
Knowledge-Based Project Planning

Héctor Muñoz-Avila1,2 Kalyan Gupta2,3 David W. Aha2 Dana S. Nau1

1 Department of Computer Science, University of Maryland, College Park, MD 20742-3255

2Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory, Washington, DC 20375

3ITT Industries AES Division, Alexandria, VA 22303
munoz@cs.umd.edu gupta@aic.nrl.navy.mil aha@aic.nrl.navy.mil nau@cs.umd.edu

Abstract

Project management is a business process for
successfully delivering one-of-a kind products and
services under real-world time and resource
constraints. Developing a project plan, a crucial
element of project management, is a difficult task
that requires significant experience and expertise.
Interestingly, artificial intelligence researchers have
developed both mixed-initiative and automated
hierarchical planning systems for reducing planning
effort and increasing plan evaluation measures.
However, they have thus far not been used in project
planning, in part because the relationship between
project planning and hierarchical planning has not
been established. In this paper, we identify this
relationship and explain how project planning
representations called work breakdown structures
(WBS) are similar to plan representations employed
by hierarchical planners. We exploit this similarity
and apply well-known hierarchical planning
techniques, including an integrated (case-based) plan
retrieval module, to assist a project planner
efficiently create WBSs. Our approach uses stored
episodes (i.e., cases) of previous project planning
experiences to support the development of new
plans. We present an architecture for knowledge-
based project planning system that implements this
approach.

1 Introduction
The Project Management Institute’s A Guide for the Project
Management Body of Knowledge (PMI, 1999) defines a
project as an endeavor to create a unique product or to
deliver a unique service. Unique means that the product or
service differs in some distinguishing way from similar
products or services (Anderson, Bradshaw, Brandon,

Coleman, Cowan, Edwards et al., 2000). Examples of
projects include dam constructions and enterprise-wide
software systems development. To be successful, these
projects must be managed. Project management typically
includes (1) planning and (2) execution sub-processes.
Planning can comprise the following knowledge/work
activities and decisions:

1. Creating a work breakdown structure (WBS): The planner
identifies and establishes a hierarchically organized
collection of tasks that enables the delivery of required
goods and services.

2. Identifying/incorporating task dependencies: The planner
identifies task dependencies and schedules tasks
accordingly.

3. Estimating task and project durations: The planner
estimates the time required to complete each task and
uses the task dependencies in the WBS to estimate
overall project duration.

4. Resource identification, estimation, and allocation: The
planner identifies the types of resources required by
each task, allocates them to each task in the WBS, and
estimates the rates of resources consumption.

5. Estimate overall project costs or budget: The planner
estimates the cost of resources consumed, compiles an
overall project cost, and often derives a scheduled cash
flow.

6. Estimate uncertainties and risks associated with tasks,
their schedules, and resources.

Execution can include the following activities:

1. Acquiring and organizing the resources,

2. performing the task,

3. monitoring the task status and comparing it with expected
execution status to identify deviations, and

4. re-planning or adjusting the plan as needed to meet the
project objectives.

Several software packages for project management are

commercially available. These include MS Project™
(Microsoft), SureTrak™ (Primavera Systems Inc.), and
Autoplan™ (Digital Tools Inc.). These packages help a
planner to record his/her plan and its associated decisions in
a WBS format. WBS is a vital input to the plan execution
process. These packages also assist a project manager in
plan execution. However, they do not assist a planner in the
complex and knowledge intensive task of plan creation and
development.

The primary planning activity of a project involves
creating a WBS for it, which requires decomposing the
project’s tasks into manageable work units. This process
requires significant domain knowledge and experience. For
example, a software project manager who needs to deliver a
real time chemical process control system must employ
significant knowledge of real-time software development
processes combined with his/her experiences in chemical
process control. The complex interdependencies between
task and domain knowledge make creating the WBS a
difficult task.
 By assisting project planners in the creation of work
breakdown structures, intelligent planning systems could
significantly expedite the planning process and increase its
chances of success. Our proposal is based on two areas of
research: (1) Automated hierarchical planning systems
developed by artificial intelligence (AI) researchers (Erol,
Hendler & Nau, 1994) and (2) knowledge management
(KM), which advocates reusing previous problem solving
and decision making experiences to improve organizational
processes (Davenport 1998; Liebowitz, 1999). Building on
this foundation, we present an architecture for knowledge-
based project planning. This architecture employs an
integrated set of methodologies, including hierarchical plan
generation and case retrieval, for reusing experience to
support a project planner in the creation of a WBS.

