
Int J Softw Tools Technol Transfer (2019) 21:221–246

https://doi.org/10.1007/s10009-017-0472-3

REGULAR PAPER

Knowledge-based security testing of web applications by logic

programming

Philipp Zech1
· Michael Felderer1

· Ruth Breu1

Published online: 13 September 2017

© The Author(s) 2017

Abstract This article introduces a new method for

knowledge-based security testing by logic programming

and the related tool implementation for model-based non-

functional security testing of web applications. Our method

helps to overcome the current prevalent focus on functional

instead of non-functional (or negative) requirements as well

as the required high level of security knowledge when per-

forming non-functional security testing. It addresses issues

like considering non-functional requirements for testing,

managing the virtually infinite amount of negative security

test cases, advancing non-functional security testing away

from its prevalent penetration testing-like style, and making

non-functional security testing feasible for testers that are

not experts in security via a security knowledge base. The

method and its model-based tool implementation are evalu-

ated in two studies, which show the method’s effectiveness

in detecting vulnerabilities in web applications and thus, also

its value in making software system more secure.

Keywords Security testing · Model-based testing · Risk-

based testing · Test data generation · Logic programming ·

Web applications · Knowledge management

1 Introduction

In recent years, web applications have become a central part

of our lives, both commercially and privately. These appli-

cations share and process sensitive user data which must be

protected by all means. Thus, such multi-user applications

B Michael Felderer

Michael.Felderer@uibk.ac.at

1 Institute for Computer Science, University of Innsbruck,

Innsbruck, Austria

are attractive targets for attackers. Unfortunately, currently

more than 90% of these applications are vulnerable, with

a median number of 13 vulnerabilities per application [1].

Security hence plays an important role for web applications.

Among the possible attacks against web applications, two

classes of attacks stand out as of their potential damage and

prevalence, viz. SQL injection (SQLI) and Cross-site script-

ing (XSS) attacks [1,2]. In SQLI, an attacker avails himself

the circumstance that user input is not properly sanitized by

the application; thus, it can carry malicious database state-

ments which, when executed, exploit the back-end database

of the application. In XSS, an attacker also avails himself

the circumstance that user input is not properly sanitized, yet

with the goal that malicious input is reflected by the applica-

tion (e.g., in some HTML output) to be then executed in the

victim’s browser.

Recently, model-based testing (MBT) [3], the variant of

testing that relies on explicit models encoding information on

the system under test (SUT) and/or its environment, has been

extended for the purpose of security testing [4]. Resulting

model-based security testing (MBST) approaches [5] thus

immediately benefit from MBT in various aspects, e.g., a

high degree of automation, potential early detection of soft-

ware bugs already at the design level, and high coverage

of the SUT by the resulting high quality test cases [6]. A

crucial role in MBST is occupied by various kinds of secu-

rity models, i.e., threat, fault and risk models, and weakness

and vulnerability models. Whereas the former, i.e., threat,

fault and risk models, specify what can go wrong, the latter,

i.e., weakness and vulnerability models, aim at describing

a weakness or a vulnerability itself. A common drawback,

however, of these security models is the necessity of a secu-

rity expert with the necessary domain knowledge to establish

them for that efficient test cases been derived for a SUT. This

necessity fortunately can be eradicated by combining MBST

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0472-3&domain=pdf


222 P. Zech et al.

with knowledge engineering and logic programming, i.e., by

codifying domain-specific security vulnerability knowledge

by facts and further, using reasoning rules to automatically

infer a security model of the SUT. Further, by incorporating

codified security vulnerability knowledge, inevitable nega-

tive requirements, i.e., requirements that state what a system

shall not do compared to positive requirements that denote

intended functionality, can be considered in testing at no addi-

tional cost [7].

In this article, we introduce knowledge-based security

testing of web applications founded on logic programming

and model-based testing, a novel method for detecting exist-

ing SQLI and XSS vulnerabilities in web applications.

Contrary to previous approaches, our method works on a

model of the application (its specification), creates actual

inputs that exploit identified and existing vulnerabilities,

evaluates the application before it is deployed, incurs no

additional overhead, and establishes negative requirements

by logic programming that are vital for testing. This stems

from the relation that a negative requirement specifies every-

thing outside the system, i.e., what it is not supposed to do

thus providing the base for non-functional security testing.

Observe that non-functional and negative requirements thus

relate to the same kind of information in our context, yet

at different levels of abstraction. Whereas negative require-

ments denote a specification, a resulting non-functional test

case tests against the specified behavior from such a negative

requirement. Such an automated establishment of negative

requirements drastically lowers the level of expertise usu-

ally required for non-functional security testing. Further,

using techniques from model-based testing (MBT), e.g., test

generation and selection algorithms, yields that our method

provides a structural approach for non-functional security

testing. We have implemented our method in a tool that,

starting from a software model of the application, automati-

cally generates SQLI and XSS attacks for web applications

written in PHP/SQL. Our method essentially describes a

model-based, black-box testing view on the system under

test as it does not rely on an application’s source code but

instead on its specification by a formal model. It is thus

designed to detect vulnerabilities in a web application prior

to its deployment. This is by virtue of employing formal

software models for testing, which allow detection of design

flaws already during early design of a software system. Con-

sequently, existing vulnerabilities can be mitigated before the

application reaches the end users, resulting in more secure

web applications.

Overview of Proposed Method Our method as sketched

in Fig. 1 and its tool implementation take four steps in security

testing a web application:

(1) Establishing a declarative system model of the system

under test (SUT) at the interface level. In our method,

Fig. 1 Abstract overview of our proposed method: a web spider

automatically establishes a declarative model of the SUT (a web applica-

tion), i.e., the security problem SP , which is then subjected to a security

risk analysis, i.e., test generation. The resulting risk profile RP then is

used as an executable specification for non-functional security testing

of the SUT. Our tool returns with a test log. Observe that Knowledge

Codification is the only manual task in our framework that actually

requires security expert knowledge

such a model is called a security problem SP . This is by

virtue of that we consider the SUT a security problem as it

is vulnerable to attacks. We discuss the security problem

SP in Sect. 3.1.

(2) Using foundations of logic programming, i.e., knowledge

representation and reasoning, our method then estab-

lishes a risk profile RP by executing a security risk

analysis on the security problem SP from step 1. This

risk profile RP then describes security risks, i.e., vulner-

abilities, the SUT potentially is exposed to. We discuss

the security risk analysis and its resulting risk profile RP

in Sects. 3.2 and 3.3.

(3) The risk profile RP , as of also representing an executable

specification, then is executed against the SUT. The sub-

tasks in this step are

(3.1) for each risk of the risk profile RP an in-memory test

case tc is generated to be executed against the SUT,

(3.2) for each generated test case test data is generated,

(3.3) each test case then is executed against the SUT.

We discuss test data generation, test execution and test

evaluation in Sects. 3.2.3, 3.4, and 3.5.

(4) Finally, the outcome of each test case is evaluated by an

oracle.

Results We have evaluated our method and its model-

based tool implementation in two experiments (Sect. 5)

where we used it to detect SQLI and XSS vulnerabili-

ties in Damn Vulnerable Web Application (DVWA) [8], a

123



Knowledge-based security testing of web applications by logic programming 223

PHP/MySQL web application that is highly vulnerable pro-

viding a legal environment for security professionals to test

their skills and tools. Our experimental evaluation shows that

our method is capable of detecting SQLI and XSS vulnera-

bilities under real-world conditions. Further, the generated

exploits are, to a certain degree, apt to circumvent common

prevention mechanisms. We thus argue that our work is a

valuable contributions in non-functional security testing of

web applications.

1.1 Contributions

The results presented in this article contribute to secure soft-

ware engineering and more specifically to security testing in

the following respects:

(1) A method and model-based tool implementation for

non-functional security testing of web applications by

logic programming. Our method generates effective test

cases by an executable specification as to the risk pro-

file RP and according test data. Our method returns

with a verdict, which is either pass, fail, or inconclusive,

depending on whether a test succeeds, fails, or none of

pass or fail can be stated [9–11].

(2) An expert system for security testing in Prolog, which

comprises both a security risk analysis and a grammar-

based test data generator. Our expert system contributes

(i) predicates for codifying security vulnerability knowl-

edge, (ii) rules to infer new knowledge, i.e., a risk profile

RP , from a security problem SP by on the grounds of

the codified security vulnerability knowledge, as well as

(iii) rules and grammars for generating malicious test

data [12,13].

(3) Two domain-specific languages (DSLs) for abstracting

both declarative models of web applications, i.e., secu-

rity problems SP , and their corresponding risk profiles

RP . Their purpose is to provide a human-readable layer

of abstraction onto the declarative models our method

works on.

(4) An evaluation where we used our method and its model-

based tool implementation to detect SQLI and XSS

vulnerabilities in a vulnerable web application written

in PHP/SQL. Our tool verified all existing vulnerabil-

ities. Thus, in our experiments, our tool has shown to

be valuable for non-functional security testing of web

applications. Our current evaluation extends our previ-

ous work [11] in that we use a real-world application for

evaluation instead of a simple toy example.

A key feature of our method thus is that it reduces the need

for a security expert for testing except for codifying secu-

rity vulnerability knowledge for our expert system. However,

this is a one-time task, as the codified knowledge is reusable.

Our method hence ultimately renders non-functional secu-

rity testing of web applications feasible for laypersons in

information security as of its internalization of security

vulnerability knowledge. Further, as of its high degree of

automation our tool implementation does not require any

specific domain knowledge, either for system or test model-

ing as otherwise required by most existing work (Sect. 2).

The work presented in this article extends our previous

work (as cited above) in various aspects, viz. (i) it intro-

duces a model-based tool implementation of our method, (ii)

it extends previous work by automated test data generation,

and (iii) we provide a carefully designed empirical evalua-

tion of our method and its tool implementation by two case

studies.

1.2 Article organization

The remainder of our article is structured as follows. Section 2

discusses relevant related work. In Sect. 3 we then introduc-

ing our method in. Next, Sect. 4 discusses our experiments

followed by a discussion of our results 5. We conclude in

Sect. 6 with a summary and outlook on future work.

2 Related work

Following we discuss related work to the method presented

in this article.

2.1 Logic programming in testing

In testing, logic programming has primarily been applied

for two purposes, viz. test data generation and test case

generation. For test data generation, constraint solving tech-

niques [14] together with either symbolic execution [15] or

feasible path analysis [16] have been harnessed.

In case of test case generation, existing approaches, which

use logic programming, mainly build on constraint solv-

ing techniques. Vemuri et al. [17] present a method for

generating design tests using path enumeration and con-

straint programming for VHDL programs. Using annotated

control-flow graphs, paths are selected for which then con-

straints corresponding to the statements along the path are

generated. Solving the constraints yields in design test spec-

ifications. Denney [18] suggests a method for generating test

cases from Prolog-based specifications. A custom metain-

terpreter monitors and controls the execution of programs

using specified paths. This then allows the generation of tests

for specification-based testing. Bieker and Marwedel [19]

investigated retargetable self-test program generation for

embedded processors. Their method works by matching

test patterns on to a hardware description of a processor.

In this manner, using constraint logic programming, their

123



224 P. Zech et al.

method thus generates executable test cases by self-test pro-

grams. Gómez-Zamalloa et al. [20] suggest to use constraint

logic programming as a symbolic execution mechanism

to generate test cases for object-oriented programs. Using

a declarative notation of the input program their method

generates test cases according to some given coverage cri-

terion (e.g., path or statement coverage). Lötzebeyer and

Pretschner [21] introduced an approach for testing executable

system specifications (system models) of reactive systems.

Their method translates such system models into constraint

logic programs, which then are executed w.r.t. some pre-

defined constraint to produce meaningful test sequences for

specification-based testing. The work of Caballero et al. [22],

in contrast to the above focuses on a specific language,

viz., SQL. Given a database schema, their method generates a

set of domain constraints, which, when solved, represent test

database instances. These database instances allow to ver-

ify the correctness of, e.g., correlated SQL queries. Finally,

the work of Gorlick et al. [23] describes a complete test-

ing methodology for message protocol testing. For this, their

method employs both a context-free message grammar (the

specification) and a constraint system to either generate or

verify messages (test cases).

The work presented in this article describes a novel con-

tribution in logic programming for testing as applies logic

programming for the purpose of security testing of software

systems. Further, we apply mechanics of logic programming

for automated test data generation for security testing which

so far has not been done.

2.2 Security testing

In the face of existing security testing techniques, our

approach falls into the category of negative testing tech-

niques, i.e., to focus on negative requirements specifying

hidden security vulnerabilities [24]. Whereas for its counter-

part, functional (or positive) security testing well-established

techniques exist [25], for negative security testing, those

are scarce. In practice, negative security testing simulates

attacks as performed by hackers, which is called penetration

testing. The main goal in this kind of testing is to compro-

mise the security of a system [26,27]. Another approach to

negative security testing is fuzzing [28,29], which initially

was designed for testing protocol implementations on pos-

sible security flaws due to improper input handling. One of

the main disadvantages of those techniques is their lack for

supporting a systematic procedure when testing regarding

the order of execution of test cases. Thus, negative testing

is a tedious and time-consuming task. A solution to this

lack of a systematic procedure is to incorporate risks for

testing [30–32]. Risk-based testing consider risks to solve

design, selection and prioritization of test cases [30]. Stall-

baum et al. [33] propose RiteDAP, a tool to automatically

generate system tests from activity diagrams which considers

risks for test case prioritization. They also investigated differ-

ent prioritization strategies w.r.t. the resulting fault detection

rate.

Contrary to existing research, the method introduced

in this article presents a systematic procedure for non-

functional security testing. This stems for the deterministic

nature of both logic programming and model-based test-

ing which make testing in the context of our method fully

reproducible. Further, the use of model-based testing allows

incorporating a formal definition of risks as testing artifacts

to solve design, selection and prioritization of test cases.

