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Abstract. Rockfalls and landslides are major types of natural hazards 
worldwide that kill or injure a large number of individuals and cause very high 
costs every year. Risk assessment of such dangerous events requires an accurate 
evaluation of the geology, hydrogeology, morphology and interrelated factors 
such as environmental conditions and human activities. It is of particular 
importance for engineers and geologists to assess slope stability and dynamics 
in order to take appropriate, effective and timely measures against such events.   
This paper presents a decision-tool for geo-risk assessment on the basis of a 
knowledge-based system. The integration of such a tool with novel 
measurement sensors into an advanced system for geo-risk monitoring, which 
performs data fusion on-line, is innovative. To enable such a system, a 
knowledge base capturing domain knowledge formally is developed, which to 
the best of our knowledge is unprecedented; the completed part for initial risk 
assessment works quite well, as extensive experiments with a number of human 
experts have shown.  

Keywords: Knowledge-Based System, Alerting System, Rockfall and 
Landslide Monitoring.  

Background and Motivation 

In the last years, damage caused by rockfalls and landslides has been increasing, as 
well as the number of persons that were killed or injured, due to a spread of 
settlements in mountain areas. In addition, many global climate change scenarios 
predict an increase in the probability of heavy rain, which is a primary trigger for 
rockfalls and landslides. This causes an urgent need for highly effective and reliable 
tools for monitoring rockfalls and landslides at an operational level. The increasing 
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importance of rockfall and landslide monitoring is clearly also reflected by a large 
number of research projects. For example, in its last two framework programs, the 
European Commission has positioned research about “Natural Hazards” and 
“Disaster-Management” as a priority topic. The core of geo-risk management consists 
of identifying, understanding and mitigating risk by reducing the probability or 
consequences of rockfalls and landslides. In the literature, several geo-risk 
management and geo-monitoring systems can be found; most notable are [3, 8, 9, 11, 
12]. Examples for systems used in practice are GOCA [5] and GeoMoS [4]. The main 
application field of these tools is monitoring and analyzing deformations; however, 
they offer no possibility for deformation interpretation. Currently this is done by 
human experts from geology and civil engineering, who are interpreting deformations 
on the basis of a large number of data records, documents and knowledge of different 
origin. 

Given the increasing number of problematic sites and the limited number of human 
experts, automated intelligent monitored interpretation systems are required. The 
implementation of a knowledge-based system enables an automatic process of 
interpretation and determining of the risk potential. In contrast to the mentioned 
monitoring tools (e.g., GOCA), it is possible to perform deformation interpretation 
with our system. Based on the measured deformation vectors, a measurement 
preprocessing is performed (mainly clustering to detect areas of similar movement). 
On the basis of this information and additional data about velocity and orientation, 
some conclusions about the kind of occurring movement can be drawn. Additionally, 
data of different, heterogeneous sources, such as geodetic deformation measurements, 
geotechnical measurements, geological maps, geomorphological maps, in-situ 
investigations, and numerical modeling methods have to be included in such a system. 

It should be emphasized that the integration of a knowledge-based system for 
solving this task represents an innovative method.  

At the Vienna University of Technology (Institute of Geodesy and Geophysics), 
the interdisciplinary research project i-MeaS (“An Intelligent Image-Based 
Measurement System for Geo-Hazard Monitoring”) [6] has been launched with the 
purpose of research, develop and implement an interpretation tool for geo-risk 
objects. The system gives on-line information about ongoing deformations and 
supports issuing alerts in case of excessive deformation behavior. 

Making conclusions about incidents is a not-trivial problem; by using artificial 
intelligence techniques, via the integration of a knowledge-based system, new 
directions are opened up. This new system is a complex intelligent system, working 
with several different data sets in real-time. Deformation measurement data will be 
delivered by a novel type of measurement system, which consists of two image-based 
sensors. Inside the captured images so-called interest points are detected. The 
calculation of the 3D coordinates is done by classical geodetic forward intersection1. 
By means of such a high precision measurement system, 3D object points can be 
detected with an accuracy of about 2-3 mm (object distances up to 1000 m). 
Subsequently a geodetic deformation analysis can be performed that yields as a result 
deformation movement vectors, which constitute the input for later interpretation.  

                                                           
1 Forward intersection is a standard method for determining 3D object coordinates from 2D 

image points.  



    3 

In this paper, we report on the architecture and functionality of the respective 
interpretation system and its development stage. In particular, we present a knowledge 
base for risk assessment, which to the best of our knowledge is unprecedented, and as 
comparative tests with a number of domain experts indicate, works well compared to 
human experts. 