This paper is organized as follows. Section 2 examines
hierarchical plan representation and presents associated plan
generation techniques. Section 3 then compares the WBS
and hierarchical plan representations. Section 4 then
presents an architecture for a knowledge-based project
planning system with the ability support automated plan
generation. Finally, Section 5 describes a methodology for
developing a knowledge base for such a system.

2 Hierarchical Planning

2.1 Hierarchical Plans
Consider a personal transportation domain where one of the
tasks could be to travel from Greenbelt, a city in suburban

Washington (DC), to Union Station, Washington’s main
train station. Figure 1 shows a hierarchical plan for this
travel task as decomposed into three subtasks: call a taxi,
take the taxi from Greenbelt to Union Station, and pay the
taxi. In this figure, a solid line with an arrow starting from a
task and ending at another task denotes a task-subtask
relationship. For instance call a taxi is a subtask of the
travel from Greenbelt to Union Station task. A dashed line
with an arrow starting at a subtask and ending at another
denotes an ordering relation between them, implying that
the predecessor subtask at which the dashed line originates
must be completed before the successor subtask at which
the dashed line terminates. For example, the call a taxi task
must be completed before the take the taxi from Greenbelt
to Union Station task can begin.

Figure 1. A hierarchical plan for traveling from Greenbelt

to Union Station.

 A Task Network (TN) is a set of tasks, and their
ordering relations, denoted as N=({t1,…,tm},<) (m≥0),
where < is a binary relation expressing temporal constraints
between tasks. The temporal constraint between task t and t’
is defined as follows: if t < t’, then t’ cannot start until t
finishes. In Figure 1, the three lower level tasks form a TN
and the single top-level task also form a TN. Decomposable
tasks are called compound tasks, while non-decomposable
tasks are called primitive tasks. In Figure 1, travel from
Greenbelt to Union Station is a compound task since it was
decomposed into three subtasks.
 Hierarchical planning involves recursive decomposition
of tasks in a TN into their respective sub-tasks. In Figure 1,
the TN formed by the single task travel from Greenbelt to
Union Station has been decomposed into a TN comprising
three sub-tasks. The resulting structure can be viewed as a
tree, assuming that the top-level of the TN consists of a

Travel from Greenbelt to Union Station

Call a taxi

Take the taxi from
Greenbelt to Union

Station

Pay the
driver

single root task (See Figure 1). The tasks are the nodes in a
tree and a node without any child (i.e., subtask) is a called a
leaf node. This tree is referred to as a hierarchical task
network (HTN). Planning finishes when one of the
following two conditions is met: (1) all leaves of the tree are
primitive tasks or (2) every attempt to decompose the tree’s
leaves has failed. In the first case the resulting tree is
referred to as a hierarchical plan.

2.2 Hierarchical Plan Generation
Hierarchical planning is a process by which tasks in a top-
level TN are recursively decomposed to form an HTN. We
present two techniques for decomposing compound tasks in
a TN, involving decomposition by cases or by methods,
respectively.

Method decomposition involves selecting and applying
a method to decompose a particular task. A method is an
expression of the form M=(h,P,ST,<), where h, (the
method's head) is a compound task, P is a set of
preconditions, ST is a set of subtasks (i.e., h's children), and
< defines a total order between the subtasks in ST. Method
decomposition proceeds only when all the preconditions ST
are met. For example, Figure 1 could have been generated
by the following method:

 Task:
 Travel from x to y
 Preconditions:

1. Have sufficient money to take a taxi from x to y
 Subtasks:

1. Call a taxi
2. Take the taxi from x to y
3. Pay the taxi

 Orderings:
 {1 < 2, 2 < 3}

where x and y are variables that take a geographic location
as a value.

