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Abstract 

The goal of intensity-modulated radiation therapy (IMRT) treatment plan 

optimization is to produce a cumulative dose distribution that satisfies both the dose 

prescription and the normal tissue dose constraints. The typical manual treatment 

planning process is iterative, time consuming, and highly dependent on the skill and 

experience of the planner. We have addressed this problem by developing a knowledge-

based approach that utilizes a database of prior plans to leverage the planning expertise 

of physicians and physicists at our institution. We developed a case-similarity algorithm 

that uses mutual information to identify a similar matched case for a given query case, 

and various treatment parameters from the matched case are then adapted to derive 

new treatment plans that are patient specific.  

 We used 10 randomly selected cases matched against a knowledge base of 100 

cases to demonstrate that new, clinically acceptable IMRT treatment plans can be 

developed.  This approach substantially reduced planning time by skipping all but the 

last few iterations of the optimization process. Additionally, we established a simple 

metric based on the areas under the curve (AUC) of the dose volume histogram (DVH), 

specifically for the planning target volume (PTV), rectum, and bladder. This plan quality 

metric was used to successfully rank order the plan quality of a collection of knowledge-

based plans. Further, we used 100 pre-optimized plans (20 query x 5 matches) to show 

that the average normalized MI score can be used as a surrogate of overall plan quality. 

Plans of lower pre-optimized plan quality tended to improve substantially after 

optimization, though its final plan quality did not improve to the same level as a plan 

that has a higher pre-optimized plan quality to begin with.  Optimization usually 

improved PTV coverage slightly while providing substantial dose sparing for both 
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bladder and rectum of 12.4% and 9.1% respectively.  Lastly, we developed new 

treatment plans for cases selected from an outside institution matched against our site-

specific database.  The knowledge-based plans are very comparable to the original 

manual plan, providing adequate PTV coverage as well as substantial improvement in 

dose sparing to the rectum and bladder.  

In conclusion, we found that a site-specific database of prior plans can be 

effectively used to design new treatment plans for our own institution as well as outside 

cases. Specifically, knowledge-based plans can provide clinically acceptable planning 

target volume coverage and clinically acceptable dose sparing to the rectum and 

bladder.  This approach has been demonstrated to improve the efficiency of the 

treatment planning process, and may potentially improve the quality of patient care by 

enabling more consistent treatment planning across institutions. 
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1. Introduction  

Knowledge-based IMRT treatment planning is a semi-automated approach of 

retrieving and adapting prior information from a similarly matched case in order to 

generate a new, clinically acceptable treatment plan.  By leveraging the expertise and 

manually optimized efforts expended on prior cases, we can efficiently generate new 

treatment plans and skip ahead to the last few iterations of the optimization process.  

This approach has the potential to improve quality of treatment planning across 

institutions, as well as to provide a computer-assisted tool to ensure that treatment plans 

of acceptable plan quality are generated.  

1.1 Preview of Chapters 

Chapter 2 Background briefly presents the clinical motivation and an overview of 

intensity modulated radiation therapy (IMRT) treatment planning for prostate cancer, 

while highlighting the challenges of the treatment planning process. An overview of the 

knowledge-based approach is presented as a potential solution to some of these 

challenges. 

Chapter 3 Knowledge-based Treatment Planning introduces the framework of using 

prior cases that have already been manually optimized and clinically approved, for 

developing new treatment plans.  Mutual information is a promising method for 

developing a case-similarity algorithm to identify similar cases based on matching 2D 

beam’s eye view (BEV) contour projections.  Fluence map registration and the importing 

of optimization weights are important successive steps to developing new treatment 
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plans.  Results of using the single best-matched case demonstrate the feasibility of the 

knowledge-based approach for developing new, clinically acceptable, treatment plans.  

Chapter 4 Evaluating Plan Quality explores the range in case-similarity of a 

matched case that can be used to produce a clinically acceptable plan.  In other words, 

the study examines whether the resulting plan quality is correlated with the degree of 

case-similarity. The knowledge base is expanded to include 250 cases from the Duke 

clinic, and a larger study is conducted to generate 100 new treatment plans.  Whereas 

the initial study in Chapter 3 used the single best-matched case, this larger study explores 

the effect of using matched cases that span the range in case-similarity. A plan quality 

metric is introduced and used as a figure of merit to quantify and compare the dose-to-

volume coverage of knowledge-based treatment plans. 

Chapter 5 Inter-institutional Comparison of Plan Quality presents the final validation 

study that examines the feasibility of applying this treatment planning scheme to 

independent cases from another institution.  This retrospective study investigates 

whether it is feasible to use site-specific Duke knowledge base to develop clinically 

acceptable plans for new query cases drawn from outside institutions.   Additionally, the 

study provides an opportunity to conduct an inter-institutional comparison of clinical 

plan quality, as well as a comparison of manual planning versus semi-automated 

knowledge-based planning. 

Chapter 6 Summary, Conclusions and Future Work summarizes the knowledge-

based IMRT treatment planning process, discusses additional approaches of using 

mutual information for determining case-similarity, and concludes with 

recommendations for the direction for future work. 
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2. Background 

We first introduce the clinical motivation and some of the clinical challenges in 

prostate cancer radiotherapy.  Next, we present a brief overview of the IMRT treatment 

planning process and define the problem of IMRT fluence optimization.  Finally, we 

review prior knowledge-based applications in the field, and examine the necessary 

features of a knowledge base of IMRT treatment plans. 

2.1 Clinical motivation 

Prostate cancer is the most common cancer among men of all races in the United 

States, accounting for 217,730 new cases in 2010[1]. The American Cancer Society (ACS) 

reported that prostate cancer is the second leading cause of cancer death in men over age 

45[2]. Approximately 1.1 million cancer patients each year undergo radiation therapy at 

2,169 hospitals and freestanding radiation therapy centers [3, 4]. Nearly 90% of those 

patients are treated with external-beam radiation therapy from a linear accelerator.  

Most prostate cancer patients undergo Intensity Modulated Radiation Therapy (IMRT), 

which result in 90% disease-free rates after five years for early stage cases [5]. 

The goal of prostate IMRT treatments is to deliver therapeutic dose while 

maximizing patient survival and quality of life.  IMRT uses one external radiation beam, 

at different subsequent orientations, that converge to deliver a therapeutic dose to the 

target volume while sparing adjacent normal tissue, i.e. bladder, rectum, and femoral 

heads [6].  The most frequent use of IMRT in the United States is to treat prostate cancer, 

and prostate cases at our institution account for approximately one-third of all 

procedures [7]. Given the prevalence of prostate cancer and the reliance on IMRT for 
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treating it, any improvements to prostate IMRT can have an immediate and substantial 

clinical impact. 

Currently, each IMRT plan is developed de novo in an inefficient manner that is 

both time consuming and subjective, and may not even be clinically optimal. The entire 

process of IMRT treatment planning can take several hours per case to achieve a 

clinically acceptable plan [8, 9]. The iterative process involves striking a compromise 

between the conflicting constraints of providing homogenous coverage of the prostate 

target volume while simultaneously sparing dose from the adjacent normal critical 

structures. While a plan can be deemed clinically acceptable, it may not be fully 

optimized to minimize normal tissue doses to the highest extent possible. The quality of 

a treatment plan is highly dependent on the skill and experience level of the 

physicist/dosimetrist planner. This implies that plans at centers with limited expertise 

may not be clinically optimal, in that they may not minimize the bladder and rectal 

doses to the maximum extent possible.  It has recently been reported that there is wide 

variability across medical institutions between the prescribed radiation dose and the 

dose delivered, with a total of 46% of the patients receiving a maximum dose that was 

more than 10% higher than the prescribed dose and 63% of the patients receiving a dose 

that was more than 10% lower than the prescribed dose [10].   

2.2 IMRT Treatment Planning 

Most institutions utilize the same fixed beam orientations to deliver IMRT for 

prostate cancer. In other words, the number and angular position of the beams are 

usually the same for all patients, typically five to seven co-planar beams. Figure 1 depicts 
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the typical arrangement of seven co-planar beams for a prostate IMRT treatment plan, as 

displayed on the Eclipse™ commercial treatment planning system. 

At our institution, the patient is immobilized and treated in the supine position 

with seven co-planar beams.  Each beam in turn is composed of many “beamlets”, akin 

to pixels in a digital image.  The radiation fluence of each beamlet can be individually 

modulated, resulting in a desired fluence pattern that can deliver greater dose to one 

area while avoiding another. Each such fluence pattern from the “beam’s eye view” 

(BEV) forms a 2D map of radiation intensity. Each patient’s unique anatomy requires 

deriving a new set of fluence patterns.  

 

 

Figure 1 Seven co-planar beams and a 2D fluence map   

A typical arrangement of seven co-planar beams for a prostate IMRT treatment plan.  
Each of the beam angles delivers a unique 2D map of modulated radiation intensity, also 
known as the fluence map [11]. 
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When multiple beams are focused together toward the target volume, the result 

is a 3D confluence that delivers therapeutic dose to the prostate while minimizing dose 

to surrounding critical structures (i.e., the rectum, bladder, and femoral heads). Refer to 

Figure 2. Undue dose to those critical structures can result in poor survival and reduced 

quality of life to the patient [12, 13].  Potential radiotoxicities to these critical structures 

include bladder, erectile and bowel dysfunction, urinary and rectal incontinence, 

bleeding and fistula [14-19].  

 

Figure 2 Five convergent radiation beams 

Each of the five impinging beams has a different aperture and fluence, resulting in a 
convergence of the desired dose distributions [11].    
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Using a commercial treatment planning system, the planner specifies as inputs 

the prescription dose to the target volume, as well as dose constraints for organs at risk.  

Establishing clinically useful dose constraints is more subjective for several reasons: 1) 

dose constraints are based on clinical experience, 2) dose constraints are population-

based, 3) dose constraints are not deterministic, and 4) the dose-complication 

relationship is not well understood.   

The typical clinical practice strives to deliver a prescription dose (or higher) to at 

least 98% of the tumor volume while not exceeding normal structure dose constraints.   

In doing so, while this practice may meet minimal standards, there may be often no 

additional effort to reduce normal structure dose any further, thereby potentially 

resulting in radiation toxicity. We define high quality plans in term of the following 

characteristics: 1) prescription dose to at least 98% of the tumor volume, 2) normal 

structure dose constraints are not exceeded, 3) minimize normal structure doses as much 

as possible.  Many community centers utilize dose constraints published in the literature 

as the limit below which there are no complications.  However, since these limits are 

population-based, the best treatment planning strategy for any individual patient would 

be to reduce the dose as much as possible by pushing the limit of dose sparing.  

Currently, this strategy requires a manual, trial-and-error approach, which is both very 

time-consuming and highly dependent on the experience and skill of the 

physicist/dosimetrist planner.  

Mathematically, IMRT is considered an inverse problem whereby the final 

desired dose distribution are the initial input, and the incident radiation intensity 

patterns necessary to obtain such a dose distribution must be solved for.  This 
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assessment is typically expressed as an objective function, FPTV, the squared-difference 

between the computed dose and the prescription dose [6]. 
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where NOAR  is the number of points in the OAR, Dmax is the maximum tolerance dose, 

and NOAR,dv is the number of points whose dose must be below the dose-volume 

constraint dose Ddv.  The penalty weights are wOAR, max and wOAR,dv [6].  

