
Contribution to CHI85 addressing the topics: intelligent interfaces, cognitive

issues in user modeling and individual differences among users.

Knowledge-based Help Systems

Gerhard Fischer, Andreas Lemke and Thomas Schwab

Research Group on Knowledge-based Systems and Human-Computer Communication
Department of Computer Science, University of Stuttgart

Federal Republic of Germany

Abstract

Our research goals are to understand the nature of, construct and evaluate intelligent

interfaces as knowledge-based systems. In this paper we demonstrate the need for help

systems as an essential part of human-computer communication. Help strategies are

based on a model of the task (to understand what the user is doing or which goals

he/she! wants to achieve) and a model of the user (to guarantee that these systems are

non-intrusive and that they pay attention to the needs of individual users).

We illustrate that passive and active help systems have to be constructed as knowledge

based systems. Two operational systems (PASSIVIST and ACTIVIST) are described to

show the usefulness of this approach.

1. Help Systems

The increased functionality of modern computer systems (required by the many different

tasks which a user wants to do) will lead to an increased complexity. Empirical

investigations have shown that on the average only 40% of the functionality of complex

systems are used. Figure 1-1 is based on our empirical investigations through careful

observations (e.g. persons using systems like UNIX, EMACS, SCRIBE etc. tn our

environment) and describes different levels of system usage which is characteristic for

1 In the reman'·rng part of the paper we wifl use the pronoun -he- as a ge'1eric notation fot a user

2

many complex systems. The different domains correspond to the following:

01: the subset of concepts (and their associated commands) which the user
knows and uses without any problems.

02: the subset of concepts which he uses only occasionally. He does not know
details about them and he is not too sure about their effects.

03: the mental model (Norman 82; Fischer 84) of the user, i.e. the set of
concepts which he thinks exist in the system. A passive help (see section 1.1)
system is needed to gradually master the commands in O

2
and 0

3
,

0 .. : 0 .. represents the actual system. Passive help systems are of little use for
the subset of 0

4
which is not contained in 0

3
, because the user does not know

about the existence of these system features. Active help systems (see section
1.2) which advise and guide an user similar to a knowledgeable colleague or
assistant are required that the user can incrementally extend his knowledge to
cover 0 ...

D 4

Figure 1-1: Different levels of system usage

Unlike tutorial systems help systems cannot be structured in advance but must

"understand" the specific contexts in which the user asks or needs help. They provide

information only in relevant situations and eliminate the need to learn a lot of things in

advance (i.e. at times when it is unknown if they ever wjfj be used and when it is hard to

imagine an application). A general discussion of user support systems is given in

Fischer/Lemke/Schwab (Fischer, Lemke, Schwab 84).

1.1 Passive Help Systems

Keyword Based Help Systems. Assuming a user knows the name of a command but not

its details, keyword based help systems (including synonym lists and pattern matching

capabilities) are a quick, easy to implement and sufficiently reliable choice.

3

Keyword based help systems can be used for explanation of terms, description of

commands and function keys, and search for related concepts. They are of little help

clarifying general topics where it is difficult or impossible to describe the needed

information with a single word. Existing keyword help systems are static and do not take

the user's special situation or his level of expertise into account.

Natural language Based Help Systems (see section 3.1). Observation of human "help

systems" suggests that often a dialog rather than a single question and answer is

necessary to identify the user's problem or to explain a solution. Natural language based

help systems offer the following possibilities:

* the user has multiple ways to formulate a problem. Natural language provides
much more flexibility than the best synonym lists.

* with natural language failures are soft Most of the user's utterances give at
least a hint to where the problem lies.

* misconceptions of the user can be identified from his utterance. They give an
important clue for building a user model.

* the user can not only ask a specific question, but he can describe his goals,
his intentions and his difficulties.

A problem for novices is to find the appropriate words to describe their problems based

on a lack of experience in talking about concepts of the used computer systems.

1.2 Active Help Systems

There are different system aids which can be considered as very simple active help

systems (e.g. canned error messages). The systems which we envision do not only

respond to errors but notice -- based on a model of the taSk and a model of the

individual user -- suboptimal actions of the user which serve as a basis for individual

help.

