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Abstract. Multi-objective Genetic Algorithms (MOGA) and Case-based Reasoning (CBR) 

have proven successful in the design of MEMS (Micro-electro-mechanical Systems) suspen-

sion systems. This work focuses on CBR, a knowledge-based algorithm, and MOGA to exam-

ine how biological analogs that exist between our evolutionary system and nature can be lever-

aged to produce new promising MEMS designs. Object-oriented data structures of primitive 

and complex genetic algorithm (GA) elements, using a component-based genotype representa-

tion, have been developed to restrict genetic operations to produce feasible design combinations 

as required by physical limitations or practical constraints. Through the utilization of this data 

structure, virtual linkage between genes and chromosomes are coded into the properties of pre-

defined GA objects. The design challenge involves selecting the right primitive elements, asso-

ciated data structures, and linkage information that promise to produce the best gene pool for 

new functional requirements. Our MEMS synthesis framework, with the integration of MOGA 

and CBR algorithms, deals with the linkage problem by integrating a component-based geno-

type representation with a CBR automated knowledge-base inspired by biomimetic ontology. 

Biomimetics is proposed as a means to examine and classify functional requirements so that 

case-based reasoning algorithms can be used to map design requirements to promising initial 

conceptual designs and appropriate GA primitives. CBR provides MOGA with good linkage in-

formation through past MEMS design cases while MOGA inherits that linkage information 

through our component-bsased genotype representation. A MEMS resonator test case is used to 

demonstrate this methodology. 

1   Introduction 

Microelectromechanical Systems (MEMS) are small micro-machines or micron-scale 

electro-mechanical devices that are fabricated with processes adapted from Integrated 

Circuits (ICs). Although still a relatively new research field, MEMS devices are being 

developed and deployed in a broad range of application areas, including consumer 

electronics, biotechnology, automotive systems and aerospace. Example MEMS  

devices include accelerometers in automotive airbags and micro-mirrors for optical 

switching in data communication networks. As MEMS devices grow in complexity, 

there is a greater need to reduce the amount of time MEMS designers spend in the  
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initial conceptual stages of design by employing efficient computer-aided design 

(CAD) tools.  

Working with a multidisciplinary research team at the Berkeley Sensor and Actua-

tor Center (BSAC), our work with Evolutionary Computation (EC) is focused on the 

conceptual design of MEMS devices. Zhou et al. [1] were the first to demonstrate that 

a multi-objective genetic algorithm (MOGA) can synthesize MEMS resonators and 

produce new design structures. SUGAR [2], a MEMS simulation tool, was used to 

perform function evaluations on constraints and fitness values. Kamalian et al. [3] ex-

tended Zhou’s work and explored interactive evolutionary computation to integrate 

human design expertise into the synthesis process.  They also fabricated and tested the 

emergent designs in order to characterize their mechanical properties and identify  

deviations between simulated and fabricated features [4].  Zhang et al. [5, 6] imple-

mented a hierarchical MEMS synthesis and optimization architecture, using a compo-

nent-based genotype representation and two levels of optimization: global genetic  

algorithms (GA) and local gradient-based refinement. Cobb et al. [7] created a case-

based reasoning (CBR) tool to serve as an automated knowledge base for the synthe-

sis of MEMS resonant structures, integrating CBR with MOGA [8] to select  

promising initial designs for MOGA and to increase the number of optimal design 

concepts presented to MEMS designers. 

In related research, Muhkerjee et al. [9] conducted work on MEMS synthesis for 

accelerometers using parametric optimization of a pre-defined MEMS topology. They 

expanded the design exploration within a multidimensional grid in order to find the 

global optimal solution. Wang's [10] approach to MEMS synthesis utilized bond 

graphs and genetic programming with a tree-like structure of building blocks to in-

corporate knowledge into the evolutionary process, similar to work by Zhang [6]. Li 

et al. [11] concentrated on developing automated fabrication process planning for sur-

face micromachined MEMS devices that relieves designers from the tedious work of 

process planning so they can concentrate on the design itself. MEMS CAD has  

matured to the point that there are now commercial CAD programs, such as Comsol® 

and IntelliSuite®, that offer MEMS designers pre-made modules and cell libraries, 

but there is little automatic reasoning in place for the user on how and when these 

components should be used. 

Our EC method employs a genetic algorithm as the evolutionary search and opti-

mization method. GAs were introduced by Holland [12] to explain the adaptive proc-

esses of evolving natural systems and for creating new artificial systems in a similar 

way, and Goldberg [13] further demonstrated how to use them in search, optimiza-

tion, and machine learning. Chen et al. [14] noted that traditional GAs require users to 

possess prior domain knowledge in order for genes on chromosomes to be correctly 

arranged with respect to the chosen operators. The performance of a GA is heavily 

dependent upon its encoding scheme. When prior domain knowledge is available, the 

design problem can be solved using traditional genetic algorithms. However, that is 

not always the case, and this is when methods such as linkage learning are needed.  

Chen [15] and Harik [16] both focused research efforts on the linkage learning genetic 

algorithm (LLGA) so that a GA, on its own, can detect associations among genes to 

form building blocks [15].  
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Linkage is an important part of GA performance. Tightly linked genes are syn-

onymous with building blocks, but higher level linkage amongst building blocks is 

also necessary to ensure successful design solutions are reached. We propose an inte-

grated MEMS design synthesis system which combines CBR with biologically  

inspired classifications and an evolutionary algorithm, MOGA, to help generate more 

varied conceptual MEMS design cases for a designer and her/his current design  

application.  

