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Abstract. In this paper, we report on a multi-year collaboration among computer scientists, toxicologists, chemists,
and a statistician, in which the RL induction program was used to assist toxicologists in analyzing relationships
among various features of chemical compounds and their carcinogenicity in rodents. Our investigation demon-
strated the utility of knowledge-based rule induction in the problem of predicting rodent carcinogenicity and
the place of rule induction in the overall process of discovery. Flexibility of the program in accepting different
definitions of background knowledge and preferences was considered essential in this exploratory effort. This
investigation has made significant contributions not only to predicting carcinogenicity and non-carcinogenicity in
rodents, but to understanding how to extend a rule induction program into an exploratory data analysis tool.
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1. Introduction

Knowledge discovery in real-world scientific data demands more software support than
classification of instances or association of variables. To be useful, in addition to discover-
ing relationships among variables, an inductive learning program must support the iterative
process of scientific experimentation and allow investigators to compare results as they run
the program under different assumptions and perspectives (Fayyad, Haussler & Stolorz,
1996a; 1996b). It must also support experimentation with different biases, including dif-
ferent criteria of what is interesting, and be tolerant of the incompleteness of real-world
data. In this paper, we report on a multi-year collaboration among computer scientists, tox-
icologists, chemists, and a statistician, in which the RL rule induction program (Buchanan,
1994; Clearwater & Provost, 1990; Provost, 1992) was used to assist toxicologists in analyz-
ing relationships among various features of chemical compounds and their carcinogenicity
(i.e., propensity to cause cancer) in rodents (mice and rats). This investigation has made
significant contributions not only to predicting carcinogenicity and non-carcinogenicity in
rodents, but to understanding how to extend a rule induction program into a knowledge
discovery tool.

Over 1,000 chemicals are released into the environment each year, with little or no knowl-
edge about their carcinogenic effects on humans. Extensive efforts in this area have not
yielded a satisfactory set of criteria for distinguishing carcinogens from non-carcinogens.
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In fact, this is not surprising considering the complexity of carcinogenic events, i.e., multi-
ple stages and multiple causes, the lack of a well-established theory and data, the diversity
of chemical structures, and the interactions and transformations among chemicals.

The cancer hazard identification problem provides an interesting opportunity for knowl-
edge discovery. It illustrates the need for a data analysis tool to explore relationships
between a large number of chemical features and carcinogenic activity. In addition, just
like other exploratory scientific problems, it requires tools that are capable of dealing with
various questions and experimental assumptions that are difficult to formulate. Such a tool
must also allow analysts and scientists to explore the consequences of many different sets
of assumptions, their intuitions and prior knowledge. While most learning programs offer
a variety of heuristic search methods to find interesting patterns, not all of them are flexible
enough to be effective data analysis tools suitable to scientific problems.

In the work reported here, the toxicologist working with us, Professor Herbert Rosenkranz,
wished to look for nonlinear relationships using both symbolic and numeric variables. While
the toxicologist’s ultimate goal of the investigation was to find more predictive criteria
for identifying carcinogens and non-carcinogens in rodents, he also wished to investigate
several hypotheses about the value of incorporating particular features of chemicals into a
predictive model. Thus, rather than simply applying the RL induction program to a database
of chemicals and inducing a set of classification rules, RL was used as a data analysis tool
which was applied iteratively to assist scientists in testing their intuitions and assumptions.

Our investigation consisted of three studies conducted over three years. In the first two
studies, our efforts were concentrated on developing more predictive and semantically plau-
sible criteria for identifying rodent carcinogens and non-carcinogens. Different databases
of chemicals and different features of chemicals were used in each study. In the third
study, the RL program was used to analyze the predictions of other induction programs to
find strategies for interpreting and combining predictions of multiple induction programs.
Major steps of our investigation included: (1) preparation of data according to the problem
to be solved, (2) application of the RL program, (3) evaluation of the results of experiments
with the experts to assess the semantics of rules, as well as their predictive strength, and
(4) revision of semantic assumptions, constraints of the problem, and syntactic induction
biases. Our approach is similar to published steps in the knowledge discovery process
(Fayyad, Piatetsky-Shapiro & Smyth, 1996a; 1996b).

One of the important steps in knowledge discovery is the interpretation and evaluation
of patterns produced by an inductive learning component. The evaluation of discovered
patterns must be done not only by data coverage metrics such as accuracy, but also by their
concordance to domain semantics. In our investigation, rule sets learned in each experiment
were evaluated by collaborating experts, and the outcome of evaluations was then used to
either revise previously used semantic assumptions and syntactic search biases, or create
new constraints in subsequent experiments. While a complete semantic model may be
difficult to incorporate, some degree of semantics can be included to guide rule formation
during rule search. Towards this end, we extended the RL program to use some semantics
about attributes and their values during rule formation. We believe these modifications to
RL are general and are applicable both to other learning programs and in other application
domains.
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The results of our studies are very encouraging. The rule sets learned have demonstrated
their predictive strength by identifying rodent carcinogenicity and non-carcinogenicity of
new sets of chemicals more accurately than other methods (Parry, 1994). In addition,
through testing various semantic assumptions and comparing results among experiments,
several interesting discoveries were made about relationships between features of chemicals
and carcinogenicity.

In the following section, a brief description of the problem of identifying chemical car-
cinogenicity is provided. Our investigation consisted of three studies which are described
in Section 3 along with the results and evaluations. Further details of our studies can be
found in Buchanan and Lee (1995), Lee, Buchanan, Klopman, Dimayuga, and Rosenkranz
(1996), Lee, Buchanan, Mattison, Klopman, and Rosenkranz (1995), and Lee, Buchanan,
and Rosenkranz (1996). The RL induction program is described in Section 4. Section 5
provides a summary and conclusions.

2. Background

2.1. Chemical carcinogenesis in rodents

Over 80,000 chemicals are available commercially, most with little or no data about their
long-term health effects. Despite considerable research, the health effects of only about
15% of those chemicals are known, and definitive studies of the propensity to cause cancer
in humans have been done for only about 50 chemicals. The small number of definitive
studies is a result of the time and cost involved in large-scale epidemiological studies, which
are necessitated by the ethical principle of not experimenting directly on humans. Also,
carcinogenic chemicals may show no immediate effects, further necessitating long-term
epidemiological studies that could definitively demonstrate effects in humans.