However, for many real-world applications, developing
a collection of methods that completely models plan
generation has been found to be infeasible. There are
several factors that limit the development of methods. In
particular, domain experts find the method representation,
which includes variables, difficult to use. In addition,
identifying and formulating adequate preconditions is also
difficult.

Case decomposition was, in part, developed to
ameliorate these shortcomings. Cases are structured records
of actual plan development experiences that can be used to
decompose a task. A case is an expression of the form
C=(h,Q,ST,<), where h is a compound task, Q is a list of
<question, answer> pairs, ST is a list of subtasks, and < is
an ordering relation among the subtasks. Two principal
differences distinguish cases from methods:

1. Case decomposition is based on partial matching of
<question, answer> pairs: Unlike the preconditions P
of a method, where all of them must be satisfied for
decomposition to proceed, the <question, answer> pairs
Q are not hard constraints on the applicability of the
case. A case can be used to decompose a task even if
some of the answers in the current planning situation do
not match the recorded answers in Q.

2. Cases denote (concrete) planning situations, which
simplifies their acquisition and use: Unlike the
preconditions P used in methods, cases do not contain
variables. A set of pairs Q represents a concrete
situation where decomposition was valid and, thus,
does not require the generalization process that is
required to construct methods.

Combining the method and case decomposition

techniques can significantly increase the set of tasks
decomposable by an automated planning system.
Furthermore, applying cases that represent validated, real-
world experiences can increase the confidence of the users
and the reliability of the system.

In HTNs, primitive tasks denote actions that modify the
state of the world. Operators are used to perform these
actions. An operator is an expression of the form
O=(h,aL,dL), where h (the operator's head) is a primitive
task, and aL and dL are the add-list and delete-list,
respectively. These lists define how an operator application
transforms the world state. Elements in the add-list are
added to the state and elements in the delete-list are
removed from the state. We presented the notion of
operators for the sake of completeness. However, we omit
additional details because our emphasis, in this paper, is on
task decomposition (See Muñoz-Avila et al., 1999).

3 Mapping Work Breakdown Structures to
Hierarchical Plans

Developing a project plan involves creating a work
breakdown structure. A WBS is a hierarchically organized
set of elements that need to be performed to deliver the
required goods and/or services. Elements in a WBS can be
of two kinds: tasks and activities. An activity is a terminal
node (i.e., additional elements cannot be attached). Tasks
can contain activities and other tasks (i.e., subtasks).
Elements in the WBS can be ordered using the following
types of precedent constraints:

1. end-start: An element cannot start before another one
finishes.

2. start-start: An element cannot start before another one
starts.

3. end-end: An element cannot finish before another one has
finished.

4. concurrent-start: Two elements must start at the same
time.

5. concurrent-end: Two elements must finish at the same
time.

 In contrast, the ordering constraints in TNs can only be
of type end-start. However, it is easy to use end-start
constraints to represent start-start and end-end constraints.
Suppose that we have two tasks t and t’ and they have a
start-start constraint (i.e., t’ should not start before t). Let
T_children and T’_children be the children of t and t’,
respectively. We create three new subtasks, t_start, t_inter,
and t_end as children of t and another three, t’_start,
\t’_inter, and t’_end as children of t’. We let T_children be
the children of t_inter and T’_children be the children of t’.
Then we add the following end-start constraints: t_start <
t_inter, t_inter < t_end, t’_start < t’_inter, and t’_inter <
t’_end. Finally, to represent that t’ should not start prior to
t, we simply add t_start < t’_start (another end-start
constraint). Constraints of the type end-end can also be
represented using end-start constraints using an analogous
procedure.
 Concurrent-start and concurrent-end constraints cannot be
represented in HTNs as originally proposed. However, other
approaches for hierarchical planning do contain ways to
express task concurrency (Myers & Wilkins, 1999). In the
remainder of this paper, we limit our discussion to end-start
constraints. We are currently extending our representation to
include these kinds of constraints. A difference between
HTN and WBS representations is that WBS contains
additional entities such as allocated resources (See step 4 of
the project planning process in Section 1: resource
allocation). As stated earlier, in this paper we limit our
presentation to Step 2 (i.e., identifying task dependencies).
 The mapping of WBS and hierarchical plans is
straightforward: WBS tasks are the same as compound tasks
in a HTN, WBS activities are primitive tasks, and
precedence constraints of type 1 (end-start) are the ordering
constraints. Table 1 summarizes this mapping. This
mapping means that the AI techniques used for hierarchical
plan generation could be used for WBS generation. Of
course, the main precondition for using these techniques is
that cases and methods can be acquired for a planning
application. We return to this issue in Section 5.

