize the cross entropy loss. The mini-batch 

stochastic gradient descent algorithm with a batch size of 32 

was adopted as the optimizer. The maximum iteration number 

was set to 100 and the learning rate was set to 0.001. Moreover, 

we randomly chose 10% of the training patches to form a 

validation set and terminate the training process even before 

reaching the maximum epoch number, if the error on the other 

90% of training patches continues to decline but the error on the 

validation set stops decreasing. At the testing stage, nodule 

segmentation was performed on a slice-by-slice basis by using 

the trained U-Net.   

Based on nodule segmentation, a square ROI encapsulating 

the nodule on each slice was identified as an OA patch to 

represent the lung nodule’s overall appearance. The OA patches 
obtained on different slices have variable sizes. To characterize 

the nodule’s HVV, non-nodule voxels inside the OA patch were 

set to 0 and, if the OA patch is larger than 16×16, the average 
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Fig. 3.  Architecture of the U-Net used for lung nodule segmentation. 
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size of all OA patches, a 16×16 patch that contains the 

maximum nodule voxels was extracted as an HVV patch. To 

generate the nodule’s HS patch, nodule voxels inside the OA 
patch were set to 0. 

Since data augmentation alleviates the overfitting of deep 

learning models by adding variants to the dataset [37], we 

generated four augmented data for each training patch using 

random image translation, rotation and horizontal or vertical 

flip [30]. The translation step was selected from [6, 6] voxels, 

and the rotation angle was randomly selected from {90°, 180°, 

270°}. Then, all OA, HVV and HS patches were resized to 

224×224. 

 

C. KBC Submodel  

The OA, HVV or HS patches extracted on each of nine views 

of planes, together with the augmented data, were used to train 

a KBC submodel, which contains three pre-trained ResNet-50 

networks [45] (see Fig. 4). The ResNet-50 network used for this 

study contains 50 learnable layers, including consequently a 

7×7 convolutional layer that produces 64 feature maps, a 3×3 

max pooling layer, four bottleneck architectures, an average 

pooling layer and a FC layer with 1000 neurons. Each 

bottleneck architecture consists of three convolutional layers 

with a map size of 1×1, 3×3, and 1×1, respectively (see TABLE 

II). The feature map channel increases for the 1st to 4th 

bottleneck layers, whereas the feature map size (i. e. output size) 

gradually decreases as the layer goes deeper. 

To transfer the image representation ability learned on large 

scale image databases to characterizing lung nodules, the 

parameters used to initialize each ResNet-50 network have been 

converged by training with the ImageNet dataset [45, 46]. To 

adapt the ResNet-50 network to our benign-malignant nodule 

classification problem, we removed its last fully connected 

layer, and then added three fully connected layers with 2048, 

1024 and 2 neurons, respectively. The weights of these three 

fully connected layers were randomly initialized by using 

Xaiver algorithm, and the activation function in the last layer 

was set to the sigmoid function. The modified ResNet-50 

network was then fine-tuned in a layer-wise manner, starting 

with tuning only the last layer and finally tuning all layers. 

For the 𝑘-th KBC submodel, let the 𝑛-th input patch triplet 

be denoted by {𝑿𝑛𝑘(𝑂𝐴), 𝑿𝑛𝑘(𝐻𝑉𝑉), 𝑿𝑛𝑘(𝐻𝑆)}, and the corresponding 

output of three ResNet-50 networks be denoted by {𝑶𝑛𝑘(𝑂𝐴), 𝑶𝑛𝑘(𝐻𝑉𝑉), 𝑶𝑛𝑘(𝐻𝑆)}, where 𝑶𝑛𝑘(#) ∈ 𝑅2 . Then, the output of 

the 𝑘-th KBC submodel can be calculated as 

 𝑀𝑛𝑘𝑗 = 𝑓(∑ ∑ 𝑈𝑘𝑖𝑗(#)𝑂𝑛𝑘𝑖(#)2𝑖=1# )                       (1) 

 

where {𝑈𝑘𝑖𝑗(#): # ∈ {𝑂𝐴, 𝐻𝑉𝑉, 𝐻𝑆}} is the assemble of weights 

between the output layer of each ResNet-50 network and the 

output layer of the  𝑘 -th KBC submodel. The parameter  𝑖 ∈{1,2}  indicates the 𝑖 -th neuron of the output layer in each 

ResNet-50 network. The summation over 𝑖 means the weighted 

sum of the outputs in each ResNet-50 networks. The summation 

over # means the weighted sum of the outputs of three ResNet-

50 networks. The parameter 𝑗 ∈ {1,2} indicates the 𝑗-th neuron 

of the output layer in each KBC submodel. The function 𝑓(∙) is 

a softmax activation function.  

 

D. MV-KBC Model  

The proposed MV-KBC model consists of nine KBC 

submodels (see Fig. 2 (c)). The two-neuron output layer of each 

KBC submodel is connected to the same one-neuron 

classification layer followed by the sigmoid function. The 

output of this classification layer is the prediction made by the 

MV-KBC model, which can be formulated as 

 𝑃𝑛 =  𝑓(∑ ∑ 𝑊𝑘𝑗𝑀𝑛𝑘𝑗2𝑗=19𝑘=1 )                         (2) 

 

where {𝑊𝑘𝑗: 𝑘 = 1,2, ⋯ ,9; 𝑗 ∈ {1,2}}  is the assemble of 

weights between the output layer of each KBC submodel and 

the classification layer. The summation over 𝑗  means the 

weighted sum of the output in each KBC submodel. The 

summation over 𝑘 means the weighted sum of the output of 

nine KBC submodels. The function 𝑓(∙)  is the sigmoid 

activation. 