2.3 Model-based security testing

Blackburn et al. [34] describe a test automation framework

(TAF) for model-based functional security testing of Java

applications and database servers. It addresses modeling of

functional security requirements in the SCRtool language,

which then are transformed into test specifications and, fur-

ther, test vectors and test drivers. Mou-elhi et al. [35] describe

a method for the model-based testing of security policies in

Java applications. Their method works in four steps, viz. (i)

development of a platform independent security model, (ii)

generation of a platform specific policy decision point (PDP),

(iii) integration of the PDP into the application, and (iv)

executing tests, generated from the platform independent

model [from (i)] against the PDP implementation. Jür-jens

and Wimmel investigated the automated generation of test

sequences from models in Focus.1 They have applied their

approach to both model-based testing of firewalls [36] and

reactive systems [37]. Jürjens further extended UML by

UMLsec, an extension to UML for secure systems devel-

opment [38], which he applied in model-based testing of the

Common Electronic Purse Specification (CEPS) [39]. His

method describes how to employ UMLsec annotated models

to generate test sequences that can be used to test imple-

mentations of the CEPS for vulnerabilities. Wang et al. [40]

describe a threat model-driven security testing approach

using UML. Sequence diagrams are used to describe threat

behavior, i.e., a sequence of events that is illicit. Next, on

the basis of these threat models (the sequence diagrams)

source code is instrumented and recompiled. As a last step,

the recompiled code then is executed using random test cases.

If a test trace matches a threat trace, described in any of the

sequence diagrams, a vulnerability has been found. Maar-

back et al. [41] present a method where threat trees are built

manually on the grounds of manually constructed data flow

diagrams for an application. Subsequently, these threat trees

are used to generate test cases by searching for test sequences

1 The Focus language is a mathematical framework for the specifica-

tion, refinement, and verification of distributed, reactive systems.

123



Knowledge-based security testing of web applications by logic programming 225

in threat tress, and corresponding test data. The latter further

requires specifying relevant input parameters. In their 2012

paper, Xu et al. [42] extend their work [43] to further generate

executable test code on the grounds of model implementa-

tion mappings that relate elements of threat models to their

implemented counterparts.

In light of current research in model-based security

testing, our main contribution is its novel application to non-

functional security testing of web applications to detect SQLI

and XSS vulnerabilities.

2.4 Web application security testing

In face of existing web application security testing methods

and tools, we will restrict our discussion of related work to

“real” testing approaches, i.e., we do not consider vulnerabil-

ity scanners, static analysis, fuzzers or any other penetration

testing-like assessment methods whatsoever.

Avancini and Ceccato [44] investigate the integration of

taint analysis for security testing with genetic algorithms.

The idea of their work is to use genetic algorithms to gen-

erate test cases based on the results of the taint analysis.

Besides being practical in identifying vulnerabilities, their

method also reduces the number of false positives, reported

by taint analysis. Their method targets XSS vulnerabilities.

The work of Büchler et al. [45,46] motivates the use of a

secure model formulated in ASLan++.2 This model then is

mutated to introduce typical vulnerabilities in web applica-

tions, and subsequently passed to a model-checker which

yields attack traces. These are then translated into test cases

that are finally executed against the SUT. So far, there method

was successful in detecting XSS vulnerabilities and flaws in

RBAC policies. Tappenden et al. [47] motivate the use of

agile methods and HTTPUnit for security testing of web

applications. Their approach requires the introduction of

test layers in the SUT, which then allow to employ vari-

ous security test patterns (e.g., bypass testing) at different

layers to then test those layers w.r.t. given security require-

ments. Offutt et al. [48] present a method for bypass testing of

web applications, i.e., circumvent client-side input validation

to then exploit the SUT. Their method generates client-side

tests from HTML input units (e.g., forms or links) which

intentionally violate explicit and implicit user checks of user

input. The work of Wassermann et al. [49] motivates the use

of concolic execution for security testing web applications.

Their method generates constraints on string values and oper-

ations which are then used during concolic testing. Upon

violation of a constraint, a vulnerability has been detected.

Xiong and Peyton [50] propose a model-based framework

for penetration testing of web applications. Their framework

2 ASLan++ is a specification language for model-checkers targeted to

security analysis.

is linked to reference databases that are maintained by secu-

rity experts. Based on the contents of such databases, their

framework tests for known vulnerabilities by generating test

cases using specified fuzz vectors. Chen et al. [51] describe

a method for security testing web applications by their page

flow (i.e., which page is presented next to a user based on the

input). By such page flow descriptions, they next partition the

application in logical components which are then coupled to

generate test traces. These test traces then are translated into

test cases which are executed against the SUT during secu-

rity testing. Song et al. [52] motivate a more model-related

testing approach which especially focuses on the server side

of web applications. Client- as well as server-side behavior

of the application are described using finite state machines

(FSM), which then are coupled. The resulting composition

models then are used to generate test cases by depth-first

traversal from the initial state of the composition FSM. The

resulting test cases then are executed against the SUT. Xu et

al. [43] propose the application of aspect-oriented petri-nets

for security verification of software systems. Aspect-oriented

petri-nets are used for constructing both a system net, i.e., a

threat-driven security model that describes system (or secu-

rity) goals, intended functions, security threats, and threat

mitigations, and threat models (or nets) built from vulnera-

ble transitions in the system net w.r.t. a specific threat. These

threat nets further are annotated with mitigation aspects. Ver-

ification then boils down to searching for threat paths in threat

nets and checking whether these paths are also possible in

the corresponding system net. If so, the modeled system is

vulnerable. Kiezun et al. [53] address automatic generation

of XSS and SQLI attacks for web applications grounded on

symbolic execution and mutation. More precisely, their tool

dynamically generates inputs which are symbolically tainted

through execution. Finally, these inputs are mutated to syn-

thesize concrete exploits.

Obviously, work similar to ours exists. HTTPUnit as pre-

sented by Tappenden et al. [47] also executes HTTP requests

against a SUT. Their approach, however, requires the intro-

duction of test layers in the SUT to evaluate security. Apart

from that, HTTPUnit further requires manual coding of test

cases. Our method avoids this burden by relying on a semi-

automatically established SP to then automatically generate

test cases, i.e., attacks, for a web application as running

in a production environment. Like ours, also the work of

Kiezun et al. [53] evaluates web applications for XSS and

SQLI vulnerabilities. However, in order to properly detect

attacks, their tool implementation requires full access to the

application’s source code and its back-end database. Using

techniques from model-based testing ocularly dissolves this

requirement. Similar to our work, Offutt et al. [48] per-

form bypass testing of web applications by analyzing web

pages for input elements (i.e., operations) that accept user

input. Subsequently, malicious inputs are generated for these

123



226 P. Zech et al.

input elements and submitted to the web application. Our

method generally follows the same idea, however, as of our

risk analysis where we match specific attack patterns against

operations, resulting test cases are tailored to specific opera-

tions of the SUT instead of representing a set of penetration

test cases for a web application. Our method thus allows a

tester to a have a more subjective view on the actual vul-

nerabilities of a specific web application instead of a rather

objective view on web application vulnerabilities in general

as it would result from executing a fixed set of penetration test

cases. Apart from that, using such a fixed set of penetration

test cases clearly results in missing vulnerabilities that may be

specific to just some application. The most similar work dis-

cussed is by Xiong and Peyton [50] which, similarly like our

tool, uses security knowledge provided by databases which

are maintained by security experts. However, contrary to our

work, they do not apply a security risk analysis for identifying

potentially vulnerable spots in the SUT but rather use input

enumeration to then match those results with the database.

Further, contrary to our tool, they use predefined fuzz vectors,

whereas our work dynamically generates tailored attacks and

test data during testing based on the outcomes of the security

risk analysis.

3 Method

In the following, we discuss our method in detail, except for

the web spider and the domain-specific languages (DSLs)

that our tool uses, which is postponed until Sect. 3.6. This

is due to that those components, viz. the web spider and the

DSLs actually are only necessary for our tool, yet, our method

is designed to work without them.

3.1 Security problem

The security problem (SP) comprises a declarative system

model of a web application, i.e., the SUT, at an interface

level. Its name is as we consider the SUT a vulnerable piece

of software; thus, it represents a “security problem”. It is the

main input to our testing method and its security risk analysis.

A software model can be seen as a formal abstraction

of some real-world entity or process. Thus, a model can be

declared as a finite, enumerable set of facts with different

properties. Hence, models formalize some real-world knowl-

edge (e.g., on some entity or process).

Logic programs are sets of rules in the form of A ←

L1, . . . , Lm , where rules may have an empty body, i.e., A ←,

subsequently called a fact. Hence, supporting both rules and

facts, the semantics of logic programs obviously support

dynamic and static modeling of software (e.g., entity or pro-

cess modeling). Thus, using semantics of logic programs

allows to define a domain of discourse, i.e., describing a soft-

ware model with a declarative syntax.

Consider for example the following grounded, normal

logic program ΠSP . It models a potentially vulnerable PHP

application exploiting an SQLI vulnerability (see Fig. 2) ,

e.g., ΠSP =

module(auth),

uri(auth, ”http : //www.victim.com”).

operation(auth, login, [uname, pword], void),

parameter(auth, login, uname, text),

parameter(auth, login, pword, password).

Program ΠSP represents a logic program, or, security prob-

lem over an alphabet ΣSP .

Definition 1 (Security Problem) SP , the security problem,

describes a declarative system model, or specification, of a

SUT by a logic program. It is a set of facts with terms over

the alphabet ΣSP = 〈F,C,X〉, with disjoint sets of symbols

F = {module, uri, operation, parameter}

is a finite set of predicates,

C = {c1, . . . , cm} is a set of constants, and

X = {X1, . . . , Xn} is a set of variables.3

Further, C = 〈M,O,P,T,U〉, with disjoint sets of symbols,

where

M is a set of modules,

O is a set of operations,

P is a set of parameters,

T is a set of types, and

U is a set of uniform resource identifiers (URI).

The predicates described by set F are functions over C with

module ⊆ M to declare a new software module of a

SUT,

uri ⊆ M × U to declare the URI of the module,

operation ⊆ M × O × ℘ (P) × T to declare some

operation

of a module with its parameters and its return type,

where

℘ (P) is the powerset over all parameters, and

parameter ⊆ M×O×P×T to declare a parameter of

some operation with its type.4

3 The alphabet of the security problem SP needs to support variables,

for that terms formed over it, can occur ungrounded.

4 Observe that this predicate “transforms” a parameter from a plain

symbol into something we can reason about.

123



Knowledge-based security testing of web applications by logic programming 227

1 if (isset($_GET[ ' login ' ])) {

2 $uname = $_GET [ ' uname ' ];

3 $pword = $_GET [ ' pword ' ];

4

5 $query = "SELECT * FROM user WHERE username

= '$uname ' AND password = '$pword ' ";

6 $result = mysql_query ( $query );

7 $num_rows = mysql_num_rows( $result );

8 ...

Fig. 2 PHP code vulnerable to SQLI. Using a properly crafted input

string, an attacker can successfully evade a programmer’s intended SQL

query and perform an SQLI

In a more literal sense, by Definition 1, program ΠSP

describes a software system, e.g., a web application, which

realizes a module auth that offers an operation login

with two parameters, viz. uname of type text, and pword
of type password. As the parameters are controllable by

the user, and thus open up a vulnerability, program ΠSP

describes a security problem SP , i.e., the knowledge of the

real-world to be formalized, or domain of discourse, for later

security risk analysis.

For program ΠSP , set C of alphabet ΣSP contains the

disjoint sets

M = {auth},

O = {login},

P = {uname, pword},

T = {text, password} , and

U = {“http : //www.victim.com”}.

3.2 Vulnerability knowledge base

The vulnerability knowledge base (VKB) is the linchpin of

our security testing method. It is an expert system that (i)

stores security vulnerability knowledge, (ii) implements an

automated security risk analysis and a risk assessment proce-

dure, and (iii) stores test data definitions w.r.t. known exploits

(codified in the extensional database) for generating test data.

Figure 3 shows its internal architecture.

The extensional database or knowledge base (Sect. 3.2.1)

stores declarations of exploits and their respective attacks as

well as attack patterns, i.e., the description of an attack vec-

tor by facts. This knowledge is used by the inference engine

(in our case a Prolog solver [54]) during the security risk

analysis and the risk assessment to satisfy the rules, i.e., log-

ical predicates, of the intensional database (Sect. 3.2.2) to

establish a risk profile on the grounds of a provided security

problem. Finally, we use definite-clause grammars to cod-

ify the structure of test data definitions w.r.t. known exploits

(Sect. 3.2.3). These test data definitions are necessary to later

generate malicious inputs during testing to verify existing

vulnerabilities in the SUT.

Fig. 3 Internal architecture of the VKB. The EDB provides the nec-

essary knowledge for the IDB. By test data definitions, we define the

structure of test data w.r.t. known exploits in the EDB. Observe that

the inference engine conducts the security risk analysis and test data

generation as indicated in Fig. 1 under step (2)

Fig. 4 Relationship of exploit, attack and attack pattern as codified in

the EDB. Each exploit has associated different attacks (i.e., variations

thereof) and attack patterns

3.2.1 Extensional database

The extensional database (EDB) (also called extensional

knowledge base) forms the memory of our VKB. It stores

security vulnerability knowledge, i.e., exploits, attacks and

attack patterns as shown in Fig. 4. Exploits have a name and

associated a set of attacks, as well as attack patterns. Each

attack declares a name on its own and a set of potential attack

goals that later (during test evaluation) occupy the role of test

oracles. The purpose of an attack pattern is to describe an

attack vector, i.e., the means by which a vulnerability in the

SUT potentially can be exploited by an attack. For this, each

attack pattern, besides its name also declares a vulnerable

type that is exploited by a concrete attack.

The knowledge of the EDB is declared by logic programs

over an alphabet ΣEDB (Definition 2). It should be men-

tioned that the knowledge of the EDB is system and language

specific, i.e., it may not be applicable to different types of

systems, e.g., web or embedded applications, as well as to

different languages, e.g., PHP or C. This is to avoid misin-

terpretations during reasoning.