 Table 1. Relation between WBSs and hierarchical plans.

 WBS Hierarchical Plans
Task Compound task
Activity Primitive task
End-start precedent constraint Ordering constraint

Start-start precedent constraint Ordering constraint*

End-end precedent constraint Ordering constraint*

*start-start and end-end precedent constraints can be
converted into an equivalent representation that uses only
end-start precedent constraints.

4 Knowledge-based Project Planning
(KBPP) System
We describe a project planning system that employs a

knowledge base to assist a planner in creating a WBS. We
refer to such a system as a knowledge-based project
planning (KBPP) system. Our description refers to HICAP
(Muñoz-Avila et al., 1999), a system originally
implemented to support hierarchical planning, which we
have extended to function as a KBPP system. It implements
both method and case-based task decomposition for
developing work breakdown structures. Figure 2 shows the
relevant components of the HICAP architecture. The
Hierarchical Task Editor allows the user to edit the WBS,
the two task decomposition modules, and the knowledge
base containing methods and cases.

Figure 2: The HICAP WBS architecture.

Figure 3. A Program WBS for an Aircraft System.

Task
s

Decomposition
s

Case-driven
Task

Decomposer

Work Breakdown
Structure

Planning
Scenario
Elicitatio

n
Method-
driven
Task

Decomposer

Planning Methods

Hierarchical
Task Editor (HTE) Displays/

Edits

Task
s

Task
s

Decomposition
s

Planning
Case
Library

USER

Aircraft System

Receiver

Training
Specific
 Support

 Equipment

Fire
Control

Communication

Air
Vehicle

Consider the task of planning a project to develop
aircraft systems. The WBS in Figure 3 shows the
hierarchical relationship of an Aircraft System to the Fire
Control Subsystem and its related elements, adopted from
MIL-HDBK-881.

Figure 4. A WBS developed in HICAP.

Figure 5. The WBS after applying case decomposition to
the Fire Control System task.

Figure 4 shows HICAP’s user interface with an
example plan developed for the WBS shown in Figure 3.
HICAP’s hierarchical plan display is very similar to WBS
displays in other project management software packages
such as Microsoft Project™. For example, the task-subtask
relation is depicted by an indentation in both systems. A
notable difference between HICAP and other project
management tools is in the way ordering constraints are
displayed. HICAP displays ordering constraints on the
WBS (i.e., the arrows), whereas other project management
tools typically display constraints on a Gantt chart that
corresponds to the WBS activities.

In HICAP the user can interactively decompose a task
by repeatedly invoking its plan generator. This generator
maintains a table indicating whether a task can be solved by
available cases and/or by available methods. Depending on
the availability of methods or cases in HICAP’s knowledge
base, the user can control the decomposition process as
follows: suppose that the user selects the task Fire Control
for decomposition and that the following case is available:

 Task:
 Fire Control
 Question-Answer Pairs:

• Is this for an aircraft system? Yes
 Subtasks:

1. Detection Subsystem
2. Aim Subsystem
3. Tracking Subsystem

 Orderings:
 None

When the user invokes the case decomposer for the task
Fire Control, HICAP begins a simple conversation in which
alternative cases decomposing that task are displayed,
together with their <question,answer> pairs. In this
particular situation, the user answers “yes” to the question
“Is this for an aircraft system?” This perfectly matches the
case presented above and displays its match score of 100%.
Case decomposition proceeds as follows:

1. Based on the current task (i.e., Fire Control), HICAP

retrieves and rank-orders a set of applicable cases and
presents them to the user. These cases are ordered based
on their similarity, defined simply as a measure
proportional to the percentage of questions in the case
that match the user’s answers. This ranking is intended
as a suggestion only and the user can apply any of the
retrieved cases to decompose the current task.