In this chapter, we will explain our micro-resonator test case which will be high-

lighted throughout our work to explain our linkage concept. Next, we discuss MOGA 

and CBR and explain how linkage is achieved through our knowledge-based evolu-

tionary algorithm. Lastly, we present a review of symmetry patterns observed in  

nature, as they pertain to resonant frequency-sensitive biological creatures, and  

explore the role that symmetry plays in our evolutionary synthesis process for the 

resonator example.  

2   Evolutionary Computation for Resonant MEMS Design 

2.1   MEMS Resonator Test Case 

To date, our MEMS design synthesis program has focused on the design of resonant 

MEMS. A schematic of a MEMS resonator and its component decomposition are 

shown in Fig. 1. These designs have consisted of a fixed center mass (either with or 

without electrostatic comb drives) connected to four ‘legs’, each made up of multiple 

beam segments. We evaluated our MOGA synthesis program for several sets of  

performance objectives all calculated using the SUGAR simulation program.   

 

Fig. 1. Schematic of example resonator synthesis problem. The geometry of the center mass is 

fixed, while the number of beam segments per leg and the size and angle of each segment is 

variable [3]. 

As we are designing resonators, the most significant performance objective for all 

structures is the resonant frequency (f0). Resonant frequency is the most critical  

requirement because if a resonator deviates too far from its frequency target it is es-

sentially a useless design. Other performance objectives we have used for synthesis  
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include the stiffness of the structure in the x or y-direction as well as the device area 

(defined by a bounding rectangle around the device).   

2.2   SUGAR: MEMS Simulation with Modified Nodal Analysis 

SUGAR [2] is an open-source MEMS simulation tool based on modified nodal analy-

sis (MNA), allowing a designer to quickly prototype and simulate several complex 

MEMS structures for preliminary design applications.
1
  Finite element analysis (FEA) 

calculations could take hours per simulation, making them infeasible for iterative  

design processes on complex systems. SUGAR and other similar lumped parameter 

nodal analysis simulation tools can perform these functional calculations with reason-

able accuracy at a fraction of the time and can therefore allow the MEMS designer to 

explore larger design spaces.  FEA and parametric optimization can then be used  

to refine the most promising of the design concepts produced by the MOGA evolu-

tionary process. 

2.3   Linkage with Component-Based Genotype Representation 

Genetic linkage, in biological terms, refers to the relative position of two genes on a 

chromosome. Two genes are linked if they are on the same chromosome and are 

tightly linked if they are physically close to each other on the same chromosome. 

Genes that are closely linked are usually inherited together from parent to offspring 

[14]. Our MOGA data structure can be classified as “linkage adaptation” if we use the 

same terminology as Chen [14]. Linkage adaptation refers to specifically designed 

representations, operators, and mechanisms for adapting genetic linkage along with 

the evolutionary process. Chen states that linkage adaptation techniques are closer to 

biological metaphors of evolutionary computation because of their representations, 

operators, and mechanisms. 

 

Fig. 2. Gene representation examples for MEMS building blocks [6] 

                                                           
1
 SUGAR can be accessed from:  

   http://sourceforge.net/projects/mems/ 
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Our component-based genotype representation for MEMS design synthesis is  

supported by a hierarchical extendible design component library developed by Zhang 

et al. [6]. Each MEMS design component type is represented by a gene. This gene  

carries all salient information about the component: its geometric layout parameters, 

as well as constraints on how the component can be modified and what genetic opera-

tions can be applied to it (see Fig. 2). Each gene has external nodes through which 

components are connected and registered to one another. Two genes are on the same 

chromosome, which represents a design cluster or a simple MEMS design, if one of 

them can be reached from the other through any linkage path in the chromosome. 

Two genes are tightly linked if they share the same external node. For example, in 

Fig. 3 gene types 10 and 9 are tightly linked because they share the same external 

node and gene types 10, 9, 5, and 1 are on the same chromosome because each gene 

can be found by tracing the linkage path in the design.   

 

Fig. 3. MEMS resonator gene representation [6] 

A designer can predefine what gene types are allowed to be closely linked to a  

specific gene type and whether a position on the chromosome is a crossover point 

during the evolutionary process by associating special properties to certain linkage 

nodes in the chromosome. Based on predefined rules, the mutation operation can be 

applied at either the gene level or the chromosome level, providing a probability of 

changing linkage with the mutation operation during the evolutionary process. 

3   Case-Based Reasoning and Biomimetic Inspired Ontology 

Case-based Reasoning (CBR) is an artificial intelligence method that utilizes knowl-

edge from a past situation to solve current problems.  Shank’s dynamic memory 

model [17] is regarded as the foundation for CBR.  Kolodner used Shank’s model to 

create the first CBR system called CYRUS which was a basic question and answer 

system [18].  CBR has been applied to a broad array of domains ranging from cook-

ing recipes to the design of electro-mechanical devices.  For example, Kritik [19], a 
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CBR system developed in the early 1980s, generated designs for physical systems 

such as electrical circuits. The first successful industry application of CBR was 

CLAVIER [20] which was used by Lockheed Martin for determining successful loads 

of composite material parts for curing in an autoclave. More recently, CAFixD [21] 

applied the principles of CBR to fixture design for various machining operations. 

CBR is analogous to human cognition and thought processes; cases can be  

regarded as “memories,” while retrieval is similar to “reminding” one of a particular 

instance, and case representation is how one’s memories are organized. CBR involves 

indexing past knowledge, in the form of “cases” to enable effective retrieval of solu-

tions for a current problem. Indexing and case representation are the two initial and 

most important stages of CBR, determining the ultimate performance of a CBR  

program.   

In the context of our work, CBR takes advantage of previous human knowledge in 

the form of successful MEMS design cases to help guide humans and computational 

design tools towards more optimal design concepts.  Previous work by Cobb et al. [8] 

has shown that the integration of a CBR knowledge base with a multi-objective  

genetic algorithm (MOGA) can increase the number of optimal solutions generated 

for a given MEMS design problem.  CBR is used to help select the best candidates to 

be evolved in an evolutionary process such as MOGA.  In the following sections, we 

will examine the biological analogs of case representation and indexing as well as 

how they can support linkage in MOGA. 