Definition 2 (Extensional Database) The extensional data-

base, EDB, denotes a formalization of security vulnerability

knowledge by a logic program. It is a set of facts and rules

123



228 P. Zech et al.

with terms over the alphabet ΣEDB = 〈F,C,X〉, with dis-

joint sets of symbols

F = {exploi t, attack, vul_t ype, attack_pattern}

is a finite set of predicates,

C = {c1, . . . , cm} is a set of constants, and

X = {X1, . . . , Xn} is a set of variables.5

Further, C = 〈E,A,AP,G,T〉, with disjoint sets of sym-

bols, where

E is a set of exploits,

A is a set of attacks

AP is a set of attack patterns,

G is a set of attack goals, and

T is a set of types. 6

The predicates described by set F are functions over C

with

exploi t ⊆ E to declare an exploit,

attack ⊆ E × A × AP × ℘ (G) to declare an attack

under an exploit, its attack pattern and goals

vul_t ype ⊆ A × T to declare a type, exploitable

by an attack, and

attack_pattern ⊆ AP × A × M × O × P to declare

an attack pattern for an attack.

With alphabet ΣEDB an EDB then is filled with knowledge

as, e.g., in program ΠEDB =

exploi t (sql_attack),

attack(sql_attack, signature_evasion, sqlap,

[authentication, leakage, tampering]),

vul_t ype(sql_attack, text),

vul_t ype(sql_attack, password),

attack_pattern(sqlap, sql_attack, XM, XO, XP) ←

module(XM),

operation(XM, XO, _, _),

parameter(XO, XP, XT),

vul_t ype(sql_attack, XT).

Program ΠEDB describes an SQLI exploit by signature eva-

sion, i.e., evading a programmer’s intended SQL query. The

list of its potential goals includesleakage or tampering.

Program ΠEDB further declares an attack pattern for SQLI

attacks, e.g., sqlap that matches any operation in a secu-

rity problem SP that provides parameters of type text or

password.

5 Again, variables are necessary for that terms can occur ungrounded

(in particular for attack_pattern/5).

6 Observe that this set is equal to set T from Definition 1.

From the predicates of the EDB, attack_pattern/5

is the only rule. Although this predicate thus already infers

new knowledge, it is custom for each attack (and exploit).

Hence, it is declared as part of the EDB, as, contrary to

the rules of the IDB, attack_pattern/5 cannot be

declared “generic”. For this, see again program ΠEDB.

There, the declaration of attack_pattern/5 is partly

grounded by the two constants sqlap and sql_attack.

These parameters need to be bounded in the head of

the rule to establish the necessary link between attacks

and their respective attack patterns. However, for that

attack_pattern/5 can be grounded completely, i.e.,

XM, XO, XP can be bound, a security problem SP needs

to be present.

For program ΠEDB, set C of alphabet ΣEDB contains the

disjoint sets

E = {sql_attack},

A = {signature_evasion},

AP = {sqlap},

G = {authentication, leakage, tampering} , and

T = {text, password}.

3.2.2 Intensional database

The intensional database (IDB) (also called intensional

knowledge base) contributes the rational reasoning proce-

dures for the security risk analysis and the risk assessment.

It contains the rules, necessary to “match” the knowledge

of the EDB against a security problem SP to deduce a risk

profile RP that is, to infer new knowledge. Figure 5 illus-

trates this deduction procedure for one concrete risk based

on the security problem SP from program ΠSP (Sect. 3.1),

the EDB from program ΠEDB (Sect. 3.2.1) and substitutions

θ1, θ2, θ3, θ4 and θ5. Further, Fig. 5 introduces the main pred-

icates of our risk analysis, viz. blacklist/6, threat/6

and comp/4.

For deducing a risk profile RP (Sect. 3.3), our secu-

rity risk analysis returns with multiple grounded instances

of the risk/7 predicate, i.e., potential risks in a secu-

rity problem SP (see top of Fig. 5 for one such grounded

instance with substitution θ1). First, a solver (GNU Pro-

log [54]) unifies facts declared by a security problem SP

with attack patterns from the EDB, i.e., free variables of the

attack_pattern/5 predicate are bound to constants of

the security problem SP . This happens as part of satisfying

theblacklist/5predicate, whose purpose is to determine

potentially vulnerable operations as of their parameters in the

security problem SP . The blacklist/5 predicate unifies

information regarding a vulnerable operation (XO) and the

corresponding parameter (XP) of a software module (XM)

with the matching attack pattern (XAP) and its correspond-

ing exploit (XE).

123



Knowledge-based security testing of web applications by logic programming 229

risk(XM, XO, XP, XE, XA, XG, XV)/θ1

threat(XM, XO, XP, XE, XA, XG)/θ2

blacklist(XM, XO, XE, XP, XAP)/θ4

attack pattern(XAP, XE, XM, XP, XP)/θ5

comp(XM, XO, XP, C)/θ3

θ1 = XM auth, XO login, XP uname, XE sql attack,

XA signature evasion, XG [authentication, leakage,

tampering], XV (high, low, medium)}

θ2 = XM auth, XO login, XP uname, XE sql attack,

XA signature evasion, XG [authentication, leakage,

tampering]}

θ3 = XM auth, XO login, XP uname, pword} ,

XE sql attack, C high}

θ4 = XM auth, XO login, XP uname, XE sql attack,

XAP sqlap

θ5 = XAP sqlap,XE sql attack, XM auth, XO login,

XP uname

Fig. 5 Deduction of a risk as part of inferring a risk profile

RP by substitutions θ1, θ2, θ3, θ4, and θ5. The key predicates are

attack_pattern/5, blacklist/5, threat/6, and comp/4.

The resulting risk profile RP is a set of grounded instances of the

risk/7 predicate

For each blacklisted operation, the threat/6 predicate

then instantiates threats for all attacks w.r.t. to the exploit

that corresponds to the matching attack pattern. For this,

the threat/6 predicate unifies all the information nec-

essary to later generate a risk, i.e., the software module’s

(XM), operation’s (XO) and parameter’s name (XP), as

well as the exploit (XE), a concrete attack (XA) and poten-

tial attack goals (XG). A concrete attack is inferred from

the knowledge of the EDB that “knows” about various

attacks w.r.t. an exploit. As of Prolog’s solution strategy,

each concrete attack, i.e., instance of the attack/4 pred-

icate, will be unified with instances of the threat/6

predicate. For example, for the security problem SP from

program ΠSP (Sect. 3.1) and the EDB from program ΠEDB

(Sect. 3.2.1), this would yield a total of two instances of

the threat/6 predicate due to the contents of the security

problem SP , viz. one operation (login) with two param-

eters (uname and pword), and one declared attack in the

EDB, viz. SQLI by signature_evasion. These threats

next are subjected to a risk assessment that yields concrete

risks (grounded instances of the risk/7 predicate). This

risk assessment is achieved by satisfying the comp/4 pred-

icate, whose outcome C, the operation complexity, is used

to calculate the potential impact of an attack, the probabil-

ity for succeeding with it and, based on those values, the

risk level for the resulting risk. comp/4 calculates the oper-

parameter: Security problem SP, attacks A, attack patterns
AP

result : Risk profile RP

1: procedure risk analysis(SP, A, AP)
2: OP ← ∅
3: RP ← ∅
4: for each op ∈ SP do

5: if ∃ap ∈ AP : ap µ op then

6: OP ← OP ∪ op
7: end if

8: end for

9: for each op ∈ OP do

10: Aop ← {a : ap µ op ∧ ap σ a : ap ∈ AP, a ∈ A}
11: for each a ∈ Aop do

12: thrt ← (op, a)
13: risk ← (thrt,assess(thrt))
14: RP ← RP ∪ risk
15: end for

16: end for

17: return RP
18: end procedure

Fig. 6 Main procedure of the risk analysis algorithm. It “blacklists”

vulnerable operations op for subsequent risk assessment and risk profile

deduction. It returns with a new risk profile RP

ation complexity C by recursively iterating over the list of

parameters (XP) of an operation (XO) declared by a soft-

ware module (XM). Finally, if threat/6 and comp/4
are fully grounded, the risk/7 predicate (Sect. 3.3), the

top-level predicate of our security risk analysis, can be sat-

isfied, i.e., all information of an instance of the threat/6
predicate is unified with the corresponding risk assessment.

Figures 6, 7 and 8 give an algorithmic description of this

deduction process, in future referred to as program ΠIDB.

Figure 6 lists the main procedure, i.e.,risk_analysis,

of the risk analysis algorithm. Its inputs are (i) the security

problem SP , (ii) the set of known attacks A, and (iii) the set

of related attack patterns AP. For each operation op ∈ SP

it evaluates, whether there exists an attack pattern ap ∈ AP

that matches the attack vector, described by the operation’s

input parameters, i.e., ap µ op (read “ap matches op” with

µ ⊆ AP × O). If a matching attack pattern is found, oper-

ation op is added to the set OP ′ of blacklisted operations.

Next, in line 9, for each of the blacklisted operations of set

OP ′, all applicable attacks a are collected in the set Aop, i.e.,

ap µ op ∧ ap σ a (read “ap matches op and ap subsumes

a” with σ ⊆ AP × A). Then, for each operation-attack pair,

a threat thr t is created which then is evaluated by calling

the assess procedure (Fig. 7). Its return value is used to

create a new risk, which finally is added to the set RP ,

which describes the result of the risk analysis, the inferred

risk profile RP .

The main task of the risk_analysis procedure, aside

from deducing a new risk profile RP , is to identify poten-

tially vulnerable operations w.r.t. their parameters in a

security problem SP on the grounds of existing knowledge

from the EDB. Thus, our risk analysis may only detect what

123



230 P. Zech et al.

parameter: Threat thrt
result : Risk assessment asmnt

19: procedure assess(thrt)
20: imp ← comp(thrt → op → p) ⊕ severity(thrt → a)
21: prob ← probability(impact)
22: rl ← risk level(impact, probability)
23: asmnt ← (imp, prob, rl)
24: return asmnt
25: end procedure

Fig. 7 Risk assessment procedure of the risk analysis algorithm. It

deduces for each operation and attack pair a risk assessment by the

operation complexity

it knows, i.e., it is no silver bullet against all kinds of cyber

attacks, only against what we already know (and have not

missed to formalize in the EDB).

As just discussed, the risk_analysis procedure calls

the assess procedure (Fig. 7) to evaluate a threat thr t .

For this, it receives a threat thr t as input parameter. The

assess procedure then first calls the comp procedure to

calculate the complexity of the threat’s subjected operation

(Fig. 8). Based on the returned complexity value cop, the

assess procedure next calculates the potential impact of

threat thr t’s underlying attack, the probability of succeeding

with the attack and, based on those two former values, the

overall risk level for threat thr t .

The potential impact of an attack is the direct relation to

the operation’s complexity, i.e., the higher the complexity

of an operation (or rather its input parameters), the higher

the potential impact of a successful attack. Thus, the impact

reflects the complexity value cop. The probability of a suc-

cessful attack then is calculated next by taking the inverse

of the impact. For example, a complexity value of high, i.e.,

cop = high would result in an impact with value high and

a probability of value low. We justify this approach by the

circumstance that, the more complex an operation’s param-

eters, the more difficult it is for a malicious agent to craft a

successful attack. On the other side, the more trivial the oper-

ation parameters, the easier it is to craft a successful attack;

however, its impact may not be that serious. For this, con-

sider, as example, on the one side, an operation with a set of

complex parameters (e.g., objects) which require parsing by

the application and, on the other side, an operation with only

a few trivial parameters (e.g., a numeric values). For the first

case, i.e., an operation with a set of complex parameters, a

malicious agent needs to know quite well, where to put his

malicious input, for that it causes its impact, thus a lower

probability. Contrary however, the impact is high, as if the

attack is successful, a malicious agent can harm the applica-

tion quite drastically. For the second case, i.e., an operation

with a set of trivial parameters, a malicious agent may suc-

ceed with an attack quite easily, e.g., simply by overflowing

any input parameters or trigger a subsequent computation to

parameter: List of parameters L
result : Operation complexity c

26: procedure comp(L)
27: if L = ∅ then

28: return low
29: else

30: param ← take(L)
31: type ← type of(param)
32: ∆comp ← comp(type)
33: return ∆comp ⊕ comp(L)
34: end if

35: end procedure

Fig. 8 Operation complexity calculation procedure of the risk analy-

sis algorithm. For each operation’s list of parameters, this procedure

calculates the operation complexity by its attack vector, i.e., the list of

parameters

overflow. Yet, the impact maybe little, as such an attack does

not allow to gain control over an application. The probability

for succeeding however is high, as an attack does not require

much more, than tampering around with input values, instead

of manually crafting malicious inputs.

With the calculated impact and probability, the assess

procedure, as a last step, calculates the overall risk level for

the resulting risk. This is done by a simple table look-up,

where the two input parameters, i.e., impact and probability,

are used to derive the risk level (Table 1). The assess pro-

cedure finally returns with a triplet which encapsulates (i)

the potential impact of threat thr t’s underlying attack, (ii)

the probability of succeeding with the attack and, (iii) the

overall risk level for threat thr t .

The assess procedure, besides the already mentioned

predicates of the risk analysis, further introduces the pred-

icates probability/2 and risk_level/3, which

implement deduction of the respective values, as just dis-

cussed. The resulting values for each, i.e., impact, probability

and risk level are values of a 5-point Likert-type scale

with points {very_low, low,medium, high, very_high}

(Table 1). Remember that the application of a Likert-scale

for doing risk assessment is only one possible solution, yet

it provides a handy and human friendly tool for this task.