The following example (in the context of working with the UNIX file system) should

illustrate our notion of an active help system: a user working in two different directories

of the hierarchical file system may be observed typing several times a sequence of

commands like:

cd !usr!src!ucb!lisp!lisplib

cd !users!andi!lisp!help!version3

to switch back and forth between two directories. An active help system might offer the

4

advice to use the commands pushd and papd which maintain a stack of directories and

aI/ow to exchange the current and previous directory.

It is not always clear which solution is suboptimal and should trigger an activity of the

help system. Other solutions (e.g. definition of aliases for the two cd commands) might

be equally straightforward. A metric is necessary to judge how adequate an action of the

user is. Except for simple problem domains (e.g. a game where an optimal metric can

possibly be defined (Burton, Brown 76», optimal behavior cannot be uniquely defined. Our

actual implementations (see section 3) of help systems are constructed for an editing

system and the metric chosen is the closeness between the system's primitive operations

and the concepts of the task domain (which is often related to the number of keystrokes).

This is in many cases a questionable metric and in our future work we will represent

more a ppropriate metrics, e.g. like defining the right relation between cognitive and

physical effort.

If a user and a help system rely in their understanding on a very different metric the

same difficulty like with human help occurs: the help system -forces· the user to do

something which he does not want to do. A possible solution to this problem might be

to make the metric visible and to allow the user to change it; but we must be aware that

this increases the control of the user as well as the complexity of the system and it will

be of little use if we do not find adequate communication structures for it.

2. Knowledge-based Human-Computer Communication

Knowledge-based systems are one promising approach to equip machines with some

human communication capabilities. Based on an analysis of human communication

processes we have developed the model shown in Figure 2-1.

The system architecture in Figure 2-1 contains two major improvements compared to

traditional approaches:

* the explicit communication channel is widened (e.g. we use windows, menus,
pointing devices etc. in our systems; see Figures 3-2 and 3-3)

* information can be exchanged over the implicit communication channel.

The four domains of knowledge shown in Figure 2-1 have the following relevance:

1. knowledge of the problem domain: research in Artificial Intelligence has shown that

•
w

5

Knowledge about:

/

• problem domain
• communicatlon processes
• communlcation partner
• problems of the user

and tutorial intervention

... -
implicit

communlcation channel

L77777777
explicit

communication channel

Figure 2-1: Architecture for knowledge-based Human-Computer Communication

intelligent behavior builds upon large amounts of knowledge about specific domains

(which manifests itself in the current research effort surrounding expert systems).

Knowledge about the task domain imposes constraints on the number of possible actions.

A model of the task domain describes reasonable goals and operations. In UNIX if a user

needs more disk space it is in general not an adequate help to advise him to use the

command "rm *,,2 (Wilensky et al. 84).

The user's goals and intentions can be inferred in situations where we understand the

correspondance between the system's primitive operations and the concepts of the task

domain. If the user of an editor repeatedly deletes characters up to the beginning of a

word this can be recognized as the higher level concept delete-beginning-of-word. In

ACTIVIST (see section 3.2) these concepts are modeled as plans. This mapping should be

bidirectional. Given a problem of the task domain, a help system must be able to indicate

how it can be solved using the primitive operations.

2. knowledge about communication processes: the information structures which control

the communication should be made explicit, so the user can manipulate them.

2The command witl delete an fdes in the dIrectory

6

3. knowledge about the communication partner: the user of a system does not exist; there

are many different kinds of users and the requirements of an individual user grows with

experience. Most 'existing help systems do not take an individual user's special situation

or his level of expertise into account. To pay attention to individual differences the

following knowledge structures have to be represented:

* the user's conceptual understanding of a system (e.g. in an editor, text may be
represented as a sequence of characters separated by linefeeds which implies
that a linefeed can be inserted and deleted like any other character).

* the user's individual set of tasks for which he uses the system (a text editor
may be used for such different tasks as writing books or preparing command
scripts for an operating system).

* the user's way of accomplishing domain specific tasks (e.g. does he take full
advantage of the systems functionality?).

* the pieces of advice given and whether the user remembered and accepted
them.

* the situations in which the user asked for help.

One main task of an active help system is to monitor the user's behaviour and reason

about his goals. Sources for this information are: the user's actions including illegal

operations. This is based on the following hypotheses (Norman 82): "a user does not

make arbitrary errors; all operations are iterations towards a goal."