In manual treatment planning, the iterative process involves adjusting dose 

constraints, performing the dose calculation, and reviewing the clinical plan.  This trial 

and error process is repeated until the user is satisfied that a clinically acceptable plan 

has been reached. The dose distributions are reviewed as a dose-volume histogram plot 

and/or as color-wash isodose profiles overlaid on the CT. An ideal treatment plan 

would have 100% of the planning target volume receiving the prescription dose and 

none of the critical structures would receive any radiation dose.  In reality, due to the 

relative proximity and/or overlap of the PTV and adjacent critical structures, there is 
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always a trade-off between maximizing therapeutic dose to the PTV and minimizing 

dose to normal critical structures.     

2.3 Treatment planning optimization 

Many different issues concerning the optimization of IMRT treatment plans have 

been extensively published, and some of the pioneering works include those of Brahme 

[20-23], Bortfeld [24-26], Webb [6, 27, 28], and Mohan [29, 30].  The optimization of the 

treatment planning process can be considered in terms of the various components and 

processes of the “IMRT chain”, including: variables, cost function, search algorithm, and 

treatment delivery [31]. Since the scope of our optimization project concerns only the 

treatment planning process, which is accomplished prior to the treatment delivery, we 

are not concerned with optimization issues related to the actual treatment delivery (i.e. 

leaf sequencing).  However, we fully recognize that a plan cannot be considered optimal 

if it is not feasible for delivery. 

The many treatment planning variables that can be optimized include: radiation 

type (proton, photon, electrons), energy, number of beams, beam angle, beam weights, 

and number of fluence levels [9, 32, 33].  In clinical practice though, photon energies are 

determined by the delivery system, and typical energies for prostate IMRT are 6 MeV, 9 

MeV, and 15 MeV.  The cost function is typically defined in physical, dose-based terms, 

such as maximum dose limits or dose-volume thresholds.  Most commercial treatment 

planning systems utilize dose-based or dose-volume constraints.  There are also clinical 

and biologically-based criteria, including tumor control probability (TCP), normal tissue 

complication probabilities (NTCP), and equivalent-uniform-dose (EUD) [34]. However, 

these biological cost functions are not yet widely adopted in typical clinical practice.   
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Computer search algorithms can be divided into two categories: gradient 

methods and stochastic methods.  Two gradient methods are steepest descent and 

conjugate gradient, with the conjugate gradient being faster for regions of narrow valley 

[35].  The widely used commercial treatment planning system, Eclipse (Varian Medical 

Systems, Palo Alto, CA), uses a conjugate gradient optimization algorithm that allows 

real-time modification of the optimization parameters, thereby minimizing the overall 

optimization time [36].  Stochastic algorithms are typically slower than gradient 

methods and are not common.  An example of a stochastic algorithm is simulated 

annealing, an iterative method that permits the escape from local minima traps [37]. The 

CORVUS treatment planning system implements both simulated annealing and gradient 

descent algorithms [38].  The most physically realistic type of treatment planning 

algorithms is the Monte Carlo approach, but these are computationally extensive, and 

have yet to be widely adoption into clinical practice [39-41]. 

2.4 Knowledge-based applications 

Knowledge-based approaches in radiation oncology have previously been used 

to develop imaging informatics platforms for proton therapy and radiosurgery [42, 43]. 

Wu et al. have used a database of plans for IMRT treatment plan quality control as well 

as for generating dose-volume histogram objectives [44, 45]. Additionally, the challenges 

of addressing issues of variability in manual contouring and segmentation, particularly 

for head and neck cancers, are being explored with atlas-based solutions that utilize 

patient databases [46-48].  

We developed a novel knowledge-based approach of using similarity metrics to 

search a reference library of previously generated and clinically approved treatment 
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plans.  These existing plans represent a valuable expertise knowledge base that 

“understands” how best to treat the cancer while minimizing dose to normal tissues.  If 

a new patient can be matched to a similar, existing patient, then the existing data from 

that match can be used to derive new treatment plans that meet prescription objectives 

and are patient specific. In other words, by utilizing a knowledge base of clinically 

approved plans that have previously been manually optimized, we hypothesize that a 

semi-automated system can be used to develop new plans that are also clinically 

acceptable. If successful, this knowledge base of treatment plans can potentially be made 

available for use at other institutions, and thus, may lead to more consistent treatment 

planning quality across institutions.  

2.5 Features of the IMRT knowledge-base  

Each IMRT treatment plan includes the CT dataset, tumor/target volume and 

normal structure contours, beam geometry specifications, beam intensity (fluence) maps, 

dose prescription and dose-distributions. For our knowledge base, we use a subset of the 

data from the treatment plan to build a case, including the following: 1) the 

tumor/target volume and normal structure contours delineated by the dosimetrist/ 

physician, 2) the beam geometry specifications, 3) the optimal fluence maps, and 4) the 

final optimization weights for each structure. 

2.5.1 Beam’s eye view (BEV) contour projections 

Since each treatment beam “sees” a 2D projection of the 3D treatment volume 

along the angle of the radiation beam, the projections of the anatomy become the inputs 

that determine the aperture and fluence maps in IMRT treatment planning.  One of the 
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most important inputs to the treatment planning dose calculation is the structure 

contour. In prostate IMRT, the contours for five of the most important anatomic 

structures include the following: planning target volume (PTV), rectum, bladder, left 

femoral head and right femoral head.  The PTV is defined as the expansion of the clinical 

target volume (CTV) to provide a treatment margin that accounts for possible setup 

errors, patient and organ motion, and alignment errors.  In this study, the contours for 

the small bowel, penile bulb, and seminal vesicles were excluded, since these structures 

are not always contoured for every case, and more importantly, the dosimetry for these 

structures are often less important than the major structures.  A 3D volumetric model of 

each structure is generated from the stack of 2D slices, each of which consists of the 

manually contoured points for the structures visualized on the initial patient CT images 

taken prior to treatment. The 3D model of the five primary rendered structures was 

generated using the Computational Environment for Radiotherapy Research (CERR) 

tool, an open-source MATLAB-based radiotherapy software tool [49].  This volume 

rendering is illustrated in Figure 3, (i.e. yellow = bladder, green = PTV, olive = rectum, 

cyan = Left femoral head, blue-gray = Right femoral head).  For many cases, the 

dosimetrist does not contour the shafts of the femur; therefore these volumes consist 

only of the femoral heads. 
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Figure 3 Volume rendered structures 

CERR was used to generate the volume rendered structures (green = bladder, 
red = PTV, brown = rectum, cyan = left femoral head, blue-gray = right femoral 
head, tan = body).  The red bar and green bar respectively denotes the body 
orientation in the superior-inferior and left-right directions.   
 

Next, 2D beam’s eye view (BEV) projection images of the contour volumes are 

generated at each of the seven standard gantry angles.  A single-point perspective 

projection is generated at each treatment angle, with the center of the field of view 

positioned at the isocenter, which roughly corresponds to the centroid of the PTV.  

Figure 4 depicts the orientation of these seven beam angles.  
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Figure 4 Orientation of seven beam angles 

The standard seven beam angles: 25°, 75°, 130°, 180°, 230°, 280°, and 335°  (clockwise 
from top in this axis slice). 

 

Thus, each case consists of seven BEV contour images.  Figure 5 illustrates the seven BEV 

projection images, showing the PTV (red), bladder (yellow), rectum (dark blue), left 

femoral head (cyan) and right femoral head (gray).  At Duke, the majority of cases are 

designed using the seven-beam geometry; however, there are other institutions that may 

use a five-beam geometry.   



 

 

15 

 

Figure 5 Seven beam’s eye view projection images 

Each case consists of seven projection images, showing the PTV (red), bladder (yellow), 
rectum (dark blue), left femoral head (cyan) and right femoral head (gray).  

 

2.5.2 Fluence maps 

Each fluence map consists of a unique pattern of radiation intensity levels.  For 

example, a typical PA fluence map may be a matrix of 72 x 48 pixels, where each pixel 

dimension in the x- and y- direction corresponds to 2.5 mm.  Thus, each fluence map 
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corresponds to a field size of approximately 18 cm x 12 cm.  The number of unique 

intensity levels can vary dramatically, depending on such factors as the beam angle, the 

regions where steep dose gradients are required, as well as institutional practice.  

 

Figure 6 Seven fluence maps for each of the treatment beam orientations  

The seven fluence maps each correspond to the seven treatment beam orientations: PA, 
LPO, LAO1, LAO2, RAO1, RAO2, and RPO. 
 

In summary, a knowledge-base case consists of the CT dataset, the dose 

prescription, the beam geometry parameters, the BEV contour projections, the fluence 

intensity maps and the optimization weights.  
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3. Knowledge-based Treatment Planning 

In the previous chapter, we proposed a knowledge-based approach to IMRT 

treatment planning, and described the components of the knowledge base containing all 

the relevant clinical data.  In this chapter, we will demonstrate initial feasibility of our 

knowledge-based treatment planning system.  Using existing human subject data from 

our institution, we generated new treatment plans using the clinical data from the best 

matching case in the knowledge base.  These new treatment plans were assessed 

qualitatively and quantitatively. 

3.1 Introduction 

The clinical challenge in IMRT treatment planning requires solving the inverse 

problem in order to derive a set of fluence patterns that would produce a dose 

distribution that provides an effective coverage of the planning target volume while 

sparing the normal structures (i.e. rectum and bladder) to the greatest extent possible.  

We address this problem by proposing a knowledge-based solution, whereby the 

manually optimized prior cases that reflect the expertise and time spent by a human 

planner is leveraged as a semi-automated algorithm.  First, a knowledge base consisting 

of CT data, and structure contours as well as various treatment parameters is assembled 

from prior optimized and clinically approved IMRT cases from the Duke clinic.  Second, 

a case-matching algorithm is developed using mutual information as the basis for 

identifying similar patient cases.  A query case is selected from the knowledge base, and 

considered as if it were a new patient case for which a treatment plan was needed.  The 

case-similarity algorithm identifies a range of matched cases similar to the query case.  

Thirdly, the best-matched case having the highest overall MI score is selected and its 

treatment parameters are adapted to design a new treatment plan for the query case.  
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Lastly, we evaluate the resulting new semi-automated plans and compare these to the 

original plans developed by a human planner.  We evaluate the plans based on dose-to-

volume criteria that reflect the initial prescribed protocol. 

 

3.2 Methods 

3.2.1 Knowledge-base reference library 

In this initial study, we assembled a database of 100 prostate cancer IMRT cases, 

all of which were previously planned, reviewed and delivered within the Duke clinic. 

IRB permission was obtained for the use of these retrospective cases in this HIPAA-

compliant study, and the cases were anonymized prior to use.  All clinical treatment 

plans were developed using the Eclipse treatment planning system (Varian Medical 

Systems, Palo Alto, CA). Each treatment plan includes the CT dataset, tumor/target 

volume and normal structure contours, beam geometry specifications, beam intensity 

(fluence) maps, and dose-distributions. At our institution, seven co-planar beam angles 

are typically used: 25°, 75°, 130°, 180°, 230°, 280°, and 330°. 