The cross-entropy loss is usually insensitive to the identity of 

the assigned class in case of misclassification [47]. However, 

misclassifying a malignant nodule as ‘benign’ (false negative) 
may be costlier than misclassifying a benign as ‘malignant’ 

TABLE II  

FOUR BOTTLENECK ARCHITECTURES OF THE RESNET-50  

Bottleneck 

layer  
Replication 

Three convolutional layers (1×1, 3×3, 1×1) 

Channels Output Size 

1st 3 64, 64, 256 56×56, 56×56, 56×56 

2nd 4 128, 128, 512 28×28, 28×28, 28×28 

3rd 6 256, 256, 1024 14×14, 14×14, 14×14 

4th 3 512, 512, 2048 7×7, 7×7, 7×7 
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Fig. 4.  Architecture of our proposed KBC submodel for a specific view. 
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(false positive), since the clinical practice may be falsely 

reassured that the nodule is ‘benign’ thus missing the 
opportunity to effectively treat an early lung tumor. To address 

this issue, we propose the following penalty cross-entropy loss 

that provides the means to distinguish between false negative 

and false positive nodules by penalizing each error differently. 

 𝑙(𝑦𝑛, 𝑃𝑛) = −𝛿𝑛[𝑦𝑛 𝑙𝑜𝑔(𝑃𝑛) + (1 − 𝑦𝑛) 𝑙𝑜𝑔(1 − 𝑃𝑛)]    (3)                                              
 

where the penalty factor  

 𝛿𝑛 = { 𝐶,         𝑦𝑛 − 𝑃𝑛 > 0.51,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (4)                                                          

 

For this study, we empirically set 𝐶 = 2 to give a larger penalty 

to false negative cases.  

Both groups of weights {𝑈𝑘𝑖𝑗(#)}  and {𝑊𝑘𝑗}  can be updated 

during the error back propagation process, and hence the MV-

KBC model can be trained in an end-to-end way. The change 

of weight {𝑊𝑘𝑗} is in proportion to descend along the min-batch 

gradient [47, 48], shown as follows: 

 ∆𝑊𝑘𝑗=
𝜂𝑏 ∑ 𝛿𝑛(𝑦𝑛 − 𝑃𝑛)𝑀𝑛𝑘𝑗𝑏𝑛=1                       (5)                                    

 

where 𝑏 is the batch size, and 𝜂 is learning rate. 

We chose the min-batch stochastic gradient descent as the 

optimizer and set the maximum epoch number to 100. Since our 

training dataset is small, we employed the following variable 

learning rate scheme 

𝜂(𝑡) = 𝜂(0)1+10−4𝑡                                     (6)                                

 

where 𝑡 is the index of iterations, and the initial learning rate 𝜂(0) is set to 0.0001. Moreover, we randomly choose 10% of 

the training patches to form a validation set and terminate the 

training process even before reaching the maximum epoch 

number, if the error on the other 90% of training patches 

continues to decline but the error on the validation set stops 

decreasing. The steps of training the proposed MV-KBC model 

was summarized in Algorithm I.  

It should be noted that, although we used the ResNet-50 

network for this study, our MV-KBC model allows a DCNN of 

any arbitrary structure to be embedded. 

 

E. Evaluation 

We applied the MV-KBC model to the LIDC-IDRI dataset 5 

times independently, with the 10-fold cross validation. The 

performance was assessed by the mean and standard deviation 

of obtained accuracy, sensitivity/recall, specificity, precision 

with the cut-off value of 0.5, F-score metric and area under the 

receiver operator curve (AUC) [49]. Accuracy shows the 

performance of our model in classifying nodules as malignant 

or benign. Sensitivity and specificity measure the proportion of 

malignant and benign nodules that are correctly identified, 

respectively. Precision is the fraction of retrieved true positive 

instances among the retrieved positive instances. The F-score is 

a measure of a test's accuracy and considers precision and recall. 

The AUC is sensitive to imbalance among the classes.  

We used the entire LIDC-IDRI dataset (i.e. 1301 benign and 

644 malignant nodules) and evaluated our MV-KBC model 

against six lung nodule classification methods, which were 

abbreviated as method A, B, C, D, E and F have been described 

in introduction section. For the method C, D, E and F, we 

repeated the codes and tested them on our dataset 5 times 

independently using the 10-fold cross validation. For other 

compared methods, we did not have the code, and hence 

adopted its performance reported in published paper.  

IV. RESULTS  

A. Comparisons in Benign-Malignant Classification 

TABLE III shows the mean and standard deviations of the 

accuracy, sensitivity/recall, specificity, precision, F-score, and 

AUC of the proposed MV-KBC model and six other lung 

nodule classification methods. For methods A and B, we 

adopted its performance reported in the published papers. 

Though these lung nodules are from the same LIDC-IDRI 

dataset, the images used to train the models are different and 

method B used a larger training set than method A. Our MV-

KBC model used the LIDC-IDRI dataset (i.e. 1301 benign and 

644 malignant nodules) and achieved a best performance 

compared with method A and B.  

We also compared our model with method C, D, E and F in 

our dataset. Method C only uses the 3D GLCM-based texture 

features to describe nodule appearance, and hence achieved the 

ALGORITHM I 

BATCH-BASED LEARNING PROCESS OF THE PENALTY LOSS AND 𝑊𝑘𝑗. 