Classification of users with the help of stereotypes can be used to make assumptions

about the expected behaviour of the user (Rich 79).

4. knowledge about the most common problems which users have in using a system and

about tutorial invention: this kind of knowledge is required if someone wants to be a

good coach or teacher and not only an expert; an user support system should know when

to interrupt a user.

Help systems must incorporate tutorial strategies which are based on pedagogical

theories, exploiting the knowledge contained in the model of the user. Strategies

embodied in our systems are (Fischer 8ll:

* take the initiative when weaknesses of the user become obvious. Not every
recognized suboptimal action should lead to a message.

* be non-intrusive. Only frequent suboptimal behaviour without the user being
aware of it should trigger an action of the system.

* give additional information which was not explicitly asked for but which is
likely to be needed in the near future.

* assist the user in the stepwise extension of his view of the system. Be sure
that basic concepts are well understood. Don't introduce too many new
features at once.

7

3. Prototypical Implementations

In this section a passive and an active help system for the editor BISY (Bauer 84) are

described which we have developed and implemented. BISY is an EMACS-like, screen

oriented editor developed in our research group. BISY was chosen for the following two

reasons: editing is a task domain which is complex enough but well understood and BISY

is integrated in our working environment (where we have a wide variety of tools at our

disposal: LISP, OBJTALK, a window system etc.). Therefore we had access to the

information structures needed to add a help system as an additional feature.

The current implementation of the two help systems can only deal with cursor movement

and deletion tasks. In this domain BISY offers a rich set of operators. In addition to

character oriented commands there are higher level operations for words, lines,

paragraphs and lists. The systems' level of understanding is limited to these concepts.

Concepts of subject domains in which editors are used (e.g. address in a letter) are not

handled in the current implementation, but are subjects of future research work.

3.1 PASSIVIST: An Example for a Passive Help System

PASSIVIST (Lemke 84) is a natural language based help system for BISY. The first step in

the design of this system was to get an impression of the real needs of the user. In

several informal experiments a human expert simulated the help system in editing

sessions with users of different expertise. The results indicated a fairly diverse set of

problems ranging from finding keys on the keyboard up to complex formatting tasks.

PASSIVIST provides help to requests like (translated into English):

* How can I get to the end of the line?
* I want to delete the next word.

PASSIVIST uses a help strategy in which each step of the solution is presented and

explained to the user who then executes this step and sees immediately the resulting

effects. Help is currently given as text generated from sentence patterns according to the

goal structure of the problem solving process. We are planning to augment this by

displaying key sequences and subgoals graphically.

8

3.1.1 A sample session with PASSIVIST

Assume the user wants to delete a line. He hits the help key, a help window pops up and

he is prompted for a question. 3

Question: How can I delete the next line?

Recognized words: delete next line
Ignored words: How, can, I, the?

The system indicates what it has understood. This is a common technique found in

human discourses. It allows to correct misconceptions and to build a model of the

understanding of the partner. The current implementation of PASSIVIST covers only a

limited subset of domain-specific natural language utterances, but it recognizes far more

complicated descriptions than a simple keyword analysis can do.

The system analyzes the sentence, identifies the user's problem and computes a solution

by using primitives of the editor. The system first gives a description in natural language

(using more or less canned text) and then tells the user the actions which he has to take:

First, move the cursor to the desired line.

Use Command: cursor-down Use Key: down-arrow

The user hits the mentioned key and sees the cursor moving down one line while staying

in the same column.

The next step of the solution is rather complicated and is therefore explained by the

system. The help system has knowledge of certain stereotypical problems and knows

where it should give an explanation.

There is no primitive operation to delete a line as a whole. First
you have to make it empty and then delete the left or the right line
delimiter.

In order to make a line empty, mOVe to its beginning and then delete
the rest of the line.

Use Command: set-cursor-to-beginning-of-line Use Key: AA

When the user hits AA the system explains the next step which is to remove the rest of

the line.

Use Command: rubout-line-right Use Key: AK

3 the user input is underlined; system output is in ItalICS

9

The user hits AK and the line becomes empty. The last step is to remove one of the line

delimiters.

The command rubout-line-right with the cursor at the end of the line
merges the current with the following line. This is used to delete the
empty current line.

Use Command: rubout-line-right Use Key: AK

3.1.2 Implementation

PASSIVIST is implemented in OPS5 (Forgy 81). OPS5 is an interpreter for production

systems which has been used in building expert systems.