The U.S. regulatory decisions of chemical carcinogenicity are primarily based on long-
term animal bioassays conducted by the National Toxicology Program (NTP), in which
live animals (mostly rodents) are exposed to a chemical and the effects on various organs
are observed. However, the long-term animal bioassays themselves are time-consuming
(at least two years) and very costly (at least $2 million per chemical). Furthermore, not all
chemicals are routinely subjected to long-term animal bioassays. Thus, the carcinogenic
effects in rodents are known only for a relatively small number of chemicals, which may not
constitute a representative set of all chemicals available. Up to this date, the NTP database
contains only about 340 chemicals with a panel’s assessment of their carcinogenicity based
on results of two-year (long-term) rodent studies. About 65% of the 340 chemicals are
judged to be likely carcinogens by the panel.

Many scientists have been investigating alternative ways to identify chemical carcino-
genesis using various features of chemical compounds. These include 2- or 3-dimensional
molecular structures, physical properties, results of various kinds ofin vitro and in vivo
short-term assays, and observations of organ-specific toxicity from subchronic (13–week)
animal studies. However, no single type of information has yet been proved effective and
predictive of chemical carcinogenicity, and relationships among various chemical features
themselves have yet to be explored thoroughly. For example, the extent to which a battery of
short-term assays and other cost-effective features serves as a useful predictor for carcino-
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genicity has not been fully explored. Structural features alone have not proved sufficient
for predicting carcinogenic activity.

Also, due to the bias of currently available data, as more chemicals are tested in long-
term bioassays and their results made available, there is increasing chance that previously
discovered and accepted criteria for identifying carcinogens and non-carcinogens will be
contradicted and their predictive strength decreased. For example, in the early 1970’s, the
responses inSalmonellashort-term assays, which test whether a chemical damages the DNA
of the bacteriumSalmonella, were more than 90% accurate for predicting carcinogenicity
in rodents (Ames, Durston, Yamasaki & Lee, 1973). That is, more than 90% of chemicals
causing DNA-damaging effects were rodent carcinogens, and more than 90% of chemicals
causing no damaging effects on DNA were rodent non-carcinogens. However, currently the
concordance between the responses inSalmonellaassays and rodent carcinogenicity is at
best 65% due to broader testing over more classes of chemicals. In fact, the value of using
short-term assays has been questioned in print: “If currentin vitro short-term assays are
expected to replace long-term rodent studies for the identification of chemical carcinogens,
then that expectation should be abandoned” (Tennantet al., 1987).

2.2. Prior work

The cancer hazard identification problem has not been investigated by the AI community
until recently. The CASE (Klopman, 1984) and MultiCASE (Klopman, 1992) structure-
activity analysis programs, which were developed by chemists, are probably the first pro-
grams which used an automated inductive approach to the cancer hazard identification
problem. Both programs explore a very large space of chemical substructures (typically
more than 20,000 structural fragments) derived from training data and find two sets of
structural fragments, one containing fragments common in carcinogens, and the other con-
taining fragments common in non-carcinogens. The discovered structural fragments are
used in two different ways to make carcinogenicity predictions. First, using Bayesian deci-
sion analysis, the predictive strengths of individual fragments are measured and combined.
Second, CASE and MultiCASE generate quantitative models from the discovered structural
fragments and physical-chemical properties.

Bayesian decision analysis also forms the heart of the CPBS (Carcinogenicity Prediction
and Battery Selection) approach (Pet-Edwards, Haimes, Chankong, Rosenkranz & Ennever
1989), which helps decision makers to select the best set of bioassays and to interpret the
results of a battery of tests. The CPBS approach also utilizes other methods such as cluster
analysis, dynamic programming, and multi-objective decision making.

Probably the first application of a general purpose induction program to the cancer hazard
identification problem is described by Bahler and Bristol (1993), who used C4.5 (Quinlan,
1993) to build a decision tree to classify rodent carcinogens and non-carcinogens using a
variety of chemical information (189 attributes). More recently, Busey and Henry (1995)
reported the use of a neural network to predict rodent carcinogenicity using organ-specific
toxicity data. King and Srinivasan (1996) applied an inductive logic programming approach
to make predictions of rodent carcinogenicity using molecular structures of chemicals.

While not an inductive approach, DEREK (Sanderson & Earnshaw, 1991) is a rule-
based expert system designed to cover the broad field of mammalian toxicity including
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carcinogenicity. DEREK makes predictions based on chemical substructures responsible
for toxicological effects.

3. Study overview

3.1. The objective of the study

The objective of our study was to determine whether a rule induction program can pro-
vide meaningful assistance in exploratory science. In particular, scientists asked whether
the RL induction program could analyze relationships among various features of chemi-
cal compounds to find more accurate criteria fordirectly and indirectly predicting rodent
carcinogenicity. Three separate investigations were done, each with different datasets and
purposes. In the first and second investigations, the RL induction program was used to find
accurate rules that candirectly make predictions of rodent carcinogenicity, using features
cheaper than the 2-year long-term assays. The two investigations were different because
different databases and chemical features were used. Further details of these two investi-
gations can be found in Lee, Buchanan, Mattison, Klopman, and Rosenkranz (1995), and
Lee, Buchanan, Klopman, Dimayuga, and Rosenkranz (1996).

In the third study, RL was applied to a dataset generated by two structural analysis pro-
grams, CASE and MultiCASE, to aid the CASE and MultiCASE programs in making
more accurate predictions. That is, RL was used to learn rules toindirectly improve the
predictive strength by aiding the CASE and MultiCASE programs. The CASE and Multi-
CASE programs have demonstrated their abilities to identify structural fragments associated
with carcinogenic and non-carcinogenic events (Rosenkranz, Frierson & Klopman, 1986;
Rosenkranz & Klopman, 1990b; 1995). However, predicting the carcinogenicity of new
chemicals using the identified structural fragments has been problematic because neither
program makes concise predictions. A prediction of the carcinogenicity of a chemical by
CASE and MultiCASE usually results in twelve predicted quantities, called probabilities
and potency values. An expert must arrive at a final conclusion in an implicit and sometimes
inconsistent manner due to the lack of policies for combining these multiple predictions.
That is, the expert makes a prediction of carcinogenicity, not only using probabilities and
potency values predicted by CASE and MultiCASE according to his or her intuition and
knowledge, but also relying on structural fragments and other chemical features such as
results in short-term assays. Our goal was to find policies and strategies for interpreting
and combining the predicted quantities generated by the CASE and MultiCASE programs.

3.2. The RL program

The RL learning program (Buchanan 1994; Clearwater & Provost, 1990; Provost, 1992)
is a descendant of Meta-DENDRAL (Buchanan & Feigenbaum, 1978). RL generalizes
the chemistry-specific aspects of Meta-DENDRAL and is a general purpose rule induction
system. During our study, RL has been extended to accommodate our need to explore the
databases in several ways, as discussed in the later sections.