The last procedure to be discussed as part of our security

risk analysis is comp (Fig. 8). As already discussed, it is

called by the assess procedure for calculating an opera-

tion op’s complexity by its list of parameters, subsequently

used for risk assessment. We motivate this approach, as the

operation’s parameters define the attack vector, the means

by which a malicious agent can intrude a software system

and do further harm [12,13]. Equation 1 shows the underly-

ing formula of our complexity calculation. The complexity

factor c then reflects the complexity of an operation op by

its signature and is denoted c(op). The more complex the set

of input parameter types, the higher is the overall complex-

123



Knowledge-based security testing of web applications by logic programming 231

Table 1 Look-up table for risk

assessment
Impact

Very low Low Medium High Very high

Probability Very low Very low Low Low Low Medium

Low Low Low Medium Medium Medium

Medium Low Medium Medium High High

High Low Medium High High High

Very high Medium High High High Very high

Based on given impact and probability values, the assess procedure calculates the risk level by consulting

this look-up table

ity c. The complexity of type ti considers whether a type is

primitive or complex (i.e., has an internal structure) and is

denoted c(ti ). The dependence factor between t1, . . . , tn is

denoted by d. The overall complexity c of an operation op

with the operation signature op(p1 : t1, . . . , pn : tn) then is

the sum of the input parameter type complexities c(ti ) and

the dependence factor d(t1, . . . , tn).

c(op) =

n
∑

i=1

c(ti ) + d(t1, . . . , tn)g (1)

Figure 8 shows the algorithm used for calculating the oper-

ation’s complexity c(op). If the list of parameters is empty,

the comp procedure simply returns with a complexity value

of low. Contrary, if it contains any element, comp recur-

sively descends until it reaches the empty list. It then returns

(as just mentioned) with a complexity of low and subse-

quently, while returning for each recursive call, gradually

calculates operation op’s complexity (line 33). For this, the

operator ⊕ infers the new complexity to be returned based on

the actual parameter’s complexity ∆comp and the complexity

value returned by the recursive call to comp. In our imple-

mentation, the operator ⊕ is implemented by the dcomp/3

predicate, which also uses the look-up table from Table 1 for

inferring the new complexity based on its two inputs, as just

discussed. After the last recursive call has returned, comp

calculates the final operation complexity c(op), again in line

33, and returns with this value.

Our implementation of a security risk analysis mimics

a human being in doing a security risk analysis. Existing

knowledge is used to, based on an established set of rules (i.e.,

guidelines), infer new, learnable knowledge. Its “logical”

nature allows for an efficient computational representation

by logic programming and eradicates the need for a secu-

rity expert except establishing the EDB. The new knowledge

manifests itself in the risk profile RP , which contains valu-

able information regarding potential vulnerabilities in the

assessed SUT by valued risks. Especially the assessment

of risks is notably valuable, as it later allows to prioritize

resulting test cases. Such a prioritization by, e.g., order of

execution, advances non-functional security testing to a more

structured testing process, away from its prevalent penetra-

tion testing-like style.

3.2.3 Test data

We use definite-clause grammars (DCGs) to both codify the

structure of and generate test data in our VKB. DCGs are

a Prolog formalism, which allow to state CFGs and CSGs

as normal logic programs. DCGs work in both ways, i.e.,

they allow to verify that a sentence is correct w.r.t. a gram-

mar, but also to generate sentences w.r.t. a grammar. By

considering the syntax-based nature of malicious input data

in non-functional security testing, e.g., SQLI input strings,

DCGs then offer a powerful mechanism for generating elabo-

rate malicious test data by stating grammars, which invalidate

the proper syntax of the input, expected by a SUT.

Definition 3 introduces the language to be used by logic

programs, which describe DCGs for test data generation in

our VKB.

Definition 3 (Test Data Specification) The test data spec-

ification, T DS, describes either a context-free or context-

sensitive grammar by a logic program. It is a set of rules and

facts with terms over the alphabet ΣT DS = 〈F,C,X〉, with

disjoint sets of symbols.

F = {testdata} is the initial set of predicates,

C = {c1, . . . , cm} is a set of constants, and

X = {X1, . . . , Xn} is a set of variables. 7

Further, C = 〈E,A,I,T,TS〉, with disjoint sets of symbols,

where

E is a set of exploits,

A is a set of attacks,

I is a set of production rule identifiers,

T is a set of types, and

TS is a set of terminal symbols.

7 Again, variables are necessary for that production rules of the gram-

mar (i.e., terms) can occur ungrounded.

123



232 P. Zech et al.

where sets E, A, and T are equal with their identically labeled

counterparts from Definitions 1 and 2.

The predicate described by the initial set F is a function over

C with

testdata ⊆ E × A × T × I to query for new data.

Contrary to ΣSP and ΣEDB, the set F of predicates of

alphabet ΣT DS is not finite. Thus, initially, it only contains

testdata//4 as the only predicate, which declares the

entry point for test data generation, i.e., the predicate used to

query our test data generator for new test data. Any further

predicates of set F are purely dependent on the test data to

be generated. Put another way, for ΣT DS , we only require

the predicate testdata//4 to occur in a logic program,

describing a DCG for test data generation. This allows to

keep the test data generator as generic as possible by provid-

ing a single “interface” predicate to query for new data, but

“hide” the concrete implementation. Thus, a security expert

who declares the EDB in the same breath can declare the

necessary DCGs for any formalized attack in the EDB. Con-

sider for example the case when generating test data for SQLI

to evade the signature of a programmer’s intended query (as

codified in the EDB from program ΠEDB in Sect. 3.2.3). This

would require a grammar that allows to produce input strings

like, e.g., ’ OR ’1’ = ’1’–. Program ΠT DS describes

a DCG that allows for that, e.g., ΠT DS =

testdata(sql_attack, signature_evasion, _, _, S0, S) ←

apostrophe(S0, S1), or(S1, S2), apostrophe(S2, S3),

number(S3, S4), apostrophe(S4, S5), equals(S5, S6),

apostrophe(S6, S7), number(S7, S8),

apostrophe(S8, S9), comment (S9, S),

apostrophe(S0, S) ← connects(S0,′ , S),

number(S0, S) ← connects(S0, 1, S),

equals(S0, S) ← connects(S0,=, S),

comment (S0, S) ← connects(S0,−−, S),

or(S0, S) ← connects(S0, O R, S),

or(S0, S) ← connects(S0, ||, S).

Program ΠT DS ,8 if then queried for new test data would

return with the two solutions ’ OR ’1’ = ’1’– and ’

|| ’1’ = ’1’–. Obviously, this grammar does not allow

to generate anything else. Yet, for the purpose of evading a

programmer’s intended SQL query signature it would suf-

fice, at least if done on a MsSQL, PostgreSQL, or Oracle

database server. However, on a MySQL database server the

attack would fail, as MySQL expects a trailing white space

8 The underscore, i.e., “_”, indicates the use of a wildcard, i.e., during

deduction of a solution, these parameters remain unbounded, i.e., are

“neglected”.

Fig. 9 Program ΠT DS reproduced in Prolog DCG notation. Prolog

DCG notation more or less resembles the structure of BNF, a common

notation for CFG and CSGs

Fig. 10 Extensions to program ΠT DS to work for the four mentioned

database vendors (MsSQL, MySQL, PostgreSQL and Oracle)

after a comment (e.g., “–”). Thus, for that the data generated

by program ΠT DS works for at least the four mentioned

database vendors, the set of rules would need to be refined

and extended. It is exactly for this reason why set F of alpha-

bet ΣT DS is not finite and solely provides testdata//4
as the only predicate. Thus, a security expert has his freedom

in declaring DCGs for test data generation, thereby keeping

them generic and extensible and only restricted to provide

testdata//4 as the main goal predicate.

At first sight, the grammar described by program ΠT DS

does not appear to be very efficient by length and rule com-

plexity (due to the difference lists). However, this is only as

we have used our formal notation for logic programs. Using

Prolog’s syntax for declaring DCGs results in a much more

concise formulation of the grammar from program ΠT DS ,

as shown in Fig. 9.

Obviously, extending this grammar to meet further require-

ments is straightforward, i.e., it just needs to be extended

by the necessary predicates and terminal symbols. Consider

for example the necessary extensions for program ΠT DS to

generate test data to work for all four mentioned database

vendors. Figure 10 shows the resulting logic program.

For program ΠT DS from Fig. 10, set C of alphabet ΣT DS

contains the disjoint sets

E = {sql_attack},

A = {signature_evasion},

I = {testdata, sql_evade},

T = ∅,

123



Knowledge-based security testing of web applications by logic programming 233

TS =
{

1, O R, ||,=,−−,′ ,
}

.

For the sake of clarity, we also give the final set F of predi-

cates for program ΠT DS (remember that F as to Definition 3

initially only contained testdata) that is

F = {testdata, apostrophe, number, connects,

equals, comment, or}.

Clearly, our VKB requires some effort to be established

and maintained, especially in case of the EDB. This is where

a security expert comes into play, i.e., by establishing the

knowledge of the EDB and necessary test data definitions.

However, once established it can be easily distributed to var-

ious tester’s sites and maintained by one or more security

experts by drawing back on versioning techniques [55].

3.3 Risk profile

The risk profile (RP) constitutes the output of the secu-

rity risk analysis. It is a set of grounded instances of the

risk/7 predicate, thus, another logic program, which con-

tains only facts (like, e.g., the security problem SP). Each

of the grounded instances of the risk/7 predicate declares

a potential risk, identified for a security problem SP dur-

ing deduction of the risk profile RP . The terms formed with

grounded instances of the risk/7 predicate range over ele-

ments of the sets of set C of alphabet ΣRP as introduced by

Definition 4, i.e., variables X i are grounded with elements of

sets of set C of alphabet ΣRP .

Definition 4 (Risk Profile) RP , the risk profile, describes a

declarative risk model by a logic program. It is a set of facts

with terms over the alphabet ΣRP = 〈F,C,X〉, with disjoint

sets of symbols

F = {risk} is a finite set of predicates,

C = {c1, . . . , cm} is a set of constants, and

X = {X1, . . . , Xn} is a set of variables. 9

Further, C = 〈M,O,E,A,G,P,T,V〉, with disjoint sets

of symbols, where

M is a set of modules,

O is a set of operations,

E is a set of exploits,

A is a set of attacks

G is a set of attack goals,

P is a set of parameters, and

V is a set of ordered risk assessment value triplets in

9 The alphabet of the risk profile RP needs to support variables, for

that terms formed over it, can occur ungrounded.

the form of (impact, probabili t y, risk_level).

where all of the just mentioned sets, except V, are equal

with their identically labeled counterparts from Definitions 1

and 2.

The predicates described by set F are functions over C with

risk ⊆ M×O×E×A×G×P×V to declare a risk.

As Definition 4 states, instances of the risk/7 predicate

in the risk profile RP are grounded with constants declared

by both the SP and the EDB by applying deduction rules,

declared in the IDB. Hence, it is “learned” by our VKB from

the SP and the EDB and comprises new knowledge. For

that this knowledge is sound and complete, we have defined

the disjoint subsets of the sets of constants C of alphabets

ΣSP ,ΣEDB and ΣRP from Definitions 1, 2, and 4 to be

equal (Definition 4) to establish the common domain of dis-

course.

Program ΠRP shows a risk profile RP as inferred by the

security risk analysis using knowledge declared by programs

ΠSP and ΠEDB and the deduction procedure as described

by program ΠIDB (Figs. 6, 7, 8), e.g., ΠRP =

risk(auth, login, sql_attack, signature_evasion,

[authentication, leakage, tampering],

uname, [high, high, high]),

risk(auth, login, sql_attack, signature_evasion,

[authentication, leakage, tampering],

pword, [high, high, high]).

Program ΠRP describes a risk profile for the security prob-

lem SP from program ΠSP . It contains two grounded

instances of the risk/7 predicate, describing the risk

of SQLI attack by signature_evasion due to both

parameters of operation login of module auth, i.e.,

uname and pword. Potential goals, among others, are

authentication or leakage. For both risks, the

impact, probability and risk level are high. This stems

from that they both entail the same exploit and attack, e.g.,

sql_attack and signature_evasion.

For program ΠRP , set C of alphabet ΣRP contains the

disjoint sets

M = {auth},

O = {login},

E = {sql_attack},

A = {signature_evasion},

G = {authentication, leakage, tampering},

P = {uname, pword} , and

V = {(high, high, high)}.

123



234 P. Zech et al.

Fig. 11 Abstract overview of test execution. The test controller takes

as an input a risk profile RP to execute it against the SUT. For each

test outcome, a verdict is derived during test evaluation. Test execution

returns with a test log

The deduced risk profile RP subsumes a necessary neg-

ative specification. This is due to its content that describes

potential side-effect functionality, i.e., vulnerabilities, in the

SUT by negative requirements. Remember that these nega-

tive requirements are established as part of our security risk

analysis.

3.4 Test execution

Remember that in our method we do not explicitly generate

executable test cases, but instead rely on the risk profile RP

as an executable specification. Thus, we use the risk profile

RP as a main input to our test engine, as shown in Fig. 11.

Our test engine then generates in-memory test cases, i.e.,

executable test objects, which are executed against a SUT.

For concrete test execution, our test engine requires two

configuration options to be set, viz.

–priority for prioritizing test execution, i.e., to define

the necessary risk_level for a risk of the risk profile

RP to be executed by a test case, and

–selection to set the test data selection strategy based

on what was retrieved from the Prolog solver (i.e., the

inference engine)10, which is either iterative, i.e.,

select data in the order retrieved from the Prolog solver,

random, i.e., select data randomly, and all, i.e., to exe-

cute the test case for all retrieved data strings.

Figure 12 shows the complete algorithm of our test engine.