Flexible parsing using OPS5 is achieved by a rule-based bottom-up method. The

consistent structure of the system as a set of productions and a common working

memory allows the use of the same knowledge in several stages of the solution process.

For example, knowledge about the state of the editor is not only used to select a possible

solution for the user's problem but also to aid to disambiguate the user's utterance. In

the phrase the last line with the cursor being at the beginning of the editing buffer it

is clear that the user means the last line of the buffer (and not the previous one).

Both the model of the user and the model of the editor state are represented as a set of

clauses in the working memory of the production system. In the following example the

system's model of the editor state describes a situation where the cursor is at the

beginning of the first word in the last line of the edit buffer.

(Cursor ~Word:

~BeginningOfLine:

~EndOfLine:

~InFirstLine:

AlnLastLine:
ABeginningOfBuffer:
AEndOfBuffer:

figure 3-1:

at-beginning
t
nil
nil
t
nil
nil)

A model of the editor state

The following rule (an English-like description of the corresponding OPS5 rule) represents

the systems knowledge about deleting the end of a line:

10

IF the goal is to delete a string
AND the string is the end of the current line
AND the cursor is not at the end of the current line

THEN remove the goal from the working memory
AND create a new goal to propose the command "rubout-line-right"

3.2 ACTIVIST: An Example for an Active Help System

ACTIVIST (Schwab 84) is an active help system that pays attention to suboptimal user

behaviour. It is implemented in FranzUsp and in the object-oriented knowledge

representation language OBJTALK (Laubsch, Rathke 83).

The help system can deal with two different kinds of suboptimal behaviour:

1. the user does not know a complex command and uses suboptimal commands
to reach a goal (e.g. he deletes a string character by character instead of
word by word).

2. the user knows the complex command but does not use the minimal key
sequence to issue the command (e.g. he types the command name instead of
hitting the corresponding function key4).

Like a human observer the help system has four main tasks:

'" to recognize what the user is doing or wants to do.

'" to evaluate how the user tries to achieve his goal.

* to construct a model of the user based on the results of the evaluation task.

* to decide (dependent on the information in the model) when to interrupt and
in which way (tutorial invention).

In ACTIVIST the recognition and evaluation task is delegated to 20 different plan

specialists. Each one recognizes and evaluates one plan of the problem domain. Such

plans are for example "deletion of the next word", "positioning to the end of

line ft, etc ..

A plan specialist consists of:

1. an transition network (TN), which matches all the different ways to achieve the
plan using the functionality of the editor. Each TN in the system is
independant. The results of a match are the used editor commands and the
used keys to trigger these commands.

2. an expert which knows the optimal plan including the best editor commands

4'n BISY , command can be bO..Jod to a function key

11

and the minimal key sequence for these commands.

3.2.1 Recognition Task

All TNs are active and try to recognize their plans simultaneously. An editor command

issued by the user causes a state transition in every TN. The input for the TNs is the

command and the buffer state after execution of the command. The buffer state is

defined by the position of the cursor with respect to words, lines and the buffer as a

whole (see Figure 3-1). The detailed structure of our TNs are described in

Fischer/Lemke/Schwab (Fischer, lemke, Schwab 84).

3.2.2 Evaluation Task

Whenever a plan is recognized by the associated TN the result of the recognition process

is compared with the stored "best" solution for this plan. Other commands than the

proposed ones are considered as a bad solution if the user uses the combination of

several concepts whereas the task could have been achieved by using a single concept

(e.g. deleting a line by a series of character deletion commands; see also the example

with "pushd" and "popd" in section 1.2). In case he uses the recommended commands

his action will only be evaluated as good if he also uses the minimal key sequence.

3.2.3 Modeling the User in ACTIVIST

For each plan there is a knowledge structure which models the user and which contains

the following slots (see also Figure 3-2, in which the indicated abbreviations are used):

* done (abbreviation: D) is the number how often the plan was done by the user
(in any way).

* good-done (abbreviation: G) shows how often the plan was done with the
optimal commands and the minimal key sequence.

* wrong-command-used (abbreviation: COM; value before the arrow) shows how
often a wrong command was used when the use of the proposed command
woutd have reduced the number of pressed keys. keysl counts the
unnecessary keys (value after the arrow).