RL uses heuristic search to generate IF-THEN rules and evaluates each of them against
a set of data. Rules can be used individually, but the entire set of rules forms a disjunctive
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class description. RL performs a general-to-specific search of the space of rules defined by
conjunctions of attribute-value pairs (features). The goal of RL’s search is to find rules that
satisfy user-defined performance criteria. Each rule has a set of conditions and a predicted
class, which RL evaluates statistically. The space of possible rules includes all possible
combinations of conditions, so the size of the search space grows exponentially with the
allowable number of conditions in a rule. However, RL uses a beam search to ensure that the
time complexity of the search is linear in the number of conditions. The evaluation function
and beam width are defined by the user. Each rule is tested against the entire set of data
to calculate performance statistics (cf., RISE (Domingos, 1994)), and does not recursively
partition training data (cf., C4.5), nor eliminate training data as learning proceeds (cf., CN2
(Clark & Niblett, 1989)).

A unique feature of the RL program is the Partial Domain Model (PDM) which provides
flexibility in rule searching and evaluation. The PDM can be considered as a set of con-
straints that are used to guide the search through the space of rules. The information in
the PDM includes the definitions of attributes (types, values), a list of classes, constraints
on rule size and content, and other search biases. The constraints and domain knowledge
usually take the form of preference criteria of desirable properties of rules to be induced.

The RL program has been applied to several real world problems including identification
of human developmental toxicity (Gomez, Lee & Mattison, 1993; 1994), trigger design in
high energy physics experiments (Lee & Clearwater, 1992), sensitivity analysis of rule per-
formance in high energy physics (Clearwater & Lee, 1993), detecting and locating faults in
a telecommunication network (Danyluk & Provost, 1993), analyzing large quantities of data
on infant mortality (Provost & Aronis, 1996), inducing rules for biological macro-molecule
crystallization (Hennessy, Gopalakrishnan, Buchanan, Rosenberg & Subramanian, 1994),
and predicting pneumonia outcome (Cooperet al., 1997), and fraud detection (Fawcett &
Provost, 1997).

3.3. Materials

In addition to the RL induction program, our study included three databases of chemical
compounds, and two chemical structural analysis programs. The three databases were
(1) an NTP (National Toxicology Program) database of 301 chemical compounds, (2) an
NIEHS (National Institute of Environmental Health Sciences) database of 108 compounds,
and (3) a CPDB (Carcinogenicity Potency Data Base) database consisting of 1300 chemical
compounds.

Based on organ pathologies observed at the end of long-term (two-year) rodent studies,
the chemical compounds in each database were classified by a panel of experts into three
classes: rodent carcinogens, rodent non-carcinogens, and equivocal. We decided not to
include chemicals in the equivocal class because a chemical may be classified as equivocal
not only because its biological evidence was not convincing, but also because the panel of
experts did not agree on its carcinogenicity.

Both the NTP and CPDB databases contained chemical features such asin vitro or in
vivo short-term effects, physical properties, and structural features. The NIEHS database
contained much more detailed information on biological effects, with data on organ-specific
toxicity. Because the chemicals in the NIEHS database already had been tested for rodent
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carcinogenicity in long-term bioassays under the aegis of the NTP, the NIEHS database
presents a novel opportunity to explore the relationship between organ-specific toxicity and
carcinogenicity in rodents.

In the third study, RL used a database of predictions generated by two Structure–Activity
Relationship (SAR) programs, CASE and MultiCASE, which used the NTP and CPDB
databases to train their models, as shown in Figure 1.

CPDB Database

MultiCASECASE

NTP DatabaseNIEHS Database

RL

intermediate level prediction

Predicted Values

Carcinogenic Activity

Rules Predicting

subset partition attribute reduction

Figure 1. Databases and programs used in our study. The arrows indicate the flow of data along with data
preprocessing steps: (1) examining a subset of the NTP data, (2) reducing a large feature set associated with the
NIEHS data, and (3) using values predicted by other programs as input to RL.

3.4. Data preprocessing

In each of the three investigations, the original data were preprocessed before being given
to RL in order to obtain a better analysis based on the semantics pertaining to chemical
carcinogenicity. Thus, preprocessing was not simply a matter of reformatting and syntactic
translations. The data preprocessing in our study included (1) data partitioning, (2) attribute
reduction, and (3) intermediate level prediction.
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3.4.1. Data partitioning The NTP database contained over 70 attributes, many of
which were predicted rather than observed or experimentally measured. After excluding
the predicted attributes, a total of 13 attributes were selected consisting of 7 short-term
assays (including theSalmonellamutagenicity assay), 4 physical-chemical properties, and
2 dose measurement attributes.

The NTP database was partitioned into two databases, one containing chemicals with
positive responses, and the other containing chemicals with negative responses. As more
chemicals have been tested and have been included in the standard databases, theSalmonella
assay’s apparent reliability as a predictor of carcinogenicity has decreased from over 90%
acuracy to less than 65% accuracy. For the NTP database, theSalmonellaassay’s accuracy
is now only 64%. Further analysis has shown that the decrease is due mainly to the inclusion
of more chemicals for which theSalmonellaassay was negative (i.e., they had no DNA-
damaging effects), but which turned out to be carcinogens. Specifically, while 80% of
the chemicals that are positive in theSalmonellaare rodent carcinogens, only 50% of the
chemicals that are negative inSalmonellaare non-carcinogens. So, rather than searching for
rules that are more predictive over the entire database, we chose to explore the problematic
subclass containing chemicals that are negative in theSalmonellaassay. For these, no
reliable indicator of carcinogenicity exists.

3.4.2. Attribute reduction The NIEHS database contains data on the organ-specific
toxicity of chemicals observed at the end of 13-week subchronic animal studies. The
organ-specific toxicity of a chemical is described by the presence or absence of a total
of 124 lesions, each of which is a morphological effect in an organ. Overall, the 124
lesions specify 43 morphological effects on 32 organs. Because the lesions were observed
in both sexes of two species, mice and rats, there were 496 Boolean attributes for each
chemical. Overfitting is obviously a danger because there are only 108 compounds in the
NIEHS database. Thus, reorganizing the attributes was necessary to reduce the number of
attributes for an effective analysis of relationships between organ toxicity data and rodent
carcinogenicity.

After discussions with experts, the 496 attributes were aggregated into 75 Boolean at-
tributes. The organ toxicity data were pooled irrespective of species and gender, thus
reducing the number of attributes to 124, because we were interested in analyzing rela-
tionships of organ toxicity to carcinogenicity in rodents rather than to carcinogenicity in a
specific gender of a specific species.

