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ABSTRACT 
Process integration in Software Engineering Environments (SEE) is very important to allow tool 
integration. In this paper, we present a knowledge-based approach to improve process integration in ODE, 
an ontology-based SEE. 
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1. INTRODUCTION 
Software Engineering Environment (SEEs) aims to combine techniques, methods and tools to support 

the software engineer in the task of building software products, considering all the software process 
activities, such as management, development and quality control [1]. 

Developing quality software products on schedule and considering planned costs has always been a 
challenge to software organizations. However, the quality of a software product depends heavily on the 
quality of the software process used to develop it [2]. In the context of SEEs, this fact leads to the 
concern of process integration, i.e. an explicit link between the SEE’s tools and the software process [3], 
giving rise to Process Centered SEEs (PSEEs). 

Due to the complexity involved not only in integrating software process, but also in many tasks 
supported by SEEs, some technologies have been adopted in the construction of such environments as a 
way of improving their functionalities. Among these technologies, it is the use of knowledge-based 
techniques. Thus, it is important that a SEE makes available an infrastructure to deal with knowledge, so 
that their tools can offer knowledge-based support to developers. 

This paper presents how process integration is supported by an infrastructure for knowledge 
integration in ODE (Ontology-based software Development Environment) [4], a Process Centered SEE. 
This infrastructure allows to handle knowledge bases and to perform inferences using a Prolog engine. 
Process integration in ODE is based on an approach of explicitly defining the software process for a 
project and then controlling its execution.  

The goal of this paper is to present an approach that combines both objects and logic in a knowledge 
integration infrastructure able to create knowledge bases and to manipulate them through the execution of 
inferences. In that way, it is possible to obtain a knowledge-based support in several environment tasks. 
The paper focuses on the use of this infrastructure for process integration in ODE. 
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The paper is organized as follows: section 2 discusses integration in SEEs. Section 3 presents ODE 
and its knowledge integration infrastructure. In section 4, the process integration in ODE is discussed, 
considering process definition and control. Related works and conclusions are discussed in sections 5 and 
6, respectively. 

 

2. INTEGRATION IN SOFTWARE ENGINEERING ENVIRONMENTS 
Although benefits can be derived from individual CASE tools that address separate software process 

activities, the real power of CASE technology is achieved only through integration. Isolated tools are “point 
solutions” in the sense of being used to assist in particular software engineering activities [5]. They do not 
directly communicate with other tools, are not tied into a project database, and generally have their own 
concepts, data, representations, and ways of accomplishing the purposes to which they were built. 
However, when working together, the level of effectiveness becomes significantly higher.  

Integration – of tools, processes, artifacts, and views – has been considered one of the most 
challenging issues on software engineering environment (SEE) research [6]. Integration demands 
consistent representations of software engineering information, standardized interfaces between tools, 
homogeneous means of communication between software engineers and tools, and an effective approach 
that enables SEE to move among various platforms [5].  

The identification of the need for integrated support to software engineering activities throughout the 
software lifecycle represents the genesis of Software Engineering Environments (SEEs) [6]. Thus, SEEs 
can be defined as integrated collections of tools that facilitate software engineering activities across the 
software lifecycle [6]. A SEE provides a means of integrating people in a software development 
organization with the software process and with the supporting technology [7]. To do that, SEEs must 
provide an infrastructure for tool integration that should address [3] [1]: 

• Data Integration: addresses the way tools share data. A SEE must provide data management 
services, allowing tools to share project and software engineering information. 

• Presentation Integration: concerns commonality of user interface. The user interfaces in a SEE 
must be homogeneous and consistent, allowing developers to alternate between the tools without 
substantial style changes, and therefore, with less impact on productivity and learnability. 

• Control Integration: relates to the ability of a tool to notify and initiate actions in another tool, 
controlling the events that might occur and sharing functionalities. 

• Process Integration: concerns the linkage between the tools and the software development 
process. To integrate tools, it is necessary to have a strong focus on the software process 
management. The process must define the tools a developer can use, and when he/she will have 
access to these tools, according to the activities of the process he/she is performing.  

• Platform Integration: relates to the independency of the platform on which the environment and 
their tools will run.  