After receiving a risk profile RP as an input, our test engine

loops through all risks r of risk profile RP . For each risk r ,

the algorithm then above all checks, whether r ’s risk_level

is equal to or higher than the user defined threshold, i.e.,

priority. If it is, risk r is further processed by testing; oth-

erwise, it is discarded. For each selected risk r , the test engine

then first queries for test data (line 4). Next, prior to executing

10 Remember that Prolog returns with every possible solution.

parameter: Risk Profile RP
result : Test Log L

1: procedure test(RP)
2: for each r ∈ RP do

3: if r → risk level ≥ threshold then

4: d ← test data(r → a)
5: if selection = all then

6: n ← d → size
7: else

8: n ← executions
9: end if

10: for n do

11: result ← invoke(r → m, r → o, d)
12: verdict ← evaluate(result, r → a, r → g)
13: log(verdict)
14: end for

15: end if

16: end for

17: return L
18: end procedure

Fig. 12 Test execution algorithm

risk r as a test case, the number of executions is determined

based on the selection parameter in the conditional block

in lines 5–9 (see also Sect. 3.6). After that, test execution

starts n number of times in line 10. By calling invoke, an

in-memory test case is generated for the current (m, o, d)

triplet. This triplet consists of a module m and operation o

of the current risk r , and the full test data set d as retrieved

from the Prolog solver. The invoke procedure also handles

data selection as configured via the selection parameter,

as well as logging the invocation of the operation and which

test data string from the data set was used. After invoke

has returned with a result (line 11), the test engine next eval-

uates this result by calling evaluate (see test evaluation,

discussed in the following Section), which then returns with

a verdict for the current test case w.r.t. its outcome, which

subsequently is logged (line 13). For evaluating a test case,

the evaluate procedure requires the result returned from

the SUT, i.e., a test case’s outcome, the executed attack (a),

and potentially achievable attack goals (g). The algorithm

returns with the complete test log in line 17.

The invoke procedure plays an important role during

test execution. It facilitates invoking programs of arbitrary

sources by making use of abstractions (e.g., reflection, net-

working and OS APIs) as provided by the Scala programming

language, which we used to implement our test engine.

Thus, our tool implementation, as later discussed in detail

in Sect. 3.6, can be applied on different software system due

to this generic adaption mechanism. However, we will not go

into more detail in discussing the invoke procedure and its

implementation, as we already applied and discussed similar

techniques earlier [56].

123



Knowledge-based security testing of web applications by logic programming 235

3.5 Test evaluation

The purpose of test evaluation is, for any executed test case,

to check, whether its result is as expected, i.e., meets a pre-

defined test oracle and then return with the corresponding

verdict. However, one of the problems in non-functional

security testing is that prior to executing a test case, i.e.,

an attack, one does not clearly know what will be the output

of the SUT, as this depends on how well an attack is crafted.

For example, consider again the case of an SQLI by evading

a programmer’s intended query signature. A test case that

tests whether this kind of SQLI is possible could return with

at least four possible outcomes, viz.

1. Arbitrary data from the database, if the attack succeeded,

2. An exception, if the attack did not succeed in its current

form, but still, is possible in another form (e.g., with a

different injection string), as user input obviously is not

sanitized,

3. An error message, indicating that the input was not pro-

cessed by the application, or

4. Nothing, i.e., NULL, which would make it apparently

impossible to derive a verdict for the test case (e.g., due

to that an SQLI is not possible or the system crashed).

Clearly, these possible outputs show that one cannot state an

unambiguous oracle then.

In our non-functional security testing method, test eval-

uation is done by applying monitoring techniques, i.e., we

analyze the application’s output, and based on that decide

a verdict. We argue that the consequences of performing an

attack against a SUT manifest themselves in the output of the

SUT. Possible values for a verdict are

– PASS, if a test case succeeded, i.e., we were able to mon-

itor an expected outcome,

– FAIL, if a test case did not succeed, i.e., we were not

able to monitor any potentially expectable outcome, or

an error occurred, and

– INCONCLUSIVE if it cannot be decided, whether a test

case passed or failed.

To derive such a verdict we have designed our method to be

capable of dealing with four major attack goals with distinct

outcome characteristics, viz.

– authentication violation,11 if the attack, per-

formed by a test case, attempts to bypass authentication

mechanisms; for this, we, e.g., monitor the outcome to

not be empty (i.e., it must contain data), but also to not

11 For reasons of brevity, this goal is abbreviated with just

authentication.

contain any error or exception messages (which would

indicate that the attack failed),

– leakage, if the attack, performed by a test case,

attempts to bypass authorization mechanisms and access

protected data; for this, we, e.g., monitor the outcome to

not be empty (i.e., it must contain data), but also to not

contain any error or exception messages (which would

indicate that the attack failed),

– tampering, if the attack, performed by a test case,

attempts to bypass authorization mechanisms to alter pro-

tected data; for this, we, e.g., monitor the outcome to not

contain any error or exception messages (which would

indicate that the attack failed), and

– dos, if the attack, performed by a test, case attempts to

make the target unavailable (i.e., denial-of-service); for

this, we try to measure a timeout, i.e., if the target is

not responsive within a certain time frame (e.g., default

network timeout), we assume the attack succeeded.

For deriving a verdict, our method first decides whether an

SQLI or XSS attack has been performed during testing. Fol-

lowing, two decision procedures are described which then

allow to infer whether an SQLI (Fig. 13) or XSS attack

(Fig. 14) was successful.

3.5.1 Detecting successful SQLI attacks

Figure 13 shows the state machine that infers a verdict for an

executed SQLI attack. It is designed to detect three variations

of SQLI that are considered in our method, i.e., (i) SQLI

by signature evasion or (ii) incorrect type handling and (iii)

blind SQLI. Upon receiving a response r from the SUT after

executing an SQLI attack, the state machine enters the state

qSQL I . Next, based on the type of SQLI attack that has been

executed, the state machine transitions to the corresponding

state, viz. (i) qSE , (ii) qB or (iii) qT H . Then, given certain

conditions as discussed below, the final verdict is inferred by

entering one of the final states qF , qP or qI corresponding to

the three verdicts FAIL, PASS and INCONCLUSIVE.

To detect whether an SQLI by signature evasion was suc-

cessful, i.e., the verdict is PASS, condition c2 needs to be

fulfilled. Thus, the response r must not be null (it must contain

data, i.e., r �= null), r must not contain any error messages

(r �= error ),12 its contents must differ from those of the

page o where the inject was originally submitted to (r �= o)

and, finally, the inject must not be mirrored in the response

(i /∈ r ). In case the response r is null (r = null) or the

original page remains displayed (r = o), i.e., c3 is satisfied,

the verdict is INCONCLUSIVE. The fact that no error has

12 We put a special focus on SQL specific error messages,

e.g., “Incorrect syntax near” or “Unclosed quotation
mark”.

123



236 P. Zech et al.

qSQLIstart

qSE

qB

qTH

qF

qP

qI

signature evasion

blind

type handling

c1 c2 c3

c4
c5 c3

c1 c2
c3

Label Condition

c1 ¬c2 ∧ ¬c3
c2 (r = null) ∧ (r = error) ∧ (r = o) ∧ (i /∈ r)
c3 (r = null ∨ r = o)
c4 ¬c5 ∧ ¬c3
c5 c2 ∨ (d ≥ t)

Fig. 13 State machine for detecting successful SQLI attacks (Obvi-

ously we could have optimized this state machine by merging states

qT H and qSE . Yet, for the sake of readability, we did not do so). The

table shows the necessary conditions for that transitions in the state

machine can be made

been thrown, and further, the input apparently has been con-

sumed, prohibits to derive FAIL as a verdict. However, if

both c2 and c3 are unsatisfiable, the verdict is FAIL (c1 is

satisfied).

To detect a successful blind SQLI, more or less the same

rationale as described for SQLI by signature evasion applies.

The only difference is that for a successful attack, i.e., the

verdict is PASS, we also consider whether the SUT does not

respond within a given timeout, i.e., d ≥ t (where d is the

duration for the response and t a predefined timeout). This is

due to our test data definitions for testing web applications

that also reflect injection strings that attempt to trigger a delay

in the SUT. To summarize, for that a blind SQLI is successful

the same conditions as in case of c2 must hold with the addi-

tion that we also consider time delays, i.e., c5. As in case of

SQLI by signature evasion, the verdict is INCONCLUSIVE

if c3 is satisfied. Finally, if c4 is satisfied, the verdict is FAIL.

For SQLI by incorrect type handling, the same rationale

as for SQLI by signature evasion applies, i.e., if c2 is sat-

isfied, the attack succeeded, i.e., the verdict is PASS. If the

response is null or equals the original page (c3) the verdict is

INCONCLUSIVE. Finally, if either c2 or c3 are satisfied, the

verdict is FAIL, i.e., c1 is satisfied.

The reason why we check the response r not contain the

injection string is by virtue that this would not be the case in

a successful SQLI attack. Instead, we would expect different

content as of data leaking from the database or accessing a

protected area of the application, but not the reflected inject.

qXSSstart

qSqR

qI

qP

qF

storedreflected

c2c1 c5c4c3

Label Condition

c1 ¬c2
c2 (r = null) ∧ (r = error) ∧ (i ∈ r)
c3 (¬c4 ∧ ¬c5) ∨ ((i ∈ r) ∧ (i /∈ r1))
c4 (r = null) ∧ (r = error) ∧ (i ∈ r1)
c5 (r = error) ∧ (i /∈ r) ∧ (i /∈ r1)

Fig. 14 State machine for detecting successful XSS attacks. The table

shows the necessary conditions for that transitions in the state machine

can be made

Note that this also lets us clearly distinguish whether an oper-

ation is vulnerable to SQLI or XSS.

3.5.2 Detecting successful XSS attacks

Figure 14 shows the state machine that infers a verdict for an

executed XSS attack. It is designed to detect two variations

of XSS that are considered in our method, i.e., (i) reflected

and (ii) stored XSS. Upon receiving a response r from the

SUT after executing an XSS attack, the state machine enters

the state qX SS . Next, based on the type of XSS attack that

has been executed, the state machine transitions to the cor-

responding state, viz. (i) qR , (ii) qS . Then, given certain

conditions as discussed below, the final verdict is inferred

by entering one of the final states qF , qP or qI correspond-

ing to the three verdicts FAIL, PASS and INCONCLUSIVE.

Detecting a successful reflected XSS attack is fairly sim-

ple. Given that the SUT returns data (r �= null) that does

not contain an error (r �= error ) and further, reflects the

injection string (i ∈ r ), i.e., c2 is satisfied, then the verdict is

PASS and a reflected XSS vulnerability has been detected.

If c2, however, cannot be satisfied, the verdict is FAIL, i.e.,

c1 is satisfied. Remember that in case of reflected XSS there

is no verdict of type INCONCLUSIVE, as this cannot occur.

Either the injected string is reflected in the response or not.

For inferring the verdict in case of a stored XSS, we need a

second response (r1) from the SUT, i.e., we generate another

request using the same URL as used during testing (for sure,

123



Knowledge-based security testing of web applications by logic programming 237

this time without parameter values). This happens in state

qS . To then infer whether the stored XSS attack was suc-

cessful, i.e., c4 is satisfied and the verdict is PASS, the first

response must not be null (r �= null), contain no error mes-

sage (r �= error ) and further, the second response must

reflect the injection string (i ∈ r1). If this is the case, our

method detects a successful stored XSS attack. If, however,

the injection string is not contained in the first and second

response ((i /∈ r) ∧ (i /∈ r1)) and the first response fur-

ther does not contain an error (r �= error ), the verdict is

INCONCLUSIVE, i.e., c5 is satisfied. One cannot exclude

the possibility of an existing stored XSS vulnerability, just

due to that the injection string was not reflected at all. It may

be so at some other point in the application (e.g., loaded into

a different page’s content). Observe that this is different to

the case where only the response from testing, i.e., r , reflects

the injection string ((i ∈ r) ∧ (i /∈ r1)). This implies that

our injection string was reflected immediately which indi-

cates the presence of a reflected XSS vulnerability but not a

stored. In such a case the verdict obviously is FAIL, as the

right part of c3 is satisfied. Clearly, if c4 and c5 both cannot

be satisfied, i.e., ¬c4 ∧ ¬c5, the verdict also is FAIL as the

left part of c3 is satisfied.

After test evaluation is done, our tool generates a test log

and test feedback into the risk profile RP (Sect. 3.6).

One could argue now that such an evaluation procedure

may yield false positives and false negatives. This may be

true, however, we motivate not to execute a test case only

once but rather multiple times, for that such false negatives

and false positives can be levered out. To the best of our

knowledge, such false positives and false negatives cannot

be avoided completely, at least in automated test evaluation

for non-functional security testing. Nevertheless, the evalu-

ation of our method (Sect. 5) shows that our test evaluation

procedure is effective by detecting successful attacks by mon-

itoring the application’s response. As a final note, we want

to point out that the state-machines are defined in a SUT

agnostic manner to provide as much genericity as possible.

As for test execution, also for test evaluation, we used

Scala as an implementation language. This is due to neces-

sary facilities to analyze outcomes of test cases w.r.t. certain

characteristics which Prolog misses, e.g., efficient text pro-

cessing and the like.

3.6 Tool implementation

In the following, we introduce the tool specific extension for

our method.13 These comprise a set of modeling facilities,

viz. two DSLs providing human-readable abstractions to our

13 The core components of our tool are available for download at http://

qe-informatik.uibk.ac.at/vkb.

Fig. 15 Abstract syntax of our system description language (SDL).

Our language for describing a web application as a SUT is kept small

and concise. This is as in black-box testing we do not know much about

the system that we can state with certainty

declarative models, e.g., the security problem SP and the

risk profile RP and necessary model translators.

3.6.1 System DSL

The system DSL (or SDL) formally declares syntactical mod-

eling elements for describing a SUT (or security problem

SP) in a textual manner. Our SDL is tailored to a black-box

view of web applications. Hence, the SDL is rather small, as

it must only provide elements that we can firmly instantiate

with sound knowledge on the SUT, e.g., operation names and

their parameters, or content folders14 of the web application

(subsequently referred to as Module in our tool). Figure 15

shows the abstract syntax (or metamodel) of our SDL.

Observe that there exists a one-to-one correspondence

between elements of the SDL and elements of the SP from

Definition 1. We thus skip any further discussion of the SDL

as its syntax and semantics should be self-explanatory by

now.