We further generalized the toxicity data by separating morphological effects from organ-
specificity, thus further reducing the number of attributes to 75 (43 morphological effects
and 32 organs). For example, the presence or absence of degeneration in the kidneys (a
lesion attribute) was generalized to the presence or absence of degeneration in any organ (a
morphological-effect attribute) and the presence or absence of any type of morphological
effect in the kidney (an organ-specificity attribute). While there was a loss of information
by generalizing lesion attributes, the generalized attributes were more suitable to our study,
because our purpose was not to address the correlation of organ-specific toxicity with organ-
specific carcinogenicity. This has been studied by a number of other investigators. Also,
there appears to be no correlation between the site specificity of carcinogenicity in rodents
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and humans, since a carcinogenic effect anywhere in rodents might indicate a carcinogenic
risk to humans.

3.4.3. Intermediate prediction In the third investigation RL used as features the prob-
abilities and potency values predicted by CASE and MultiCASE. Three datasets were
required: (1) a training dataset of chemicals on which CASE and MultiCASE were trained,
(2) a test dataset of chemicals on which CASE and MultiCASE made predictions, and (3)
a set of probabilities and potency values generated by CASE and MultiCASE, which RL
used to induce rules during cross-validation experiments.

The NTP and CPDB databases were chosen as training datasets for CASE and MultiCASE
because the two programs had previously used those two databases for training. For the
test dataset, about 60 chemicals that were common to the NTP and CPDB databases were
selected. To make predictions on each test chemical and generate a dataset of probabilities
and potency values, CASE and MultiCASE were trained on the rest of the chemicals in
the NTP and CPDB databases separately. For each test chemical, a total of 24 quantities
were generated by CASE and MultiCASE. Thus, the dataset which RL used consisted of
60 chemicals, each with 24 numeric measurements.

While the number of test chemicals that RL used was small, it was unavoidable because
not many chemicals were common to both databases. Furthermore, training CASE and
MultiCASE takes a great deal of time and human effort, since they explore a very large
number of structural fragments (usually more than 20,000 structures). A very large number
of cross validation experiments were required to make predictions for all chemicals in the
test set, as the CASE and MultiCASE programs were trained on each database separately
to predict carcinogenicity in rats, mice, and rodents. The details about generating the
intermediate predicted values can be found in Zhang (1995).

3.5. Semantic constraints

One of the key features of our study was to incorporate domain semantics during rule search
to generate rules which were more biologically plausible and that satisfied experts’ intu-
itions. For example, toxicologists prefer rules that predict chemicals are carcinogenic based
on positive responses in short-term assays, rather than on ranges of molecular weights. The
former is more plausible and more easily justified than the latter. Similarly, general intuition
is that positive responses in short-term assays are plausible bases for predicting carcino-
genicity (because positive responses indicate damage to DNA), while negative responses
in short-term assays should be bases for non-carcinogenicity (because negative responses
indicate no DNA-damaging effect). However, without this semantic constraint, RL would
find rules based only on their example coverages, resulting in rules contradicting the back-
ground knowledge. For example, a rule may use positive responses in short-term assays
(thus, DNA-damaging effects) to classify a chemical as non-carcinogenic. Of course, as
mentioned previously, there are chemicals whose carcinogenic activities contradict the gen-
eral background knowledge. Thus, for such chemicals, a preferred rule would use attributes
other than short-term assays to explain them.
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The complete semantics of carcinogenic activity are difficult to incorporate due to the
complexity of the domain and the lack of biological knowledge. However, some semantics
can be incorporated so that rules look more plausible and are easier to justify. In particular,
we incorporated the following semantics of the usage of attributes and their values in rules:

• Some values of an attribute can only be used in rules predicting a certain class. For
example, positive response in theSalmonellaassays can only be used in rules predicting
rodent carcinogenicity.

• Every rule must use one or more attributes from a specified list. For example, rules using
one or more short-term assays (in addition to other features) are easier to understand
than rules using physical-chemical features only.

• Types of ranges of certain numeric attributes are constrained. For example, when
probability attributes are used in rules to predict rodent carcinogenicity, they should be
of the form (A > x), whereA is a probability attribute,> means “greater than,” andx
is a cut-off threshold. Higher predicted probabilities by CASE and MultiCASE mean
higher likelihood of carcinogenic activity. (However, it was noticed that without this
constraint, RL would find rules using the probability attributes in the opposite manner.)

These semantic constraints were not hard-coded into the RL program. Rather, we devel-
oped several predicates in RL’s Partial Domain Model (PDM) by which semantic constraints
can be specified. These are described in Section 4. Note that in our study the semantic
constraints took priority over other constraints, including performance requirements.

3.6. Experimental methods

Our investigation was exploratory, by which we mean that various assumptions and different
values of RL’s bias parameters were explored. In each of the three studies, a number of
cross-validation experiments were done. Every cross-validation experiment was automated,
but the comparisons of results among multiple cross-validation experiments were done
manually. It should be noted that the main purpose of multiple cross-validation experiments
was not to tune RL’s bias parameters, but to explore the data with different assumptions
and different sets of attributes. We were aware that given relatively small datasets, even
cross-validation experiments, if repeated, could lead to overfitting the data. The biases that
were varied among experiments are listed below in the order of the most varied to the least
varied:

• Attributes : In many experiments, subsets of attributes were used. For example, in
the first study, each of the possible subsets of available short-term assay attributes was
tested in each experiment to measure and compare the predictive strength of batteries
of short-term assays.

• Performance requirements: Rule performance requirements such as minimum rule
coverage were also varied.

• Semantic constraints: Constraints on attributes and their value usages in rules and on
feature combinations were varied.
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• Evaluation functions: Evaluation functions for a rule and for a set of rules were varied.

• Miscellaneous: Miscellaneous parameters included flags such as whether to find an
exception range for a numeric feature, and the number of splits.

In the first two studies, the available data were divided randomly into ten mutually exclu-
sive sets of approximately equal size. A set of rules was learned from nine sets and tested
on the remaining set, yielding ten trials of learning and testing. In the third study, due to the
relatively smaller database available, we used a leave-one-out test, in which a set of rules
was learned from all but one of the training examples and tested on the hold-out example.
This procedure yielded as many trials as there were instances in the dataset.

In each trial, the following four performance statistics were measured to capture the
predictive strength of a set of rules learned:

• Sensitivity: The number of carcinogens that are predicted correctly, divided by the
total number of carcinogens for which predictions are made.

• Specificity: The number of non-carcinogens that are predicted correctly, divided by the
total number of non-carcinogens for which predictions are made.

• Accuracy: The number of correct predictions divided by the total number of predictions.

• Generality or Prediction Rate: The number of chemicals for which predictions are
made divided by the total number of chemicals in the test set.