3.2.2 Case similarity algorithm 

Our hypothesis is that if the relative spatial locations of target volume and 

normal structures for a new “query” case are geometrically similar to a prior “match” 

case from the knowledge base, then it may be possible to use the treatment plan 

parameters from the matched case as an improved starting point in the 

planning/optimization process.  The algorithm for retrieving similar patient cases is 

based on matching of 2D images, specifically the beam’s eye view (BEV) projections of 

the structure contours. Since each treatment beam “sees” a 2D projection of the 3D 

treatment volume along the angle of the radiation beam, the projections of the contours 
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become the inputs that determine the aperture and fluence maps in IMRT treatment 

planning.  

Within each BEV projection image, a unique index number is assigned to 

correspond to the projection of each structure, or the overlapping regions of two or more 

structures. The seven 2D BEV projection images show the PTV, bladder, rectum, left and 

right femoral heads and the various possible overlapping regions are shown in Figure 7.  

This scheme is referred to as bit masking, where a bit represents each tissue.  In each 

image, the five structures were assigned a unique index value (Lt. fem head = 1, Rt. fem 

head = 2, bladder = 4, rectum = 8, and PTV = 16), and thus, each overlapping region 

would also have a unique index sum (i.e. bladder + rectum = 12, PTV + rectum = 24, 

PTV + bladder = 20, PTV + rectum + bladder = 28).  

 

Figure 7 Overlapping contour regions 

Each of the five structures is assigned a unique index value (Lt. fem head = 1,  
Rt. fem head = 2, bladder = 4, rectum = 8, and PTV = 16). Thus, each overlapping 
region would also have a unique index sum (i.e. bladder + rectum = 12, PTV + 
rectum = 24, PTV + bladder = 20, PTV + rectum + bladder = 28).  
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The goal of the case similarity algorithm is to match, to the best extent possible, 

the projection images for each of the seven beam angles of the query case to the 

corresponding seven beam angles of prior cases from the knowledge base.  We use 

mutual information as the similarity metric for image matching:  

   (3) 

where and are the marginal distributions and is the joint probability 

distribution of two images X and Y [50]. MI is a general measure of statistical 

dependence between two images. The comparison of the histograms of the two images 

considers the marginal probability P(X), corresponding to the probability of an image 

pixel will have an intensity value X.  The more similar two images are, the higher the MI 

value.  Because mutual information relies only on the statistical properties of the image 

histograms, it is more robust at tasks such as image registration and matching compared 

to traditional linear approaches such as cross correlation [51]. Mutual information (MI) 

has been widely and effectively used for image registration and fusion of multi-modality 

images [52]. Tourassi et al. have used MI extensively in computer aided detection 

applications to match 2D ROIs of mammography masses. [53-56]. 

The mutual information for the query case and a reference case was calculated 

for each of the seven treatment angles.  A single composite MI value was calculated from 

the simple average of the seven MI values corresponding to each of the treatment angle 

image pairs. Using leave-one-out sampling, each of the 100 cases was used as a query 

and matched against the other 99 cases, resulting in a total of 9,900 matches. Since MI is 

not a linear metric and cannot be used as a measure of distance, the MI value has 

meaning only in so far as they represent relative ranking of case similarity.  Figure 8 is a 

plot of the MI values for 9,900 matches, sorted in ascending order from left to right, 
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where each row element corresponds to the MI value of a single query case matched 

against the other 99 cases.  The plot reveals that while some cases are highly matched 

with a large number of other cases, there are other cases that have relatively few highly 

similar matches.  

 

Figure 8 Plot of MI values for 100 cases 

A plot of the MI values for the 100 cases, sorted in ascending order from high MI    
(left) to low MI (right).  Each row element corresponds to the MI value of a single    
query case matched against the other 99 cases. 

 

The overall MI scores of all the query-reference pairs in the reference library 

were rank-ordered. A graphical user interface (GUI) was developed to review the query 

case images compared with the best matches, and visual inspection of each beam angle 

match confirmed that the similarity algorithm successfully retrieved cases with similar 
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contours.   Figure 9 illustrates an example for one beam angle, a query case and the 

varying matched images in descending order of mutual information score.   

 

 

Figure 9 Example of a query image and various matched images 

Projection image matching example: (a) Query image, (b) Best match (MI = 2.8),  (c) Poor 
match (MI = 1. 6), (d) Worst match (MI = 0.8).   Planning target volume (red), bladder 
(yellow), rectum (dark blue), femoral heads (cyan and blue-gray). 

 

Figure 10 illustrates a visual comparison of the seven beam angles for a given 

query case matched against several other cases.  A qualitative visual inspection of 

relative positions of PTV, bladder, rectum, and the femoral heads indicate that this 

simple average of the seven individual MI values do suggest the feasibility of using 

mutual information as a case-similarity approach to retrieve and rank matched cases. 
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Figure 10 Graphical user interface used to compare query and matched cases 

A visual comparison of a query case matched against several other cases.  The  first,   
left column is the projection images of the query case.  The top three best-matched  
cases (highest overall MI scores) are shown in columns two to four.  A poor match is  
shown in column five, and the worst matched case is shown in column six. 
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3.2.3 Generating new treatment plans 

Once the best-matching library reference case was found, the treatment 

parameters from that case were imported and utilized to develop a new treatment plan 

for the query case.  Those treatment parameters included the beam geometry 

specifications, the fluence maps, and the final structure constraints and weights used to 

optimize the matched case during IMRT planning.  

After the best-matched case is identified and selected, the fluence intensity maps 

from the matched case are imported into the query case.  Since the fluence maps are the 

prior solutions to the optimization from an existing matched case, we can bypass many 

of the early optimization iterations for the new case by importing fluence maps from a 

best-matched prior case.  In general, the fluence maps are geometrically aligned with the 

centroid of the planning target volume, since the majority of the radiation intensity is 

delivered to the tumor volume.  However, we found that these imported fluence maps 

from the matched case often do not exactly align with the PTV contour, and it was thus 

necessary to apply a deformable transformation to each fluence map in order to improve 

the alignment of the radiation fluence with the target anatomy.  elastix, a deformable 

registration toolkit using b-splines, was utilized to perform minor scaling and 

translations to improve alignment of the imported fluence to the planning target volume 

(PTV) of the query case (See Figure 11) [57].  
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Figure 11 Fluence maps, before and after registration with the PTV  

Imported fluence map overlay on PTV: (a) Before registration, fluence map is 
shown as contour lines, and  (b) After registration, fluence map is shown as 
color wash. After deformable fluence registration, the resulting dose distribution 
will likely still need further minor optimization.  
 
 

Under the assumption that the reference and query case are similar, the final 

constraints and priorities used to previously manually optimize the reference case 

would also likely almost optimally maximize the query case.  Thus, the final step 

consisted of further optimizing the query case, from the starting point of the elastically 

deformed fluence maps, using the constraints and priorities from the reference case.  The 

optimization was initiated and allowed to run for a total of 50 iterations (approximately 

2-3 minutes on the Eclipse treatment planning system) without any manual intervention. 

Note that the prescription doses and constraints from the reference case were 

appropriately scaled to match the query case. 

3.2.4 Dose-volume constraints 

Table I depicts the prostate IMRT protocol used at our institution to specify the 

dose-volume constraints for critical structures.  The protocol is similar to those 
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established by the Radiation Oncology and Therapy Group (RTOG) for prostate IMRT 

clinical trials [58].  

  

Table I Duke University’s prostate IMRT protocol with dose-volume constraints 

 

* All constraints are based on target dose of 78 Gy. 

 

The typical clinical practice strives to deliver a prescription dose (or higher) to at least 

95% of the tumor volume while not exceeding normal structure dose constraints.  

In this study, the quality of each of treatment plan was evaluated by comparing 

the dose volume histograms of the new semi-automated plan to that of the original plan 

developed manually by an expert (human) planner for the query case.  We considered a 

plan to be ‘high quality’ if it both i) met the 95% dose to PTV prescription, and ii) 

reduces normal structure dose as much as possible even below guidelines set forth for 

bladder, rectum and femoral heads.  That is, any further reduction would compromise 

the PTV coverage.  A comparison of the various DVH cut-points considered the dose to 
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percent volume coverage (Dx, which is the dose to the highest x% of volume) for the PTV 

and two normal structures (i.e. bladder and rectum).  The cut-points for the PTV were 

D98, D95, and D1.  Specifically, D1 was used to quantify the maximum target dose. For 

both the bladder and the rectum, the respective cut-points at D50, D30, and D20 were 

evaluated.   

In this initial study, ten query cases were randomly selected from the knowledge 

base of 100 cases.  Only the constraints for five major structures were selected and 

imported, including: PTV, bladder, rectum, and the two femoral heads.  Each plan was 

normalized to deliver the prescription dose to approximately 97 - 98% of the planning 

target volume. Using the most similar matched case for ten query cases randomly 

selected from the knowledge base of 100 cases, a total of ten new treatment plans were 

developed in this manner.   

3.3 Results 

While the results of all ten query cases are summarized, three of the ten cases 

have been selected to illustrate, in greater detail, the comparison between the new semi-

automatically generated plan and original manual plan DVHs. Treatment plans were 

evaluated based on the relative percentage differences at specific DVH points:  

  % diff  = 100*(Dvol -new plan – Dvol -original plan)/ Dvol -original plan  (4) 

A negative percentage difference indicates that the new plan has reduced dose as 

compared to the original plan.  For a critical structure, such a negative percentage 

difference indicates an improvement, that is greater dose sparing.  The DVH of the 

femoral heads are not plotted to make it easier to visualize the PTV, bladder and rectum.  

Figure 12 is the DVH for case #8, which is one of the best of ten cases, in that it shows a 

very comparable PTV dose distribution between the new plan (dashed lines) and the 
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original plan (solid lines) and considerably greater dose sparing to both bladder and 

rectum.  

 

Figure 12 Comparison of DVH for the new plan vs. original plan (case #8) 

A comparison of DVHs for the new plan (dashed line) as compared to the 
 original plan (solid lines).  As one of the best of ten cases, case #8 demonstrates 
 comparable PTV coverage and considerably greater dose sparing to both rectum 
 and bladder. 

  

 For case #8, the PTV coverage in the new plan is approximately equal to the 

original plan; relative percentage differences at D98, D95, and D1 were -0.5%, -0.1%, and 

1.4% respectively.  For the rectum, the new plan consistently demonstrated large 

additional dose sparing, as shown by the dashed curve of the new plan consistently 

shifting to the left of the solid line of the original plan. For example the new plan cut 

dose at D50 in half from 39.1% to 19.3%.  Similar dose savings were also demonstrated in 

the bladder. Detailed cut-point values for all cases are reported below in tables. In 

summary, case #8 illustrates that the new plan has very comparable PTV coverage and 

substantial dose sparing to both the bladder and the rectum. 
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 The DVH plot for case #7 is shown in Figure 13, and is representative of the 

majority of the ten cases, with very comparable dose distributions for the PTV, bladder 

and rectum.  