Input: Batch size: b = 32 

True labels: 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑏)  

Prediction vector: 𝑷 = (𝑃1, 𝑃2, … , 𝑃𝑏) 

Learning rate: 𝜂 

For 𝑛 = 1: 𝑏 

penalty factor: 𝛿𝑛 = { 𝐶, 𝑦𝑛 − 𝑃𝑛 > 0.51,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
penalty loss:  𝑙(𝑦𝑛 , 𝑃𝑛) = −𝛿𝑛[𝑦𝑛 𝑙𝑜𝑔(𝑃𝑛) + (1 −𝑦𝑛) 𝑙𝑜𝑔(1 − 𝑃𝑛)] 

end 

Batch penalty loss: 𝐿(𝒀, 𝑷) = ∑ ( 𝑙(𝑦𝑛,𝑃𝑛))𝑏𝑛=1 𝑏    
Update 𝑊𝑘𝑗: 𝑘 = 1, … , 9; 𝑗 ∈ {1,2} 𝑊𝑘𝑗′ = 𝑊𝑘𝑗 + ∆𝑊𝑘𝑗 

∆𝑊𝑘𝑗=−𝜂 𝜕 𝐿(𝒀,𝑷)𝜕𝑊𝑘𝑗 = −𝜂 𝜕 ∑ (𝑙(𝑦𝑛,𝑃𝑛))b𝑛=1 𝑏𝜕𝑊𝑘𝑗  

=− 
𝜂𝑏 ∑ (𝜕 {−𝛿𝑛[𝑦𝑛 𝑙𝑜𝑔(𝑃𝑛)+(1−𝑦𝑛) 𝑙𝑜𝑔(1−𝑃𝑛)]}𝜕𝑊𝑘𝑗 )b𝑛=1  

= − 𝜂𝑏 ∑ {−𝛿𝑛 𝜕𝑃𝑛𝜕𝑊𝑘𝑗 [𝑦𝑛𝑃𝑛 − (1−𝑦𝑛)(1−𝑃𝑛)]}b𝑛=1  

=  𝜂𝑏 ∑ {𝛿𝑛𝑃𝑛(1 − 𝑃𝑛)𝑀𝑛𝑘𝑗 [𝑦𝑛𝑃𝑛 − (1−𝑦𝑛)(1−𝑃𝑛)]}b𝑛=1  

=  𝜂𝑏 ∑ 𝛿𝑛(𝑦𝑛 − 𝑃𝑛)𝑀𝑛𝑘𝑗b𝑛=1  
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lowest accuracy in this table. Method D performed massive 

mining of shape, margin sharpness and GLCM-based texture 

features for better representing nodules, and thus has a higher 

accuracy. Method E is our pervious method, which combined 

traditional visual features with deep features learned by a CNN 

and further improved accuracy. Our recent method F proposed 

the transferable multi-model ensemble (TMME) model which 

used three pre-trained and fine-tuned ResNet-50 networks to 

characterizing the OA, HVV and HS of lung nodule and 

avoided the adverse impact of insufficient training dataset and 

improper handcrafted features. Thus it can improve the 

performance of lung nodule classification compared to the 

methods C, D and E. Though there is a little lower specificity, 

our MV-KBC model can achieve a higher accuracy, sensitivity 

and AUC than Method F. It indicates that the MV-KBC model 

can characterize the OA, HVV and HS of lung nodules more 

effectively than method F by using the multi-view patches and 

penalty cross-entropy loss, instead of only axial plane patches 

and traditional cross-entropy loss. Furthermore, three methods 

(i.e., methods E, F and MV-KBC) using deep-learning-based 

features of lung nodules outperform the approaches (i.e., 

methods C and D) using hand-crafted features. It also reveals 

that integrating feature extraction and classifier training into a 

unified framework (as our MV-KBC model) can boost the 

performance of classification.  

We also show 12 examples of the classification results 

produced by our MV-KBC model in Fig. 5. For each 

classification result, we provided its classification confidence 

value (𝐶𝑜𝑛𝑓) under the image patch, which can be calculated 

as: 

𝐶𝑜𝑛𝑓𝑛 = { 1 − 𝑃𝑛      𝑏𝑒𝑛𝑖𝑔𝑛 𝑃𝑛      𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡                       (7) 

 

where 𝑃𝑛 is the prediction probability given by our model, as 

defined in Section III-D. The value of 𝐶𝑜𝑛𝑓  ranges from 0 

(most insecure) to 1 (most confident). It shows in Fig. 5 that our 

model has a high confidence for the benign and malignant 

TABLE V 

 PERFORMANCE OF FIVE LUNG NODULE CLASSIFICATION METHODS ON EACH OF 

FOUR PARTITIONS OF THE LIDC-IDRI DATASET. ESPECIALLY, ‘AC’, ‘SE’, AND 

‘SP’ ARE ACCURACY, SENSITIVITY AND SPECIFICITY. 

 Methods 
Results (%) 

Ac Se Sp AUC 

P1 

C 3D GLCM+SVM [14] 86.83 49.58 95.24 85.17 

D Multi-visual features [15] 88.46 62.73 94.28 87.61 

E Deep + visual features [17] 89.62 69.69 94.14 88.94 

F TMME (ResNet-50) [40] 91.09 71.70 95.47 90.34 

- Proposed MV-KBC 92.95 73.26 97.38 91.57 

P2 

C 3D GLCM+SVM [14] 74.23 72.5 75.85 77.03 

D Multi-visual features [15] 76.13 78.53 73.88 78.08 

E Deep + visual features [17] 78.71 83.37 74.33 81.03 

F TMME (ResNet-50) [40] 80.82 85.32 76.58 83.44 

- Proposed MV-KBC 84.12 89.82 78.76 87.76 

P3 

C 3D GLCM+SVM [14] 75.75 22.11 93.03 70.99 

D Multi-visual features [15] 77.52 35.03 91.21 75.49 

E Deep + visual features [17] 80.63 46.48 91.64 80.04 

F TMME (ResNet-50) [40] 82.84 49.79 93.48 83.03 

- Proposed MV-KBC 84.53 54.19 94.30 89.08 

P4 

C 3D GLCM+SVM [14] 88.14 31.76 93.54 73.65 

D Multi-visual features [15] 88.31 45.18 92.44 80.73 

E Deep + visual features [17] 90.96 55.23 94.38 87.30 

F TMME (ResNet-50) [40] 92.59 60.18 95.69 90.32 

- Proposed MV-KBC 93.72 67.23 96.26 94.86 

 

TABLE IV.  