* wrong-keys-used (abbreviation: KEYS; value before the arrow) shows how
often the proposed commands were used but not with the minimal key
sequence. Keys2 counts the unnecessary keys (value after the arrow).

* messages-to-user shows how often a message concerning this plan was
given to the user.

12

3.2.4 Help Strategy

The help strategy of ACTIVIST is variable. All limits (which determine when the system

talks to the user) are parameterized which allows to experiment with different tutorial

strategies.

The output of help messages is based on the following global strategy:

* the time between two messages shall be at least min-mess age-delay seconds
to prevent information overflow. For a beginner it is very frustrating to be
continuously criticized.

* a message concerning a special plan is given only immediately after the plan
was done wrong - not at a later time.

* the message concerning the same error will only be given max-messages
times to be non-intrusive and to accept that the user wants to do something
in his way.

The help activity is directed towards essential rather than sporadical errors. Therefore

criteria to give a message to the user concerning a special plan are:

* a plan was done at least wrong-command-limit times with the wrong
commands and the number of unnecessary keys is greater than keysl-limit
or

* the proposed commands are triggered at least wrong-command-limit in a
suboptimal way and the number of unnecessary keys is greater than
keys2-limit.

A plan which was executed good-used-limit times in the optimal way will not be

watched any more. The help system assumes that the user is familiar with this feature.

3.2.5 A sample session with ACTIVIST

Figure 3-2 shows a typical situation during a session with the editor. In the upper part of

the screen the user model is shown that ACTIVIST has built up. For each plan there is a

pane which shows the performance of a specific user concerning this plan. Panes with

black background indicate that the corresponding plan is not watched by the active help

system (the abbreviations have the meaning described in section 3.2.3).

In the dialog window under the editor window a help message given to the user can be

seen. The user has executed the command set-cursor-to-beginning-of-line by typing

in the command name. ACTIVIST gives the hint, that this command is also bound to the

key ~A.

13

,
· " " " ",.-. , " ... :. , " , " :. :. :.:. " . ::: : :.:.:.:.:.: .:. : : : ,

. . . , , »:.: ::-:->~ «-: : : ~ : :: :: :: :: '~ ' :" " """ ' : '::. :. : .~ :: ::: ~ : ':' ::: : ~ : ... :::: -: -: <-:-:.>:-: -:-: . ,',:-: -:-:-:-: -:-:-:-:««« .» ',' " -
. "

.r-1IIIIJIIWIII'!I
· · · · .: l-.*1IW"'fiI¥"

a e es ory> vorzus agen e< •

. . .. ·

· , . · ·

.oSl ieh den RaUJI der zu beobachlenden Konzepte elwas einzugrenz
Krlterie~ welche Pllne in einer Situation sinnvoll. also potent
erkennen sindt hingen in vielen Fillen von de. Jeweiligen Zusl
Anwendungss~~e.s abo In eine Editor kann der Benulzer beispiel
da.nn e in Wort losche~ wenn der Cursor s ieh a.uf dea Worl oder z
direkl davor oder dahinter befindet. Das heipt Abert daP in den
Erkennungsprozep niehl nur die vo. Benulzer ausgelosten Ko..a.ndo
auch der Zusland des Anwendungss~te.s be i deren Ausftihrung .i t
.up.

· ·

· · ·

· · ·

· " · · ·
ine Abbildung der pr i.il iven Operal ionen und Ko..andos a.uf Pl :::::: ::::::::::::: :
Probleabere ich. So kann be ispie Iswe ise. wenn der Benutzer e ines :: :::::::: ::::::: :: :
nacheinander alle Zeiehen eines Worles losehl

t
dies als da.s hi> ::::::::::: :::::: :::

e iner Wort loschung erbnnt werden. Diese AbDi 1 dung konnte ...-....,"" .. :::::::::::::::::::::
Zie Ie aus de. Proble.bereieh auf die Funkt ianal itlt des :::::::::::::::::::::
Uberlrage~ so d~ das Hi Ifes~lea feslslellen ~ ob Wld wie :::::::::::::::::::::

bene Auf .us de. PrablellraUII .i l den i.il i ven ::::::::::::::::::::: :-:-:-:-:-:-:- >.r-;-----------T5--------r------~-----'TT'----'a....---............ ,0 · ·
......... -.,....-...,..---..... --.-...-..... --------.-..... ---.... -~ · · ,
· ' "

. , , , " ,

. . . , , - -

set-cursor-to-beg1nni -of-line) 11 t auch auf AA

Figure 3-2: The user model in ACTIVIST

14

In Figure 3-3 the recognition task for the plan -delete the left part of the current word- is

monitored in a window. This window shows the user model, the proposed command (with

the optimal keys) for this plan and the state of the plan recognition.