3.1   Case Representation and Biological Taxonomy 

Biological classification or taxonomy is a means by which biologists group and clas-

sify organisms. Taxonomy helps one identify evolutionary relationships and links  

between certain species and in the case of MEMS, certain design structures. Classify-

ing organisms based on shared physical traits is how taxonomy began, but these  

classifications have been modified over the years to reflect Darwinian evolutionary 

relationships. Spiders are of interest to our work due to the parallels their physical ap-

pearance has to our MEMS resonator example. Biologists have classified over 40,000 

species of spiders, but they believe there are still thousands of species which have not 

yet been identified and named. As more species are discovered the current biological 

classification system can expand and change. 

The classification of animals and plants is inherently hierarchical; similar to the 

way our MEMS case library is hierarchical to demonstrate the relationships between 

different designs. The 40,000 species of classified spiders are further divided into 

three suborders with 38 families and 111 subfamilies. The groups described by taxon-

omy get more specific as one goes from the kingdom classification all the way down 

to the species group. Kingdom is the largest unit of classification (with approximately 

five kingdoms), phylum is the next unit of classification which further divides each 

kingdom, and this pattern continues down to the species level, forming a tree like  

hierarchy of organism representation. No two species of spiders, or any plant or  

animal, will have the same scientific name (defined by the genus and species). The 

scientific name is a unique identifier just as each unique MEMS design component 
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has a distinct identification number and gene type to distinguish it from other designs 

and enable efficient case retrieval. 

MEMS is still an exploratory field and new designs and pieces of the MEMS hier-

archy are constantly being added, similar to the way newly discovered species of  

organisms are expanding the biological taxonomy system everyday. Varadan [22] 

noted that it is still premature today to create a robust categorization due to the fact 

that many MEMS devices are still in the research phases of development and have not  

matured for every application. MEMS categorization has often focused on fabrication 

methods and materials selection, geometry, or application areas [23]. There are a 

broad array of MEMS sensors and actuators available today. Bell et al. [24]  

categorized MEMS by considering work-producing actuators, force sensors and dis-

placement sensors fabricated by surface or bulk micromachining in their work and did 

an in depth classification of these devices.   

In MEMS, designs are often classified based on their performance and functional 

characteristics. Sensors and actuators are the two most broad and commonly agreed 

upon categories of MEMS which can be divided further into families and classes.  

Similar to the work of Bell et al. [24], we will have two kingdoms in our classification 

system: sensors and actuators. Sensors and actuators can each be further divided into 

phylum or classes based upon their operating domains. For our purposes, we will  

assume six operating domains based upon input and output signals MEMS devices 

utilize: (1) Magnetic, (2) Thermal, (3) Electrical, (4) Mechanical, (5) Chemical, and 

(6) Optical. 

Imagine the aforementioned domains placed in a 6 by 6 matrix (with all six catego-

ries each lined up on the rows and columns) to enable multiple input and output  

combinations. For example, a thermal-mechanical sensor might take a thermal input 

and have a mechanical deflection as its output. For a piezoelectric sensor, it will out-

put a voltage in response to an applied mechanical stress, enabling a further categori-

zation of the mechanical-electrical class. Because the user of our CBR program may 

be searching for designs based on input and output domains or application areas, it is  

important to index cases by both. Our MEMS hierarchy starts with sensors and actua-

tors, and then branches out to the various input and output mechanisms, and under 

each of these are specific application areas (RF MEMS, Micro-fluidics, BioMEMS, 

Optical MEMS, etc.), and then divided further are whole MEMS devices, which are 

broken down into their various components and primitive elements.   

Currently, our work focuses on resonant structures, such as resonators, accelerome-

ters and micromechanical filters. Thus, in traversing the MEMS hierarchy, our work 

falls under the electrical (input and output domain) where electrostatics are primarily 

used. Fig. 4 is a condensed MEMS taxonomy graph, and is not inclusive of all MEMS 

devices. The portion shown demonstrates how the classification leads to accelerome-

ters, filters, and resonators – the focus of our work. Resonators, the basic components 

of filters, can be further decomposed into masses, springs, comb drives, and anchors.  

Each one of the aforementioned components would have a unique identifier to distin-

guish them from others. Nguyen [25] classifies MEMS filters based on their ability to 

achieve a certain frequency range, an important part of being able to develop RF 

communication devices.   
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Sensors
(Kingdom)

Electrical
(Phylum)

Electrostatic
(Actuation Class)

Accelerometers

(Order)

Band Pass Filters
(suborder)

Filters

(Order)

High Pass Filters
(suborder)

Low Pass Filters
(suborder)

Notch  Filters
(suborder)

Coupled 
Resonators

(family)

Single 
Resonators

(family)

Further decomposition 
based on device structure...

Further decomposition 
based on device structure...

 

Fig. 4. MEMS hierarchy example with biological analogy 

 

Fig. 5. MEMS database design 
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A hierarchy for biological organisms was created just as a hierarchy for CBR needs 

to be created in order to sort information and efficiently pull the most relevant primi-

tives and designs for evolutionary computation. Ontology is a way to represent 

knowledge in a specific domain, helping an artificial intelligence (AI) program to de-

fine and retrieve objects. A general hierarchy or structure of ontology is the following 

[26]: objects, classes of objects, attributes of objects, and relations between objects.  