 

Figure 13 Comparison of DVH for the new plan vs. original plan (case #7) 

A comparison of the DVH for case #7, which is representative of the majority of 
 the ten cases.  This plot shows that dose to the PTV, rectum and bladder in the 
 new plan (dashed) are very comparable to the original plan (solid). 

 

Nine of the ten new plans had comparable DVH results relative to the original 

clinical plan.  Figure 14 illustrates the only case (case #5) which had comparable PTV 

coverage, but higher dose to both bladder and rectum as compared to the original plan. 

The PTV results are very comparable, with relative percentage differences of -0.5%, -

0.2%, and 1.0% at D98, D95, and D1. However, the bladder dose at D20, D30, and D50 values 

indicated decreased sparing by 25.9%, 31.2% and 64.5% respectively.  Similarly, the dose 

to the rectum indicated decreased sparing by 36.4%, 46.5% and 78.0% respectively. 

Although there is substantially higher relative percentage dose to both the rectum and 

the bladder dose in the new plan, note that in terms of absolute dose-to-volume cut-
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points, the critical structure doses would still be clinically acceptable since they are far 

below the dose constraints set forth in the protocol (Refer to Table I). 

 

Figure 14 Comparison of DVH for the new plan vs. original plan (case #5) 

A comparison of DVH for the PTV, rectum and bladder of the original plan 
 (solid) and the new knowledge-based plan (dashed) illustrates comparable PTV 
 coverage, but higher dose to both bladder and rectum.  However, these normal 
 structure dose are still clinically acceptable since they are far below the dose-
 volume constraints set forth in the protocol. 

 

A detailed comparison of the relative percentage differences (equation 2) at 

specific dose-to-volume values to the PTV for all ten new plans versus the original plans 

is shown in Table II. A negative value indicates that the new plan has less PTV coverage 

as compared to the original plan.  The average percentage differences for the ten cases 

(mean ± standard deviation) at D98, D95 and D1 are -0.03% ± 2.1%, 0.62% ± 1.7% and 

2.5%± 2.4% respectively.  On average, the new knowledge-based plan is capable of 
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achieving very comparable PTV coverage to the original plan (within 2% as evaluated 

for both D98 and D95, as well as for D1, the dose to the highest 1% of the PTV volume). 

 

 Table II Percentage difference in PTV coverage between new and original plan 

 

Note:   % diff  = 100*(Dvol -new plan – Dvol -original plan)/ Dvol -original plan 

 

Table III shows the percentage differences between the new and the original 

plan for the rectum dose at D20, D30 and D50 for the ten cases.  For the normal structures, a 

negative value indicates an improvement, in which the new plan has greater dose 

sparing to the rectum as compared to the original plan. For the ten cases, the mean and 

standard deviation for the rectum dose percentage differences for D20, D30 and D50 are 

1.8% ± 8.5%, -2.5% ± 13.9% and -13.9% ± 23.6% respectively.  Three of the ten new plans 

(#2, 4, 8) have greater rectal dose sparing as compared to the original plan, while five 

(#1, 3, 7, 9, 10) are quite comparable to the original plan. Although the percentage 



 

32 

differences for D20, D30 and D50 for cases  #5 and #6 appear high, the absolute dose values 

are still clinically acceptable since they fall below the dose constraints set forth in the 

original protocol. (Refer to Table I). 

 

 Table III Percentage difference in rectum dose between new and original plan 

 

Note:  % diff  = 100*(Dvol -new plan – Dvol -original plan)/ Dvol -original plan 

 

Lastly, Table IV shows the percentage differences between the new and the 

original plan for the bladder dose at D20, D30 and D50 for the ten cases.  A negative value 

indicates an improvement, in which the new plan has greater dose sparing to the 

bladder as compared to the original plan. For the ten cases, the mean and standard 

deviation for the bladder dose percentage differences for D20, D30 and D50 are -5.9% ± 

10.8%, -12.2% ± 14.6% and -24.9% ± 21.2% respectively.  Five of the ten new plans (#2, 4, 

6, 8, 10) have substantially less dose to the bladder, while four (#1, 3, 7, 9) are very 
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comparable to the original plan.  As previously mentioned, for case #5, the percentage 

differences for D20, D30 and D50 may appear to be high, but the absolute dose values are 

still clinically acceptable since they fall below the dose constraints set forth in the 

original protocol. (Refer to Table I). 

 

 Table IV Percentage difference in bladder dose between new and original plan 

 

Note:  % diff  = 100*(Dvol -new plan – Dvol -original plan)/ Dvol -original plan 

 

3.4 Discussion  

We have found that a new IMRT treatment plan can be developed semi-

automatically by importing the set of fluences from a prior optimized case selected from 

a knowledge-base reference library, without having to start anew from a blank slate, as 

is typically done in manual planning.       
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3.4.1 Size of knowledge base 

To demonstrate the feasibility of using the knowledge-base approach to develop 

new treatment plans, our initial study randomly selected ten test cases from a database 

of 100 prior cases. Recognizing that the relatively small number of test cases may have 

limited statistical power, we are still encouraged by the potential of utilizing a 

knowledge-base treatment planning approach to produce clinically acceptable treatment 

plans. We hope to observe useful trends as we expand our database and continue to 

develop more treatment plans. As we continue to increase the size of the database, we 

intend to study the effect of the knowledge-base diversity on the overall system 

performance.  For example, we did not include boost plans in our initial database; 

although we could construct a separate database of boost plans and develop treatment 

plans specific to boost treatments.  In later chapters, we will present studies using 

additional independent cases from outside institutions to investigate inter-institutional 

variability of treatment planning, as well as the appropriateness of utilizing our 

knowledge base across institutions.  

3.4.2 Improving case similarity retrieval 

Our study implemented MI as a case-similarity approach to search for a small set 

of best-matched cases from the entire database, but does not rely on MI as the sole 

determinant of dose-constraint satisfaction. Since the primary objective of treatment 

planning is to provide adequate PTV coverage, we have found that by further applying 

deformable registration to align the imported fluences of the matched case to the PTV of 

the query case, it effectively aids the optimizer by providing a good starting point to 

help successive optimization to proceed.  We found that if we were to leave out the 

deformable registration of the fluence map with the PTV, the treatment plan does not 

yield adequate PTV coverage.  The third and last step involves importing the 
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optimization weights from the matched case, which the optimizer then utilizes to satisfy 

the dose constraints.  We found that by using this three-step process, the optimizer 

required very few steps to converge. 

3.4.3 Assessing DVH plan quality 

We intend to investigate methods to correlate the similarity metric with the 

overall treatment plan quality.  Currently, we chose to evaluate the plan quality based 

on the DVH cut points specified by the protocol at our institution.  We compared each 

new semi-automated plan with the original manually developed plan at these specified 

normal structure constraints.  There is still considerable disagreement about the specific 

values for dose/volume limits for normal tissue [59]. The RTOG Prostate Group 

Consensus recently reported for the rectum, 50 Gy ≤ 50% and 70 Gy ≤ 20%, and for the 

bladder, 55 Gy ≤ 50% and 70 Gy ≤ 30%.  The limits for the femoral heads were set at <5% 

for 50 Gy, and for the small bowel, 0% for 52 Gy [60]. Similar dose/volume limits were 

recently reported in the recently published QUANTEC study [61, 62], for the rectum: 50 

Gy < 50%, 60 Gy < 35%, 65 Gy < 25%, 70 Gy < 20% and 75 Gy < 15%. For the bladder, the 

reported limits are 65 Gy < 50%, 70 Gy < 35%, 75 Gy < 25%, and 80 Gy < 15%.  The 

protocol at our institution specifies even more conservative normal tissue constraints 

(Refer to Table I).  Thus, we chose not to assess DVH plan quality based on absolute 

differences from the normal tissue constraints, as these limits are typically already very 

generous, are population-based and are related to the clinical end-points corresponding 

to late tissue toxicities.  Rather, we assessed the individual DVH plan quality of a new 

plan by a comparison with the original plan, as that best reflects the extent to which the 

new semi-automated plan can strive to meet the (human) achievable limits of dose 

sparing. 
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3.4.4 Reduction in Treatment Planning time 

We found that the knowledge-based treatment planning approach can 

substantially reduce planning time by skipping past all but the last few optimization 

iterations of the planning process.  For each of the ten test cases, approximately 50 

optimization iterations were required to meet the optimization objectives, taking 

approximately two to three minutes on the Eclipse treatment planning workstation. 

Additionally, these iterations were allowed to proceed automatically, with no human 

input other than initiating the optimization.  It is foreseeable that several treatment plans 

optimized for different clinical objectives (i.e. rectal sparing) can be quickly generated in 

this manner and made available for the clinician to choose from. Knowledge-based 

treatment planning offers the potential to improve the efficiency of the treatment 

planning process while maintaining high quality. 
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4. Evaluation of Treatment Plan Quality 

4.1 Introduction 

The inverse problem in IMRT treatment planning requires solving for the set of 

fluence intensity patterns that will satisfy, for a given patient geometry and the selected 

beam geometry, the prescribed target volume dose and the dose-limit constraints to the 

normal tissue. Without an exhaustive search of the solution space of all possible fluence 

patterns, it is not feasible to determine what the global minimum solution would be for a 

specific patient.  It is thus very difficult to estimate a priori the maximum extent of dose 

reduction possible to critical structures (i.e. rectum, bladder) for specific patients.   In 

fact, it is possible that there may exist several local minimum solutions that would in fact 

be clinically acceptable.  In practice, what is selected as a clinically acceptable treatment 

plan may not in fact be the mathematically optimal plan.  Additionally, since the 

established dose-limit constraints are population-based, it can be challenging to make 

patient-specific decisions about the trade-off between providing adequate dose coverage 

to the PTV while minimizing the extent of dose delivered concomitantly to each of the 

critical structures. 

In this chapter, we seek to understand the underlying relationship between the 

mutual information metric described previously and the resulting clinical treatment plan 

quality.  Whereas we previously considered only the best matching case, here we will 

explore a full range of matches and investigate the effect on clinical plan quality. In any 

treatment plan, we seek to maximally achieve the prescription dose to the planning 

target volume, while minimizing to the greatest extent possible, the dose to critical 

structures.  We propose a simple metric to quantify the extent of PTV coverage and dose 

sparing of a given plan, and we use this metric to evaluate and compare the plan quality 

of a range of different knowledge-based treatment plans.  
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4.2 Material and Methods 

4.2.1 Knowledge-base reference library 

For the study in this chapter, we increased the size of the database to a total of 

250 prostate cancer IMRT cases, all of which were previously planned, reviewed and 

delivered within the Duke clinic.  IRB permission was obtained for the use of these 

existing cases, and the cases were anonymized prior to use.  As before, each treatment 

plan consists of the CT dataset, tumor/target volume and normal structure contours, 

beam geometry specifications, beam intensity (fluence) maps, and dose-distributions. 

