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ABSTRACT

In order to cope with the large volume of

remotely-sensed data available now and expected in

the future, efficient automatic processing techniques

are required. A particular problem in automatic

interpretation of this data is the identification of

relevant connected regions in the image, i.e.

segmentation. This can generally only be achieved to

a required degree of accuracy if performed manually.

This paper describes the current implementation of a

system for automatic segmentation of multi-temporal

remotely-sensed images which exploits prior knowledge

to isolate the regions of interest. The system is

directed principally towards the applications of crop

and environmental monitoring.

I INTRODUCTION

The volume of quantitative data from

remote-sensing platforms has increased considerably

in the last decade and will continue to increase in

the future with the planned launch of Europe's ERS-1

satellite and the polar platforms in NASA's Earth

Observation System. The problems to which these

images are applied have also increased in scope and

magnitude with time. Present-day problems using

remotely-sensed images cover applications as widely

varying as urban land use studies and crop

inventories (see, for example, Landgrebe 1981 for

typical applications).

There is a continuing need for efficient,

machine-implemented analyses of the data.

Unfortunately, the image generation techniques have

far outstripped the image analysis techniques, even

though the latter have advanced significantly since

the launch of the first LANDSAT.

The extraction of information from remotely-sensed

data may be thought of as a two stage process of

segmentation and classification. The segmentation

stage, which partitions the image data into connected

homogenous regions, is traditionally performed by a

photointerpreter.

A problem is encountered in the definition of the

required homogeneous regions. The optimum regions

are governed by the application, i.e. what the

end-user perceives as a classifiable object on the

ground. Therefore, in this project we have

necessarily limited investigations to a subset of

possible applications: those of renewable resources,

e.g. crop monitoring, and environmental monitoring,

e.g. the limits of natural fenland. Within this

category of applications, segmentation to some

arbitrary level is attempted.

•This work is supported, in part, within the UK Alvey

Man Machine Interface developments.

Automatic segmentation techniques, whether region

or edge based, are generally inadequate or

unreliable, and result in an ambiguously segmented

image. Classification errors result as a direct

consequence of this. The segmentation errors may be

due to practical issues, for example the sensing

conditions, but the principal source of error is the

data driven aspect of techniques. There is generally

insufficient information in the image itself to

completely discriminate between regions. Even if the

information is in the image, the exact properties and

values to use are not known apriori. The work

described in this paper is directed towards reliable

automatic segmentation techniques which can be

adapted for a range of remotely-sensed images and a

broad category of applications. In order to achieve

this, recourse to a priori knowledge about the scene

must be made. This knowledge is normally only

available to an experienced photointerpreter.

The project is divided into two major phases: the

study of candidate systems for knowledge based

segmentation, and the implementation and evaluation

of a final system based on the results of the first

phase. The next section details the types of

information which may be exploited in order to

improve segmentation. An overview of the basic

system used for evaluation in phase 1 in terms of its

features and the knowledge it exploits, is given in

Section III. Section IV gives an evaluation of the

system strategies developed in the first phase and

details the data used, the tests performed and the

results obtained. The design for the final system is

summarized in Section V, by detailing the changes and

additions made to the basic system. The final

section presents a summary of the system.

II EXPLOITING KNOWLEDGE

For more accurate segmentation, the information in

the image, given by the spectral, spatial and

temporal variations of the pixels, can be

supplemented by a priori knowledge. This knowledge,

which imposes constraints on the regions to be

expected in the data, is external to the image.

The a priori knowledge can take the form of either

additional data sets or domain data. The additional

data sets may be maps or other sensor data of the

same scene. However some aspects may differ from

those of the original data, for example the data

representation or the spatial resolution. The domain

data, using the expertise of an analyst, is generally

in the form of conditions on the regions in the data,

for example, fields generally have straight

boundaries.
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The available knowledge may act on the properties

of regions at the segmentation level or on the

identities of regions at the classification level.

The information on the properties may, in turn be

two- or three-dimensional.

Standard region and edge segmentation techniques,

such as clustering (e.g. Townshend and Justice, 1980,

Seddon and Hunt 1985), split-and-merge (e.g. Cross

and Mason 1985), edge detection and linking (e.g.