System Concept and Architecture 

Remote monitoring of unstable slopes is a typical multidisciplinary problem 
incorporating a network of sensors of different kinds. Movements and deformations 
can be measured, for instance, with geo-technical sensors (e.g., inclinometers, tilt-
meters, extensometers, etc.), or optical measurement systems (e.g., tacheometers, 
laser scanners, etc.). Most of these sensors must be placed on-site; in hazardous 
terrain this is very often not possible. It is thus also necessary to apply remote 
monitoring methods, some of which are based on photogrammetric methods or 
terrestrial synthetic aperture radar (SAR). Both yield multi-temporal images that 
contain distances to the scene in each pixel. 

Current Systems. Recently, the interest in image-based measurement systems has 
increased. Leica Geosystems [14] developed a prototype of an “image-assisted total 
station” with the purpose of defining a hybrid or semi-automatic way to combine the 
strength of the traditional user-driven surveying mode with the benefits of modern 
data processing. Furthermore, Sokkia [13] introduced a prototypical tacheometer 
which provides focused color images.  

The central task of all image-based deformation measurement systems is the 
calculation of 3D object coordinates from 2D image coordinates for a subsequent 
deformation analysis or object reconstruction. The basic idea of deformation 
measurements is capturing a zero state of the object (measurement epoch 0) and one 
or more subsequent object states (measurement epoch n). The time interval between 
the measurements depends on the type and the estimated behavior of the objects. 

All these measurement systems are based on a permanent user interaction. 
Selection, pointing and measurement of the relevant object points have to be operated 
by a measurement expert. Most of the relevant processing steps are fully manual. The 
challenging task of the mentioned i-MeaS project is to develop a fully automated 
system (user interaction will be possible at different decision levels). Data capturing, 
data analysis and data interpretation should be performed as an automated process. 

System Concept. In our system, we are using a new kind of optical measurement 
system which is based on a traditional tacheometer system2, namely an image-based 
tacheometer system. In comparison with laser scanners, this system measures objects 
with higher accuracy; compared to photogrammetric systems, they are easier to use 
for on-line measurement processes (e.g., object monitoring), especially because 
measurements can be done with a high degree of automation. 

The processing chain of the new measurement concept starts with the capturing of 
geo-referenced images, followed by image point detection and by 3D point 

                                                           
2 A tacheometer is a surveying instrument for distance determination and measurement of 

horizontal and vertical angles. 
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measurement. The final output of this measurement process is a list of 3D 
deformation vectors of the object (deformations captured between two or more 
measurement/time epochs). Measurement data is one of the basic elements of 
decision-making – however, many other factors are used by the system (more details 
are given below). The system architecture can be divided into several components: 
 the measurement sensors (e.g., geodetic, geotechnical and on-site placed 

meteorological sensors),  
 an image analysis system (which is needed because some sensors are working on 

the basis of captured images),  
 a system control component,  
 a knowledge base,  
 a system for deformation analysis, and  
 a system for alerting.  

 
Furthermore, the system includes an user interface. The simplified architecture of 

the system, with the knowledge base and the system control component as core units, 
is shown in Fig. 1. A description of the measurement system can be found in [6]. 

 

 

Fig. 1. Simplified architecture of the system. 

As mentioned above, such a complex system works on the basis of heterogeneous 
information. We are using the following information sources: 
 generic domain knowledge (i.e., knowledge about coherences of influence factors 

and general  deformation behavior), 
 case-specific knowledge (i.e., domain knowledge collected via historical notes, 

morphological and geological maps), measurement data (geodetic, geotechnical, 
geophysical measurement data, etc.), 

 local weather data (like local temperature, the amount of precipitation, the kind of 
precipitation, etc.), and  

 global meteo data, which are provided by meteorological services. 
 

In order to test the optical measurement system under realistic field conditions the 
sensor system was installed over several days on the “Pasterze” glacier, the largest 
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glacier in the Eastern Alps. The end of the glacier which is covered by debris and a 
geologically stable rock face was chosen as test site. The main purpose of the test was 
the evaluation of the point detection and the consecutive calculation of 3D 
coordinates under realistic environmental (especially illumination) conditions. The 
results show that the measurement system works very well and moreover could 
measured 3D object coordinates with an accuracy of 2-3 mm (the distance to the 
object was about 1,000 m). 

Risk Assessment 

As mentioned above, there is a high demand for reliable prediction of hazardous 
events. Apart from monitoring, the detection of possible causes is a matter of 
particular interest. According to these preconditions the requirements on a geo-risk 
assessment system are quite high. Eventually, knowledge-based interpretation should 
be able to draw conclusions about the type of occurring movements as well as 
providing possible causes for them.  