Using such a DSL for describing a system model for test-

ing advances the overall testing process. However, it imposes

the burden of establishing such a model. For this our tool slots

a web spider ahead of actually starting the testing process

(e.g., the security risk analysis and subsequent activities) for

semi-automatically generating the SP .

Web Spider The goal of our web spider is to automat-

ically establish a model of a SUT, i.e., a web application

in PHP/SQL. We did not reimplement the web spider from

scratch, but instead used an already existing one written

in Java, viz. Crawler4j [57]. For establishing a model of a

SUT at an interface level, we configured Crawler4J to search

pages for HTML input forms, i.e., the interface to the outside

world. Further, it follow any links contained inside a page it

14 Content folders may contain images or other resources, web sites or

further content folders.

123

http://qe-informatik.uibk.ac.at/vkb
http://qe-informatik.uibk.ac.at/vkb


238 P. Zech et al.

Fig. 16 Abstract syntax of our risk description language (RDL). Our

RDL allows to formulate a risk profile RP w.r.t. a SUT. The risk profile

RP represents both a test suite and executable specification for non-

functional security testing. Further, the risk profile RP also subsumes

a negative specification that is necessary for non-functional security

testing

searched, yet with the constraint that the link is within the

same domain as the base address of the SUT. The results of a

“crawl” are stored in an XML file which is then further pro-

cessed to generate the declarative system model as required

by our method, i.e., the security problem SP . It may occur

however that some manual clean-up of the model is neces-

sary, as discussed in Sect. 5.

The choice to use XML as the fundamental representation

of our system model is that most model-based testing tools

and approaches use XML (more precisely, XMI, a dialect of

XML) as storage and interchange format. Thus, our tool can

easily be combined with features of model evolution [58,59],

or model-based regression testing [60,61].

3.6.2 Risk DSL

Contrary to our SDL that declared a rather small syntax, our

risk DSL (or RDL) for describing security risks w.r.t. a SUT is

more comprehensive. This is due to that models of our RDL

(e.g., a risk profile RP) describe both a test suite as well

as an executable specification for non-functional security

testing. Further, our risk profile RP (as mentioned earlier)

also subsumes a negative specification that is necessary for

non-functional security testing. Figure 16 shows the abstract

syntax of our RDL.

Similarly to our SDL, also the RDL formally declares a

set of syntactical model elements, yet for describing security

risks. The central element of our RDL is the Risk concept. It

declares a distinctive security risk the SUT potentially faces

by virtue of possible side-effect functionality. A risk itself

is a composition of the four elements Attack, SUT, Test,

and ThreatProfile. The Attack element describes the

actual Exploit and its concrete Manifestation by

which type of attack is used, e.g., signature evasion or blind in

case of SQLI. Next, the SUT element encapsulates necessary

information regarding the SUT, e.g., which Operation

of which Module, and which IntrusionPoint, i.e.,

vulnerable parameter, potentially is affected. The Test
element declares test execution specific features, viz. the

number of Executions for a risk by testing. Finally, the

ThreatPro-file contains further information regarding

threats coming along with the risk, i.e., the Goals one can

achieve with an attack, e.g., authorization or leakage. Further,

the ThreatProfile contains vital information regarding

test execution prioritization by its RiskLevel feature. For

the sake of completeness, the ThreatProfile element

also provides features for storing the calculated Impact

and Probability of the attack, encapsulated by the risk’s

Attack element.

We already mentioned that our risk profile RP , besides

representing both an executable specification and a test suite,

also subsumes a necessary negative specification. We define

a negative specification to be a set of negative requirements

that states side-effect functionality (e.g., an operation allows

to perform something illicit) potentially realized by the SUT.

Each negative requirement is a quadruple of exploit, attack,

operation, and parameter, or intrusion point. As each risk of

a risk profile RP contains this information, the risk profile

RP thus also subsumes such a negative specification.

Our two DSLs were implemented in the Scala pro-

gramming language. Further, both DSLs follow the design

principle that testers neglect any details of the target platform

and other implementation specifics during modeling [62].

Concrete examples of our DSLs are shown later in Sect. 5 as

part of our evaluation of the introduced method and its tool

implementation.

So far, we have introduced the DSLs used by our tool.

However, we still miss one important component of our mod-

eling facilities, viz. the model translators which translate,

(i) our XML-based system model into a DSL-based system

model (or security problemSP) and, subsequently, its declar-

ative counter part, and (ii) our declarative risk profile as it

results from our security risk analysis into a DSL-based risk

profile RP .

3.6.3 Model translators

The model translators somehow occupy the role of a mid-

dleware within our tool. They implement necessary facilities

to translate our models into different representations. For

our tool, this is necessary at two sites, (i) to translate the

XML-based model of our web spider into its DSL-based rep-

resentation and, further, its declarative representation, and (ii)

123



Knowledge-based security testing of web applications by logic programming 239

to translate the declarative representation of the risk profile

RP into its DSL-based representation for testing.

SDL Translator The task of the SDL translator is to trans-

late the XML-based system model that results from the web

spider into a system model (or security problem SP) using

notions of our SDL. Further, as our method internally works

on declarative models, or logic programs, the SDL transla-

tor also fulfills the task of translating our DSL-based security

problemSP into a declarative representation. Our SDL trans-

lator implements a visitor pattern, i.e., it traverses the input

model by visiting each node and subsequently, for each node,

calls some distinct template which expands in the resulting

model.

RDL Translator Contrary to the SDL translator, the RDL

translator is far more limited in its functionality. This stems

from that it only must translate a declarative risk profile RP

as it yields from our security risk analysis into our DSL-based

representation using notions of our RDL. This translation

step insofar is vital, as our test engine expects a risk profile

RP in our RDL. The key argument to use a DSL-based model

for test execution and not our declarative representation was

that a declarative model is far too bulky to work with in a non

logic programming context. Also, models which are based

on DSLs traditionally are easier to understand and discuss

for a human being as compared to a declarative model.

We have implemented our model translators by Scala’s

parser combinators [63]. Scala’s parser combinators offer a

declarative syntax for easy development of language parsers.

Our parsers implement the visitor pattern, i.e., each node of

the input model is visited. Further, for each node type we

have implemented “expansion templates”. These expansion

templates predefine textual content of the output model that

can be instantiated with values from the input model. Now,

during processing of some input model, our parser, for each

visited node then invokes the corresponding expansion tem-

plate which, in the end, manifests itself in the output model.

We already implemented a model-2-text generator using the

same techniques (e.g., template- and visitor-based) which is

why we skip any further discussion of our model transla-

tors [64].

4 Experiments

We evaluated the model-based tool implementation of our

method for testing web applications in PHP/SQL by Damn

Vulnerable Web Application (DVWA), version 1.8 [8].

DVWA is a PHP/MySQL web application that is damn

vulnerable. Its main goals are to be an aid for security

professionals to test their skills and tools in a legal environ-

ment, help web developers better understand the processes

of securing web applications and aid teachers/students to

teach/learn web application security in a class room envi-

ronment [8]. It is developed by RandomStorm, a UK-based

network security, vulnerability management and compliance

company, focused on providing enterprise-level, proactive

security management tools and services [65].

DVWA is designed to implement a number of vulnerabil-

ities w.r.t. OWASP’s 2013 top ten list [2]. OWASP’s 2013

top ten list is based on eight datasets from seven firms that

specialize in application security, including four consult-

ing companies and three tool/SaaS vendors (one static, one

dynamic, and one with both). The data spans over 500,000

vulnerabilities across hundreds of organizations and thou-

sands of applications from different domains, for instance,

eBanking, eHealth, or online shopping, i.e., any domain that

makes use of web applications. The top ten items are selected

and prioritized according to this prevalence data, in combina-

tion with consensus estimates of exploitability, detectability,

and impact estimates [2]. We, however, will not discuss

any of these top ten items, as (i) relevant vulnerabilities for

our method, i.e., ones we test for, were already discussed

(Sect. 3.2), and (ii) this would go beyond the scope of this arti-

cle. The interested reader is advised to study OWASP’s 2013

top ten list [2] which also provides a concise discussion of

the various vulnerabilities and exploitation techniques. The

vulnerabilities implemented by DVWA are as follows:

– Brute Force Password Cracking

– Remote Code/Command Execution

– Cross-site Request Forgery

– Insecure Captchas

– File Inclusion

– SQLI

– Blind SQLI

– File Upload

– Reflected XSS

– Stored XSS

To make training skills and tools more interesting, DVWA

also provides three security levels, viz. low, medium, and

high. Depending on which security level is configured for

DVWA, none, few or various security mechanisms (e.g.,

input sanitation) are running to avert attacks.

4.1 Experimental setup

For our experiments, we have installed DVWA on a dedi-

cated web server running PHP 5.5.8 and Apache 2.4.6 in

our lab alongside a MySQL database, version 5.3.35. Fig-

ure 17 shows the setup we used for our experiments. A client

machine that runs the testing tool sends request (as part of

testing) to a web server machine that is running DVWA. Upon

successful completion of a request, the result is sent back to

the client machine.

123



240 P. Zech et al.

Fig. 17 Lab setup for our experiments. A client machine is running our

testing tool. During testing the client sends requests to a web server that

are forwarded to DVWA, which in turn creates the response. A MySQL

database is running alongside the web server on the server machine

4.2 Collection and analysis of results

The results as presented and discussed in Sect. 5 were

retrieved by executing test cases against DVWA and collect-

ing the outcomes, i.e., responses returned by DVWA (which

is done by our tool as it generates the test log). We then com-

pared these results to DVWA. On the grounds of knowing

whether a vulnerability really is present in DVWA or not,

we derived the interpretations of the retrieved results as pre-

sented in Sect. 5.

A potential threat to the validity of our results and their

interpretation is that we have performed all experiments

under laboratory conditions and further, by using a delib-

erately vulnerable application, i.e., no field application. We,

however, argue that performing experiments under laboratory

conditions allows to thoroughly measure its effectiveness as

we do not have to consider external noise, e.g., disturbing

network traffic and the like. Further, the application that we

used for our experiments, i.e., DVWA, reflects common real-

life vulnerabilities as its contained vulnerabilities are based

on OWASP 2013 top ten list.

5 Results and discussion

Following, we show and discuss the results of two experi-

ments, in which we used our tool to detect vulnerabilities in

DVWA. In the first experiment DVWA’s security level is set

low, whereas in the second experiment, the security level is

set to medium. At first, we also tried to detect vulnerabilities

with the security level set to high; however, we soon real-

ized that this exceeded our tool’s capabilities in detecting

vulnerabilities, simply due to that at this point, attacks are

too complex to be done in an automated manner (e.g., iter-

ated fine-grained evaluation of the application’s responses

is necessary to finally come up with a working injection

string). Figure 18 shows the reduced security problem SP

for DVWA. We deliberately chose to reduce the initial secu-

rity problem SP as returned from our web spider as our tool

would fail to detect vulnerabilities for specific operations

(in total 6), e.g., /vulnerabilities/brute/# which

implements a brute force vulnerability.

1 object DVWA_SP {

2 val root = new SUT (

3 modules = List(

4 new Module (name = "dvwa", uri = "http

://10.4.4.16",

5 operations = List(

6 new Operation (name = "/

vulnerabilities/sqli/#",

7 method = "GET", parameters = List(

8 new Parameter (name = "id", type_

= "text"),

9 new Parameter (name = "Submit ",

type_ = "submit ")

10 )),

11 new Operation (name = "/

vulnerabilities/ sqli_blind /#",

12 method = "GET", parameters = List(

13 new Parameter (name = "id", type_

= "text"),

14 new Parameter (name = "Submit ",

type_ = "submit ")

15 )),

16 new Operation (name = "/

vulnerabilities/xss_r /#",

17 method = "GET", parameters = List(

18 new Parameter (name = "name",

type_ = "text"),

19 new Parameter (name = "", type_ =

"submit ")

20 )),

21 new Operation (name = "/

vulnerabilities/xss_s /#",

22 method = "POST", parameters = List(

23 new Parameter (name = "txtName ",

type_ = "text"),

24 new Parameter (name = "btnSign ",

type_ = "submit "),

25 new Parameter (name = "mtxMessage "

, type_ = "text")

26 ))

27 )

28 )

29 )

30 )

31 }

Fig. 18 Reduced security problem SP as established by our web spi-

der for DVWA (clearly, the web spider did not reduce the model but we

did manually)

5.1 Testing with low security level

For our first experiment, the security level of DVWA was

set to low and test data selection to iterative. A security

level of low yields that DVWA has no protection mechanisms

whatsoever, e.g., input sanitation, filter lists, and the like,

in place. This results in that vulnerabilities are fairly easily

detectable, and thus also exploitable. Hence, the demands put

on the tool implementation of our method are quite high, i.e.,

to detect all those vulnerabilities in DVWA it knows about

as to its EDB, viz. SQLI and XSS vulnerabilities.

Table 2 shows the results of our first case study. A total

number of 250 test cases were executed against the four oper-

ations from the security problem SP for DVWA (Fig. 18).

The total execution time of all test cases (including test eval-

uation) was about 4 min, which we found quiet acceptable.