Shown in Fig. 5 is our current MEMS case library ontology. Using entity-relationship 

diagram notation, one can observe how objects such as MEMS resonators and filters 

are related together. In the diagram,‘d,p’ indicates a disjoint/distinct and partial rela-

tionship between classes, in order to account for designs that have not yet been  

created or added to the library. Attributes of each object include indices for quick  

retrieval and overall device performance. Our current CBR hierarchy classifies  

designs based on their shared functionality and performance. 

3.2   Creating Evolutionary Linkage with Case-Based Reasoning 

Linkage, as defined by Chen [14], refers to placing related genes close together on a 

chromosome. The GA programmer seeds the GA with initial designs with implicit 

linkages. The GA programmer may be adding her/his expertise to the codification in 

this process. This may be difficult to do, however, on new design problems in which 

the programmer has limited experience.  

Applying the aforementioned definition to MEMS synthesis, we use the concept of 

linkage to refer to how closely MEMS building blocks should be linked in an evolu-

tionary process. With the integration of CBR and MOGA (see Fig. 6), CBR defines 

the linkages for the user with an automated case-based library of previous MEMS 
 

 

 

Fig. 6. MEMS design synthesis architecture 
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designs. CBR takes away from the user the burden of defining the problem by auto-

matically selecting and optimizing design structures based on a few inputted design 

requirements. In the absence of CBR or a good seed design, MOGA may not  

converge to a design solution. Zhang et al. [5] noted that seeding MOGA with a good 

initial design is essential to helping MOGA converge to better design solutions in a  

practical number of evolutions. CBR can pull out the design cases close to local de-

sign optima for a given scenario. The designs are ranked according to the user’s  

design requirements and are then encoded in the component-based genotype represen-

tation to enable the evolutionary process. Incorporating other powerful computational 

tools, such as CBR, with MOGA can help MOGA converge faster and more effi-

ciently to optimal design concepts. The linkage problem is alleviated in our MOGA 

program because CBR inherently defines linkage for MOGA with its case examples.    

CBR assists MOGA by propagating the linkage of effective building blocks and  

selecting designs near local optima. In a previous experiment [8], for each MOGA 

synthesis run, we used a population of 400 for 50 generations. Using constraint cases 

of (1) no symmetry, (2) y-axis symmetry, and (3) x- and y-axis symmetry, five runs of 

the MOGA process were conducted for each constraint case in order to see a good 

spread of design solutions. We found that when MOGA is seeded with good starting 

designs from CBR, in some instances, y-axis symmetry and x- and y-axis symmetry 

constraints generate more pareto optimal designs over 50 generations.   

 

MOGA Design Representation 

Gene Type MEMS Component 

18 Frame Mass 

14 Crab-Leg Suspension 

5 Comb Drive 

1 Anchor 

 
 

(a) Initial Design 

 

 
 

(b) y-symmetric design 

 

 

 

Fig. 7. Resonant frequency = 23.8 kHz for initial MOGA design (a); Resonant frequency = 24.8 

kHz for a pareto optimal y-symmetric design generated by MOGA (b) 
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Shown in Fig. 7 is an example of tight linkage generated by our integrated CBR 

and MOGA program. The design requirements for this scenario were the following:  

f0 = 24.9 kHz, Kx/Ky ≥ 8, Area ≤ 2.1e-7 m
2
.  Eight designs were selected by CBR for a 

MOGA synthesis process for this given scenario. Because all eight CBR retrieved de-

signs had similar linkage properties, we will highlight the best design here which was 

a resonator with an enclosed frame mass and crab-leg suspensions (two beams with a 

local 90 degree angle). For the best design shown in Fig. 7a, the mass and comb 

drives remained fixed while the crab-leg suspensions (which have the largest impact 

on the performance objectives) were allowed to change in width, length, and global 

orientation, but the crab-leg suspensions retained their local 90 degree angle.  

As one can see in Fig. 7, the initial design in Fig. 7a generated an optimal design 

(Fig. 7b) which had the leg suspensions rotated outside of the frame mass.  One would 

assume that if the objective is to minimize area, the suspensions would remain inside 

the mass, similar to the initial design in Fig. 7a. However, because frequency and 

stiffness were also part of the optimization problem, MOGA determined that a design 

with the suspensions outside of the mass could produce a better resonant frequency 

and stiffness ratio. The resonator design in Fig. 7b may have not been considered by a 

human MEMS designer, but due to the linkage knowledge CBR gave MOGA, the  

design is a good candidate for further analysis and fabrication. 

Fig. 8 shows another example of tight linkage in our MOGA process.  The design 

requirements for this scenario are the following:  f0 = 8.3kHz, Kx/Ky ≥  29, Area ≤ 

 

MOGA Design Representation 

Gene Type MEMS Component 

15 Hollow Ring Mass 

2 Serpentine Suspension 

5 Comb Drive 

1 Anchor 

 
 

(a) Initial Design 

 

 

 

(b) y-symmetric design 

 

 

Fig. 8. Resonant frequency = 6969.3 Hz for initial MOGA design (a); Resonant frequency = 

8299.9 Hz for a pareto optimal y-symmetric design generated by MOGA (b) 
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3.7e-7 m
2
. In this particular case there was only one design selected by CBR which 

consisted of a hollow squared shaped mass with four serpentine springs. Again, the 

mass and comb drives remained fixed while the serpentine suspension blocks were 

free to mutate in length, width, number of loops, and their global angle orientation.  

This scenario also generated designs that had a similar appearance to spiders and  

insects (aside from the inherent manhattan geometry in the building blocks). Minimiz-

ing area is our main design objective for all of the designs in this experiment. The  

y-symmetry (symmetry around the vertical axis) constraint cases had the smallest  

design area average (2.608E-7 m
2
) with a standard deviation of 7.031e-8 m

2
. 