The concept of data interpretation is based on the “calculation” of risk factors for 
critical cause variables and on the elaboration of an interpretation for the deformation. 
Examples for cause variables can be precipitation, permafrost, critical slope angle, 
etc. The range value of the risk factor is divided into six classes (low, low-medium, 
medium, medium-high, high, very-high). This definition is based on the discussion 
results with experts. 

The challenging problem in developing such an alerting system is (1) to identify 
relevant factors and (2) subsequently to capture the interlinkage of these influence 
factors. The latter are described in the next section. 

In our system, the process of risk assessment is divided into two steps: (1) the 
determination of the “Initial Risk Factor” and (2) the determination of the “Dynamic 
Risk Factor”. The first step estimates the plausibility of an occurring moving event. 
Furthermore the zero state of interpretation and the observation is defined.  

The second step is focused on the processing of the temporal development of the 
risk factor. Therefore additional data have to be included into the decision process, 
e.g., measured data captured by the image-based monitoring system. Measurement 
data represent the 3D object deformations (data is captured in defined time periods 
resulting in movement/displacement vectors). As mentioned above, the system is also 
able to access local and global meteo data in real-time, which can be used by the 
dynamic system as a basis for deformation prediction. 

This process is leading to a detailed description of the deformation and an actual 
estimation of the risk factor, standardized on a predefined scale, which can be directly 
used as a global indicator for the likelihood that a landslide or a rockfall will occur.  
In practice, the estimation of the risk factor is a continuous process, in which the 
dynamic risk factor has to be determined in a periodic feedback cycle. 

In the following, we focus on the determination of the “Initial Risk Factor”. Beside 
difficult technical requirements related to sensor and data fusion, the most challenging 
tasks in developing such a system is the implementation of the knowledge base and, 
in a preliminary step, the knowledge acquisition. This problem was solved using a 
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two-step approach: in the first step, a single expert was consulted, while in the second 
step an extensive system evaluation by many experts was carried out and their 
feedback was incorporated into a system refinement (details are given below). 

Construction of the Knowledge Base 

As described, the challenging problem is the realization of the knowledge-based part, 
especially the acquisition of knowledge from human experts. For this, we adopted a 
common methodology [1, 10]. In order to estimate the initial risk factor, influence 
factors had to be identified whose values increase the likelihood of deformation. 
During a period of extensive discussions about the domain problem, more than thirty-
five relevant influence factors were identified (e.g. vegetation,  granual material, 
subsoil, pieces of rock, indicates, slope angle, slope profile, slip surface, material 
underground,  saturation of soil, leaning trees, leaning rocks, crack, rock joint, joint 
orientation, insolation, permafrost, stone chips, frost-thaw-cycle, depth of movement, 
local temperature, etc.). About thirty of them are used for the determination of the 
“Initial Risk Factor”. Some factors including examples for possible consequences are 
listed in Table 1. 

Table 1. Examples for influence factors for the initial risk factor and possible consequences.  

Influence Factor Examples for Consequences 

vegetation 
The vegetation has an influence on the slope stability and soil 
saturation. 

granual material 
In interaction with slope angle and the kind of subsoil a conclusion 
about the slope stability can be done. 

slope angle 
In interaction with slope angle and the kind of subsoil a conclusion 
about the slope stability can be done. 

slip surface Existing slip surfaces are an indicator for slope movements. 
soil saturation The degree of saturation is dependent on the vegetation on the surface. 
leaning trees / rocks Leaning trees and rocks are indicators for slope movements. 

insolation 
Insolation can affect factors like soil saturation and in combination with 
the influence caused by granual material and slope angle a conclusion 
about the slope stability can be done. 

permafrost 
The existence or absence of permafrost has an influence on the slope 
stability. 

 
On the basis of the identified factors and the discussion, we have developed an online-
questionnaire, which serves as a makeshift for assessing the “Initial Risk Factor” of 
the object to be observed. The questionnaire comprises questions ranging from the 
geological and morphological characterization, the vegetation, and the hydrology of 
the mountainside to administrative issues. The expert may answer all object-relevant 
questions in-situ/online, usually using multiple sources to find the answers; geological 
and geomorphological maps, historical documents, data of earlier geotechnical or 
geodetic measurements of the observed slope, and last but not least  inspection of the 
endangered area. 

 Discussions with several experts revealed that estimating a risk factor on the basis 
of many influence factors and extensive domain knowledge is highly complicated. 
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Moreover, experts sometimes largely disagree. Thus, a system which incorporates the 
opinion of more than one expert is indispensable to guarantee continuous high-level 
quality of decisions. 