FOUR PARTITIONS OF THE LIDC-IDRI DATASET 

Partition 
True Samples False Samples 

MML # of Nodules MML # of Nodules 

P1 1 358 2, 4, 5 1587 

P2 2 933 1, 4, 5 1002 

P3 4 474 1, 2, 5 1471 

P4 5 170 1, 2, 4 1775 
 

Conf:

Conf:

0.9999 0.9999 0.9995 0.5600 0.5637 0.5480

0.9811 0.9992 1.0000 0.5017 0.5643 0.5548

Benign

Malignant

 
Fig. 5: Visualization of 12 examples of the classification results produced by 

our MV-KBC model, with the classification confidence value 𝐶𝑜𝑛𝑓  being 

given beneath each example. Top row: 6 benign nodules; bottom row: 6 

malignant nodules. 

TABLE III 

PERFORMANCE OF SEVEN LUNG NODULE CLASSIFICATION METHODS. ‘B’ AND ‘M’ ARE THE NUMBER OF BENIGN AND MALIGNANT LUNG NODULES  

 Methods 

Number Results (%) 

B M Accuracy 
Sensitivity / 

Recall 
Specificity AUC Precision F score 

A Shen et al., 2017 [30] (Multi-crop CNN) 528 297 87.14 77.00 93.00 93.00 Not given Not given 

B Hussein et al., 2017 [31] (3D CNN) 635 509 91.26 Not given Not given Not given Not given Not given 

C Han et al., 2015 [14] (3D GLCM feature+SVM) 1301 644 85.38±0.10 70.20±0.15 92.80±0.20 88.19±0.16 82.85±0.38 75.99±0.10 

D Dhara et al., 2016 [15] (Multi-visual features) 1301 644 87.90±0.17 84.50±0.19 89.09±0.25 93.77±0.15 79.31±0.37 81.82±0.21 

E Xie et al., 2018 [17] (Deep + visual features) 1301 644 88.73±0.15 84.40±0.20 90.88±0.13 94.02±0.20 82.09±0.24 83.23±0.21 

F Xie et al., 2017 [40] (TMME with Resnet-50) 1301 644 91.01±0.10 83.83±0.15 94.56±0.13 95.35±0.15 88.40±0.24 86.07±0.15 

- Proposed MV-KBC (mean±standard deviation) 1301 644 91.60±0.15 86.52±0.25 94.00±0.30 95.70±0.24 87.75±0.52 87.13±0.16 
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nodules in the left three columns, which have large visual 

differences, and a low confidence for the examples in the right 

three columns, which share many visual similarities. 

Nevertheless, it reveals that, although some benign nodules 

look similar to malignant ones, our MV-KBC model is still able 

to separate them. These results clearly demonstrate that our 

MV-KBC model has superior ability to differentiate malignant 

from benign nodules. 

 

B. Comparisons in Subgroups 

 This experiment aims to evaluate the performance of our 

MV-KBC model in differentiating the nodules from each MML 

subgroup. To this end, we created four partitions of the LIDC-

IDRI dataset, in each of which the nodules with a specific MML 

are annotated as true samples, and other nodules are annotated 

as false samples (see TABLE IV). We compared our MV-KBC 

model to the methods C, D, E and F using each of those data 

partitions and presented the results in TABLE V. It shows that 

our MV-KBC model achieved the highest accuracy, sensitivity, 

specificity and AUC on all those partitions. It further 

demonstrates that the MV-KBC model, which characterizes the 

OA, HVV and HS of lung nodules on multi-view patches using 

ResNet-50, is more effective in classifying malignant and 

benign nodules than using either hand-crafted features 

(methods C, D and E) or only axial plane patches (method F). 
 

C. Exploratory Analysis for Uncertain Nodules 

For this study, we excluded 612 uncertain lung nodules from 

our experiments, each of which has a median malignancy level 

of 3, an ambiguous assessment, from experienced thoracic 

radiologists. Following the work done by Han et al. [14], Shen 

et al. [30], and Dhara et al. [15], we designed two experiments, 

in which those uncertain nodules were categorized as benign 

ones and malignant ones, respectively, to evaluate the impact of 

nodules with malignancy suspiciousness on the performance of 

the proposed MV-KBC model. The obtained classification 

accuracy was given in TABLE VI. It reveals that grouping 

uncertain lung nodules into the benign category leads to higher 

classification accuracy than grouping them into the malignant 

category, which indicates that those uncertain nodules share 

more similarities with benign nodules. This finding is consistent 

with those reported in [14, 15, 30].  

The underlying reason could be that, since a false negative 

case may lead to much higher cost than a false positive case in 

lung nodule screening, the thoracic radiologists who annotated 

the LIDC-IDRI dataset are prone to give “safer” annotations, 
i.e. ranking more benign nodules (malignancy level 2) than 

malignant nodules (malignancy level 4) as uncertain ones 

(malignancy level 3). As a result, most of those uncertain 

nodules are in fact benign. Therefore, categorizing those 

nodules as benign ones leads to higher classification accuracy 

than categorizing them as malignant ones. We are not sure if 

such operator-related bias is general or just a specific 

phenomenon for this lung nodule dataset. However, the 

classification results given in TABLE VI indicate that the 

performance of a medical image analysis method relies heavily 

on the quality of image annotation. Besides paying more 

attention to the quality of data acquisition, we would further 

investigate semi-supervised learning to use the nodules with 

uncertain annotations.  

 

D. Impact of Nodule Segmentation 

When using the proposed MV-KBC model to classify a lung 

nodule, it requires to segment the nodule in each slice such that 

the OA, HVV and HS patches can be extracted as the input of 

the model. For this study, we employ the U-Net for nodule 

segmentation. Let the intersection of the nodule areas marked 

manually by four radiologists be the ground truth, and the U-

Net yields an average dice similarity coefficient (DSC) of 

80.23% and a sensitivity of 90.04%. We visualized the 

segmentation results of 15 lung nodules randomly selected from 

the testing set in Fig. 6. It shows that U-Net can segment the 

major nodule area well and the discrepancy between the 

segmentation results and ground truth is small.  