Nevatia and Babu 1979), generally only use limited

spectral and spatial information from the image.

Techniques which exploit other forms of image

information include relaxation, which employs local

relationships between pixels (see, for example, Peleg

1984), and signature extension methods, which use the

temporal signature of objects to aid classification

(see, for example, Henderson 1976).

The exploitation of information external to the

image requires more sophisticated techniques for data

integration and imposition of constraints. A review

of such techniques can be found in Tailor et al 1986.

In particular, Image Understanding Systems (Matsuyama

1986) may be built to improve aspects of the

interpretation process. Ideally, the knowledge would

be used as a model of the state on the ground.

However, the complex nature of the data means the

knowledge is rarely available in the right form or is

not accurate enough for it to be used this way. More

often, the knowledge is used as rules in a rule-based

system to impose constraints on the regions.

Depending on the nature of the information, most

systems combine the modelling and the rule-based

approaches. Examples are the systems of Nazif and

Levine (1984) for segmentation of aerial imagery,

Goldberg et al (1985) for updating forestry maps and

McKeown et al (1985) for the interpretation of

airport scenes in aircraft data.

Ill KNOULEDGE-BASED SEGMENTATION SYSTEM

This section describes the functionality of the

basic knowledge-based system which was developed in

phase 1 for segmentation of multi-temporal, high

altitude aircraft and satellite data. The emphasis

is on general segmentation techniques, as in the

Nazif and Levine (1984) system, rather than on

interpretation of more specific information, as in

Goldberg et al (1985) and McKeown et al (1985).

However, compared to the system of Nazif and Levine

(1984), we include a modelling, or goal directed,

approach to supplement the data driven approach,

together with the use of temporal information.

The system uses cartographic map data as a crude

model of the situation on the ground, together with

domain data in the form of rules, to supplement the

information in a multi-temporal aircraft data set.

The basic system consists of a set of modules for

integrating the available information and then

refining an initial segmentation of the data, based

on that information. For each image in the time

sequence, the two major stages of processing are:

a. Initial segmentation.

The current image is first segmented using a

Split and Merge region segmentation and a Sobel

edge detection procedure. The lines in the map

are then imposed onto the region segmentation

and become in themselves thin regions or parts

of region boundaries. Strongly parallel edges

are joined and also imposed as thin regions.

Relationships are then specified between the

image regions and edges, the line information

from the map, and the regions from the

previously segmented image in the time

sequence, if available.

b. The refinement of the initial segmentation.

Based on the evidence from the first stage and

the domain constraints imposed on the region

properties, the initial segmentation is

updated. The domain data represents the

analysts expertise and is embodied as

production rules in a rule base (see below).

By focussing attention onto ambiguities in the

segmentation, and accessing the rules,

decisions can be made.

Once each time sequence image has been processed,

the output is the current best segmentation, as both

a two-dimensional array and a list of the properties

of each segment.

The rules in the rule base were designed to use

limited knowledge about the forms and types of

regions to be expected in the data. This knowledge

stems from perceptual and common-sense constraints on

the following region properties:

the variance of the region

- the number of image edge and map line pixels

interior to the region

the number of image edge and map line pixels on

the region boundary

the contrast between the region and its neighbours

the consistency with the previous time image

segmentation.

Additional simple domain constraints were placed

on the straightness of a regions boundary in

agricultural areas and the size of a region. More

complex domain constraints, using a

photointerpreter's knowledge, were reserved for the

final system. The knowledge used is all

two-dimensional: no elevation data was included at

this stage.

The decision strategy at the refinement stage

consists of four major steps:

assign a measure of confidence to each region

- weigh the evidence for each region in the rule

base and make a decision

modify any regions, if the evidence strongly

supports a change

update the overall segmentation in the light of

any modifications.

The confidence measure takes a symbolic value,

e.g. high, medium, low. It is chosen based either on

the region properties, for the first time image, or

on the degree of match with previous regions, for

subsequent images. Modification of regions takes the

form of either merging, splitting or making an

adjustment of a boundary.