Similarly, the standard seven co-planar beam angles used are as follows: 25°, 75°, 130°, 

180°, 230°, 280°, and 330°.  We implemented the same mutual information algorithm for 

identifying similar patient cases based on matching 2D projections of the structure 

contours. 

4.2.2 Generating new treatment plans 

For this study, 20 unique query cases were randomly selected from the 

knowledge base of 250 cases. The case-similarity algorithm matched the structures of 

each query case, per beam angle, against the entire database.   For each of the twenty 

randomly selected query cases, we selected five matched cases, ranging from high to 

low overall MI score.  The selected matched cases spanned the full range of overall MI 

scores for each query case, reflecting a range of contour similarity.  The treatment 

parameters from the matched case were adapted to generate a total of 100 new treatment 

plans.  

Each new plan was normalized to deliver the prescription dose to approximately 

97 - 98% of the planning target volume.  In this study, we utilized only the set of seven 

fluence maps from the matched case, deformed to fit the query case.  Unlike the 

previous study, we did not adapt the final structure constraints and weights originally 
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used to optimize the matched case.  By excluding the final optimization weights, we 

developed ‘pre-optimized’ treatment plans that more accurately reflect the plan quality 

that is obtained from only using the fluence maps.  We could later generate optimized 

treatment plans by importing the optimization weights from the matched case, and thus 

compare the plan quality of pre- and post-optimization.  

4.2.3 Defining a treatment plan quality metric 

Assessing DVH plan quality at specific dose-volume cut-points (i.e. D20, D30, D50) 

can be highly subjective, even if there is agreement about the specific dose-volume 

constraints.   How does a radiation oncologist evaluate the tradeoff in PTV coverage 

versus the dose sparing of critical structures for a specific patient? This assessment is at 

best a qualitative, and very subjective clinical decision process.  We set out to establish a 

simple plan quality metric to evaluate and compare different treatment plans based on 

the DVH.  Our hypothesis is that the plan quality of a matched case is correlated with 

the degree of case similarity as determined by the overall MI score.  That is, we seek to 

establish whether it is possible to use mutual information as a surrogate for the DVH 

plan quality of a knowledge-base IMRT plan.  

Keeping in mind that the primary goal of every treatment plan is to achieve the 

maximum coverage of the planning target volume at the prescribed dose, and that dose 

sparing to each of the normal structures should be achieved to the maximum extent 

possible, we propose a simple DVH plan quality index (PQ) based on the weighted-sum 

of the areas under the curve (AUC) of the PTV, rectum and bladder, as follows:   

PQ = wPTV* AUCPTV + wrectum* (1 – AUCrectum)  + wbladder * (1 – AUCbladder)          (5) 

where wPTV is the weighting factor of the PTV, and AUC PTV is the area under curve of the 

normalized cumulative DVH for the PTV. The weighting factors Wrectum and W bladder and 

the area-under-the-curve values AUC rectum and AUC bladder are similarly defined.  These 
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weighting factors are arbitrary and reflect the relative priority weighting scheme that a 

site may choose to establish as a general guideline for their clinical practice. We chose to 

ignore the femoral heads in the plan quality metric since most IMRT plans utilize beam 

angles that more than adequately spare the femoral heads. In this study, we explored 

how different PTV weights can influence the rank-order of the DVH plan quality indices 

for the entire database.  We sought a weighting scheme that sufficiently reflects the 

relative priority of PTV coverage and the dose sparing of the critical structures that is 

desired at the Duke clinic. 

4.2.4 Evaluating pre-optimized plans using the plan quality index 

For this study, we developed 100 new pre-optimized plans (20 queries x 5 

matches) as described before. We then calculated the DVH plan quality score for each of 

the new plans. Since we were interested in determining whether we could use the 

overall MI score as a surrogate for DVH plan quality, we then compared the plan quality 

metric for the 100 pre-optimized treatment plans to the overall MI score for each match.  

It is important to note that we chose to compare the plan quality of the pre-optimized 

plans against the overall MI score, rather than to use the post-optimized plans, since the 

pre-optimized plans do not reflect the successive improvements in plan quality due to 

the last few iterative optimizations.  Lastly, we also investigated the change in plan 

quality due to the optimization process for a small subset of 20 of the 100 cases, by 

comparing the plan quality score for pre-optimized plans and post-optimized plans. 

4.3 Results 

For a single query case, there is a range of potentially acceptable matched cases, 

ranging from high similarity (high MI score) to low similarity (low MI score).  Figure 16 

illustrates, for a given query case, the resulting DVH of the pre-optimized plans 

obtained from adapting parameters for a case with high similarity, medium case 
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similarity, and low case similarity.  We seek to investigate whether a matched case of 

high similarity will necessarily produce a final post-optimized plan that tends to be high 

quality.  Similarly, a matched case of fair or poor similarity, as indicated by a lower MI 

score, is expected to produce a post-optimized plan that is lower in plan quality than 

one produced from a matched case having a higher MI score.  

 

Figure 15 Range of DVH plans using matched cases of high to low similarity  

PTV is shown in (red), bladder (blue) and rectum (cyan). Range of possible DVH 
 plan quality for a given query case, corresponding from high plan quality 
 (left) to low plan quality (right). 

 
 

Consider the scenario for which the plan quality score is derived from the non-

weighted sum of the AUCs for PTV, rectum and bladder, that is wPTV =  wrectum= wbladder = 

1, thus,  

 PQ = AUCPTV + (1 – AUCrectum)  +  (1 – AUCbladder)            (6) 
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Figure 16 Example of un-weighted plan quality scoring method, rank-ordered. 

 PTV is shown in (red), bladder (blue) and rectum (cyan). The three cases are 
 rank-ordered based on AUCPTV where the PTV coverage is  highest for case 
 ranked #4, and lowest for case ranked #39.  However, the  respective plan 
 quality scores for cases #4, #10 and #39 are as follows: 0.753, 0.683 and 0.910.  
 

Figure 16 illustrates the un-weighted plan quality scoring result by a comparison of three 

cases, ranked in terms of descending AUCPTV as #4, 10 and 39 out of 99.  Note that the 

last case actually has the highest plan quality score of 0.910, but its AUCPTV value is 

ranked lower than 38 other cases.  Its higher overall PQ score is due to the contribution 

of the low AUCs for the rectum and bladder.  Conversely, for the case ranked #10 out of 

100, its overall PQ score of 0.683 is barely better than the mean PQ score of 0.646. It is 

clear that without any weighting of the structures, the plan quality score does not reflect 

the typical assessment of treatment plan quality, where adequate PTV coverage is of 

utmost importance. 

We introduce a weighted-scheme to calculate the plan quality score.  We 

recognize that the exact weighting scheme is arbitrary, and will likely vary between 

individual clinician’s preference, as well as institutional practice.  However, we hope to 

implement a simple weighting scheme that could better differentiate and reflect a more 

appropriate rank-order of cases based on the relative importance of PTV coverage over 
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rectum and bladder dose sparing.  We experimented with two weighting schemes, A 

and B:  

A) wPTV = 5, wrectum= 1, wbladder= 1 

 PQ = 5*AUCPTV + (1 – AUCrectum)  + (1 – AUCbladder)       (7) 

B) wPTV = 10, wrectum= 1, wbladder= 1 

 PQ = 10*AUCPTV + (1 – AUCrectum)  + (1 – AUCbladder)       (8) 

Table V illustrates the effect on AUCPTV rank order for different weighting schemes for 

the three cases previously mentioned.  With a PTV weight of ten, the plan quality score 

reflects the desired rank ordering of cases, which places priority on the PTV coverage. 

 

Table V Effect of AUCPTV rank order for different weighting schemes 

    

Figure 17 illustrates the range of DVH plan quality for every 5th cases ranked #1 

to #96 using a wPTV equal to 10.  Visual inspection of these DVH plots establishes that the 

quality of the PTV coverage decreases as the rank order decreases.  The overall plan 

quality score using this weighting scheme places higher priority on the PTV, and equal 

weighting for the rectum and bladder. 
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Figure 17 Rank order of 20 cases from #1 to #96 for PTV weighted scheme 

 Showing every 5th case, the resulting ordering now corresponds to expected 
 clinical plan quality. 
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This PTV weighting scheme was implemented in order to establish a metric to 

evaluate the plan quality of our knowledge-based plans. In particular, we are interested 

in investigating whether the overall mutual information score can be used as a surrogate 

of DVH plan quality.  Note that for the purpose of this evaluation, we normalized the 

MI scores, where the maximum value of 1.0 corresponds to the self-similar comparison.  

Figure 18 is a plot of the plan quality metric versus the mutual information score for each 

of the seven angles for the 100 generated pre-optimized treatment plans.  The plot 

suggests that as the MI score increases, implying higher case similarity between the 

query case and the matched case, the DVH plan quality similarly increases.    

  

 

Figure 18 Plan quality versus MI for each angle 

Note that for this plot, the x-axis represents the normalized MI value, where a 
 maximum value of 1.0 corresponds to the self-similar value for each angle. 
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Figure 19 Plan quality versus average normalized MI score   

Note that for this plot, the x-axis represents the normalized MI value, where a 
 maximum value of 1.0 corresponds to the self-similar value for each angle. 
 

In Figure 19, the plan quality for each of the pre-optimized query cases is plotted as a 

function of the average normalized MI score for the seven beam angles. A linear fit for 

these 100 cases is performed, and the R2 correlation value is found to be 0.72.  This result 

suggests that as the average MI score increases, the overall plan quality increases as 

well.  Thus, the normalized MI score can potentially be used as a surrogate for overall 

plan quality of a pre-optimized treatment plan.    

Although the overall plan quality is highly correlated with case similarity, we 

find that it is possible that a matched case of moderately high similarity, but not the 

highest similarity, can yield a final post-optimized plan that is superior to the best-

matched case.  This is due to the finding that the final plan quality is determined not 
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simply by the level of the initial matched case similarity, but also by the subsequent 

processes of adapting fluences and optimization weights from the matched case.  

However, based on our initial study using 20 query cases, we do establish that a case 

with very low case similarity simply does not appear to lead to pre-optimized plans 

with high plan quality.  The successive steps of adapting the optimization weights is 

expected to improve plan quality; however, the fluences from a poorly matched case for 

which the structure geometry may be too different from the query case may simply be 

inadequate to produce a plan of high quality.  

Lastly, we compared the plan quality of the pre-optimized plans and the post-

optimized plans for sixteen randomly selected query cases.  The optimization weights 

from the matched cases were imported into each query case.  This final step consisted of 

optimizing the query case using the constraints and priorities from the reference case.  

The optimization was initiated and allowed to run for a total of 50 iterations 

(approximately 2-3 minutes on the Eclipse treatment planning system) without any 

manual intervention. Note that the prescription doses and constraints from the matched 

case were appropriately scaled to match the query case.  We evaluate both the actual 

change in overall PQ as well as the individual AUC changes for each structure for the 

pre-optimization and post-optimization plan.   