123



Knowledge-based security testing of web applications by logic programming 241

Table 2 Results from test execution for our first experiment with DVWA

Risks Target Executions Verdict

PASS FAIL INCONCLUSIVE

Risk 1—SQLI (signature

evasion)

/vulnerabilities/sqli/# (id) 10 9 1 0

Risk 2—SQLI (blind) /vulnerabilities/sqli/# (id) 10 10 0 0

Risk 3—SQLI (type

handling)

/vulnerabilities/sqli/# (id) 10 10 0 0

Risk 4—XSS (reflected) /vulnerabilities/sqli/# (id) 10 0 10 0

Risk 5—XSS (stored) /vulnerabilities/sqli/# (id) 10 0 4 6

Risk 6—SQLI (signature

evasion)

/vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 7—SQLI (blind) /vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 8—SQLI (type

handling)

/vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 9—XSS (reflected) /vulnerabilities/sqli_blind/# (id) 10 0 10 0

Risk 10—XSS (stored) /vulnerabilities/sqli_blind/# (id) 10 0 0 10

Risk 11—SQLI (signature

evasion)

/vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 12—SQLI (blind) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 13—SQLI (type

handling)

/vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 14—XSS (reflected) /vulnerabilities/xss_r/# (name) 10 10 0 0

Risk 15—XSS (stored) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 16—SQLI (signature

evasion)

/vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 17—SQLI (blind) /vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 18—SQLI (type

handling)

/vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 19—SQLI (signature

evasion)

/vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 20—SQLI (blind) /vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 21—SQLI (blind) /vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 22—XSS (reflected) /vulnerabilities/xss_s/# (txtName) 10 10 0 0

Risk 23—XSS (stored) /vulnerabilities/xss_s/# (txtName) 10 10 0 0

Risk 24—XSS (reflected) /vulnerabilities/xss_s/#
(mtxMessage)

10 10 0 0

Risk 25—XSS (stored) /vulnerabilities/xss_s/#
(mtxMessage)

10 10 0 0

250 109 125 16

The left side shows the risks with corresponding attacks and targets (with the exploited parameter), as identified during our security risk analysis,

followed by the number of executions. The three columns on the right show the number of successful, i.e., PASS, unsuccessful, i.e., FAIL, and

inconclusive, i.e., INCONCLUSIVE, test cases. See Table 4 for false positives and negatives

At first sight, the results shown in Table 2 may be a

little bit dizzying, as the verdict FAIL has been deduced

for 125 test runs. Yet, this is desirable. Remember that our

method is designed for non-functional security testing. Con-

trary to functional security testing, where a verdict of PASS

is hoped-for to show that the SUT fulfills its specification,

in non-functional security testing this is not the case. In

non-functional security testing, the question is not anymore

whether the SUT fulfills the specification but rather whether

it contains exploitable side-effect functionality of some kind.

Thus, if, in non-functional security testing, the verdict for a

test run is FAIL, it means that the executed attack did not

123



242 P. Zech et al.

succeed; thus, the expected vulnerability does not exist (or,

in the worse case, could not be detected). In case of PASS;

however, it means the SUT is vulnerable, as a vulnerability

has been found an (already partly) exploited. This should

be kept in mind during the discussion of the results of our

experiments.

Table 2 shows that our method behaved as hoped and antic-

ipated. It was able to detect all those vulnerabilities in DVWA

it knows about, viz. XSS and SQLI vulnerabilities. Further,

it also managed to, with a few exceptions, verify the non-

existence of other, assumed (as to our security risk analysis)

vulnerabilities for the various operations (e.g., SQLI for oper-

ation /vulnerabilities/xss_r/#; obviously this

operation does not implement an SQLI vulnerability). How-

ever, on the other side, the results also show that our tool

soon hits its wall when it is about to detect stored XSS vul-

nerabilities. Yet, this is due to how XSS attacks work, e.g.,

to place an inject string somewhere in a database for that it

is loaded later on. Thus, to truly decide on whether a stored

XSS vulnerability exists, a tool must inspect the source code

of the SUT, i.e., check whether some input is mirrored to a

victim at another point in the application. Without the avail-

ability of the SUT’s source code, one can only guess whether

a stored XSS vulnerability exists. Our decision criteria as

described during test evaluation reflect this guessing proce-

dure. Although its results may not always be accurate, e.g., if

the verdict is INCONCLUSIVE, they at least give us a good

indicator, whether some operation should be tested further or

not.

5.2 Testing with medium security level

For our second experiment, the security level of DVWA was

set to medium and test data selection again to iterative.

Increasing the security level yields that DVWA has protection

mechanisms running aiming at preventing attacks by mitigat-

ing potential vulnerabilities. To prevent SQLI attacks DVWA

now, prior to submitting input to the database, sanitizes

it using mysql_real_escape_string. This operation

prepends a backslash to certain characters, viz. \x00 ,\n,

\r, \, ’, ” and \x1a to escape them. In case of XSS attacks,

the prevention mechanisms are a little more versatile. First of

all, the obligatory < script > tag, if present, is removed

from any input string. Second, each input is processed by

PHP’s trim function, which (obviously) removes leading

and trailing whitespaces from the input. Third, the input is

also processed by htmlspecialcharswhich transforms

certain characters with special meaning in HTML, e.g., < or

>, into their corresponding HTML entities, e.g., &lt; and

&gt; in case of < or >. Finally, the input is also sanitized by

mysql_real_escape_string prior to being processed

by the application itself. With these set of prevention mech-

anisms, hacking DVWA immediately becomes catchier, as

malicious input must not be in plaintext anymore but rather

must be obfuscated to elude the protection mechanisms and

achieve its goal.

Table 3 shows the results for our second experiment with

DVWA’s security level set to medium. Again, a total number

of 250 test cases were executed against the four operations

from the security problem SP for DVWA (Fig. 18). Again

executing all test cases (including test evaluation) only lasted

for about 4 min. As expected, the results for our second

experiment as shown in Table 3 differ from those of the first

experiment, as shown in Table 2.

Obviously, our tool had a slightly harder time to detect

vulnerabilities as compared to our first experiment 5.1. This

is by virtue of security mechanism active in DVWA for

the current experiment. However, the results for our second

experiment again show the effectiveness of our method and

its tool implementation for non-functional security testing by

logic programming. Our method again was able to verify all

existing vulnerabilities, yet, this time with a slightly lower

success rate due to, as just mentioned, active security mech-

anisms as of DVWA’s increased security level which makes

exploiting it more trickier. What is important is that our tool

still could verify the vulnerabilities.

5.3 False positives and false negatives

During our first experiment, our method and its tool imple-

mentation produced a total of 16 false positives. Of these 16, 6

occurred when executing risk 5 and 10 occurred when execut-

ing risk 10. In both cases, these are the result from that our tool

implementation did not clearly reject (remember the verdict,

i.e., INCONCLUSIVE) the existence of a stored XSS vulner-

ability in operations /vulnerabilities/sqli/# and

/vulnerabilities/-sqli_blind/#, respectively.

This is because our test evaluation in some cases, i.e., if

executing a stored XSS attack against some operation vul-

nerable to SQLI, derives INCONCLUSIVE as verdict. Yet,

in the event of risk 6, 4 test cases still were able to reject

the existence of a stored XSS vulnerability, which suggests

that it really does not exist (nevertheless, further investigation

would be advised).

During our second experiment, our method and its tool

implementation produced a total of 12 false negatives and 10

false positives. The first occurrence of false negatives was for

Risk 2 with a total number of 8, i.e., the existence of an SQLI

vulnerability for operation/vulnerabilities/sqli/#

was rejected although it is existent. This is due to that our

injection strings for blind SQLI were too weak to pass

the protection mechanism of DVWA. Yet, as 2 of the 10

test cases verified the existence of an SQLI using tech-

niques of blind SQLI, further investigation would be advised.

The remaining 4 false negatives occurred when execut-

ing Risk 14, i.e., a reflected XSS attack against operation

123



Knowledge-based security testing of web applications by logic programming 243

Table 3 Results from test execution for our second experiment with DVWA

Risks Target Executions Verdict

PASS FAIL INCONCLUSIVE

Risk 1—SQLI (signature evasion) /vulnerabilities/sqli/# (id) 10 9 1 0

Risk 2—SQLI (blind) /vulnerabilities/sqli/# (id) 10 2 8 0

Risk 3—SQLI (type handling) /vulnerabilities/sqli/# (id) 10 10 0 0

Risk 4—XSS (reflected) /vulnerabilities/sqli/# (id) 10 0 10 0

Risk 5—XSS (stored) /vulnerabilities/sqli/# (id) 10 0 10 0

Risk 6—SQLI (signature evasion) /vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 7—SQLI (blind) /vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 8—SQLI (type handling) /vulnerabilities/sqli_blind/# (id) 10 10 0 0

Risk 9—XSS (reflected) /vulnerabilities/sqli_blind/# (id) 10 0 10 0

Risk 10—XSS (stored) /vulnerabilities/sqli_blind/# (id) 10 0 0 10

Risk 11—SQLI (signature evasion) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 12—SQLI (blind) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 13—SQLI (type handling) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 14—XSS (reflected) /vulnerabilities/xss_r/# (name) 10 6 4 0

Risk 15—XSS (stored) /vulnerabilities/xss_r/# (name) 10 0 10 0

Risk 16—SQLI (signature evasion) /vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 17—SQLI (blind) /vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 18—SQLI (type handling) /vulnerabilities/xss_s/# (txtName) 10 0 10 0

Risk 19—SQLI (signature evasion) /vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 20—SQLI (blind) /vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 21—SQLI (blind) /vulnerabilities/xss_s/#
(mtxMessage)

10 0 10 0

Risk 22—XSS (reflected) /vulnerabilities/xss_s/# (txtName) 10 10 0 0

Risk 23—XSS (stored) /vulnerabilities/xss_s/# (txtName) 10 10 0 0

Risk 24—XSS (reflected) /vulnerabilities/xss_s/#
(mtxMessage)

10 10 0 0

Risk 25—XSS (stored) /vulnerabilities/xss_s/#
(mtxMessage)

10 10 0 0

250 97 143 10

The left side shows the risks with corresponding attacks and targets (with the exploited parameter), as identified during our security risk analysis,

followed by the number of executions. The three columns on the right show the number of successful, i.e., PASS, unsuccessful, i.e., FAIL, and

inconclusive, i.e., INCONCLUSIVE, test cases. See Table 4 for false positives and negatives

/vulnerabilities/xss_r/#. Again, this is due to

too weak injection strings that could not bypass the pro-

tection mechanisms that are in place in DVWA if setting

the security level to medium. However, as 6 of the 10 test

executions passed, our tool still could verify with notewor-

thy certainty the existence of a reflected XSS for operation

/vulnerabilities/xss_r/#.

In case of the 10 false positives that occurred during execu-

tion of our second experiment, as they occurred again when

executing Risk 10, i.e., a stored XSS attack against an opera-

tion vulnerable to SQLI, viz./vulnerabilities/sqli
_blind/#, the same reasoning as in case of our first exper-

iment applies.

Table 4 Summary of false positives and false negatives for both our

experiments with DVWA

Case study Nr False positives False negatives

1 16 (6.4%) 0 (0%)

2 10 (4%) 12 (4.8%)

The values in the brackets show the rate of false positives and negatives

w.r.t. the number of executed test cases

Table 4 summarizes the number of false positives and

false negatives that occurred during the two experiments with

DVWA.

123



244 P. Zech et al.

Table 5 Timing-related execution metrics

Low security Medium security

Model generation 55.7 62.3

Test generation 45.2 46.0

Test execution and evaluation 231.5 235.2

Total 329.7 343.5

All durations are in seconds

5.4 Execution metrics

Table 5 summarizes the duration of execution of the vari-

ous steps as conducted during our experiments, viz. model

generation, test case generation as well as test execution

and evaluation. As of online evaluation of test cases, i.e.,

immediately after being executed, we unfortunately fail to

provide an exact duration for test evaluation. In total, each

of the experiments lasted around 5–6 min. We thus conjec-

ture that the proposed method is not only effective in terms

of error detection but also efficient in terms of the necessary

time to test a web application. For sure, given the amount of

user operations provided by an application, execution times

increase, yet we claim that our framework scales well as of its

modular and inference-based implementation. Observe that

we, however, did not consider network speeds and latencies

in our experiments as they provide no additional source of

explanation in terms of execution times related to the testing

framework itself.

5.5 Threats to validity

Although we did not test our method and its tool imple-

mentation with a real-world application but instead with a

playground for security experts, viz. DVWA, we still claim

that our method is applicable for testing real-world, produc-

tive systems and that the achieved results are representative.

This is by virtue of DVWA’s design and implementation

that starkly resemble common design and implementation

errors occurring in real-world applications that ultimately

yield security vulnerabilities. Our experiments have shown

that our tool implementation is capable of detecting vulner-

abilities under real-world conditions.

During the course of testing, it may occur that our tool

misses certain vulnerabilities. This is, apart from testing

against stored XSS vulnerabilities as discussed in the pre-

vious sections, by virtue of that the VKB just does not know

about the necessary attack patterns to detect certain vulner-

abilities. Therefore, our tool strongly relies on the VKB and

its codified contents and thus ultimately on a responsible

security expert. We argue however that such a single point

of human failure generally cannot be eradicated, at least for

now. As traditionally done in such a case of a single point of

human failure, during our experiments, we applied the dual

control principle for the created VKB.

6 Conclusions

In our article, we have introduced both a model-based

tool implementation for non-functional security testing of

web applications in PHP/SQL and its underlying method

in Sect. 3. Our method is kept generic in a sense that

indeed it requires a custom EDB (i.e., security vulnerabil-

ity knowledge of attacks and their enabling vulnerabilities)

and DCG(s) for dynamic test data generation, however, its

remaining components, i.e., the security risk analysis and its

therein contained generation of abstract test cases are generic.

The key idea of this article was to show the successful

application of logic programming and knowledge engineer-

ing for non-functional security testing of web applications.

Using foundations of MBT as an underlying testing method,

we successfully advanced non-functional security testing to

a structured and reproducible testing process. The resulting

tool-chain is then usable by non-security expert testers for

successfully assessing of web applications regarding their

security. The resulting security assessment by testing is use-

ful in improving an application’s security prior to deploying

it to a production environment.