Since both the HS patches and HVV patches were extracted 

based on the nodule boundaries on each slice, the segmentation 

inaccuracy, though small, may have some impact on the 

TABLE VI 

PERFORMANCE OF THE PROPOSED MV-KBC MODEL ON THE DATASETS, 

WHERE UNCERTAIN LUNG NODULES (ULNS) WERE CATEGORIZED AS BENIGN 

ONES AND MALIGNANT ONES, RESPECTIVELY. 

 
Results (%) 

Accuracy Sensitivity Specificity AUC 

ULNs as benign nodules 89.81 75.63 94.74 93.23 

ULNs as malignant nodules 74.05 66.66 82.06 80.12 

 

TABLE VII 

PERFORMANCE OF THE PROPOSED MV-KBC MODEL WHEN USING EITHER THE 

U-NET-BASED NODULE SEGMENTATION OR GROUND TRUTH (GT). 

Method 
Results (%) 

Accuracy Sensitivity Specificity AUC 

MV-KBC 91.60 86.52 94.00 95.70 

MV-KBC + GT 92.10 87.15 94.45 96.13 

 

 

   
92.46 94.50
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Fig. 6. 15 lung nodules selected randomly from the testing set and the 

segmentation results of the U-Net; obtained boundaries are highlighted in 

green; the ground truth is outlined in red. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TMI.2018.2876510

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



performance of our MV-KBC model. To evaluate such impact 

quantitatively, we repeated the nodule classification 

experiments by using the ground truth as the segmentation 

results. The performance given in TABLE VII shows that using 

the nodule segmentation ground truth resulted in a slightly 

higher AUC, accuracy, sensitivity and specificity when 

compared to using the nodule segmentation produced by U-Net. 

It indicates that U-Net is a relatively good choice for nodule 

segmentation in the proposed MV-KBC model, though more 

accurate nodule segmentation may further but slightly improve 

the performance of our model. 

 

E. Analysis for Multi-View 

 In our MV-KBC model, we decompose each 3D lung nodule 

into nine fixed views and construct a KBC submodel to 

characterize the lung nodule patches extracted on each view 

from three perspectives, i.e. OA, HVV and HS. To demonstrate 

that multi-view ensemble learning is effective, we tested each 

of nine KBC submodels and plotted the ROC curves in Fig. 7. 

As we expected, multi-view learning outperforms each single-

view learning, since it uses more information of nodules. 

Furthermore, it also shows that using view 4, 7, or 9 achieves 

higher AUC than using other views.  

To validate if these three views comprise the most 

discriminative information for nodule classification, we jointly 

used these three views and compared this combination to other 

combination of views, such as using the first one, three, six, and 

nine views and using all diagonal views. The classification 

performance given in TABLE VIII shows that jointly using the 

view 4, 7, and 9 performs better than using the first one or three 

views, but worse than using other combinations. Therefore, 

these three views are not adequate to construct an effective 

nodule classifier. Meanwhile, it also shows in this table that the 

more the views we used, the higher the classification accuracy 

and AUC we obtained. The result is not surprising, since more 

and more information of nodules can be exploited with the 

increase of views used in our model. 

 

F. Different Ensemble Strategies  

In our study, the ensemble is performed hierarchically at two 

decision levels. First, we connect the two-neuron output layer 

of each of three ResNet-50 networks to a two-neuron layer 

followed by the softmax function. Such an ensemble of three 

ResNet-50 networks is called a KBC submodel. Second, we 

further connect the two-neuron output layer of each KBC 

submodel to a one-neuron layer followed by the sigmoid 

function. This ensemble is our proposed MV-KBC model. 

To demonstrate the effectiveness of this ensemble strategy, 

we compared our MV-KBC model to the method in [30], where 

all multi-view patches are fed into a network (Strategy-I), and 

the late-fusion method in [37], which performs the fusion at a 

richer feature level (Strategy-II). To implement the Strategy-I, 

we fine-tuned three pre-trained ResNet-50 networks using 

multi-view OA, HVV, and HS patches and combined them at 

the decision level. To implement the Strategy-II, we 

concatenated the outputs of the first fully connected (FC) layer 

(containing 2048 neurons) of each ResNet-50 in each KBC 

submodel and connected them to a new FC layer with 1024 

neurons, followed by a classification layer, which contains one 

neuron with the sigmoid function. The results in TABLE IX 

show that, by using the hierarchical ensemble at two decision 

levels, our MV-KBC model achieves the best performance. 

 

G. Other Pre-trained DCNNs 

 Although we used ResNet-50 as each DCNN component for 

TABLE VIII 

PERFORMANCE OF OUR MV-KBC MODEL TRAINED ON THE PATCHES 

EXTRACTED ON DIFFERENT COMBINATION OF VIEWS. 

Views used in  

MV-KBC 

Results (%) 

Accuracy Sensitivity Specificity AUC 

view1 89.06 77.10 95.02 92.32 

view1~ 3 90.01 83.41 93.12 94.17 

view4&7&9 90.12 84.31 93.05 94.42 

view1 ~ 6 90.86 81.37 95.52 94.83 

view4 ~ 9 90.71 83.63 94.30 95.12 

view1 ~ 9 91.60 86.52 94.00 95.70 

 

TABLE X 

PERFORMANCE OF OUR MV-KBC MODEL WHEN USING GOOGLENET, 

VGGNET-19 AND RESNET-50 AS EACH DCNN COMPONENT, RESPECTIVELY. 

DCNN used in MV-KBC 
Results (%) 

Accuracy Sensitivity Specificity AUC 

GoogLeNet (22 layers) 90.76 84.02 94.10 94.82 

VGGNet-19 (19 layers) 91.24 82.97 95.35 95.48 

ResNet-50 (50 layers) 91.60 86.52 94.00 95.70 

 

TABLE IX 

PERFORMANCE OF DIFFERENT ENSEMBLE STRATEGIES. 