The percent change in PTV AUC is plotted for pre- and post-optimization plans 

is plotted in Figure 20 against the initial pre-optimized PTV AUC.  Note that 

optimization resulted in greater than or equal PTV AUC for fourteen of the sixteen 

plans.  This plot suggests that the greatest percent improvement in PTV plan quality 

occurs for pre-optimized plans of lower PTV AUC values.  The mean percentage change 

for PTV AUC is +1.37%, with a maximum percentage improvement of +4.7% for cases 

with the lowest initial PTV AUC. 
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Figure 20 Percent change in PTV AUC versus the initial pre-optimized PTV AUC 

We next analyzed the rectum AUC for pre- and post-optimization plans for 

sixteen cases.  A decrease in AUC for a critical structure actually indicates an 

improvement, that is, greater dose sparing to the critical structure.  With the exception of 

three cases (#6, #7, and #16) that already had very low area and thus excellent dose 

sparing, 13 of the 16 optimized plans resulted in greater or equal dose sparing to the 

rectum.   The percent change in rectum AUC is plotted in Figure 21 against the initial 

pre-optimized AUC.  This plot suggests that the greatest percent improvement in plan 

quality occurs for pre-optimized plans with higher area and thus poor dose sparing to 
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begin with.  The mean percentage change for rectum AUC is -9.15%, with a maximum 

dose reduction of 32% for cases with poor initial AUC value of 0.7. 

 

 

 

Figure 21 Percent change in rectum AUC versus the initial pre-optimized AUC 

Note:  A negative percent change in AUC for a critical structure indicates an 
improvement, that is greater dose sparing  
 

For the bladder, the percent change in AUC is plotted in Figure 22 against the 

initial pre-optimized AUC. With the exception of one case (#6), all of the cases saw 

greater or equal dose sparing to the bladder after the optimization process. The mean 

percentage change for bladder AUC is -12.4%, with a maximum dose reduction of 28% 
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for case #7.  For the bladder, there does not appear to be a dependency between the final 

optimized AUC and the initial pre-optimized AUC. 

 

 

Figure 22 Percent change in bladder AUC versus the initial pre-optimized AUC 

In summary, we will consider the changes in overall plan quality score, which 

reflects the AUC for all three structures, and compare this for pre- and post-optimized 

plans.   
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Figure 23 Percent change in overall plan quality versus the initial PQ 

 

The percent change in overall plan quality is plotted against the initial pre-

optimized PQ in Figure 23.  This plot suggests that the greatest percent improvement in 

plan quality occurs for plans with lowest initial PQ, where the coefficient of 

determination (R2) is found to be 0.77.  Most plans saw a slight improvement in plan 

quality of a few percentage points, with the mean percentage gain of +2.6%, and a 

maximum improvement of 7.7% for cases with the lowest initial PQ.  Only two cases of 

the sixteen demonstrated a decrease in overall plan quality after the optimization 

process.  What is interesting to note is that these two plans had among the highest plan 

quality scores to begin with. For such plans with very high PQ to begin with, the 

substitution of prior optimization weights from the matched cases may actually lower 

the final overall plan slightly.  These cases suggest that it may not be necessary to 
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continue with the optimization process if the pre-optimized plan quality is already at a 

level deemed to be clinically acceptable.  

4.4 Discussion 

We have found that a simple plan quality metric based on the sum of the areas 

under the curve for the PTV, rectum and bladder of the DVH plot can be a useful 

summary measure for evaluating the quality of an individual plan, as well as for the 

comparison of a collection of treatment plans.  Specifically, we established that a PTV-

weighted scheme could be used to successfully rank order the plan quality of a 

collection of knowledge-based plans.  The developed weighting scheme reflects the 

priority of requiring adequate PTV coverage first and foremost, followed by sufficient 

dose sparing of the rectum and bladder.  Thus, a plan with greater PTV coverage would 

be assigned a higher plan quality score than a plan with lower PTV coverage.   Presently, 

there is no established gold standard for plan quality evaluation in routine clinical 

practice.  Typically, the evaluation of the DVH is performed by a visual comparison of 

various dose-volume cut-points relative to the patient-specific dose prescriptions or 

clinical protocols.  A standard quantitative metric for comparing and evaluating 

different treatment plans is a pre-requisite for developing automated treatment plans. 

With increasing adoption of automated segmentation tools and the use of contour 

atlases, it is not unreasonable to expect that we could also eventually have automated 

systems to design treatment plans.  When such systems become available, it will be 

necessary to have a standard quantitative metric for comparing and evaluating different 

automated treatment plans.  This simple approach may lead to greater standardization 

of how treatment plans are reported and compared, thereby allowing for more 

meaningful outcomes study necessary to establish efficacy of different treatment 
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approaches (i.e. rotational IMRT vs static IMRT) and various fractionation schemes (i.e. 

hypofractionation).    

Secondly, we found that the average MI score for the seven beam angles of a 

given case can be a possible surrogate for overall plan quality. We then assessed the 

secondary effect on plan quality of importing optimization weights from prior cases. We 

found that a small improvement in PTV coverage is obtained on the order of a few 

percentage points, and substantial gains can be realized for the dose sparing for both 

bladder and rectum, with average additional dose sparing of 12.4% and 9.1% 

respectively.  For plans that have initially high plan quality to begin with, we found that 

the optimization process may actually reduce the overall plan quality by a few 

percentage points.   Therefore, one may wish to establish a PQ threshold for which no 

further optimization would be required. 

We have now demonstrated that new IMRT treatment plans can be developed 

semi-automatically by importing the set of fluences and optimization weights from a 

prior case selected from a knowledge-base reference library.  This approach allows the 

treatment planner to forego the current manual, laborious process of having to start 

anew from a blank slate for each new patient.  Additionally, we have shown that a 

simple plan quality metric can be implemented to evaluate and quantitatively compare 

different treatment plans, which has the potential to standardize the manner in which 

different treatment approaches/regiments are reported and evaluated.  Lastly, we have 

found that the average MI score can be used as a surrogate of overall plan quality – 

whereby a matched case of high geometric similarity should produce a new plan of high 

plan quality as well.  In the next study, we will conduct an inter-institutional 

comparison of treatment plan quality, as well as a validation of whether the knowledge-



 

54 

based approach can be extended to develop clinically acceptable plans using non-Duke 

cases.     
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5. Inter-institutional comparison of plan quality 

5.1 Introduction 

In the first study reported in Chapter 3, we demonstrated the feasibility of the 

knowledge-based treatment planning approach by using the best-matched case to 

develop a new treatment plan.  The three steps of the approach include i) using the case-

similarity algorithm to identify a single best-matched case based on the overall mutual 

information score, ii) performing image registration to adapt the fluences from the best-

matched case into the query case, and iii) importing the optimization weights from the 

prior matched case, prior to the optimization and final dose calculation.    

In the second study presented in Chapter 4, we investigated the relationship 

between the resulting plan quality for a knowledge-based treatment plan and the initial 

level of case-similarity of the matched case.  For a given query case, we utilized several 

matched cases that span the full range in of mutual information score to develop several 

pre-optimized plans.  We introduced a plan quality metric based on the area under the 

curve of the DVH plot for the PTV, rectum and bladder.  This plan quality index (PQ) 

was then used to calculate a single score for each newly generated knowledge-based 

plan.  Finally, we compared the plan quality score of the pre-optimized plans with the 

average mutual information score and determined that the resulting plan quality for a 

given case is positively correlated to the initial case-similarity of the selected matched 

case.  

Lastly, in this final validation study, we explore whether it is feasible to develop 

a clinically acceptable plan if the initial query case was selected from an outside 

institution.  Up to this point, we had selected retrospective query cases drawn from the 

Duke knowledge base and matched it against cases from our own institution.  The 

results of this leave-one-out approach is potentially biased since we have been matching 
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query cases against a Duke-only database, which is comprised exclusively of cases 

previously developed by Duke professionals using our institutional protocols.  In this 

final study, we assembled query cases from two outside institutions in order to 

investigate whether our knowledge-based approach is appropriate and extensible to 

designing treatment plans for an effectively ‘new’ patient. This validation study will 

examine the feasibility of matching non-Duke cases against a database comprised 

exclusively of Duke plans.  Subsequently, the study will also investigate whether it is 

feasible to adapt the treatment parameters from our institution’s knowledge base to 

develop clinically acceptable plans for new query cases drawn from outside institutions. 

Lastly, the study provides an opportunity to conduct an inter-institutional comparison 

of plan quality of the original clinical cases, as well as a comparison of semi-automated 

knowledge-based planning and manual planning. 

5.2 Material and methods 

The assembled database consists of 250 retrospective prostate IMRT treatment 

plans collected over a three-year period at our institution.  Additionally, we collaborated 

with two outside radiation oncology practices, which we will refer to as Institution #1 

and Institution #2, to acquire 100 cases from each institution for a total of 200 cases. We 

obtained IRB permission for the use of these existing retrospective cases in this HIPAA-

compliant study, and the cases were anonymized prior to use.  At both institutions, the 

clinical treatment plans were developed using the Eclipse treatment planning system 

(Varian Medical Systems, Palo Alto, CA). Each treatment plan includes the CT dataset, 

tumor/target volume and normal structure contours, beam geometry specifications, 

fluence maps, optimization weights, as well as the final dose-distributions. At Institution 

#1, both five and seven co-planar beam angles are used, with the majority being seven- 

beam angle plans.  At Institution #2, all treatment plans are developed using exclusively 
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five beam angles.  All cases from Duke and the two outside institutions considered in 

our investigation were treated in the supine position.  

As previously described in Chapter 3, the case-similarity algorithm uses mutual 

information to identify similar patient cases by matching 2D beam’s eye view projection 

of contours.  It is important to note that although the specific treatment beam angles may 

vary from case to case, as well as the actual number of beam angles used, (i.e. five beams 

versus seven beams). To account for these variability from case to case, as well as the 

differences in institutional practice, we chose to standardize the matching of cases at the 

standard set of seven beam angles used at Duke: 25°, 75°, 130°, 180°, 230°, 280°, and 330°.  

We believe this practice is justified since we will subsequently have to adapt the fluence 

maps from the matched case to the specific beam angles prescribed for the query case.      

Unlike the previous study reported in Chapters 3 and 4, whereby a leave-one-out 

approach is implemented by using query cases selected from the Duke knowledge base, 

we now use the non-Duke query cases as ‘new’ cases for which we can test and validate 

the robustness of our knowledge-based algorithm. That is, by selecting query cases from 

an outside institution, we thus remove the intrinsic bias that potentially exists when 

matching query cases against a database of cases from the same institution, which have 

been similarly designed and implemented. Next, we registered the prior optimized 

fluences to the PTV and adapted the optimization weights from the best-matched cases 

for the query case.  Since these query cases have also been previously manually 

optimized and clinically approved at another institution, we can also conduct a 

comparison of the original clinical plan quality across institutions.  

In the first part of this validation study, we compared the original, manually- 

derived treatment plans from the three institutions, by considering the original fluence 

maps as well as the DVH plots.  First, we visually compared the fluence maps, looking 
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at the heterogeneity of the intensity distributions, as well as the size and shape of the 

fluence distributions.   