The user has executed three times the command rubout-character-left with the DEL

key. The cursor is now standing between the first and the second character of the word.

The recognition is still going on. If the user invokes once again rubout-character-left

the plan will be recognized. Then the evalution will begin: The used commands will be

compared with the optimal commands for this plan and ACTIVIST will recognize the first

kind of suboptimal behaviour (as described above).

4. Future Research

In realistic applications the number of possible user intentions and actions which can be

watched simultaneously will quickly reach the limit of the available computational power.

Similary to a human tutor the help system is unable to watch all plans simultaneously;

therefore it is necessary to concentrate on some plans. Relevant criteria can be based on

the following:
'* A plan which was executed in the optimal way several times by the user need

not to be observed any more.

'* Very complex plans are not relevant for a novice user.

'* The user can indicate his insecurity in a special domain by questions to the
passive help system; these plans can then be observed in detail.

'* The user can decide which plans shall be watched.

Currently our systems work primarily bottom-up, based on data-driven observation of the

user behavior. Model-driven predictions (based on a diagnostic model of the most

common problems which users have) should be integrated into our system and they

could be used to focus the attention of our help systems.

Another way (compared to providing good help systems) may be: to make systems so

transparent and so suggestive that there is no need for help at all (e.g. the use of the

mouse in our systems has greatly reduced the complexity of many system components).

The current approach in building user support systems can be characterized that these

systems are still constructed as addons to existing systems. Our long ranging vision of

how computer systems should be developed is not to write code, but to represent

knowledge domains from which we can generate arbitrary projections being used as code,

as explanations, as documentation or as help.

15

D£L [H 'eft ,)art o f word · . .. ~ 1 . \- ~ : :: i - . :' .. ":
S E R " 0 DEL

Ian executed:
ood done:
rang co~~and us ed:
ith unnescessary keys:

~ o~~and with wrong keys
ith unnescessary keys:
ess~ges sent to user:

1
9
1
6

used: 9
9
9

" T E R " A l I" FOR " A T 10"
,roposed co~~ands: rubout-word-Ieft
Jpti~al keys: ESC h

~ o~~ands: rubout-character-'eft rubout-character-Ieft rubout-character-'eft
eys:(DEL)(DEL)(DEL)
uto~aton In state: Start

. , , . -. , , _. "
· , . , , - · ,

rschiedene Uber)egungen sind dabei von Bedeutung:
gin< Ite.ize>
Auf welcher Verstlndnisebene liegen die verschiedenen Pllne, die

werden sollen?> Je hoher die Ebene des Verslandnisses lie~t deslo
spezieller sind die Plane an ein besli .. les Anwendungsgeblet ~epapt.
Dadurch geM nalUrlich die Allge.einheit verloren. Wenn ZUJI Bels~iel i
einer Editoruagebung nur die Konzepte ii<Paragraph>, i<Zeile>, Os<Wort
etc. IIOdel) ierl werden. isl dies noch relativ Wlabh&ngig vo konkrelen
Einsalz des Editors, wlhrend Begriffe wie ii<Absender>, i<Dalu.>
ii<F.IIpflnger> etc. die Anwendung des Edilors auf <las Schreiben von Bri
zwar besser beschre i btl a.ber auch darauf e inschrlnkl. Eine WOglicbke it,
de. RecMWlg zu tragen, isl, fUr Jede. Anwendungsbereich des Editors ei
e i,ene Su.lung von PJln~ zu lieren. ua dAnn Je IlAch Verwendung des
EdItors nUT die darauf Tti_ len Konzeple zu ilberwachen.