The tool implementation of our method starts by auto-

matically establishing a model of the SUT, i.e., the security

problem SP by a web spider. We consider the system model

a “security problem” as it describes a vulnerable web appli-

cation; thus, it comprises a security problem. This security

problem SP then is investigated by a security risk analysis

that yields the risk profile RP , a model describing potential

attack scenarios against the SUT. The security risk analy-

sis is implemented as part of our VKB by logical reasoning

rules that use both codified security vulnerability knowledge

of the EDB and knowledge on the SUT that is provided by

the security problem SP . The risk profile RP then is used

as an executable specification for testing, i.e., our test engine

processes this model by executing the contained attack sce-

narios (or test cases) against the SUT. Predefined oracles in

the form of potential attack goals are used for evaluating the

outcome of executed test cases to infer whether a test case

passed, failed or if neither pass nor fail can be stated, i.e., the

outcome is inconclusive. Our tool returns with a test log and

test feedback in the risk profile RP .

We conclude that our work has several implications as

listed below:

– Non-functional testing can be done in a structured, repro-

ducible and effective manner.

– The application of knowledge engineering and auto-

mated reasoning is valuable in security testing to make

non-functional security testing feasible for non-security

expert testers.

123



Knowledge-based security testing of web applications by logic programming 245

– Testing against common vulnerabilities, i.e., SQLI and

XSS, can be efficiently automated.

– Effective testing tools for making web applications more

secure are feasible.

In future, we especially plan to address autonomous learn-

ing of the EDB, improving the EDB by learning from test

feedback, automated generation of DCGs by mutation as well

as regression testing aspects, which have already been con-

sidered for functional security testing [66]. Furthermore, we

plan to perform empirical studies to show the effectiveness

and efficiency of the approach in an industrial context.

Acknowledgements Open access funding provided by University of

Innsbruck and Medical University of Innsbruck. This research was

partially supported by the research Project MOBSTECO (FWF P

26194-N15).

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Cenzic: Application Security Trends Report 2013 (March 2014)

2. OWASP, T.: Top 10–2013–the ten most critical web application

security risks. The Open Web Application Security Project (2013)

3. Schieferdecker, I.: Model-based testing. IEEE Softw. 29(1), 14–18

(2012)

4. Schieferdecker, I., Grossmann, J., Schneider, M.: Model-based

security testing. In: Proceedings 7th Workshop on Model-Based

Testing (2012)

5. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-

based security testing: a taxonomy and systematic classification.

Softw. Test. Verif. Reliab. 26(2), 119–148 (2016)

6. Legeard, B., Utting, M.: Practical Model-based Testing: A Tools

Approach. Morgan Kaufmann, Burlington (2010)

7. McGraw, G., Potter, B.: Software security testing. IEEE Secur. Priv.

2(5), 81–85 (2004)

8. RandomStorm: Damn Vulnerable Web Application (DVWA)

(March 2014)

9. Zech, P., Felderer, M., Breu, R.: Towards risk-driven security test-

ing of service centric systems. In: QSIC, pp. 140–143 (2012)

10. Zech, P., Felderer, M., Farwick, M., Breu, R.: A concept for

language-oriented security testing. In: 2013 IEEE 7th International

Conference on Software Security and Reliability-Companion

(SERE-C), pp. 53–62. IEEE (2013)

11. Zech, P., Felderer, M., Katt, B., Breu, R.: Security test generation

by answer set programming. In: 2014 IEEE 8th International Con-

ference on Software Security and Reliability-Companion (SERE),

IEEE (2014)

12. Zech, P., Felderer, M., Breu, R.: Cloud risk analysis by textual

models. In: Proceedings of the 1st International Workshop on

Model-Driven Engineering for High Performance and CLoud com-

puting, p. 5. ACM (2012)

13. Zech, P., Felderer, M., Breu, R.: Security risk analysis by logic

programming. In: 1st International Workshop on Risk Assessment

and Risk-driven Testing (RISK), Springer (2014)

14. Gotlieb, A., Botella, B., Rueher, M.: Automatic Test Data Gen-

eration using Constraint Solving Techniques. In: ACM SIGSOFT

Software Engineering Notes. Vol. 23, pp. 53–62. ACM (1998)

15. Meudec, C.: ATGen: automatic test data generation using con-

straint logic programming and symbolic execution. Softw. Test.

Verif. Reliab. 11(2), 81–96 (2001)

16. Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman,

D.: test data generation and feasible path analysis. In: Proceedings

of the 1994 ACM SIGSOFT international symposium on Software

testing and analysis, pp. 95–107. ACM (1994)

17. Vemuri, R., Kalyanaraman, R.: Generation of design verification

tests from behavioral VHDLprograms using path enumeration and

constraint programming. IEEE Trans. Very Large Scale Integr.

Syst. 3(2), 201–214 (1995)

18. Denney, R.: Test-case generation from prolog-based specifications.

Softw. IEEE 8(2), 49–57 (1991)

19. Bieker, U., Marwedel, P.: Retargetable self-test program genera-

tion using constraint logic programming. In: 32nd Conference on

Design Automation, DAC’95, pp. 605–611. IEEE (1995)

20. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Test case genera-

tion for object-oriented imperative languages in CLP. Theory Pract.

Logic Program. 10(4–6), 659–674 (2010)

21. Lötzbeyer, H., Pretschner, A.: Testing concurrent reactive systems

with constraint logic programming. In: 2nd Workshop on Rule-

Based Constraint Reasoning and Programming, Singapore (2000)

22. Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: Applying con-

straint logic programming to SQL test case generation. In: Func-

tional and Logic Programming, pp. 191–206. Springer (2010)

23. Gorlick, M.M., Kesselman, C.F., Marotta, D.A., Stott Parker, D.:

Mockingbird: a logical methodology for testing. J. Logic Program.

8(1), 95–119 (1990)

24. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R.,

Pretschner, A.: Chapter one-security testing: a survey. Adv. Com-

put. 101, 1–51 (2016)

25. Michael, C., Radosevich, W.: Risk-based and functional security

testing. Build security In (2005)

26. Arkin, B., Stender, S., McGraw, G.: Software penetration testing.

IEEE Secur. Priv. 3(1), 84–87 (2005)

27. Bishop, M.: About penetration testing. IEEE Secur. Priv. 5(6), 84–

87 (2007)

28. Miller, B., Fredriksen, L., So, B.: An empirical study of the relia-

bility of UNIX utilities. Commun. ACM 33(12), 32–44 (1990)

29. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for Software Secu-

rity Testing and Quality Assurance. Artec House, Norwood (2008)

30. Amland, S.: Risk-based testing:: Risk analysis fundamentals and

metrics for software testing including a financial application case

study. J. Sys. Softw. 53(3), 287–295 (2000)

31. Wysopal, C., Nelson, L., Dustin, E., Dai Zovi, D.: The Art of

Software Security Testing: Identifying Software Security Flaws.

Addison-Wesley Professional, Boston (2006)

32. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing.

Int. J. Softw. Tools Technol. Transf. 16(5), 559–568 (2014)

33. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for

risk-based test case generation and prioritization. In: Proceedings

of the 3rd International Workshop on Automation of Software Test,

pp. 67–70. ACM (2008)

34. Blackburn, M., Busser, R., Nauman, A., Chandramouli, R.: Model-

based approach to security test automation. In: Proceeding of

Quality Week 2001 (2001)

35. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based

framework for security policy specification, deployment and test-

ing. In: Model Driven Engineering Languages and Systems, pp.

537–552. Springer (2008)

36. Jürjens, J., Wimmel, G.: Specification-based testing of Firewalls.

In: Perspectives of System Informatics, pp. 308–316. Springer

(2001)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


246 P. Zech et al.

37. Wimmel, G., Jürjens, J.: Specification-based test generation for

security-critical systems using mutations. In: Formal Methods and

Software Engineering, pp. 471–482. Springer (2002)

38. Jürjens, J.: UMLSec: Extending UML for secure systems devel-

opment. In: UML 2002—The Unified Modeling Language, pp.

412–425. Springer (2002)

39. Jürjens, J.: Model-based security testing using UMLSec: a case

study. Electron. Notes Theor. Comput. Sci. 220(1), 93–104 (2008)

40. Wang, L., Wong, E., Xu, D.: A threat model-driven approach for

security testing. In: Third International Workshop on Software

Engineering for Secure Systems, SESS’07: ICSE Workshops 2007,

pp. 10–10. IEEE (2007)

41. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: Security

test generation using threat trees. In: AST’09. ICSE Workshop on

Automation of Software Test, 2009, pp. 62–69. IEEE (2009)

42. Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D., Xu,

W.: Automated security test generation with formal threat models.

IEEE Trans. Dependable and Secur. Comput. 9(4), 526–540 (2012)

43. Xu, D., Nygard, K.E.: Threat-driven modeling and verification

of secure software using aspect-oriented petri nets. IEEE Trans.

Softw. Eng. 32(4), 265–278 (2006)

44. Avancini, A., Ceccato, M.: Towards security testing with taint anal-

ysis and genetic algorithms. In: Proceedings of the 2010 ICSE

Workshop on Software Engineering for Secure Systems. SESS ’10,

pp. 65–71. ACM (2010)

45. Büchler, M., Oudinet, J., Pretschner, A.: Semi-Automatic Security

Testing of Web Applications from a Secure Model. In: 2012 IEEE

Sixth International Conference on Software Security and Reliabil-

ity (SERE), pp. 253–262 (2012)

46. Büchler, M., Oudinet, J., Pretschner, A.: SPaCiTE—web applica-

tion testing engine. In: 2012 IEEE Fifth International Conference

on Software Testing, Verification and Validation (ICST), pp. 858–

859 (2012)

47. Tappenden, A., Beatty, P., Miller, J., Geras, A., Smith, M.: agile

security testing of web-based systems via HTTPUnit. In: Proceed-

ings of Agile Conference, 2005, pp. 29–38 (2005)

48. Offutt, J., Wu, Y., Du, X., Huang, H.: Bypass testing of web appli-

cations. In: 15th International Symposium on Software Reliability

Engineering, 2004. ISSRE 2004, pp. 187–197 (2004)

49. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H.,

Su, Z.: Dynamic test input generation for web applications. In:

Proceedings of the 2008 International Symposium on Software

Testing and Analysis, pp. 249–260. ACM (2008)

50. Xiong, P., Peyton, L.: A model-driven penetration test framework

for web applications. In: 2010 Eighth Annual International Con-

ference on Privacy Security and Trust (PST), pp. 173–180 (2010)

51. Chen, S., Miao, H., Qian, Z.: Automatic generating test cases for

testing web applications. In: International Conference on Compu-

tational Intelligence and Security Workshops, 2007. CISW 2007,

pp. 881–885 (2007)

52. Song, B., Gong, S., Chen, S.: Model composition and generating

tests for web applications. In: 2011 Seventh International Con-

ference on Computational Intelligence and Security (CIS), pp.

568–572 (2011)

53. Kiezun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic cre-

ation of SQL injection and cross-site scripting attacks. In: IEEE

31st International Conference on Software Engineering, 2009,

ICSE 2009, pp. 199–209. IEEE (2009)

54. Diaz, D.: GNU Prolog. (1999). http://gprolog.univ-paris1.fr/

55. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution:

a roadmap. In: Proceedings of the Conference on The Future of

Software Engineering, ICSE ’00, pp. 73–87. ACM (2000)

56. Felderer, M., Zech, P., Fiedler, F., Breu, R.: A tool-based methodol-

ogy for system testing of service-oriented systems. In: 2010 Second

International Conference on Advances in System Testing and Val-

idation Lifecycle (VALID), pp. 108–113. IEEE (2010)

57. Ganjisaffar, Y.: Crawler4J (March 2014)

58. Breu, M., Breu, R., Low, S.: Living on the move: towards an

architecture for a living models infrastructure. In: 2010 Fifth Inter-

national Conference on Software Engineering Advances (ICSEA),

pp. 290–295. IEEE (2010)

59. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner,

M., Innerhofer-Oberperfler, F.: Living models-ten principles for

change-driven software engineering. Int. J. Softw. Inf. 5(1–2), 267–

290 (2011)

60. Zech, P., Felderer, M., Kalb, P., Breu, R.: A generic platform

for model-based regression testing. In: Leveraging Applications

of Formal Methods, Verification and Validation. Technologies for

Mastering Change, pp. 112–126. Springer (2012)

61. Zech, P., Kalb, P., Felderer, M., Atkinson, C., Breu, R.: Model-

based regression testing by OCL. Int. J. Softw. Tools Technol.

Transf. 19(1), 115–131 (2017)

62. Hartman, A., Katara, M., Olvovsky, S.: Choosing a test modeling

language: a survey. In: Hardware and Software, Verification and

Testing, pp. 204–218. Springer (2007)

63. Moors, A., Piessens, F., Odersky, M.: Parser combinators in scala.

CW Reports (2008)

64. Felderer, M., Fiedler, F., Zech, P., Breu, R.: Flexible test code gener-

ation for service oriented systems. In: 9th International Conference

on Quality Software (QSIC ’09). IEEE (2009)

65. RandomStorm: RandomStorm (March 2014)

66. Felderer, M., Agreiter, B., Breu, R.: Evolution of security require-

ments tests for service–centric systems. In: International Sympo-

sium on Engineering Secure Software and Systems, pp. 181–194.

Springer (2011)

123

http://gprolog.univ-paris1.fr/

	Knowledge-based security testing of web applications by logic programming
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Article organization

	2 Related work
	2.1 Logic programming in testing
	2.2 Security testing
	2.3 Model-based security testing
	2.4 Web application security testing

	3 Method
	3.1 Security problem
	3.2 Vulnerability knowledge base
	3.2.1 Extensional database
	3.2.2 Intensional database
	3.2.3 Test data

	3.3 Risk profile
	3.4 Test execution
	3.5 Test evaluation
	3.5.1 Detecting successful SQLI attacks
	3.5.2 Detecting successful XSS attacks

	3.6 Tool implementation
	3.6.1 System DSL
	3.6.2 Risk DSL
	3.6.3 Model translators


	4 Experiments
	4.1 Experimental setup
	4.2 Collection and analysis of results

	5 Results and discussion
	5.1 Testing with low security level
	5.2 Testing with medium security level
	5.3 False positives and false negatives
	5.4 Execution metrics
	5.5 Threats to validity

	6 Conclusions
	Acknowledgements
	References