• Knowledge Integration: refers to the establishment of the semantics of the information exchanged 
between the various tools in a SEE. With the growing complexity of software processes, it becomes 
necessary to offer knowledge-based support to help software engineers in their tasks and to 
manage the knowledge captured during the software projects. In this way, knowledge, as well as 
data, has to be available to the  environment in order to be shared among their tools. 
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The need for (semi-)automated support for the software process, in addition to tool support for artifact 
development, gave rise to a new class of SEEs, called Process-centered Software Engineering 
Environments (PSEEs), which integrate tool support for software artifact development with support for the 
modeling and execution of the software processes that produce those artifacts [6]. The explicit 
representation of software processes, their products, and their interactions, is the foundation over which 
modern integrated development environments are built. In providing more powerful ways of describing and 
implementing software engineering processes, PSEEs have also provided a powerful means of integrating 
processes and tools, and (partially) automating tasks [6]. In general, a PSEE should include mechanisms to 
[7]: (i) guide sequences of activities that compose the defined process; (ii) manage products that are being 
developed; (iii) invoke tools that developers require to do their tasks; (iv) perform automatic actions that do 
not need human intervention; (v) allow communication between the persons who are developing the 
project; (vi) gather metric data automatically; (vii) reduce human errors and (viii) provide project 
management with current accurate status information. 

 

3. ODE: AN ONTOLOGY-BASED SEE 
ODE (Ontology-based software Development Environment) [4] is a Process-centered SEE, 

developed using ontologies. ODE’s design premise is based on the following argument: if the tools in a 
SEE are built based on ontologies, tool integration can be improved. The same ontology can be used for 
building different tools supporting correlated software engineering activities. Moreover, if the ontologies 
are integrated, integration of tools built upon them can be facilitated. This is the main feature that 
distinguishes ODE from other SEEs: its ontological basis. Especially in SEEs, ontologies can be used to 
reduce terminological and conceptual confusions, facilitating shared understanding and communication 
between people with different needs and points of view. Besides the standardization of concepts provided 
by it, an ontology allows a refined communication between the tools that compound the environment [4].  

Among the ontologies on which ODE is based, one must be highlighted in the context of this work: the 
software process ontology [1]. This ontology defines the main concepts related to software process and is 
the basis for process integration in ODE. 

ODE’s architecture reflects its ontological basis. It has two levels: the Base Level and the Meta-
Level, as shown in figure1. The base level defines the classes that control the processes defined in the 
environment (the Control package) and their tools . The meta-level (or knowledge level) defines classes 
that describe knowledge about objects in the base level. Because of that, these classes are named prefixed 
by the character “K”, as will be seen in section 4. 

 

 

 

 

 

 

 
Figure 1 – ODE’s Layered Architecture. 
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The classes in the meta-level are directly derived from the ontologies and its objects can be viewed as 
items of an ontology instantiation [4]. These instances constitute the environment’s knowledge, which can 
be used by their tools. In the case of the software process ontology, instances of knowledge classes 
describe knowledge about software processes, its activities, artifacts produced and consumed, resources 
and procedures (methods, techniques and guidelines), among others. 

However, an ontology does not intend to describe all the knowledge involved in a domain, but only that 
one that is essential to conceptualize the domain (minimal ontological commitment [8]). Therefore, new 
classes, associations, attributes and operations have to be defined to deal with specific design decisions 
made in the application level. In fact, the ontology is a general, common sense model, and then it does not 
contain all necessary modeling elements to treat applications’ requirements.  

The classes in the base level are also built based on the ontologies. The main classes and associations 
are derived from the ontology, preserving the same constraints as Knowledge’s model. To deal with 
software processes, for example, the classes of the Control package were developed. They are used for 
defining and tracking software processes for projects developed in ODE. Some of these classes have a 
corresponding class at the meta-level. This way, the meta-level is used to describe base-level objects’ 
characteristics in the Control package (see section 4).  

 

3.1 ODE’s Inference Layer 
In general, conventional systems that aim to represent knowledge, including object-oriented systems, 

keep their knowledge stored in a data repository, from where it can be consulted, and the rules related 
with this knowledge are embedded into the application code, turning impossible to take advantage of the 
whole potential that the knowledge-based technology can provide. 

A first step towards a more effective approach to deal with knowledge is to choose a more suitable 
form of representation. Among the several forms of representing knowledge, there is the logical paradigm 
approach, where facts are stored and accessed from a data repository, and the rules are isolated from the 
application. Keeping rules isolated of the application is a flexible way to maintain the knowledge without 
the complete restructuring of applications. The result of its use is a more robust system, with a flexible 
knowledge base that can grow and change as the business evolves [9]. Besides, the use of artificial 
intelligence techniques enables to improve the manipulation of these rules, allowing inferences. 

If a SEE is able to deal with knowledge about projects, processes, activities, resources, methods and 
tools, it can offer intelligent support to managers and developers, by guiding, monitoring and aiding the use 
of tools during the software development. Therefore, in the ODE’s context, an infrastructure was 
developed to support knowledge integration. This infrastructure has a layer responsible for combining 
objects and logic, the Inference Layer, endowing the SEE with the capability to represent knowledge 
through rules, and to perform inferences. Using the inference layer, knowledge can be captured from the 
environment’s repository, represented in knowledge bases using a logical language (Prolog), and can be 
treated through an inference mechanism.  