The system has been implemented in POP-11, a

powerful general purpose programming language,

integrated into the POPLOG environment. POPLOG has

been developed at Sussex University and is marketed

commercially by Systems Designers.

IV EVALUATION

A. Data.

The basic system described in Section III has been

tested on multi-temporal image data from the NERC

simulated Thematic Mapper aircraft data. Each image

has 11 spectral channels and 10m spatial resolution.
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Figure 1 Aircraft Image Data of Barton Broads, Spring

1986. The figure shows a first principal component,

256 x 256 pixel image at 10m resolution.

Figure 3 Digital Ordnance Survey 1:10000 Map Data

corresponding to the area of figure 2.

The data were transformed using a principal component

transform to decorrelate the spectral information.

Two areas were selected for study, both with little

elevation. Figure 1 shows a 256 x 256 pixel, first

principal component image of one of the areas, that

over Barton Broads, Norfolk. The second area

selected is over Blewbury, near Reading. The areas

have a three and a two image time sequence,

respectively.

Figure 2 shows a 64 x 64 pixel section of figure

1, taken from the middle left. Figure 2 consists of

a combination of unstructured, natural fenland, in

the top-right corner, and structured fields with

well-defined boundaries.

Figure 3 shows an area of digitised Ordnance

Survey 1:10000 map data vhich corresponds to the

image of figure 2. The map band shown is the first

(linear features) of three band digitised data. The

further two bands (polygonal features and contours)

were not used in this first phase. Each of the lines

in figure 3 is 1 pixel wide. The two lines running

from the left to right across the map are roads; the

incomplete lines running into the fenland are

footpaths, while the remainder are field boundaries.

A two band hand segmentation has been produced for

each image, which is used as a reference for

validation of the segmentation. The two bands

separate the scene into areal and linear segments.

Figure 4 shows the hand segmentation into areal

regions corresponding to figure 2. The hand

segmentations have been drawn up by a

photointerpreter using information on the identity of

regions from the image, the map and ground truth.

The images, the maps and the hand segmentations

have each been registered to the British National

Grid to within a 2 pixel accuracy.

Figure 2 64 x 64 pixel sub image of Figure 1. Figure 4 Hand Segmentation of the scene into regions
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B. Tests.

A number of strategies were devised for

manipulating the system modules in order to

investigate the importance of the knowledge used.

Each strategy used a combination of image region,

image edge, map line and temporal information. More

detail can be found in Tailor et al (1987).

Each of the two time sequences of images was

segmented using each of the strategies. Only the

first principal component of each image was used. In

addition, a standard segmentation by the AMOEBA

spectral-spatial clustering package (Drake 1986) was

performed on the last image in each time sequence,

for comparison. The resultant segmentations were

validated against the hand segmentation. The

validation gives two performance parameters; the

overmerge (OM) and undermerge (UM) parameters, which

are the percentage of overmerged (undersegmented) and

undermerged (oversegmented) pixels respectively

(Levine and Nazif 1982).

As an additional test, each segmentation was

classified using a region-based maximum-likelihood

classifier on the first four principal components of

the last image in each sequence. The

classifications, together with a per-pixel

maximum-likelihood classification of the last image

in each time sequence, were compared against a hand

classification of the data. The percentage of

correctly classified pixels was calculated for each

classification. The hand segmentation was also

classified to give an indication of the amount of

classification accuracy achievable.

C. Results.

1. Segmentation

Table 1 gives the segmentation parameter values

for a selection of the segmentations of the scene

shown in figure 2. If we can assume that a

classification can cope more readily with

oversegmented regions, by classifying them as one

region, then the overmerge parameter becomes most

significant.

The results for the standard segmentation by

clustering (figure 5) and for the knowledge-based

segmentation using only image region information are

comparable. The evidence in the rule-base for

splitting a region is dependent only on the line and

edge information. Consequently, using only region

information, we have, in effect, a split and merge

segmentation (figure 6) with a refinement stage

consisting of rules for region merging based on

contrast. An additional constraint is the minimum

region size. This results in the undermerging error

being less than that for clustering. Notable

deficiencies in both these segmentation results were

found in the ill detection of high variance regions

and the inexact positioning of boundaries.