4   Biomimetics: Role of Symmetry and Resonance  

Applying manhattan geometries (90º angles) and symmetry constraints greatly re-

duces the search space and allows MOGA to optimize its search over a more manage-

able size. If convergence can be achieved, however, fewer constraints are preferred in 

an optimization problem as it broadens the search space to a wider selection of solu-

tions. When MOGA runs unconstrained or with only symmetry constraints, the results 

produce designs that greatly differ from those designed by humans. Upon observation, 

these designs have an uncanny appearance to spiders, insects, and other organisms 

observed in nature. This prompted us to examine the biological analogies that exist 

between our EC generated resonators and biological organisms to help us understand 

which symmetry and geometric constraints might be an evolutionary advantage of 

natural life forms that use vibration or natural frequencies to survive. 

4.1   Symmetry and Geometric Constraints 

Symmetry is evident throughout the natural world − a butterfly’s wings, a spider’s 

web, and even physicists observe symmetry in distant galaxies. Symmetry has been 

used to try to understand the physical world since ancient times [27]. In the animal 

kingdom, bilateral symmetry is found in more complex species, where different parts 

of the animal’s body perform different functions. Radial symmetry can be found in 

simpler life forms, such as starfish, where the entire body performs most of the life 

functions. 

Symmetry has typically been a sign of quality in nature, and symmetry perception 

has been demonstrated in humans, animals, and insects. Many studies have concluded 

that humans and other species find symmetrical patterns more favorable than asym-

metrical ones. It has been suggested that preferences for symmetry adapted for rea-

sons related to mate choice. For several species, females prefer a mate that has more 

symmetrical characteristics [28]; experiments performed with insects and birds found 

that females prefer to mate with males who have the most symmetrical ornaments 

[29]. Enquist and Arak [30] suggest that the preference for symmetry has evolved 

from the need to recognize objects no matter what their position or orientation may 

be. This preference for symmetry is prominent in the MEMS world where many  

designers highly favor symmetrical layouts and manhattan style geometry. In previous 

work, some of our nontraditional asymmetric MEMS designs were fabricated and 
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characterized to help improve EC algorithms, and it was shown that the fabricated de-

sign behaved within reasonable agreement to simulation results [4]. 

Of the forms of symmetry in the animal world, bilateral symmetry is much more 

common than full symmetry. Even with bilateral symmetry, organisms often reflect a 

behavioral asymmetry with internal organs or a tendency for right or left-handedness 

as noted by Babcock [31]. Asymmetry is less prevalent in the natural world but can be 

observed in a select few organisms such as sponges (poriferans). In biology studies by 

Moller et al. [32], they found that growth rate and fluctuating asymmetry are nega-

tively correlated, meaning asymmetric animals grow less rapidly than symmetric 

ones. Although organisms may exhibit bilateral and radial symmetry, most organisms 

have some type of observable asymmetry.  

In the MEMS world, designers are tasked with developing physical forms that  

satisfy multiple functional requirements. It is tempting to think that simple designs 

with 90 degree angles are better than designs with irregular or nontraditional layouts. 

This can be the case in macroscale designs where non-perpendicular and parallel de-

signs can be time-consuming and expensive from a manufacturing point of view. But 

in MEMS fabrication, lithography processes enable a designer to create almost any 

geometrical layout and all are equally easy to fabricate, with the only obstacle being 

the resolution capabilities of the lithography process, impacting the minimum size of 

features that can be fabricated. 

Kamalian et al. [3] previously noted that optimal MEMS designs with multiple 

competing objectives need not have full symmetry or manhattan angles, but may 

benefit from symmetry about one axis – bilateral symmetry. Similar to our EC gener-

ated MEMS resonators, spiders have a large central mass and a similar number of legs 

on either side of their body. Spiders have evolved to have some degree of bilateral 

symmetry around the longitudinal axis, but none around the horizontal axis, similar to 

our y-symmetric resonator designs shown in Fig. 9. All species of spiders have a 

broad range of leg shapes, but none of them have manhattan geometries and most ex-

hibit symmetry about only one axis.  

 

no symmetry
y-axis 

symmetry
x-y axis 

symmetry

90º angles
& x-y axis
symmetry

Increasing symmetry and angle constraints

no symmetry
y-axis 

symmetry
x-y axis 

symmetry

90º angles
& x-y axis
symmetry

Increasing symmetry and angle constraints
 

Fig. 9. Examples of MEMS resonator designs with increasing constraints 

4.2   Purpose of Resonance and Vibration 

We can further examine the spider as a biological analog to a resonator in its ability to 

detect prey by resonating with their vibrations. Vibration cues have been used by  
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insects and spiders to locate and kill their prey. Without the use of vibration recogni-

tion, it may be difficult for insects to find their prey, because dense vegetation may 

limit their visual abilities. Vibration signals are also important, because many of the 

insect’s or spider’s prey produce vibrations through movement or feeding, which  

enables them to be located more easily [33]. 

Bola spiders catch their prey by mimicry, emitting the pheromones of the prey  

species. The wing-beat vibrations of the moths that fall victim to the bola spiders 

stimulate the spider to make a bolas in which to capture the moth [34]. Generally all 

web-spinning spiders detect and find prey in their webs through the vibrations gener-

ated by their prey. This is especially important because most species of web spiders 

do not have a strong sense of smell or good vision. Peters (1931) found that the spi-

ders did not respond to a dead fly placed gently in its web. If, however, the fly arrived 

in the web with a jerk or if, once in the web, it was stimulated in some way, the spider 

responded [35]. There is a good deal of evidence that spiders discriminate between 

different types of signals. There have been several studies that demonstrated how  

spiders move towards vibrations of various frequencies, similar to the way MEMS 

resonators and bandpass filters attempt to hone in on certain frequencies for commu-

nication purposes. Resonators, which are basic building blocks of MEMS filters, are 

designed to reject certain frequencies from a wide range of signals and only allow a 

particular frequency band to pass through.   