Each of the above four quantities was measured in two ways depending on whether to use
default predictions or not. When the learned rules failed to make any predictions for a
chemical, its class was predicted according to the chemical’s response in theSalmonella
assay. That is, a chemical is predicted to be carcinogenic if it is positive in theSalmonella
assay, and non-carcinogenic if it is negative in theSalmonellaassay. However, the experts
were reluctant to make any default predictions. This reluctance is due, in part, to the
high cost of missing potential carcinogens. Thus, in all of the experiments we classified
unpredicted chemicals as “unknown” rather than using a default prediction. We measured
the performance with default predictions only for reference.

Making default predictions when a learned model fails has become general practice in
Machine Learning research. However, default predictions must be used with care especially
when the effect of default predictions is detrimental to the predictive strength of learned
models. For example, Schaffer (1994) acknowledged that increasing rule generality does
not always avoid overfitting. However, a number of experiments in different domains shows
that increasing the rule generality requirement does not decrease the predictive accuracy of a
learned rule set (Lee, 1995). On the other hand, increasing the rule generality requirements
does decrease the generality of a rule set (i.e., the learned rule set makes fewer predictions).
The predictive accuracy decreases substantially only when default predictions are used in
addition to the learned rule set.

The rule sets were also evaluated semantically. While true biological evaluations would
require extensive laboratory experiments, sets of rules were evaluated by our collaborating
scientists. The semantic evaluations mostly concerned the “appropriate” use of attributes
and their values in rules. For example, they would ask, “Which attributes and combination
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of attributes are meaningful in predicting carcinogenicity? Which attribute values are
meaningful in this problem?”

3.7. Results

The results of our experiments were encouraging, and the experts were enthusiastic about
the performance of the learned rule sets. In the experiments using short-term assays together
with dose measurement values and physical-chemical properties, the learned rule sets were
70% accurate for predicting carcinogenicity of chemicals whose responses in theSalmonella
assays were negative. This is a marked improvement over current predictions using only the
results of short-term assays (50% accuracy) or using only the physical-chemical properties
(50% accuracy). It also exceeds the accuracy of human experts who used the whole spectrum
of acute and subchronic toxicity results and structural properties as well as human knowledge
and intuition.

Note that in the whole NTP database, 80% of chemicals that are positive in theSalmonella
assays are carcinogenic in rodents. When this rule is combined with rule sets learned to pre-
dict rodent carcinogenicity of chemicals which are negative in theSalmonellaassays, over
76% accuracy in predicting rodent carcinogenicity is obtained. This also was a significant
improvement (at greater than .99 significance level) over the 71% accuracy obtained in our
initial study (Ambrosino, Lee, Rosenkranz, Mattison, Buchanan, Provost & Gomez, 1993).
Also, the learned rules were more plausible than those learned earlier, although some rules
still remained to be explained.

We also observed interesting patterns of performance of rule sets while testing various
batteries of one or more short-term assays and comparing the average performance mea-
sures (accuracy, sensitivity, specificity, prediction rate) of rule sets across multiple cross-
validation experiments. In particular, we discovered that rule sets learned in the experiments
using two particular short-term assays (SCE and ChrA) exhibited 17% to 19% higher sen-
sitivity (more accurate prediction of rodent carcinogens) than did rule sets learned in the
experiments which excluded the two short-term assay attributes. Also, we discovered an-
other pair of short-term assays which were good for predicting rodent non-carcinogenicity.
The rule sets learned with the pair showed 10% higher specificity than rule sets learned
without the pair.

In the second study, rule sets learned were 81% accurate on average, with 83% sensitivity
and 82% specificity. The 81% accuracy was significantly higher than the 74% accuracy
obtained using the standard battery of liver and kidney tests. Also, the responses in the
Salmonellaassays were only 60% accurate for the chemicals used in the NIEHS database.
Although our study included only 88 chemicals, the results provided at least a partial answer
to several questions. We found that the majority of lesions had no or very little relationship
to rodent carcinogenicity, although this may be in part due to the lack of sufficient data. We
also found that there was little relationship between the responses inSalmonellaassays and
toxic effects in livers or kidneys. A more detailed description of results from the second
study can be found in Lee, Buchanan, Klopman, Dimayuga, and Rosenkranz (1996).

In the third study, the primary focus was on the attributes used in rules (and the data
used to generate rules) rather than on the performance of rule sets. That is, experts were
interested in which predicted quantities were used in rules, which cut-off points were used
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in rules, whether CASE or MultiCASE generated more predictive quantities, and which
of the NTP and CPDB databases provided better training data. The results showed that
using all predicted quantities based on both databases at the same time was less predictive
of rodent carcinogenicity than using quantities based on a single database. Presumably this
result is due to different conventions and standards used in collecting the two datasets, but,
whatever the reason, it raises a cautionary flag for combining datasets in data mining.

Our experimental results also showed that the CPDB database provided better predictive
models than the NTP database. In addition, the results showed that using both CASE and
MultiCASE programs does not provide more predictive power than using one of them.
In fact, rules learned using the probabilities and potency values generated by the CASE
program were more accurate than those learned using values from the MultiCASE program.

When probabilities and potency values are generated using the same database, and given
to RL as new features, the probabilities were more predictive of carcinogenicity than the
potency values. For example, using the probabilities predicted based on the models learned
from the NTP database, RL’s rule sets were 73% accurate in predicting rodent carcino-
genicity. However, when both probabilities and potency values based on the NTP database
were used, learned rule sets were only 59% accurate. On the other hand, when RL used
the probabilities and potency values generated by CASE or MultiCASE, but not both, rules
learned with the potency values were more accurate than those learned with the probabili-
ties. Complete results of the study can be found in Lee, Zhang, Sussman, and Rosenkranz
(1995).

In addition to RL’s rule induction method, we also applied a k-NN (k-nearest-neighbor)
instance-based algorithm (Aha, 1989) and the C4.5 decision tree learning program (Quinlan,
1993). We selected the k-NN because the similarity of physical features (e.g., molecular
weight, water solubility, etc.) would indicate structural similarity, which in turn would
indicate similar carcinogenic activity. However, the results were discouraging. The k-NN
method yielded at best 60% accuracy, even with the short-term assays. We also applied
the C4.5 program, varying its parameters, pruning significance, etc. In cross-validation
experiments, learned trees on average yielded 63% accuracy. This performance is similar
to the concordance of the responses in theSalmonellaassays. Note that we did not use
the kinds of semantic constraints given to RL in either k-NN or C4.5, because it is hard to
impose such semantic constraints on attributes or feature combinations.