Table 1: Segmentation Performance Parameters

UM OM

Clustering 0.191 0.154

Image Regions 0.124 0.15

Image Regions and Edges 0.202 0.081

Figure 5 Segmentation of the scene using a standard

clustering procedure.

The edge segmentation of the image is shown in

figure 7. Incorporating this information into the

segmentation reduces the overmerge parameter

significantly: splitting of regions is allowed.

However, an increase in the undermerge parameter is

also evident due to spurious edges either splitting

regions incorrectly or not merging regions which

should be merged.

The line information again improves the

overmerging error, due to there being more support

for splitting regions. In addition, thin regions and

boundaries are better defined. The final

segmentation of the scene using all information can

be seen in figure 8.

The undermerging error is increased with line

information incorporated. However the majority of

this increase reflects the imposition of thin regions

onto the segmentation which are not included in the

region hand segmentation. Other undermerging errors

Image Regions and Edges

and Map Lines 0.221

One time image 0.142

0.065

0.214 Figure 6 Split and Merge Segmentation of the scene.
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Figure 7 Edge Segmentation of the Scene.

result from doubly defined boundaries due to a lack

of complete registration between the image and map

data. As an example, the small region in the top

left corner of the image which had been segmented

into 2 regions using the edge information, is

segmented into 3 regions by incorporation of the

misregistered line information.

The last entry in table 1 shows the performance

parameters for a segmentation of only the last image

in the time sequence of the scene in figure 2, using

image region, image edge and map line information.

This serves to illustrate the importance of the

temporal information for improved segmentation.

In summary, the knowledge-based segmentation gives

an improved segmentation over traditional

segmentation by clustering. Problems occur of

undermerging in high variance areas, such as textured

regions and boundaries, and overmerging where the

spectral contrast in only the one principal component

is insufficient for boundary discrimination. The
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latter problem is alleviated somewhat when using the

image edge data and the map line information;

however, additional undermerging problems are caused

by spurious edges and misregistration. The

undermerge performance parameter suffered somewhat by

not having the linear regions explicit in the hand

segmentation into regions used for validation.

2. Classification

The percentage of correctly classified pixels for

each of the classifications using the first four

principal components are given in table 2.

The poorer performance of the per-pixel classifier

compared to the classification of the hand

segmentation serves to indicate the benefit of

segmenting the image before classification, provided

the segmentation is accurate. The knowledge-based

segmentation is comparable to the clustering in terms

of classification accuracy, although both give

inferior classifications to the per-pixel classifier.

The majority of the classification errors result

directly from the undersegmentation, or overmerging,

of the segmentation process. This in turn stems

directly from the lack of spectral discrimination in

the one principal component used for segmentation.

The large segment in the top right corner of figure 8

comprises both a lake area and a wood area with no

global or local contrast in that principal component.

This area caused the majority of classification

errors for that image sequence. These errors do not

occur in either the hand segmentation or the

per-pixel classifier because, in the first the

regions are correctly aligned with the hand

classification, and in the second four principal

components were used throughout.

It is noted that some of the classification error

when using the map information, results from the map

lines not being included in the hand classification.

In particular, one of the roads in the segmentation

was classified correctly, but was not evident in the

hand classification.

V FINAL SYSTEM DESIGN

A. Major Differences to the Phase 1 System.

In the light of the evaluation of the initial

system, which demonstrates the importance of each

type of information used, a system has been designed

which uses the information in a more efficient

manner, while also using additional knowledge. A

flow diagram for this final system is shown in Figure

9. The system is currently being implemented.

Figure 8 Result of the Knowledge-based Segmentation,

using all information.
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Figure 9 Flow Chart for the final system.

Two major areas were isolated where the

information was not being used to its full potential.

These areas are concerned with the image edge and the

map line data, which were both supplementing the

region segmentation, even though they are visibly

superior. The edge data is now used instead of the

region segmentation to initialize the current

segmentation. The map is now used explicitly to

define an initial model of the situation on the

ground, which may or may not be changed depending on

the new information in the remotely-sensed data.

An additional system function was required to

cater for high variance or textured regions. Texture

is considered by isolating possible texture edges

from possible region boundary edges.