Ensemble 

Strategies 
Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) 

Strategy-I 90.58 84.42 93.72 93.95 

Strategy-II 90.40 85.55 92.89 93.82 

MV-KBC  91.60 86.52 94.00 95.70 

 

 
Fig. 7. ROC curves of the proposed MV-KBC model and nine models, each 

being trained on the patches extracted on one view of plane. 
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this study, any DCNN, such as GoogLeNet [52] and VGGNet-

19 [53], can be embedded in the proposed MV-KBC model. 

TABLE X gives the accuracy, sensitivity, specificity and AUC 

of our MV-KBC model when each DCNN component is a pre-

trained GoogLeNet, VGGNet-19 and ResNet-50, respectively. 

It shows that using ResNet-50 achieves the best performance, 

particularly a significantly improved sensitivity value (i.e., 

nearly 3.6% higher than using VGGNet-19 and nearly 2.5% 

higher than using GoogLeNet). Meanwhile, due to the use of 1 × 1 convolutions, ResNet-50 has 25.5 million parameters and 

is computationally more efficient than VGGNet-19, which has 

about 144 million parameters. 

Moreover, the results TABLE X also suggest that a deeper 

DCNN seems to lead a higher classification accuracy. To 

validate this finding, we evaluated the performance of ResNet-

101 or ResNet-152 against ResNet-50 on the patches extracted 

on axial planes (view 1). The results in TABLE XI show that 

using ResNet-101 or ResNet-152 can further but slightly 

improve the classification accuracy. However, since there are 

27 DCNNs in our model, we chose to use ResNet-50 due to the 

consideration of the spatial and computational complexity of 

ResNet-101, ResNet-152, and other deeper networks. 

V. DISCUSSION 

A. Rationale of Designing KBC Submodel 

The design of KBC submodel (see Fig. 4) for a specific view 

is based on the assumption that three fine-tuned ResNet-50 

networks can characterize lung nodules from different aspects, 

i.e. the OA, HVV and HS, and hence yield complementary 

features. We randomly selected four single view ROIs of lung 

nodule and visualized the corresponding patches and learned 

feature maps in Fig. 8. In each subfigure, the top row shows the 

OA patch, HVV patch and HS patch generated from the single 

view ROI, and the bottom row shows the normalized sum of 

2048 feature maps produced by the last convolutional layer of 

the corresponding ResNet-50 network. It reveals that the feature 

maps learned from three types of input image patches highlight 

different areas and may mutually complement each other. 

To quantify our findings, we compared the performance of 

our MV-KBC model to that of three models (MV-OA, MV-

HVV and MV-HS model). Each of them uses the multi-view 

OA, HVV or HS patches to fine-tune nine pre-trained ResNet-

50 networks, and thus only characterizes 3D lung nodules from 

one of three perspectives. The receiver operator curve (ROC) 

curves of these four models were plotted in Fig. 9. It shows that 

using HS patches resulted in the lowest performance, using OA 

patches and HVV patches produced similar ROC curves, and 

jointly using three types of patches led to a further performance 

gain. Moreover, comparing the performance of our MV-KBC 

model to that of the MV-OA, MV-HVV and MV-HS models, 

the classification accuracy improves at least 1.67% and the 

AUC improves at least 2.12%. This experiment demonstrates 

that the image representation learned from each type of patches 

has complementary discriminative power and using a 

OAHVVHS

(2)

(4)

(1)

(3)

OAHVVHS

 
Fig. 8.  Three types of image patches generated from four example nodule ROIs 

and the sum of corresponding feature maps learned by each fine-tuned ResNet-

50 network. 

TABLE XII 

PERFORMANCE OF MV-KBC MODEL WITH ONE AND THREE PRE-TRAINED 

RESNET-50 NETWORKS IN THE KBC SUBMODEL. 

Methods 
Results (%) 

Accuracy Sensitivity Specificity AUC 

MV-KBC (1 ResNet-50 in KBC) 91.05 86.06 93.57 94.97 

MV-KBC (3 ResNet-50 in KBC) 91.60 86.52 94.00 95.70 

 

TABLE XI 

PERFORMANCE AND TIME COST OF THE KBC SUBMODEL WHEN USING 

RESNET-50, RESNET-101 AND RESNET-152 AS EACH DCNN COMPONENT, 

RESPECTIVELY. 

DCNN used in 

KBC for view1 

Results (%) 
Time (h) 

Accuracy Sensitivity Specificity AUC 

ResNet-50 89.06 77.10 95.02 92.32 2.2 

ResNet-101 89.24 77.83 94.92 92.63 3.7 

ResNet-152 89.39 77.74 95.15 92.84 4.5 

 

 
Fig. 9.  ROC curves of the proposed MV-KBC model and three models, which 

only characterize 3D lung nodules from one perspective by inputting multi-

view OA, HVV and HS patches, respectively. Especially, ‘Ac’, ‘Se’ and ‘Sp’ 
are accuracy, sensitivity and specificity. 
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combination of them can result in higher classification accuracy 

than using each of them alone. 

To prove the advantage of having three ResNet-50 networks 

in KBC, we compared the performance of our MV-KBC model 

with the baseline which concatenated OA, HVV and HS 

patches to form a 3-dimensional tensor in each KBC. The tensor 

can be considered as a 2D image with 3 channels and used to 

fine-tune a pre-trained ResNet-50 network. The results in 

TABLE XII show that our method can lead to a notable 

performance gain compared to the baseline. Hence, designing 

three ResNet-50 networks in KBC is a better choice than 

concatenating the patches. 