3.8. Evaluation

To evaluate the predictive strength of the rule sets learned with the short-term assay attributes,
we selected one final rule set and tested it on a new set of 24 chemicals. These 24 chemicals
were among the 44 chemicals (Tennant, Spalding, Stasiewicz & Ashby, 1990) which formed
the subject of the International Workshop of Predicting Chemical Carcinogenesis in Rodents
(Parry, 1994; Ashby & Tennant, 1994), a comparative study similar to other comparative
“bake-offs” in AI. Based on the results of 2-year rodent cancer bioassays, a scientific panel
assigned 8 of the 24 chemicals as carcinogens, 7 as non-carcinogens, and 3 as equivocal. For
6 chemicals, carcinogenicity was listed as unknown even after the long-term assays. Since
the rules were learned to discriminate carcinogenic from non-carcinogenic compounds, we
omitted the 9 chemicals for which carcinogenicity is either equivocal or unknown. We
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Table 1.Summary of predictions of 15 (non-genotoxic) chemicals, made by a rule set learned by RL and other methods
(Study 1). The 15 chemicals were negative in theSalmonellaassay and formed the subject of the International Workshop
of Predicting Chemical Carcinogenesis in Rodents, held at NIEHS in 1993.1Made predictions for 10 of 15 chemicals.
2Made predictions for 14 of 15 chemicals.

Method of prediction Information used Accuracy

RL rule set 8 attributes (2 short-term assays, 4 physical features, 2
dose measurements)

0.80 (12/15)

Human experts (Tennantet al., 1990) various information such as subchronic pathology, struc-
tural alerts, short-term assays, and structural features

0.80 (12/15)

MultiCASE (Rosenkranz & Klopman,
1990a)

substructures–biophores and biophobes 0.60 (9/15)

C4.5 decision tree (Bahler & Bristol,
1993)

189 attributes consisting of structural alerts, dose
measurements, subchronic organ pathology, short-term
assays

0.80 (12/15)

C4.5 rules (Bahler & Bristol, 1993) 189 attributes consisting of structural alerts, dose
measurements, subchronic organ pathology, short-term
assays

0.60 (9/15)

C4.5 decision tree learned from the
same data that RL used

Same attributes as RL used 0.33 (5/15)

TOPKAT (Ensleinet al., 1990) structural activity, physical properties, substructures 0.60 (6/10)1

DEREK (Sanderson & Earnshaw,
1991)

chemical substructures 0.50 (7/14)2

COMPACT (Lewiset al., 1990) shape and molecular energy levels of chemical structures 0.53 (8/15)

compared the predictions made by RL’s rule set with those made by other computerized
methods as well as those made by human experts. We also trained C4.5 on the same data
using the same attributes RL used and made predictions with the decision tree for the same
24 chemicals.

Table 1 summarizes the accuracy of predictions submitted to the workshop for the 15
(8 carcinogens and 7 non-carcinogens) chemicals. For the 8 carcinogens and 7 non-
carcinogens, the rule set learned by RL made correct predictions for 12 of 15 chemicals.
The RL rule set was the only method that correctly predicted naphthalene as a carcinogen.
Both the human experts and the decision tree obtained by Bahler and Bristol (1993) using
C4.5 also made 12 correct predictions. However, the rule set learned by RL used only eight
attributes (two short-term assays, four physical properties, and two dose measurements).
The experts used a whole spectrum of information about chemicals including pathology
and structural features. Bahler and Bristol used C4.5 with 189 attributes and the induced
tree used more expensive features than those in RL’s rule set. When a decision tree was
learned (by us) using the same data and attributes that RL used, only five chemicals were
classified correctly.

For the other 9 chemicals whose carcinogenicity was either unknown or equivocal, pre-
dictions made by RL’s rule set agreed with the experts’ decisions better than any other sub-



KNOWLEDGE-BASED LEARNING IN EXPLORATORY SCIENCE 231

Table 2.Concordance of predictions made for 30 chemicals in the NIEHS PTE Project (Study 2) to two sets
of predictions made by experts, Tennant and Spalding (1996) and Ashby (1996). Note that the concordance
between the two experts’ predictions is 0.63.

Concordance to experts

Prediction method Tennant & Spalding Ashby

Rule set learned by RL using subchronic organ toxicity (Leeet al.,
1996)

0.64 0.55

CASE and MultiCASE (Zhanget al., 1996) using substructures and
QSAR model

0.67 0.42

CSWG (Huffet al., 1996) 0.64 0.41

Bootman (1996) 0.58 0.37

RASH (Jones & Easterly, 1996) 0.63 0.43

QSAR (Benigniet al., 1996) 0.59 0.36

SHE (Kerckaertet al., 1996) 0.53 0.35

QSAR (Purdy, 1996) 0.47 0.29

DEREK (Merchant, 1996) 0.42 0.40

FALS (Moriguchiet al., 1996) 0.67 0.60

PROGOL (King & Srinivasan, 1996) 0.60 0.48

COMPACT (Lewiset al., 1996) 0.53 0.48

Huff et al. (1996) 0.53 0.47

Tennant and Spalding (1996) - 0.63

Ashby (1996) 0.63 -

mitted predictions. The detailed comparisons of predictions can be found in Lee, Buchanan,
Mattison, Klopman, and Rosenkranz (1995).

The results of the second and third studies are currently being evaluated by making
predictions for a new set of 30 chemicals from the NIEHS Predictive-Toxicology Evaluation
(PTE) Project (Bristol, Wachsman & Greenwell, 1996). From the second study, two rule
sets (one learned with the assumptions about liver and kidney and the other learned with no
assumptions) were selected to make predictions (Lee, Buchanan & Rosenkranz, 1996). The
rules learned from the third study were not directly applied to make predictions. Rather,
rules learned by RL were used to assist the toxicologists in making predictions using the
CASE and MultiCASE programs. In particular, the toxicologists made predictions using
the discovered knowledge about combining probabilities and potency values predicted by
the CASE and MultiCASE programs (Zhang, Sussman, Macina, Rosenkranz & Klopman,
1996). For example, breaking with the past, the experts did not use the potency values
that the CASE program predicted, because in our experiments the performance of rule sets
learned with the potency values from CASE was inferior to the performance of rule sets
learned without the CASE potency values.
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A total of 17 sets of predictions were submitted to the workshop by a number of scientists
using different methods, including two rule sets learned by RL, one by the CASE and
MultiCASE programs, and at least two sets by human experts. The list of chemicals and
list of participants along with their predictions can be found in Bristol, Wachsman, and
Greenwell (1996). The long-term rodent bioassays for these chemicals have not been
completed and the validation of predictions has yet to be performed. At this point, we can
only compare how well predictions by RL rule sets and the CASE and MultiCASE programs
agree with those of experts, as shown in Table 2. Each set of predictions submitted to the
NIEHS PTE Project is compared with two sets of predictions made by experts, one by
Tennant and Spalding (1996) and the other by Ashby (1996). Note that the concordance
between the two experts’ predictions is only 0.63.