For estimating the mentioned risk factor, we developed a knowledge-based system, 
adopting a rule-based approach, more specifically using production rules. This is 
because the connection between influence factors and possible causes or deformation 
behavior can be naturally formulated by rules, and this representation is more 
accessible to domain experts than other representations. 

For the implementation, we have chosen JESS [2, 7], which is a rule engine and 
scripting environment entirely written in JAVA. JESS is easy to learn and use, is well 
documented and supported; moreover it supports fuzzy rules and uncertainty. 
Furthermore JESS integrates well into the Eclipse software development environment 
which is widely used in industry. 

In order to make the collected numerical features (like measurement data, 
meteorological data, etc.) more suitable for the rule-based decision system, we use an 
abstraction procedure that is in line with the expert view. It translates the numerical 
input values (image features) into linguistic concepts which are represented by 
abstraction (“fuzzy”) sets. More specifically, they form an ordinalization, i.e., the sets 
are characterized by non-overlapping step membership functions; hence, this 
translation is a pre-stage of full fuzzification. The use of such an abstraction enables 
decision rules in terms of easily-understood word descriptors instead of numerical 
values. Furthermore, all data sets are synchronized by a common time basis. 

An example of a simplified initial state rule (IS) (JESS syntax) is shown in the 
following. The LHS of the rule ‘IS_riskpot_rockfall’ checks whether there are 
elements of type IS_ROCKFALL in the working memory, fact1 and fact2, where in 
fact1 certain slots (i.e., attributes) have certain values (danger_recent_deformation has 
value ‘high’, etc., and frost_thaw_cycle has value either ‘NO’ or ‘NN’), and fact2 
states that a risk factor is not defined. The RHS includes the instruction to update the 
status of fact2 to have risk_defined true and to set risk_pot to high_4. The values of 
the used slots (danger_recent_deformation, danger_slope_angle, danger_bedding, 
danger_fine_grit) are determined from combination of input elements (separated 
rules). 

 
(defrule IS_riskpot_rockfall  
   (declare (salience 0))  
   ?fact1 <-(IS_ROCKFALL 
              (danger_recent_deformation==high) && 
             (danger_slope_angle == very_high) && 
             (danger_bedding == low) && 
             (danger_fine_grit == very_high) &&  
             (frost_thaw_cycle == NO ||trost_thaw_cycle == NN)) 
   ?fact2 <- (IS_ROCKFALL{risk_defined != YES})           
=> 
   (modify ?fact2 (risk_defined YES)(risk_pot high_4)))    
 

Generally, the rule base is divided into two groups of rules: (1) rules regarding the 
connections between facts and consequences (e.g., rain and the consequent possible 
deformation of the object), and (2) rules determining the initial risk factor. The 
mentioned example is part of the second group. The whole “initial-risk-factor-system” 
consists of about 70 rules. It is also notable that we have developed a tool for 
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visualization of rules and their firings, which helps in grasp and analyzing data 
dependencies. 

Evaluation and Experiments 

After developing and implementing a prototype for determining the “Initial Risk 
Factor”, we performed an evaluation in a two step approach: (1) evaluation by one 
expert, followed by an improvement of the system, and (2) an exhaustive evaluation 
by eight experts.  

In step 1, 30 different data sets were prepared by one expert, where each data set 
models a test site with particular characteristics concerning slope profile, vegetation, 
insolation, etc. Facts like soil material, slope angle, hydrological properties, 
information about indicates for movement, etc. were predetermined. Then, the system 
processed the data sets and the risk factors determined were compared with the 
decisions by the single expert. The discrepancies were analyzed and the explorations 
were used for extending and upgrading the prototype system. 

In step 2, eight geological experts had to appraise independently the 30 test cases. 
The resulting risk factors were compared with the result of the prototype system. It is 
striking to note that the risk factor between the different experts varies up to two 
classes. In exceptional cases, the difference is more than three. A statistical overview 
of the differences (Δ) between the eight experts and the system is shown in Fig. 3; 
tables with results for all cases are in the Appendix.  
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Fig. 3.  Statistic overview of the processed expert evaluation. 
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Also at the level of the individual test cases, the answer conformity was high; it is 
remarkable that about 42 % of the answers agree completely with the system, and 
30% of the answers are at distance 1. For example, expert 1 agrees completely with 
the system decision in 18 test cases (�=0), in ten test cases the decision has distance 1 
and in two cases it has distance 2. From case to case even the disagreement between 
the experts can be quite high. This mainly depends on the individual experience and 
appraisal of each expert. For all the test case, there was 102 times complete agreement 
(Δ=0) of the experts and the system, while the maximal disagreement (Δ=4) was in 3 
cases only. 