2. HICAP begins a conversation with the user to assess
his/her plan situation. The conversation comprises
questions from retrieved cases. HICAP employs a
combination of push and pull techniques for case
decomposition of tasks, an approach we have adopted

from the KM literature (Liebowitz, 1999). It pushes
applicable cases to the user by pre-selecting them based
on the current task and then the user selects (pulls) and
applies one of the presented cases to decompose the
current task.

Figure 5 shows the result after the user has decomposed
the Fire Control task by applying this case. If a method is
available to decompose the current task, the user can
instruct HICAP to automatically decompose the task to the
greatest extent possible. The decomposition may continue
until one of the two terminating conditions is reached, as
explained in Section 2. This is a push technique in which
HICAP proactively decomposes a task on the user’s behalf.

The effective use of a KBPP system requires
developing a suitable knowledge base. This is discussed in
Section 5.

5 Knowledge Acquisition for a KBPP System
The knowledge base of a KBPP system comprises cases and
methods. Since case retrieval, a simple form of case-based
reasoning (Leake, 1996), is one of the key methodologies
for implementing KM, some case editing techniques have
been studied. We have adopted these techniques to
interactively acquire task decomposition cases from the end
user or a domain expert. For instance, HICAP enables new
case addition by providing the following functionality:

1. Add new questions to the list of known questions

2. Add new tasks to the list of known tasks

3. Create a new case by selecting the current task
decomposition

We illustrate interactive case acquisition in HICAP by
referring to the example WBS for Aircraft System
Development shown in Figure 4. Case acquisition involves
the following steps:

1. Manually decompose the current task: The user manually
decomposes the task Training into its two subtasks
(Equipment and Services).

2. Create a new task decomposition case: The user creates a
new case for decomposing the Training task by
selecting it and its subtasks.

3. Add <question,answer> pairs and ordering constraints:
S/he adds question-answer pairs as necessary for the
case.

 The following is an example of the completed Training
case:

 Task:
 Training
 Question-Answer Pairs:

• Is this for an aircraft system? Yes
 Subtasks:

1. Equipment
2. Services

 Orderings: None
 Our experience with applying HICAP to develop
evacuation plans for the NASA Kennedy Space Center has
shown that users can create their own cases using HICAP’s
editors.
 As stated in Section 2, acquiring methods is more
difficult than case acquisition. Although HICAP does not
require cases and methods to be available simultaneously,
inclusion of methods improves HICAP’s ability to
decompose a larger set of tasks. Typically, methods are
acquired through a knowledge engineering process, which
begins with a study of a planning application domain (e.g.,
Aircraft Systems Development) to develop a set of methods
for decomposing a set of domain tasks. These methods are
then encoded into the knowledge base using a first-order
logic representation. The encoded knowledge is tested and
validated by domain experts. Using HICAP, for example, a
knowledge engineer encodes methods into a text file. We
recognize that this process is limited because it does not
allow an end user or a domain expert to directly enter
methods into the HICAP knowledge base. To overcome this
limitation, we are developing new techniques that create
methods by generalizing cases.

6 Comparison with Commercial Project
Planning Tools

HICAP’s interface for the task hierarchy mimics interfaces
of commercial software tools for project planning. Tools
like MS Project™ can use project plans templates to
develop new plans. These templates function similarly to
HICAP’s cases. However, the cases differ from templates
along two key dimensions:

Single-level representation of cases. Unlike templates,
HICAP cases contain a single decomposition. Templates
can decompose an entire project, which consists of several
decompositions. The main advantage of having a single
decomposition is that cases can be applied to wider range of
situations. Re-using a complete project may be too
cumbersome, requiring a large number of costly
adjustments.

Questions annotating cases. HICAP cases are indexed with
using the conditions under which its decomposition was
made. This allows the user to better judge the applicability
of the case to a new planning situation.

7 Concluding Remarks
Project planning is a vital business process central to the
success of many organizations. Dynamic environments and
competitive market forces make stringent demands on a
project planner, who often lacks the domain experience to
create effective project plans.