For the second part of this validation study, we selected ten cases from PMC for 

re-planning.  In order to simplify the comparison between five- and seven beam-angle 

plans, we chose to re-plan only cases that were originally manually planned as a seven-

beam plan. Using the knowledge-based approach explained in Chapter 3, a single best-

matched case and the corresponding fluences and optimization weights were adapted to 

design ten new treatment plans.  

Lastly, we utilized the plan quality index described in Chapter 4 and compared 

the AUC for each of the structures as well as the overall plan quality for each new plan.  

The final part of this research study involved the inter-institutional comparison of plan 

quality between ten new, knowledge-based plans and the original manually-generated 

plans from PMC.  We also examine the DVH plots of the PTV in greater detail, focusing 

in on the important shoulder region above 90% of the structure volume, specifically 

defined for the D90 to D100 region.  The clinical priority of establishing PTV coverage 

would have i) 100% of the volume receiving 100% of the dose, and ii) a steep drop-off in 

coverage of the PTV above D100. Any region above the D100 implies additional 

unnecessary dose exceeding the prescription limit will produce as hot spots within the 

PTV.  For the critical structures (i.e. rectum and bladder), the same AUC plan quality 

metric is calculated for cases from each of the three institutions, however, there is no 

additional consideration of shoulder or tail regions.  Figure 24 illustrates the definition of 

these two regions of the PTV used in this study. 
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Figure 24 Diagram of AUC shoulder and AUC tail regions of the PTV 

The shoulder region is defined as the partial area under the curve, from 90%-
100% of the dose, for percentage volume greater than 90%.  An ideal PTV would 
have an AUC of 1.0 for the shoulder.  The tail region corresponds to the region 
above 100% of the prescription dose, that is, the region where excess dose greater 
than the prescription can produce  ‘hot’ spots. 
 

5.3 Results 

 Typically, the fluence intensity maps are not visually reviewed except perhaps as 

an overlay on top of the beam’s eye view of the structure contours for the purpose of 

checking alignment.  It is not uncommon for the physicist or dosimetrist to do minor 

‘dose-painting’ to manually adjust the fluence map pixel by pixel to remove undesired 

hot spots.  In the first part of this study, we generated the set of seven fluence maps for 

each case, and viewed the ensemble of these fluence map sets for each institution.  

Interestingly, we found that the fluence maps at our institution were very different than 
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those from both outside institutions.  Figure 25 depicts the heterogeneous distribution of 

radiation intensities from Duke cases, which is what we would expect to see in a typical 

intensity modulated fluence map.       

 

Figure 25 Four examples of the set of seven fluence maps from Duke.   

Each row corresponds to the set of seven fluence maps for a given case.  Note 
that these fluence maps reveal the variation in the intensity distributions 
expected in an intensity-modulated treatment plan. 

 

Figure 26 and Figure 27 illustrate the representative examples of fluence maps from 

Institution #1 and Institution #2 respectively.  At both institutions, the fluence maps are 

more uniform in the intensity distributions, implying little modulation of the fluence 
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intensities.  Additionally, the shapes of the fluence fields at both institutions tend to be 

more circular than those at Duke. 

 

 

Figure 26 Four examples of the set of seven fluence maps from Institution #1.  

Each row corresponds to the set of seven fluence maps for a given case. Note that 
these fluence maps reveal very little variation in the intensity distributions, 
which is more reflective of a homogenous 3D conformal fluence pattern. 
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Figure 27 Four examples of the set of seven fluence maps from Institution #2. 

Similarly, these fluence maps from High Point also reveal very little variation in 
the intensity distributions, which is more typical of 3D conformal fluence maps.  
 

Next, we consider the dose-volume histograms of the original clinical case for 

each institution.  The plan quality score, based on the weighted sum of the area under 

the curves, was calculated for each plan and the plans at each institution were rank-
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ordered.  Figure 28 depicts the dose-volume histograms for twenty Duke cases, sorted 

from high PQ to low PQ.  The red line corresponds to the PTV, the blue line the bladder, 

and the cyan line represents the rectum.  

 

Figure 28 Twenty Duke cases sorted from high PQ (#1) to low PQ (#96) 

Every fifth case from the Duke database is shown. 
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In examining the DVH for each case, we wish to see the full extent of PTV volume 

coverage, given by the shoulder region at the prescription dose of 100%.  We also 

consider the excess dose to the PTV indicated by the area under the curve of the ‘tail’ 

region for dose greater than 100%.  In general, we find that Duke cases have very good 

PTV coverage, as evidenced by the sharp drop-off in the shoulder region.  We also see 

the full range of rectum and bladder dose-to-volume coverage, with the rectum dose 

tending to be equal to, or less than, the bladder dose.  It is useful to remind the reader 

that the protocol at Duke (refer back to Table I) requires the dose to 50% of the rectum 

and bladder volume to be under 39 Gy.  For a protocol of 78 Gy, this limit corresponds 

to 50% of the prescription dose.     
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Figure 29 Twenty cases from Institution #1, sorted from high PQ to low PQ. 

Every fifth case from the database of Institution #1 is shown. 
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The DVH for the cases from Institution #1 are shown in Figure 29.  It can be 

visually seen in many cases that the slopes of the PTV shoulder are not as sharp as for 

those at Duke.  This implies that while there may be adequate PTV coverage at the 100% 

prescription dose level, there will also be additional volume receiving doses in excess of 

the prescription dose.  We also find at Institution #1 that the rectal dose tends to be 

lower than the bladder dose. Figure 30 depicts the DVH for cases from Institution #2.  

We find sharp drop-off in PTV shoulder region for most plans, and the tendency of 

relatively lower rectal dose than bladder dose for high PQ cases.   
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Figure 30 Twenty cases from Institution #2, sorted from high PQ to low PQ 

Every fifth case from the database of Institution #2 is shown. 

Mid-range PQ cases tend to have equal bladder and rectal dose, while lower PQ cases 

tend to have higher rectal dose.  
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Re-planning for new cases using a knowledge-based approach 

For the last part of this validation study, we adapted the prior fluence maps and 

optimization weights from the matched case to design new plans for the query case.  We 

selected only seven-beam angle cases from Institution #1 for re-planning.  Here, we 

present a summary of the DVH results of re-planning for ten query cases.  We selected 

three cases that represent the full range of our re-planning results, i) substantial plan 

quality improvement, ii) comparable plan quality, and iii) slightly reduced plan quality.  

Figure 31 is a comparison of the DVH for Case #1 - the new, knowledge-based plan 

(solid lines) and the original, manually generated clinical plan (dotted lines) from 

Institution #1.    

 

Figure 31 Comparison of knowledge-based plan (Case #1) vs. manual plan 

For case #1, we see that for this knowledge-based plan, the PTV coverage is slightly 

higher than the original manual plan, and the rectum and bladder dose are lower than 
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the original clinical plan – even though the rectum dose is still slightly higher than 

required by Duke protocol.  

 

Figure 32 Comparison of knowledge-based plan (Case #7) vs. manual plan 

 

Figure 32 illustrates the re-planning for case #7, where the PTV coverage in the 

knowledge-based plan is equal to that of the original clinical plan.  For this knowledge-

based plan, there is a slight reduction (improvement) in the bladder dose but a slight 

increase (degradation) in the rectum dose.  However, for this case, both the knowledge-

based plan and the manual plan are able to achieve relatively great dose sparing to 

bladder and rectum.   
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Figure 33 Comparison of knowledge-based plan (Case #6) vs. manual plan 

 

Figure 33 illustrates the comparable dose volume histograms between the 

knowledge-based plan and the original manual plan.  Of the ten new re-planned cases, 

Case #6 was the only one case where both the rectum and bladder dose were slightly 

higher in the knowledge-based plan.  All the other nine re-planned cases were found to 

have comparable or slight improvement in both rectum and bladder dose.  These 

specific values for each of the ten cases are shown in Table XI.   

In summary, for the PTV, the mean percentage difference was found to be 0.4% 

indicating that the knowledge-based plan is comparable in PTV coverage as the manual 

plan. The mean improvement in dose sparing for rectum and bladder were 3.6% and 

9.3% respectively. For nine out of ten cases, both rectum and bladder doses were 

comparable or slightly less for the knowledge-based plans.  In fact, if we exclude the 
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outlier case, the average AUC decrease for rectum and bladder were 7.5% and 13.9%, 

respectively, which is actually quite substantial. Using the weighted plan quality metric, 

the mean percentage difference for the overall plan quality of -0.3% suggests that the 

knowledge-based plans are very comparable to the manual plan.     

Table VI Percentage difference in AUC between knowledge-based plan vs. 
manual plan 

 

Note that PQ = 10*AUC PTV + (1 – AUC rectum) + (1 – AUC bladder).  Also, for 
 the critical structures, a negative value indicates an improvement, greater dose 
 sparing. 

 

5.4 Discussion 

In this final study, we were interested in determining the feasibility of 

developing knowledge-based plans using cases from an outside institution as ‘new’ 

query cases matched against a Duke-only database.  We acquired 100 additional cases 
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each from two clinics, for a total of 200 cases, for the purpose of plan quality comparison 

and for re-planning. 

A cursory review of the fluence maps show that the Duke fluence maps are far 

more heterogeneous in intensity distributions – as compared to the mostly uniform 

fluence maps from Institution #1 and Institution #2.  These uniform fluence maps are 

more typically seen in 3D conformal plans rather than in intensity-modulated plans.  

However, it is difficult to say what the net effect of these uniform fluence maps by a 

visual inspection alone.   

The dose volume histograms from all three institutions reveal adequate PTV 

coverage at the prescription dose level.  Duke cases reveal a very sharp drop off in PTV 

coverage beyond the 100% prescription level, with very little volume receiving excess 

PTV dose.  In contrast, while the PTV coverage is similarly adequate in both institutions, 

the excess dose beyond the prescription level is substantially higher in both Institution 

#1 and Institution #2.  The dose sparing to rectum and bladder at all three institutions is 

adequate, and most cases have critical structure dose below the 50% volume < 50% Rx 

protocol used at Duke. The mean rectal dose for Duke cases was found to be slightly 

higher than at the other two institutions.  However, the mean bladder dose for Duke 

cases was found to be substantially higher than those at Institution #1 and Institution #2.  

We believe this is due to the fact that these original plans are defined with different 

contouring protocols, i.e. expansion of PTV margin.  As such, a meaningful inter-

institutional comparison of treatment plan quality can only be made for re-planning of 

cases using the same structural contours and expansions.     

An inter-institutional comparison of manual planning versus knowledge-based 

planning was conducted.  Results of the re-planning study found that comparable PTV 

coverage was obtained for all ten cases, and that for nine out of ten cases, both rectum 
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and bladder doses were comparable or slightly less for the knowledge-based plans.   

These results are highly suggestive of the potential feasibility of designing clinically 

acceptable treatment plans using the knowledge-based approach based on a site-specific 

database of prior plans.  The current process of importing fluence maps and 

optimization weights from the matched case is time consuming since the dose 

calculation and optimization is performed in the ‘closed’ commercial treatment planning 

system.  Future work in developing an off-line dose-calculation and optimization engine 

should enable a more thorough investigation of a larger number of case comparisons.  