The predictions by the FALS program, which uses chemical structures, agreed best with
both experts’ predictions. The predictions made by CASE and MultiCASE agreed most
with the predictions of Tennant and Spalding’s, but did not agree well with the predictions
by Ashby. The predictions by RL based on subchronic organ toxicity agreed nearly as well
as FALS with both experts’ predictions.

4. RL in chemical carcinogenesis

During our study, RL has been extended to accommodate our need to explore the databases
in various ways. It should be noted that not all of these extensions were of benefit to the
study described here, but we didn’t know that until we tried them. Also, we tried to design
these extensions to be as general as possible so that they can be applied easily to other
problem domains.

The semantic constraints discussed previously in Section 3.5 mainly concern the use of
attributes and their values in rules. We implemented these semantic assumptions as con-
straints on rule formation during learning. We extended RL’s PDM with a set of constraints
which allows a user to specify preference on attributes, their values, and their combinations.

4.1. Attribute definition

The attribute definition in the PDM was extended to specify semantic types (“meanings”) of
attributes, priorities and importance levels of attributes, and certainties of attributes’ values.
For example, the attribute SAL, representing responses in theSalmonellaassays, is defined
as:

(SAL (type symbolic)
(values + - m ?)
(meaning short-term-assay)
(order 1)
(certainty 0.8))

The values field specifies that the values of the attribute are+ (positive),- (negative),
m (marginal), and? (unknown). Themeaning field was to provide a reference to a set
of attributes with similar semantics. Theorder specifies a rank by which RL specializes
attributes. If omitted, attributes are ordered according to their information gain (Quinlan,
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1993). Thecertainty indicates an estimated probability that the attribute value measure-
ments are correct, with a default of 1.0 to mean that the measurements are 100% certain. In
this case, it is believed that the responses of short-term assays are at best 80% reproducible.
In some experiments, attribute certainties were combined with a rule’s performance to
calculate the overall certainty of the rule.

4.2. Semantic constraints

Several semantic constraints were incorporated into the PDM to represent a user’s wish to
use attributes and their values in a particular way. First, the PDM was extended to require
that every rule learned must use certain attributes. We generalized this requirement to create
layers of attribute usage and to learn rules according to the layers:

(Layers (Num_Layers n)
(Layer 1 (A_11, ..., A_1i))
(Layer 2 (A_21, ..., A_2j))

. . .
(Layer n (A_n1, ..., A_nk)))

(Layered_learning yes)

whereAij ’s are attributes. The above specifies that rules must be learned in layers. To
learn the first layer, RL finds only rules which include at least one of the attributesA11,
. . . ,A1i. If there are still examples left uncovered, RL learns rules for the next layer which
must include one or more of the attributesA21, . . . , A2i. The process continues through
layers until all of the examples are covered. For example, in some experiments of our study,
experts preferred rules which used at least one or more short-term assays attributes. This
preference was met by the following statements in the PDM:

(Layers (Num_Layers 2)
(Layer 1 (short-term-assays)))

(Layered_learning yes)

If a rule set is learned in layers, then rules are also applied in layers such that rules in layer
x are only applied to the cases for which rules in layerx-1 fail to make any predictions.

Second, the PDM was extended to include constraints representing permissible or forbid-
den combinations of attributes and values. Each constraint has a system-defined predicate
followed by a rule template. Three predicates were used:USE, NOT USE, andEXCLUDE.
The predicatesUSE andNOT USE specifiy attributes or combinations which may or may not
be used in rules. For example, in several experiments, the following was used to constrain
search such that the positive responses in short-term assays be used in rules predicting
carcinogenicity and the negative responses be used in rules for non-carcinogenicity:

(USE ((IF (short-term-assays +)) (THEN C))
((IF (short-term-assays -)) (THEN NC)))

whereC andNC are class names for rodent carcinogenicity and non-carcinogenicity, and
the form((IF ...) (THEN ...)) specifies a rule template. Note that the assumptions
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represented byUSE andNOT USE were considered and implemented as exclusive assump-
tions. For example, the above constraints mean that the positive responses can be used only
for C and the negative responses be used only forNC.

In addition, the predicateEXCLUDE was introduced to prevent the formation of rules with
certain attributes or attribute-value pairs. For example, in some experiments in the third
study, we wanted to test the predictive strength of rule sets learned without using predicted
values from the CASE program. This was achieved by:

(EXCLUDE (NC C) (CASE-probabilities CASE-potency-values))

whereCASE-probabilities andCASE-potency-values refer to all attributes whose
values are probabilities and potency values, respectively, predicted by the CASE program.
TheEXCLUDE predicate was initially added to avoid the need to process the data whenever
a subset of attributes were to be used, thus improving efficiency in experimentation.

4.3. Search

RL uses a beam search to find rules that meet both performance and semantic requirements.
At each step of the search, all rules in the beam are specialized with one or more new features,
and each newly created rule is examined. If a rule meets all constraints, it is added into a
rule set. If it is too specific (i.e., there are too many features in the left–hand side already,
or covers too few examples), or it does not satisfy constraints, the rule is removed from
further consideration. If the rule is too general (i.e., too short or covers too many examples
incorrectly) but meets all other constraints, then it is saved for further specialization. The
saved rules are then sorted and only the topb rules are kept, whereb is the beam width.

In our study, we used a two-level beam search with two beams of rules, each with user-
defined size. The two-level beam search works just like a regular beam search, except that
a rule which meets all constraints is not added to a class definition (rule set) right away.
Rather, such rules are saved in the second beam, and when the second beam becomes full the
best rule—based on a rule evaluation criterion—is selected and added to the class definition.
The two-level beam search is an attempt to lessen the effects of local maxima.

The PDM was also extended to include one or more partial rules from which rule search
begins, thus providing a way to test and further specialize prior knowledge or hypotheses.
For example, the domain experts wanted to find out if the predictive strength of the presence
of toxic effects in kidneys can be improved with toxic effects on other organs. This was
achieved by providing the following two rules:

(SEED ((Kidney yes) ==> C)
((Kidney no) ==> NC))

whereKidney is the name of attribute,yes andno are values indicating the observation of
toxic effects, and(Kidney yes) ==> C is the partial rule, “if any toxic effect is observed
in kidneys, the chemical is a carcinogen.” Partial rules are also useful in focusing on a
subset of training data without physically modifying the training data.
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4.4. Numeric attributes

For numeric attributes, RL selects interval endpoints dynamically as the search proceeds.
The number of intervals is dependent on the types of numeric ranges being sought. In our
study, the experts wished numeric features to specify open ranges only. That is, (A < x)
or (A > x), but not (x < A < y), whereA is a numeric attribute, andx and y are
thresholds. The experts noted that it was difficult to justify such closed ranges of numeric
values. Avoiding closed ranges in numeric features further required another constraint on
rule formation. For example, if the values of two numeric attributes,A1 andA2, are linearly
correlated (either positively or negatively), the conjunction of the two features (N1 < v1)
and (N2 > v2) has an effect similar to specifying a closed range of values ofA1 orA2. To
avoid such cases, when a rule contains two or more numeric features and their attributes are
specified to have open ranges only, correlation coefficients of each pair of numeric attributes
are used to decide whether to combine two numeric features. If a rule has two numeric
features and the values of two attributes are strongly positively correlated (i.e., coefficient
> 0.5), both numeric features should contain the same inequality operator (< or>), and if
the values are strongly negatively correlated (i.e., coefficient< -0.5), then the two numeric
features should have different operators.