Oversegmentation is not allowed in texture edge areas

unless there is more than one distinct textural

distribution.

Additional information is included in the system

in three forms:

a) The first four principal components are used

for each input image, rather than one. This

guarantees the use of most of the significant

spectral information.

b) The further two bands of the digitised map data

are used. Band 2, containing the map polygons is

used with the first band of map lines to initialise

the model. The third band of map contours is

referenced by the rules to resolve class consistency,

e.g. a water area will have zero slope.

c) The rule base is supplemented by domain

knowledge about the forms and properties of the

expected classes of objects in the scene.

B. System Flow.

The system takes as input a time sequence of

remotely-sensed image data and an optional digitised

OS map. The image data is assumed to be arranged

into individual years images, in order to cope with

seasonal variations in object types. For example

different crop fields will be indistinct from each

other at certain times of the year, but will differ

at other times in the growing season. The input

image and map data is assumed to be geocoded. The

major deviation of the input data from this

assumption is in the mis-registration. If the

mis-registration error is greater than that expected

from random fluctuations due to sensing conditions,

orientation etc., then the error will be output as a

change on the ground.

If map data is available, then the first two

bands, consisting of linear and areal regions,

respectively, are combined to form an initial model

of the situation on the grond. The region classes

are retained in the model.

The remainder of the system, shown below the

dotted line in Figure 9, is repeated for each year in

the time sequence of images.

An initial segmentation is constructed for the

current year, based on a combination of what is

observed in the images and what is resident in the

current model. For each band in each image of the

current year, edge points are detected. A simple

Sobel operator is used. The edge images are combined

using an OR condition. An edge array for this year's

images is formed by thinning and omitting those edge

pixels which are likely to be interior to textured

regions. Those edge pixels which remain are used

either to support existing model region boundaries by

adjusting their confidence, or to form additional

boundaries. A full representation of this initial

segmentation is constructed by filling in regions and

calculating features for each region and boundary.

This initial segmentation is then refined in the

light of the knowledge resident in the rule base.

For each region, its possible class, or classes, are

adjusted based on the expected properties of the

class and the classes of its neighbours. The

possible classes of each region each have an

associated confidence and are determined from the

current model. If there is no model, i.e. this is

the first year's images and there is no map data,

then all classes are possible. After this domain

consistency checking, possible merges and splits are

assessed using the same rules in the phase 1 system,

but adjusted to take into account the probable region

class.

308



A post segmentation stage is performed if there is

already a model. This consists of updating the

current model based on the changes which have arisen

in the processing of the images of the current year.

Those changes which are retained are output for

change detection purposes.

After processing of all input images, the current

model should represent a truer state of the situation

on the ground and may be used for subsequent

processing.

Due to the domain class information being

included, a partial classification results, so we

intend to use a modified maximum likelihood

classifier in the evaluation of this system. The

modified classifier will only consider those classes

which are likely for each region, as output from the

segmentation.

VI SUMMARY

An initial system for knowledge based segmentation

of a time sequence of remotely-sensed images has been

presented. Evaluation of this system has shown its

potential for improved automatic segmentation of such

images. All knowledge used was found to benefit

segmentation, however, a number of drawbacks to this

initial system have resulted in a re-design to

produce a final system for this project. This system

is currently being implemented.

This final system uses knowledge of the types and

forms of objects to be expected in the scene to

improve an initial segmentation. The approach taken

is a model driven one, where the initial segmentation

is formed from the correspondence between the

boundaries located in the current time images and

those in the current best model of the scene.

Knowledge in the form of a digitised Ordnance Survey

map is used to initialize the model, if such map data

is available. In this way a model of the scene

segmentation is built-up and successively improved

through time.

As a consequence of the approach to segmentation,

the system has a number of additional features. A

partial classification is produced which may be used

to aid subsequent processing. Changes through time

are registered and may be used for change detection

applications. However, without the assumption of

geocoded data, these changes will include

mis-registration errors if these errors are greater

than those expected from random fluctuations between

images. Finally, the current best model, as output

from the system, may be used for updating or

topologically structuring cartographic map data.
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