Welche Plane und Konzepte schopfen den Problearaua ganz aus?> Daait

• •• •• # • ·

· · ·
•• • ••

· ; · :
· ·

Hi Ifes le vernUnft i SchJ1lsse aus der Beobacht des Benuizers
~~~~~~~-r~~~~~~~~~~~~~~~~~~~~~~~~~----~ ..... . 

. . . . . " .... . .. . .. .. .... . .. . .... .. . . .. . .. .. . . .. . . . . .... . ............... . . . . . . . . . . . , . . . . . . . . . ... . . . . . .. ........ ... . . .... . ..... . .. . . .. , . .. . . .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . " . . . .. . . . . .. ... .......... . . ... . . . . .. . .. . . .. . . .. .... .... ........ . . ...... . . . . . . . - . - . . . . . . . .. . . .. . . . . . . . . . . . . . . ...... . .. .. .. - .. . . .. . .. . ... .... . .. . " . ... . .. .. . . . . . . . . . . . . . . . . . . .. . .. .. . . .. .... . . . .. ..... ... . . .... . . . ... . . . .. .. 
· , . . . . . . . . . . . . .. . . .. . .. . . . .. . . " . . . . .. . . .. .. . . . . ... . . ... . , .... . . .. . . .. . . . ........... . . .. ... . .. . . . . . . . . . . . . .. .. . . .. . - . . ..... . 

Figure 3-3: Monitoring the recognition task 



, . 

16 

References 

(Bauer 84) 
J. Bauer: "BISY. A Window-Based Screen-Oriented Editor, Embedded in 
ObjTalk and FranzLisp ". Institutsbericht, Projekt INFORM, Institut fur Informatik, 
UniversitiH Stuttgart, January, 1984. 

(Burton, Brown 76) 
R.R. Burton, J.S. Brown: "A tutoring and student modeling paradigm for 
gaming environments ". In Proceedings for the Symposion on Computer 
Science and Education. Anaheim, Ca., February, 1976. 

(Fischer 81) 
G. Fischer: "Computational Models of Skill Acquisition Processes ". In R. 
Lewis and D. Tagg (editors), Computers in Education, pp 477-481. 3rd World 
Conference on Computers and Education, Lausanne, Switzerland, July, 1981. 

(Fischer 84) 
G. Fischer: "Formen und Funktionen von Modellen in der Mensch-Computer 
Kommunikation ". In M.J. Ta uber (editor), Psychologie der Computernutzung. Wien 
- MOnchen, 1984. Schriftenreihe der Osterreichischen Computergesellschaft. 

(Fischer, Lemke, Schwab 84) 
G. Fischer, A. Lemke, T. Schwab: "Active Help Systems ". In T.Green, M.Tauber, 
G.van der Veer (editors), Proceedings of Second European Conference on 
Cognitive Ergonomics - Mind and Computers, Gmunden, Austria. Springer 
Verlag, Heidelberg - Berlin - New York, September, 1984. 

(Forgy 81) 
C.l. Forgy: "0PS5 User's Manual ". Technical Report CS-81-135, CMU, 1981. 

(Laubsch, Rathke 83) 
J. Laubsch, C. Rathke: "OBJTALK: Eine Erweiterung von LISP zum 
objektor ientierten Programmieren ". In H.Stoyan, H.Wedekind (editors), 
Objektor ientierte Software- und Hardwarearchi tekturen, pp 60-75. Stuttgart, 
1983. 

(Lemke 84) 
A. Lemke: "PASSIVIST: Ein passives, natiirlichsprachliches Hilfesystem fur 
den bildschirmorientierten Editor BISY". Diplomarbeit Nr. 293, Institut fOr 
Informatik, UniversiHit Stuttgart, 1984. 

(Norman 82) 
D. Norman: "Some Observations on Mental Models ". In D. Gentner, A. Stevens 
(editors), Mental Models. Hillsdale, N.J., 1982. 

(Rich 79) 
E. Rich: "Building and Exploiting User Models ". Ph.D. Thesis, Carnegie-Mellon 
University, 1979. 

(Schwab 84) 
Th. Schwab: "ACTIVIST: Ein aktives Hilfesystem fur den 
bildschirmorientierten Editor BISY". Diplomarbeit Nr. 232, Institut fOr 
Informatik, UniversiUit Stuttgart, 1984. 

(Wilensky et a/. 84) 
R. Wilensky, Y.Arens, D. Chin: "Talking to UNIX in English: An Overview of 
UC". Communications of the ACM 27(6), pp 574-593, June, 1984. 