Using numeric features with open ranges may miss closed intervals representing an ex-
ception. To find such exceptions, we extended RL’s threshold selection algorithm to search
for an exception for each open range. We found that including exceptions did not improve
performance. This may be because our study does not include sufficient training data for
an exception to be statistically significant.

4.5. Evaluation functions

RL provides several different methods for evaluating individual rules and disjunctive rule
sets. For individual rules, these include Quinlan’s (1987) certainty factor, MYCIN’s cer-
tainty factor (Buchanan & Shortliffe, 1984), PROSPECTOR’s odds calculation functions
(Duda, Hart & Nilsson, 1978), RECON’s rule evidence measure (Simoudis, Livezey &
Kerber, 1994; Kerber, 1991).

In some of our experiments, the certainty of a rule based on its example coverage was
coupled with the certainty of attribute value measurements (included in the attribute def-
inition in the PDM) to give the rule’s certainty. While there are several ways to combine
these, we experimented with a method in which the certainty of a rule was a product of
certainties of those attributes used in the rule multiplied by the certainty of a rule (based on
its example coverage):

CF (R) = E(R)
∏

AttributeA
in ruleR

C(A)

whereR is a rule,C(A) is the certainty of attributeA, andE(R) is a certainty measure
based on the ruleR’s example coverage.

For a disjunctive set of rules, several different evidence-gathering or rule combination
methods are provided, including simple and weighted voting of individual rule certain-
ties, MYCIN’s certainty factor combining method, PROSPECTOR’s odds combination,
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AQ15’s rule strength combination (Michalski, Mozetic, Hong & Lavrac, 1986), and also
no combination of rule certainties.

Many of the cross-validation experiments in our study used layered learning, as described
previously. When a rule set is learned in layers depending on the attribute usage, the
certainties of rules are also combined according to the layers. That is, only the certainties
of rules in the same layer are combined.

5. Discussion and conclusions

The studies reported here explain a puzzle that arose in the first applications of inductive
learning programs to scientific discovery over twenty-five years ago:If scientific discovery
involves finding patterns in empirical data, why are inductive learning programs not rou-
tinely making interesting discoveries?In applications of Meta-DENDRAL (Buchanan &
Feigenbaum, 1978) and subsequently in other investigators’ applications of their inductive
learning programs, it was necessary to tune the parameters of the program, change the
feature language, and adjust the evaluation function before the program produced interest-
ing rules. We initially took this as a design flaw, although we believed the fundamental
paradigm and search strategy in Meta-DENDRAL to be sound.

The flaw, however, was believing an overly simplified model of science as hypothesis
testing, which left little room for exploratory work. Automated bias space search (Provost
& Buchanan, 1995) addresses part of the problem of understanding the nature of the ex-
ploratory work, but for the moment no one has fully automated the imaginative work of
creative scientists who are exploring new problems. Thus, the answer to the question posed
twenty-five years ago is two-fold:

1. Inductive learning programs, even with bias space search, do not adequately address
the creative play involved in the early stages of scientific explorations.

2. Additional tools that support exploration of alternative questions to ask and methods to
use have only recently been seen as important for data mining.

Inductive rule formation finds general rules that are understandable and accurate, but
these are not sufficient to support discovery. Tools to support discovery in science need to
be flexible enough to be used iteratively under different sets of assumptions, with different
vocabularies, and with different questions in mind. Rules resulting from inductive learning
must also satisfy semantic constraints, where the constraints differ as the focus of attention
shifts. We have shown how one inductive rule learning system provides some of the
flexibility needed to be a useful tool in an important health-related domain. These studies
have helped us understand some of the general kinds of semantic constraints that transform
a set of plausible and implausible associations into suggestions that scientists take seriously.
We recognize that there is considerably more to be done, but we believe that using knowledge
in learning is an essential component.

The main theme of our study was to include some domain semantics in the data mining
process so that more plausible rules could be learned. We achieved this with constraints on
the usage of attributes and their values in rules, and constraints reflecting users’ preferences.
We attempted to provide a rather general framework in which a user can easily test assump-
tions and his or her intuitions on attribute and value usages. It is important to note that the
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performance of rule sets learned during cross-validation experiments and the success on
predicting new chemicals were largely due to the semantic constraints. Without the con-
straints, rule sets learned during cross-validation experiments were at most 64% accurate,
and made correct predictions for only 9 of 15 chemicals in the International Workshop of
Predicting Chemical Carcinogenesis in Rodents.

Our study did not include some of the general issues of knowledge discovery in scientific
domains, such as those involving a large amount of raw data, large dimensionality, and
data quality (Fayyad, Haussler & Stolorz, 1996). Just as these issues are important, it is
also important to provide a way to incorporate prior domain knowledge. With a general
scheme to represent prior domain knowledge yet to be developed, our study was an attempt
to incorporate certain semantic relationships of attributes and their values to target classes,
which may not be found by relying only on coverage statistics.

Our experience in other domains—including medical diagnosis, clinical toxicology, infant
mortality, etc.—suggests that the methods and constraints used in our study are not limited
to the rodent carcinogenicity problem. It is conceivable that there are scientific domains
where the flexibility and semantic constraints that RL offers through its PDM are of little
value, because either scientists do not have a very clear idea of what to look for, or simply
they do not know where to start. On the other hand, we believe there are many scientific
problems for which the kind of flexibility RL offers is useful, especially those problems
such as the one we studied where knowledge continues to evolve and the previously found
knowledge often becomes contradictory as more data are obtained.

In summary, our investigation demonstrated the utility of knowledge-based rule induction
in the problem of predicting rodent carcinogenicity and the place of rule induction in the
overall process of discovery. Flexibility of the program in accepting different definitions of
background knowledge and preferences was considered essential in this exploratory effort.
The rule sets learned by RL demonstrated a marked improvement of predictive performance
over current prediction methods. Although true biological evaluation of individual rules
is yet to be performed, and such evaluation will take time, the exploratory framework in
which we used rule induction revealed that some features of chemicals were more useful
for predicting carcinogenicity than some scientists believed (Ramel, 1988; Tennantet al.,
1987).
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