We proposed that plans can be developed efficiently,
and measures of plan success can be improved, by
supporting project planners with a KBPP system. We have
argued that a KBPP system can be effectively used to create
work breakdown structures. To this end, we proposed a
KBPP system that extends hierarchical planning systems
with case decomposition of tasks to aid the development of
work breakdown structures. This proposal was based on the
recognition that WBS representations, as commonly used in
project planning, are very similar to the HTN
representations used in the hierarchical planning
community.

The key advantage of using a case retrieval approach
for task decomposition is the ability to capture concrete
planning experiences in the form of cases. Case retrieval
allows an organization to capture, retain, and leverage
critical project planning know-how in order to stay
competitive. In addition, the comparative ease of acquiring
cases vs. acquiring methods improves the feasibility of
developing and deploying KBPP systems.

While we established that the HTN representation
closely resembles the WBS representation, we also
identified several distinctions between them. For example,
the precedent constraint definition in WBS includes
additional types of constraints (e.g., concurrent-start,
concurrent-end) that are not supported by HTNs. In
addition, unlike WBSs, HTNs do not include representation
elements to support resource allocation decisions though
some initial research addresses resource allocation in the
context of project planning (Srivastava, Kambhampati &
Minh, 2000). In our future research, we plan to address
these issues.

We hope that this paper will stimulate a dialog
concerning the relationship of project planning and
hierarchical planning to discuss ways in which techniques
from these two fields can be used to develop intelligent
project management systems. We believe that our research
will identify new opportunities for using AI techniques to
support project management and, more generally, other
knowledge management activities.

Acknowledgements
The authors would like to thank the reviewers for their
helpful comments. This research was supported by funding
from DARPA, ONR, AFRL (F306029910013 and F30602-
00-2-0505), ARL (DAAL0197K0135), and the University
of Maryland General Research Board.

References
Abecker, A.; Bernardi, A.; Hinkelmann, K.; Kühn, O.; &

Sintek, M. (1998). Towards a technology for
organizational memories. Intelligent Systems, 13, 3, pp.
40-48.

Anderson, V.; Bradshaw, D.; Brandon, M.; Coleman, E.;
Cowan, J.; Edwards, K.; Henderson, B.; Hodge, L.; &
Rundles, S. (2000). Standards and Methodology of IT
Project Managment. Technical Report. Office of
Information Technology. Georgia Institute of
Technology.
<http://www.oit.gatech.edu/oitlympic/standards/>.

Davenport, T; & Prosak, L. (1997). Working Knowledge,
How Organizations Manage What They Know. Harvard
Business School Publishing.

Erol, K; Hendler, J; & Nau D.S. (1994). HTN Planning:
Complexity and Expressivity. In Proceedings of the
National Conference on Artificial Intelligence (AAAI-
94). AAAI Press.

Leake, D. B., editor. (1996) Case-Based Reasoning:
Experiences, Lessons, and Future Directions. Menlo
Park, CA: AAAI Press/MIT Press, Menlo Park, CA.

Liebowitz, J. (1999). Knowledge Management
Handbook, CRC Press, Boca Raton, FL.

MIL-HDBK-881. (1993). Work Breakdown Structure.
Department of Defense Handbook. MIL-HDBK-881.

Muñoz-Avila, H.; McFarlane, D.; Aha; D.W., Ballas, J.;
Breslow, L.A.; & Nau, D.S. (1999) Using guidelines to
constrain interactive case-based HTN planning.
Proceedings of the Third International Conference on
Case-Based Reasoning (pp. 288-302). Munich:
Springer.

Myers, K.L.; & Wilkins D.E.. The Act Formalism.
Artificial Intelligence Center, SRI International, Menlo
Park, CA, version 2.1 edition, May 1997.

Project Management Institute (PMI). (1999). PMI’s A
Guide to the Project Management Body of Knowledge
(PMBOK® Guide). Technical Report. Release No.:
PMI 70-029-99. Project Management Institute.

Srivastava, S.; Kambhampati, R.; Minh, B. (2001).
Planning the Project Management Way: Efficient
Planning by Effective Integration of Causal and
Resource Reasoning in RealPlan. ASU CSE Technical
Report.