An important aspect of resonance in MEMS and nature is movement. Blickhan and 

Full [36] conducted a study of multi-legged locomotion in animals as diverse as cock-

roaches and kangaroos in order to develop a model of “legged terrestrial locomotion.” 

They found that the dynamics of movement depend on the number of legs one has and 

the gait or movement pattern. Four- and six-legged creatures had greater whole body 

stiffness than two-legged creatures. The greater whole body stiffness in the four- and 

six-legged creatures resulted in higher natural frequencies, just as a higher overall 

stiffness results in a higher natural frequency in MEMS designs. Spiders generally 

have eight legs while insects have six legs. In MEMS, we mostly observe resonators 

with four main legs for stability.  There are resonators with only two legs, but these 

tend to be slightly unstable with a tendency towards out of plane movement. In spi-

ders, eight legs can enable them to move faster and give them the ability to travel in 

different directions easily. Some insects with six legs have a tendency to move for-

ward more and not backwards and sideways as quickly as spiders.  In our MEMS 

resonator design, we only want to move in one direction based on the comb drive ac-

tuation, hence four legs provides more balance and stability than two legs. Additional 

legs are not needed because in these MEMS resonator designs, motion in multiple  

directions is undesirable. However, if we look more broadly at other MEMS designs, 

such as micro-robots, more legs can be desirable to enable quick and easy movement 

in multiple directions. 

After 3.8 billion years of “research and development,” nature has discovered what 

works, what does not, and what is considered life sustaining, optimizing natural  

designs to meet the necessary functional needs. These “successful designs” are  

ever-changing to meet environmental requirements and are driven by an ultimate 

challenge: survival. Nature’s solutions are sometimes not perfect; however they are 

solutions that are as good as they need to be to serve their intended purpose.   
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5   MEMS Case Study: An Analysis of Symmetry Constraints and 

Impact on Resonance 

In the previous section, we looked at symmetry and resonance in nature. Since our 

synthesis system focuses on the structural design of MEMS, it is important to exam-

ine the different types of constraints we can embed in our MOGA linkage structure in 

order to produce the best performing MEMS designs. To better understand what role 

symmetry constraints we observe in nature have in our MOGA algorithm, an experi-

ment with our resonator test case is performed to explore which combinations of 

symmetry and geometric constraints might produce the best performing micro-

resonator designs. 

5.1   Experiment Setup 

In this experiment we enforce four different sets of constraints on our micro-resonator 

test case. Each mico-resonator is constructed of a 2μm thick layer of polysilicon  

material. The comb drives and center mass for the  micro-resonator design are fixed 

while the springs are free to mutate, subjected to the following symmetry and angle 

constraints: 

• C1: No symmetry or geometric constraints 

• C2: Symmetry is enforced along the y-axis of the design (analogous to bilateral 

symmetry observed in organisms) 

• C3: Symmetry is enforced about the x- and y-axis of the design 

• C4: Symmetry is enforced about the x- and y-axis of the design and the suspen-

sions (also known as ‘legs’) are restricted to 90º angles (analogous to how human 

designers traditionally create MEMS) 

We place emphasis on symmetry constraints as these are most common types of 

structural constraints observed in nature. C4 includes a manhattan angle constraint 

and represents the typical constraints a human MEMS designer will impose upon the 

design of a resonant structure. Our goal is to better understand under what conditions 

symmetry that is found to be optimal in nature is also optimal in our MEMS resonator 

 

Table 1. Polyline spring design parameters used for the MEMS resonator case study (*100μm 

only used for the 10kHz test case) 

Mutation constraints for Polyline Spring Parameter Value

Max. number of beams 7 

Min. number of beams 1 

Max. beam length 100μm/300μm* 

Min. beam length 10μm 

Max. beam width 10μm 

Min. beam width 2μm 

 



476 C.L. Cobb et al. 

example using the MOGA algorithm. The resonator legs begin symmetrically from a 

center mass but are allowed to evolve with any number of joints in the legs (see  

Table 1 for leg design parameters). C1 has no symmetry constraints while C2 has the 

minimal bilateral constraints. C3 and C4 both have full symmetry, with C4 having the 

additional constraint of manhattan geometry. We wish to explore how these cases of 

minimal constraints (C1 and C2) compare to those with maximal constraints (C3  

and C4).   

The feasible design range for our initial resonator design is a resonant frequency 

(f0) between 5-15 kHz and a stiffness ratio (Kx/Ky) between 1-10. The main design 

objective is the minimization of device area while achieving the required stiffness ra-

tio and keeping the resonant frequency deviation to less than 5%. To explore the 

range of possible designs, four sets of design requirements for the micro-resonator 

were randomly generated, using the aforementioned bounds, and then used in a 

MOGA synthesis run (see Table 2). For comparison purposes, these results are in-

cluded with the a previous design requirement test case used by Kamalian [3] and 

Zhang [5] where the resonant frequency target was 10 kHz and the stiffness in the  

x-direction only had to be greater than the stiffness in the y-direction. 

Table 2. Randomly Generated Design Requirements 

Name Target Frequency(f0) Stiffness Ratio (Kx/Ky) 

DR1 10.0 kHz > 1 (x-axis stiffness greater than y-axis stiffness) 

DR2 14.3 kHz 3 

DR3 9.5 kHz 5 

DR4 7.0 kHz 8 

DR5 13.5 kHz 8 

 

For each set of design requirements, we ran the MOGA process five times for each 

constraint case with a population of 400 designs for 50 generations. In our MOGA 

process, the inverse of the pareto rank is used as the fitness value of the design. Only 

the designs in the final pareto-optimal set which meet all of the initial design require-

ments are used in the analysis. The designs that are in the overall pareto set, have a 

frequency deviation within 5% of the target frequency and satisfy the stiffness ratio 

requirement are tallied after each MOGA synthesis process.  