 

B. Parameter of Penalty Factor C 

The proposed MV-KBC model replaces the conventional 

binary cross-entropy loss with the penalty loss, which provides 

a way to control the trade-off between the false negative rate 

and false positive rate by penalizing the false negative with a 

factor C. Fig. 10 depicts the false negative rate, false positive 

rate and classification error rate obtained when setting the factor 

C to different values. It shows that, when the factor C increased 

from 1 to 5, the false negative rate decreased from 15.70% to 

8.03%, the false positive rate increased from 4.30% to 11.42%, 

and the classification error rate only increased from 8.04% to 

10.28%. Therefore, when applying the proposed model to lung 

nodule screening, we can set the penalty factor C to a large 

value to reduce the false negative rate. In order not to affect the 

overall performance of the classifier, we the optimal penalty 

factor C as 2, since the false negative rate significantly 

decreased by 2.22% and the classification error rate only 

increased by 0.36%. 

 

C. Multi-view architecture vs. 3D network 

We also extended our MV-KBC model to the 3D-KBC 

model, in which the multi-view ResNet-50 network is replaced 

with the 3D ResNet-50 network, and compared their 

performance. Similarly, training the 3D-KBC model has 4 steps. 

Step 1, we cropped a 64×64×64 volume centered on the location 

of each nodule from the chest CT data and segmented it using 

the 3D U-Net [60]. Step 2, based on the segmentation result, we 

defined the cubic volume of interest (VOI) that encapsulates the 

nodule as an OA volume, set nodule voxels inside the OA 

volume to 0 to form a HS volume, and set non-nodule voxels 

inside the OA volume to 0 and, if the OA volume is larger than 

16×16×16, extracted a 16×16×16 cube that contains the 

maximum nodule voxels to form a HVV volume. Step 3, we 

resized all OA, HVV, and HS volumes to 64×64×64 and 

applied the same data augmentation method that is used in the 

MV-KBC model to them. Step 4, all OA, HVV, and HS 

volumes, together with their augmented versions, were used to 

train the 3D-KBC model, which consists of three 3D ResNet-

50 networks designed to learn the nodules’ overall appearance, 
heterogeneity in voxel values, and heterogeneity in shape, 

respectively. Each 3D ResNet-50 network contains 50 learnable 

layers, including consequently a 7×7×7 convolutional layer that 

produces 64 feature maps, a 3×3×3 max pooling layer, four 

bottleneck architectures, an average pooling layer, and a FC 

layer with two neurons. Each bottleneck architecture consists of 

three convolutional layers with a map size of 1×1×1, 3×3×3, 

and 1×1×1, respectively. The two-neuron output layers of these 

three networks are connected to the same one-neuron layer, 

followed by the sigmoid function for final classification. We 

used the same loss and optimizer to train the 3D-KBC model. 

Both models were trained from scratch for a fair comparison.  

The results in TABLE XIII show that although 3D-KBC 

model obtains a marginally higher accuracy (with a 0.11% 

improvement) and specificity (1.48% improvement), our MV-

KBC model achieves an improved sensitivity (2.01% 

improvement) and AUC (0.83% improvement). Since a higher 

sensitivity indicates a lower false negative rate, our MV-KBC 

model, which uses the multi-view learning, is more suitable for 

lung nodule screening and potentially more useful in clinical 

practice than the 3D-KBC model. 

 

D. Impact of Transfer Learning 

To demonstrate that transfer learning can improve the 
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Fig. 10.  Variation of accuracy, sensitivity and specificity of the proposed MV-

KBC model over the increase of the penalty factor C. 

 

TABLE XIII 

PERFORMANCE OF THE 3D-KBC MODEL AND OUR MV-KBC MODEL. 

Methods 
Results (%) 

Accuracy Sensitivity Specificity AUC 

3D-KBC (scratch 3D ResNet-50) 90.07 81.05 94.98 92.56 

MV-KBC (scratch ResNet-50) 89.96 83.06 93.50 93.39 

 

TABLE XIV 

PERFORMANCE OF OUR MV-KBC MODEL WITH SCRATCH AND PRE-TRAINED 

RESNET-50 NETWORK. 

Methods 
Results (%) 

Accuracy Sensitivity Specificity AUC 

MV-KBC (scratch ResNet-50) 89.96 83.06 93.5 93.39 

MV-KBC (pre-trained ResNet-50) 91.60 86.52 94.00 95.70 
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performance of lung nodule classification, we compared the 

performance of our MV-KBC model based on pre-trained 

ResNet-50 to a deep model that has the same architecture but is 

based on the ResNet-50 networks trained from scratch. As 

shown in TABLE XIV, although the model with scratch 

ResNet-50 networks achieves a relatively good performance, 

transferring the image representation abilities of pre-trained 

ResNet-50 networks helps to better characterize lung nodules 

and brings a further performance gain. 

E. Regressing Malignancy Scores 

Our MV-KBC model can be extended to regress the 

malignancy score (from 1-5) of nodules by simply replacing the 

penalty loss with the mean square error loss. We compared this 

extended method to a three-layer CNN [51], combining deep 

and hand-crafted visual features [13], and 3D CNN multi-task 

learning (MTL) [31]. The performance of malignancy 

regression was assessed by the root mean square error (RMSE) 

and mean absolute score error (MASE) between the predicted 

score and the true score. The results given in TABLE XV show 

that our method achieves a RMSE of 0.6213 and a MASE of 

0.4374, which are lower than those achieved by other three 

methods. Therefore, the proposed MV-KBC model is also a 

good choice for the regression of nodule malignancy score. 

 

F. LUNGx challenge dataset 

 The LUNGx challenge dataset [61] in the Cancer Imaging 

Archive (TCIA) contains 70 clinical chest CT scans with 83 

lung nodules. The nodule diameters range from 3mm to 45mm. 