The potential for realizing significant clinical impact through this semi-automated 

treatment planning approach will come from developing an interface to automate the 

process of case-retrieval, registration of fluences and the importing of optimization 

weights. 

We recognize that inconsistencies in structure contouring, particularly across 

different institutions, may present some challenges in the comparison of plan quality 

across institutions. For instance, both outside institutions created their PTV by 

expanding the prostate with a lower expansion margin than was done at Duke.  In other 

words, the overlap between PTV and bladder/rectum is higher for Duke, so it would 

not be possible for AUC for bladder/rectum to be lower in the Duke plans.  A second 

example is worth noting, some institutional practices include nodal involvement when 

defining the PTV, resulting in a larger PTV contour, which in turn may not appear in the 

knowledge base constructed at an institution that does not share that practice.  Similarly, 

the contouring protocols are related to the dose prescription of that institution (i.e. 

posterior PTV margin adjacent to rectum is related to dose escalation protocols). 

However, we believe that the general framework for knowledge-based treatment 

planning can still be implemented across institutions using site-specific guidelines 
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concerning structure definition and margins.  Further adoption of Radiation Therapy 

Oncology Group (RTOG) contouring and prescription protocols as well as increasingly 

robust atlas-based solutions may also help reduce the practice variability across 

institutions, and thus, it would be quite feasible to implement a national archive of 

knowledge cases for use across institutions. 

In conclusion, we find that a site-specific database of prior plans can be 

effectively used to design new treatment plans for outside cases.  It remains to be seen 

whether a heterogeneous database of plans drawn from multiple institutions is suitable, 

or perhaps superior to a site-specific database.  There remains the long-standing issue of 

contouring variability.  As more efficient algorithms for atlas-based contouring become 

more widely used, the role for knowledge-based treatment planning should increase, 

and the potential for further automation of the treatment planning process should be 

realizable.  This would allow for greater standardization of the quality of treatment 

planning across institutions.  Given the current time and effort expended on developing 

IMRT plans, a fully automated and integrated knowledge-based planning solution will 

likely improve treatment planning efficiency across institutions.  
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6. Summary, Conclusion and Future Work 

6.1 Summary of Findings 

The clinical challenge in IMRT treatment planning requires providing an 

effective coverage of the planning target volume while sparing the normal structures 

(i.e. rectum and bladder) to the greatest extent possible.  We have addressed this 

problem by proposing a knowledge-based solution, whereby the manually optimized 

prior cases that reflect the expertise and time spent by a human planner is leveraged as a 

semi-automated algorithm.  First, a knowledge base consisting of CT data, structure 

contours as well as various treatment parameters is assembled from prior optimized and 

clinically approved IMRT cases from the Duke clinic.  Second, a case-matching 

algorithm is developed using mutual information as the basis for identifying similar 

patient cases.  A query case is selected from the knowledge base, and considered as if it 

were a new patient case for which a treatment plan was needed.  The case-similarity 

algorithm identifies a range of matched cases similar to the query case.  Thirdly, the 

best-matched case having the highest overall MI score is selected and its treatment 

parameters are adapted to design a new treatment plan for the query case.  Lastly, we 

evaluate the resulting new semi-automated plans and compare these to the original 

plans developed by a human planner.  We evaluate the plans based on dose-to-volume 

criteria that reflect the initial prescribed protocol. 

In the first study described in Chapter 3, we demonstrated the feasibility of a 

knowledge-based approach of using prior clinically approved treatment plans. We 

found that the approach can substantially reduce planning time by skipping past all but 

the last few optimization iterations of the planning process.  Specifically, we showed it is 

possible to generate high quality plans using a semi-automated approach, and this 

approach can substantially improve the efficiency of treatment planning. 
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In the second study described in Chapter 4, we conducted an evaluation of 

treatment plan quality and the relationship between plan quality and case-similarity 

based on mutual information. We introduced a figure of merit called the plan quality 

score, based on the weighted sum of the area under the DVH curve for the PTV, rectum 

and bladder.  We found that a weighting of ten, one, one for the PTV, rectum and 

bladder respectively produces a monotonic rank-ordering of cases consistent with 

clinical plan quality expectations.  The matched cases that are substituted into the query 

cases result in plans that have a full range in plan quality.  We found that the plan 

quality of a pre-optimized plan will nearly always improve more after the optimization 

process. Even though plans with lower pre-optimized plan quality tend to improve 

substantially after optimization, they generally end up with lower post-optimized plan 

quality than plans with higher pre-optimized plan quality.  On the other hand, plans 

with higher pre-optimized plan quality also generally had higher post-optimized plan 

quality.  However, the plans that are initially high in plan quality do not result in much 

more substantial plan quality gains, and for a few instances, the plan quality actually 

may decrease slightly.  Lastly, we found that the mutual information score can act as a 

surrogate for overall plan quality, which will greatly facilitate future research efforts.   

In the final study described in Chapter 5, we compared the treatment plans 

collected from two outside institutions, in terms of their respective DVH and the fluence 

maps.  We found that the Duke fluence maps are far more heterogeneous in intensity 

distributions, in contrast to the very uniform fluence maps from both of the outside 

institutions. However, it is difficult to determine what the net effect of these differences 

in uniformity alone may be.  Next, the comparison of the DVH found that the PTV 

coverage to the prescription was adequate at all three institutions, although there was a 

tendency for there to be substantially higher excess dose to the PTV at the other two 
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institutions.  For the critical structures, the dose sparing to both the rectum and bladder 

at each of the three institutions was found to be adequate, where most cases had normal 

tissue dose falling below the 50% volume < 50% Rx protocol. The mean rectal dose for 

Duke cases was found to be slightly higher than at the other two institutions, while the 

mean bladder dose for Duke cases was found to be substantially higher than those at the 

other two institutions. We believe this is due to the differences in contouring protocol, 

since the PTV margin extension at the other two institutions are lower than those at 

Duke.  That is, the overlap of the PTV with both rectum and bladder is expected to be 

greater due to the larger margin extensions.  A meaningful comparison of plan quality 

cannot be extrapolated from this if the initial contours are defined differently for each 

institution. 

Lastly, we conducted a limited comparison study of manual planning versus 

knowledge-based planning using ten query cases selected from one of the outside 

institution.  These query cases were matched against the Duke database, and new plans 

were generated using the knowledge-based approach.  Results of the re-planning study 

found that the knowledge-based plans provided comparable PTV coverage to the 

original manual plan. With the exception of one case, the average AUC decrease for 

rectum and bladder was 7.5% and 13.9%, respectively, which is actually quite 

substantial.   In conclusion, we found that a site-specific database of prior plans can be 

effectively used to design new treatment plans for outside cases.  

6.2 Conclusion 

The current process of IMRT treatment planning is an iterative time-consuming 

process that is highly dependent on the skill and experience of the planner. It has 

previously been reported that there is wide variability across medical institutions 

between the prescribed radiation dose and the dose delivered.  This is suggestive that 
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there may also be wide variability in treatment plan quality across institutions.  We 

demonstrate the potential of using a knowledge base approach of identifying and 

adapting prior optimized treatment plans to generate clinically acceptable prostate 

IMRT treatment plans for new cases.  This approach involves identifying a similar 

matched patient case from a database of prior clinically approved plans, and adapting 

the treatment parameters to the new case.  We have demonstrated that our knowledge-

based approach is a feasible semi-automated solution for IMRT treatment planning, 

offering the potential to improve the efficiency of the treatment planning process while 

ensuring that high quality plans are developed.   

We have shown that a simple plan quality metric can be implemented to 

evaluate and quantitatively compare different treatment plans, which has the potential 

to standardize the manner in which different treatment approaches/regiments are 

reported and evaluated.  Lastly, we have found that the average mutual information 

score can be used as a surrogate of overall plan quality – whereby a matched case of 

high geometric similarity should produce a new plan of high plan quality as well. 

Lastly, we found that a site-specific database of prior plans can be effectively 

used to design new treatment plans for outside cases.  It remains to be seen whether a 

heterogeneous database of plans drawn from multiple institutions is suitable, or perhaps 

superior to a site-specific database.      

6.3 Future Work  

In this initial study, our algorithm identified the single best-matched case based 

on the simple sum of the seven individual MI values for each beam angle. In the future, 

we plan to explore alternative methods of improving the case-similarity matching, such 

as weighting schemes based on beam angle. It may also be possible to improve case 
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similarity retrieval through matching the full 3D volumetric dataset, rather than simply 

using the beam’s eye view projection images. 

Since it is not yet feasible to know a priori the full extent of dose sparing that can 

be realized for any individual patient, it would be beneficial to use a database of prior 

clinical plans with parameters that could reasonably estimate the possible extent of dose 

sparing.  Further investigation should be conducted to determine the relationship 

between the match score and the extent of dose-sparing levels.  That is, it would be 

tremendously useful to be able to obtain an estimate of this dose-sparing extent for a 

new case, extrapolated based on the similarity of the matched case, without having to 

actually perform the dose calculation. If the knowledge-based approach could provide a 

quick and accurate estimate of the achievable dose sparing, by avoiding the 

computationally intensive dose-calculation, this would be a valuable alternative to an 

exhaustive search of the entire solution space of useful fluences. 

Presently, the dose calculation process for generating a knowledge-based 

treatment plan is still quite time-consuming.  It was necessary to perform the dose-

calculation and the final optimization within the commercial Eclipse treatment planning 

system (TPS).  Since the commercial TPS is designed for clinical use, rather than as a 

research tool, it is presently not feasible to easily swap fluences and optimization 

weights from one patient case to another.  This process was done off-line for this 

research project, and the set of fluences and optimization weights imported from the 

matched case had to be entered manually.  Potentially, using the CERR tool to perform 

these automated dose-calculations off-line could solve this problem.      

Lastly, there is still plenty of interesting work to be done in terms of evaluating 

the knowledge-base design.  By continuing to add additional cases, one can investigate 

the robustness of the knowledge base, in terms of the number of cases, as well as the 
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quality and the kinds of plans that are used to assemble the knowledge base.  We have 

shown that a site-specific database can be used to develop a treatment plan for query 

cases drawn from an outside institution.  However, due to limited time, we were not 

able to investigate whether a knowledge base assembled from cases selected from 

multiple institutions would be more useful, and what techniques should be developed 

to query, and adapt fluence and optimization parameters given that they would differ 

from one institution to another.  Further work could also extend the case-similarity 

algorithm to consider combining treatment parameters drawn from multiple patients, 

rather than the present method of using parameters taken from only a single, individual 

patient.  

Finally, we had initially selected prostate cancer to investigate the feasibility of 

developing a knowledge-based treatment planning approach for two reasons: i) the high 

volume of prostate cancer cases presenting in radiation oncology, and ii) the relative 

ease of IMRT treatment planning for prostate cancer as compared to more challenging 

disease sites such as head and neck.  It may be possible to extend this approach to other 

disease sites (i.e. head & neck) that are more challenging and time consuming to plan.  

Additionally, since head & neck cases typically present less frequently than prostate 

cases, many sites with limited experience and planning expertise could benefit greatly 

from the shared expertise of a knowledge-base system using cases collected from 

multiple institutions. 
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