5.2   Analysis of Results 

Table 3 shows the best designs in terms of best minimum and average area, as well as 

best minimum and average frequency error in the pareto sets for each of the design 

requirements (DR1-DR5). Note that C1 (no symmetry) appears to be favorable for 

achieving the best minimum area in the pareto set, whereas C4, the highly constrained 

full symmetry case with manhattan geometry, is favored for minimizing the average 

area across the entire pareto set of designs. In contrast, when considering frequency, 

the best minimum and average error results occur with the least constrained  

constraints cases, C1 and C2.  To see if any of these competing trends are statistically 

significant we apply a Wilcoxon rank sum test to the data. 
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The Wilcoxon rank sum test [37], a non-parametric statistical test, is used to de-

termine whether or not the constraint cases produce similar performing designs with 

respect to design area and resonant frequency deviation. To begin the rank test, we 

form the appropriate null hypothesis (H0) and alternate hypothesis (Ha) using a sig-

nificance level of 5% (or α = 0.05): 

• H0: The distributions of the two compared constraint cases are identical 

• Ha: The distributions of the two compared constraint cases are not identical and 

one distribution is shifted to the right or left of the other (implying one set of con-

straints generates better performing designs) 

Table 3. Comparison of design area and frequency deviation 

Design 

Requirements

Constraint 

Case 

# of Pareto 

Optimal So-

lutions 

Minimum 

Area [m2] 

Average  

Area [m2] 

Minimum 

Frequency 

Deviation 

[Hz] 

Average 

Frequency 

Deviation 

[Hz] 

C1 20 1.63E-07 1.92E-07 0.821 110.890 

C2 18 1.63E-07 1.79E-07 0.147 96.972 

C3 16 1.46E-07 1.96E-07 12.404 181.261 
DR1 

C4 13 1.60E-07 1.75E-07 1.582 150.116 

C1 23 1.14E-07 2.36E-07 0.143 80.415 

C2 31 1.36E-07 2.43E-07 0.133 119.509 

C3 17 1.30E-07 1.72E-07 1.604 121.910 
DR2 

C4 14 1.28E-07 1.53E-07 1.680 156.698 

C1 32 1.29E-07 4.31E-07 0.041 45.237 

C2 24 1.57E-07 2.12E-07 0.244 81.716 

C3 22 1.73E-07 2.79E-07 0.296 142.063 
DR3 

C4 16 1.58E-07 1.82E-07 3.991 99.145 

C1 27 1.72E-07 3.02E-07 0.004 45.618 

C2 21 2.05E-07 2.93E-07 0.165 23.025 

C3 15 2.05E-07 2.39E-07 2.869 69.650 
DR4 

C4 23 1.90E-07 2.22E-07 0.812 116.348 

C1 51 1.20E-07 3.50E-07 0.003 27.185 

C2 17 1.43E-07 1.95E-07 0.487 130.417 

C3 33 1.51E-07 1.86E-07 2.092 193.281 
DR5 

C4 17 1.52E-07 1.63E-07 3.850 177.751 

 
The p-values generated by the rank test for the micro-resonator case study are 

shown in Tables 4 and 5.  In the instances where the p-value is less than the signifi-

cance level, α = 0.05, we can reject the null hypothesis (H0) and accept the alternate 

hypothesis (Ha) indicating that the populations are significantly different.  Conversely, 

when the p-value is greater than the significance level, we cannot reject the null  

hypothesis (H0) within the context of this experiment. 
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Focusing on the frequency deviations (last column in Table 3), an analysis of the 

constraint cases demonstrates that MOGA produces statistically significant different 

pareto sets of designs between constraint cases C1&C3 and C1&C4 in four out of five 

instances, and C2&C3 in three out of five instances if we look at the entire pareto set. 

This trend implies that asymmetry and bilateral symmetry are preferred to full sym-

metry. The p-values for this scenario ranged from 1.88E-9≤p≤0.03355. If we focus on 

frequency deviation for the best designs from each MOGA synthesis run (see Table 

5), constraint cases C1&C4 have statistically different distributions in all instances 

while C1&C3 have statistically different distributions in four out of five instances 

(0.0079≤ p≤0.0317).  

Table 4. P-values for frequency deviation across the entire pareto set of designs 

Design Requirements C1&C2 C1&C3 C1&C4 C2&C3 C2&C4 C3&C4 

DR1 0.8493 0.0772 0.4071 0.0942 0.5349 0.2635 

DR2 0.1515 0.0128 0.0107 0.2532 0.1138 0.3934 

DR3 0.3328 0.0008 0.0295 0.0192 0.2755 0.1433 

DR4 0.9172 0.0335 0.0042 0.0135 0.0009 0.1888 

DR5 0.0506 1.88E-09 0.0001 0.0132 0.1296 0.2777 

Table 5. P-values for best minimum frequency deviations across each constraint case 

Design Requirements C1&C2 C1&C3 C1&C4 C2&C3 C2&C4 C3&C4 

DR1 0.5476 0.0079 0.0317 0.0556 0.4206 0.0952 

DR2 0.8413 0.0556 0.0317 0.2222 0.1508 0.6905 

DR3 0.2222 0.0317 0.0079 0.0952 0.0317 1.0000 

DR4 0.0952 0.0079 0.0159 0.0556 0.2222 0.0556 

DR5 0.0317 0.0079 0.0079 0.2222 0.1508 0.5476 

 

In addition to the frequency analysis, we also performed an analysis on design 

area. An analysis of the best performing designs from each synthesis run based on 

minimum area did not show a strong statistical difference. But, an analysis of area 

across the entire pareto set showed that C4 (full symmetry and manhattan angles) 

generates different pareto-optimal sets of designs for three out of five sets of design 

requirements for each possible constraint case combination (C1&C4, C2&C4, 

C3&C4). This supports results previously demonstrated by Kamalian [3]. Looking at 

Table 3, one can see that C4 had the best average design area overall for all of the  

design requirements. 