A set of 10 calibration scans was made available as a training 

set. Five of the 10 calibration scans contained a single 

confirmed benign nodule (2 confirmed based on nodule 

stability for at least 2 years; 2 confirmed based on nodule 

resolution; 1 confirmed based on pathological assessment), and 

the other five scans contained a single pathologically-confirmed 

malignant nodule (2 small cell carcinomas, 1 poorly- and 1 

moderately-differentiated adenocarcinomas, and 1 non-small 

cell carcinoma, not otherwise specified). The other 60 scans 

with a total of 73 nodules were considered as a test set, which 

contained 37 benign nodules (including 13 confirmed based on 

nodule stability for at least 2 years, 19 confirmed based on 

nodule resolution, and 5 confirmed based on pathologic 

assessment) and 36 malignant nodules (including 15 

adenocarcinomas, 9 non-small cell carcinomas not otherwise 

specified, 7 small cell carcinomas, 2 carcinoid tumors, 1 

squamous cell carcinoma, and 2 nodules suspicious for 

malignancy).We applied our MV-KBC model to the LUNGx 

challenge dataset 5 times independently and assessed the mean 

and standard deviation of the accuracy, sensitivity/recall, 

specificity with the cut-off value of 0.5, precision, F-score, and 

AUC. The results shown in TABLE XVI show that our MV-

KBC model achieved the highest AUC compared to the 11 best-

performing methods listed in the challenge leaderboard [62]. 

These results show that the proposed model also has superior 

ability to classify malignant from benign nodules on this 

dataset. 

 

G. Robustness to Noise Corruption 

To demonstrate the robustness of our MV-KBC model 

against noisy images, we further trained and tested the model 

on images with additive Gaussian noise, whose mean is zero 

and standard deviation is 1, 5, and 10, respectively. The 

performance of our model on noise-free and noisy images was 

shown in TABLE XVII. It reveals that the performance of our 

model decreases with the increase of the noise level. However, 

TABLE XVII 

PERFORMANCE OF OUR MV-KBC MODEL ON NOISE-FREE AND NOISE-

CORRUPTED LIDC-IDRI DATASETS. THE STANDARD DEVIATION OF GAUSSIAN 

NOISE IS DENOTED BY . 

σ Accuracy Sensitivity Specificity AUC 

0 91.60 86.52 94.00 95.70 

1 91.02 85.73 93.66 95.18 

5 90.54 84.66 93.49 94.78 

10 90.15 84.40 93.17 94.25 

 

 

TABLE XVI 

PERFORMANCE OF OUR MV-KBC MODEL AND 11 BEST-PERFORMING METHODS [62] ON THE LUNGX CHALLENGE DATASET. 

Methods Nodule segmentation Classifier AUC (%) 

1 Voxel-intensity-based segmentation SVM 50.00±6.80 

2 Region growing WEKA 50.00±5.60 

3 None required Rules based on histogram-equalized pixel frequencies 54.00±6.70 

4 Bidirectional region growing Uses tumor perfusion surrogate 54.00±6.60 

5 Region growing WEKA 55.00±6.70 

6 Graph-cut-based surface detection Random forest 56.00±5.40 

7 Manual initialization, gray-level thresholding, morphological operations SVM 59.00±6.60 

8 None required Convolutional neural network 59.00±5.30 

9 GrowCut region growing with automated initial label points SVM 61.00±5.40 

10 Radiologist-provided nodule semantic ratings Discriminant function 66.00±6.30 

11 Semi-automated thresholding Support vector regressor 68.00±6.20 

- 
Proposed MV-KBC 

(mean±standard deviation) 

Accuracy (%) Sensitivity / Recall (%) Specificity (%) Precision (%) F-score (%) AUC (%) 

75.62±1.15 87.22±7.24 64.32±7.00 70.63±2.61 77.84±1.77 76.85±0.17 

 

TABLE XV 

PERFORMANCE OF FOUR METHODS FOR REGRESSING LUNG NODULE 

MALIGNANCY SCORES. 

Methods RMSE MAD 

Three-layer CNN, 2017 [51] 0.8940 Not Given 

Deep+visual features, 2017 [13] Not Given 0.9200 

3D CNN MTL, 2017 [31] Not Given 0.4593 

Proposed method 0.6213 0.4374 

 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TMI.2018.2876510

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



the accuracy of our model only drops slightly from 91.60% to 

90.15% when the standard deviation of the Gaussian noise 

added to the images increases from 0 to 10. The robustness of 

our model against noisy images may be ascribed to (1) the 

powerful ResNet-50 network, (2) joint use of each nodule’s OA, 
HS, HVV as its representation, and (3) the ensemble of 

submodels constructed using the patches extracted on each of 

nine views of planes. 

 

H. Model Complexity 

All DCNN models were fine-tuned using the open source 

Keras and Tensorflow software packages. Since there are 27 

ResNet-50 models embedded in it, the proposed MV-KBC 

model has a relatively high computational complexity during 

training. In our experiments, it takes about 20 hours to train the 

model and less than 0.5 second to apply it to classify each lung 

nodule on a server with 8 NVIDIA GTX Titan XP GPUs and 

512GB Memory. Although training the model is time-

consuming, it can be done offline. The fast online testing 

suggests that our approach could be used in a routine clinical 

workflow. 

VI. CONCLUSION 

We present the MV-KBC model to separate benign from 

malignant lung nodules on chest CT by taking into account the 

nodule appearance on nine view planes and the nodule 

heterogeneity and by applying an adaptive weighting scheme so 

that our model can be trained in an end-to-end manner. The 

results show that our model is more accurate than current state-

of-the-art approaches on the LIDC-IDRI dataset. In future work, 

we will extend the proposed model to a semi-supervised 

learning framework, such that we can use the nodules with an 

uncertain level of malignancy and unlabeled nodules as training 

samples to reduce the need for data annotation. Meanwhile, we 

will investigate the compression of the DCNN structure used in 

our model, with the aim of making the training of the model 

computationally more efficient. Moreover, it will also be 

necessary to investigate the incorporation of other pathological 

information into the deep model for a more accurate benign-

malignant lung nodule classification. 
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