The answers of the system and the experts completely agree in one case, and they 
span an interval of i classes, i=1,2,3,4,5, in 4,7,13,5 and 0 cases, respectively. Only in 
one case, the system answer is outside the interval of the expert answers. 
Furthermore, in 15 cases (i.e. 50%) the system answer is the median of the expert 
answers and in 8 cases (27%) one of the middle answers (e.g., in case 6 the system 
answer is 2, while the middle answers in the sorted expert answers 1,1,1,1,2,2,3,4 are 
1 and 2, thus the median is 1.5); in 5 cases (17%), it is one class to the median, and 
only in 2 cases the discrepancy is higher, with a maximum of two classes in the 
outlier case. 

As the above statistical data indicates, the risk assessment is a difficult task where 
expert experience is required to obtain a reasonable solution. This is witnessed by the 
fact that there is no sole “correct” assessment for many of the different test cases, and 
expert opinions on the risk can vary for the same test case. The system can compete 
with the human experts; the differences between the result of the system on one side 
and the experts’ results vary in a similar way as the results vary between different 
experts. In order to further improve the quality of risk assessments of the system and  
to test its usability, we initiated an even broader evaluation where we asked additional 
experts for their opinion on our test cases. These new experts should bring in a fresh 
sight on the problem and the system because they have no information about the 
system and no training on it. The results obtained from first new probands are in 
accordance with the system and with the former evaluators. This also shows that the 
system interface is intuitive enough such that an untrained expert can easily use it 
without major difficulties. 

Conclusion 

The main goal of the presented work is the development of an innovative automated 
knowledge-based interpretation system for predicting rockfalls and landslides with 
advanced measurement techniques. Towards this goal, we have carried out extensive 
knowledge acquisition and performed knowledge analysis with the help of several 
experts, leading to a rich knowledge base that builds on a number of influence factors, 
determined from various information sources (e.g., measurement data, expert 
knowledge, maps, etc.).  
An experimental prototype for risk assessment we developed shows good results for 
the completed “Initial Risk Factor” part, in where it behaves like a human expert. 
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Currently, the dynamic system (the second part of the final system) is under 
development – besides extending the existing rule set, further rule components (e.g., 
for updating risk factor, including meteorological data, etc.) will be added. Future 
work will include testing (collecting field data is targeted for the summer of 2010) 
and the integration of the knowledge base component into an on-line geo-risk 
management system. 
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Appendix
Statistical Overview of the Evaluation Results (En = Expert n ; S = System)

Test Case S  E1 E2 E3 E4 E5 E6 E7 E8

1 5 5 5 5 5 5 4 5 5
2 5 5 4 4 5 5 5 4 5
3 3 3 3 1 2 3 3 4 2
4 3 3 2 3 4 3 3 3 2
5 0 0 2 0 0 0 0 0 0
6 2 1 1 1 4 2 2 1 3
7 0 0 0 0 0 0 0 0 0
8 3 4 3 1 4 3 1 2 3
9 3 3 3 2 4 3 1 1 4

10 4 4 4 3 3 2 2 3 3
11 4 4 4 3 5 2 3 2 4
12 5 5 4 5 5 4 4 4 5
13 3 2 3 3 4 3 2 4 4
14 3 3 3 3 4 4 1 2 2
15 4 5 3 5 5 4 5 2 5
16 4 4 3 4 4 2 0 2 2
17 4 4 4 5 4 2 1 1 1
18 3 3 3 5 3 3 4 2 2
19 3 3 3 4 2 2 1 1 1
20 3 3 3 3 2 2 1 1 1
21 3 1 3 1 3 2 2 0 1
22 2 1 3 3 3 2 1 0 1
23 2 1 4 2 1 2 1 2 1
24 2 0 3 4 2 2 1 2 2
25 4 4 3 4 3 3 4 4 4
26 3 2 3 2 2 3 4 3 4
27 2 1 3 2 2 3 3 2 4
28 4 3 3 5 4 3 4 2 4
29 2 2 3 3 1 2 1 2 3
30 0 1 4 2 3 2 2 4 1

Δ E1-S Δ E2-S Δ E3-S Δ E4-S Δ E5-S Δ E6-S Δ E7-S Δ E8-S Σ

Δ=0 18 15 12 12 17 8 10 10 102
Δ=1 10 12 12 13 8 13 9 14 91
Δ=2 2 2 6 4 5 7 8 5 39
Δ=3 0 0 0 1 0 1 2 1 5
Δ=4 0 1 0 0 0 1 1 0 3
Δ=5 0 0 0 0 0 0 0 0 0

RISK FACTOR
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