When considering frequency deviation, it appears C1 is statistically better than C3 

or C4 in almost all of the cases and C2 is significantly better than C3 and C4 in a  

majority of instances. But C1 is only statistically better than C2 for one instance – 

DR5 for the best minimum frequency deviation. The reverse is never the case – full 

symmetry with or without manhattan geometry shows no significant advantages for 

reducing frequency deviation. To highlight some of the design generated by our 
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Case 1: No symmetry Case 2: y-axis symmetry 

 
f0 = 7.0000 kHz 

Area = 3.1285e-007 m2 

f0 = 6.9998 kHz 

Area = 6.2119e-007 m2 

Case 3: xy-axis symmetry 

 

Case 4: xy-axis symmetry and 90º angles 

 
f0 = 6.9971 kHz 

Area = 3.0076e-007 m2 

f0  = 6.9992 kHz 

Area = 2.9024e-007 m2 

Fig. 10. Best designs based on resonant frequency for design requirement set DR4 

MOGA constraint cases, Fig. 10 shows the best performing designs for the constraint 

cases for DR4 and Fig. 11 shows the best performing design based on frequency for 

the remaining design requirements (D1, D2, D3, and D5). 

It is interesting to note that, in our previous discussion on symmetry and resonance 

observed in nature, bilateral symmetry is the preferred evolutionary design for spiders 

and similar insects based on their frequency needs for mating and catching prey. If we 

examine our results more closely, we must note that most of our design requirements 

favor asymmetrical or bilateral symmetry if frequency is the major consideration and 

full symmetry if average area minimization over the pareto set is the priority. How-

ever the difference between asymmetry and bilateral symmetry is not statistically  

significant. We can hypothesize that bilateral symmetry provides the balance between 

the competing objectives, but further investigation is required in order to validate this. 

Note that one of our design requirements involves a stiffness ratio, and this is a meas-

ure of resonator movement in the x- and y-direction. For our particular micro-

resonator design, it is highly desirable to have a high stiffness ratio (rigidity in the  

x-direction and compliance in the y-direction) for the purposes of device stability.  

Thus, as we increase the stiffness ratio from a low value, such as Kx/Ky = 1 (DR1), to 
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a high value such as Kx/Ky = 8 (DR4 and DR5), we are creating a bias against full 

symmetry in our optimization constraints. This bias in the stiffness ratio potentially 

forces the designs generated by MOGA to favor more asymmetrical layouts (C1 and 

C2) rather than fully symmetrical results (C3 and C4). This trend is shown in Table 4 

where the bilateral symmetry C2 is statistically better than full symmetry C3 only for 

the higher stiffness cases DR3, DR4 and DR5. 
 

 

 DR1 

 

DR2 

 

f0 = 9.9999 kHz 

Area = 1.9474E-007 m2 

f0 = 14.300 kHz 

Area = 2.7782E-007 m2 

DR3 

 

DR5 

 
f0 = 9.5000 kHz 

Area = 4.6938E-007 m2 

f0 = 13.500 kHz 

Area = 5.9004E-007 m2 

Fig. 11. Best performing designs based on frequency deviation for D1, D2, D3, and D5 

Fig. 11 illustrates the best performing micro-resonator designs based on frequency 

deviation. Most of these designs have a very small deviation from the frequency goal 

if we look at the results in Table 3. The designs which have the smallest frequency 

deviation typically have one of the largest design areas in the pareto set. This is due to 

the conflicting objectives in our multi-objective optimization problem. There are 

trade-offs between the frequency, area, and stiffness objectives, and at this point, the 

human designer can decide which design in the pareto set is best suited for their 

MEMS design application. In this section, we have presented an analysis of the role 

symmetry constraints play in out MOGA linkage structure. Increasing the level of 

symmetry constraints can further restrict the search space to a more manageable size 
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and enable our micro-resonator designs to achieve a smaller design area on average, 

but more asymmetrical designs are favored by MOGA for reducing frequency error 

and achieving the smallest design area. We hypothesize that the bilateral symmetry 

found in spiders and insects may be a compromise between frequency accuracy and 

compact size. 

6   Summary and Conclusions 

Our MEMS synthesis architecture, with the integration of MOGA and CBR, deals 

with the concept of linkage by using a component-based genotype representation and 

an automated design knowledge-base.  CBR provides MOGA with good linkage in-

formation through past design knowledge while MOGA inherits linkage information 

through our component-based genotype representation.  A MEMS micro-resonator 

test case was presented to show how symmetry constraints observed in nature can be 

embedded into our MOGA linkage structure to produce new promising MEMS design 

solutions.  We found that when minimizing frequency error, asymmetry and bilateral 

symmetry are favored while conversely, when minimizing device area, the maximum 

constraints of full symmetry and enforced 90º angles are favored. 

As part of our future research plan, we will examine how linkage learning can be 

integrated with MOGA when CBR may not be able to select a good initial seed  

design. Further exploring biomimetic algorithms and biomimetic ties to MEMS syn-

thesis algorithms is another area we plan to pursue, investigating how increasing the 

number of leg components on a MEMS design can create optimal solutions in other 

design areas such as micro-robots. We want to also further explore the role symmetry 

and angle constraints have on these types of new MEMS designs. Lastly, we are  

moving towards creating a broader MEMS classification scheme and building up a 

case library of MEMS filter designs and their accompanying components to further 

expand the range of designs covered by our program. 
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