When introducing a logical language in an object-oriented environment, it is possible to take advantage 
of the benefits of a second paradigm. Situations as the ones that involve recursivity or working with many 
relationships between objects, demanding pattern matches or several accesses to objects’ information, are 
likely to be treated by the logical paradigm. Those kinds of situations are quite common, especially in 
operations involving knowledge. 
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3.1.1 How the Inference Layer works 
One of the goals of the Inference Layer is to make available in ODE a way of representing 

knowledge logically, using Knowledge Bases (KBs). The purpose is to express, through facts and rules, 
information that can be extracted from the environment, as, for example, data about past projects. 

The logical representation of rules can bring advantages, because rules can be modified without the 
need to change or recompile the system. Taylor [10] says that keeping rules embedded in code works in 
small systems, but it does not scale up well and it requires reprogramming every time a rule changes. He 
also says that the harder task of rule manipulation is make rules easy for business people to understand 
and use. This can be reached through friendly interfaces. Systems that combine objects and rules with 
graphical user interfaces become more robust, more understandable, and easier to maintain [9]. 

The Inference Layer must provide the knowledge engineer with a simple way to create and to 
manipulate KBs. For such, an editor of Knowledge Bases Structures was developed. In this editor, 
predicators and rules can be defined. Those structures are used as a framework for instantiating KBs. In 
KB instantiation, facts are defined from predicators (defined in the knowledge base structure) and data 
extracted from the environment, and the rules are those defined in the knowledge base structure. Starting 
from an instantiated KB, it is possible to manipulate its knowledge through a Prolog inference engine [11] 
incorporated into the layer. 

Figure 2 illustrates the general operational scheme of the Inference Layer, and figure 3 shows its 
internal structure, which are detailed follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Inference Layer use Scheme. 
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1 – KB Structure Edition 

KB Structure + 
System’s Objects 

KB: 
facts + rules 

Prolog file  

project(oid500). 
activity_name(oid511, 'Planning'). 
activity_name(oid516, 'Quality Planning'). 
activity_name(oid517, 'Risks Analysis'). 
subAtividade(oid511, oid516). 
subAtividade(oid511, oid517). 
... 
subActiv(B,A) :- subActivity(A,B). 
subActiv(B,A) :- subActivity(A,X), 
subActiv(B,X). 

2 – KB Instantiation 

Queries: 
 
subActiv(activ2, activ1). 
 
subActiv(X, activ1). 

Results: 
 
true 
 
[activ2,activ3,activ4] 

Prolog 

3 – Inference Execution 
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3.1.2 Editing Knowledge Base Structures 
The Knowledge Base Structures Editor allows to create and to maintain KB structures. Since a KB is 

formed by a collection of facts and rules, a KB structure has to have the necessary elements to create the 
facts and rules. The KB structures should not have facts, but just its structure. Therefore, predicators and 
rules compose them. Predicators are symbols that make statements using terms. Each predicator has an 
arity associated to it, which indicates the number of terms required for creating the statement. Through the 
predicators, the simplest statements are created: the atomic statements, called predicates. A predicate 
containing variables as terms is an open predicate . If all the terms are constants, the predicate is called 
a closed  predicate  or a fact [12]. Rules are modeled as a conjunction of conditions plus a conclusion. 
The conditions and conclusion of the rules are represented by predicates [12]. 

Figure 3 shows the Logical Model package that models the concepts of first order logic according to 
the OO paradigm. This is the internal representation of knowledge base structures and knowledge bases in 
ODE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Internal Structure of the Inference Layer – Class Diagram 

of the Logical Model Package  

The first step to create a KB structure is to define its predicators. Starting from the ODE’s package 
hierarchy, this can be done by using computational reflection to obtain information about classes and 
methods of the various packages that compound the environment. Two types of predicators can be 
created: ClassPredicator, to represent classes, and MethodPredicator, to represent the attributes 
and associations of classes, defined through their corresponding accessing methods. Those predicators 
store, besides their names and arities, information about their origin (class or method and class) that is 
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useful to instantiate a KB. Figure 4 shows some predicators being defined starting from the ODE’s 
package hierarchy.  

 
Figure 4. Predicators Definition 

Once the predicators have been defined, rules can then be defined. A rule always owns one 
conclusion and, at least, one condition, represented by open predicates. Conditions are created from 
existing predicators and their associated terms (constants or variables), giving rise to predicates. A 
condition can be negated or not and its number of terms is determined by the arity of the predicator. A 
conclusion is created using a RulePredicator and associated terms, compounding an open predicate. 
Rule predicators are not created during predicator definition, but only when the rule heads (conclusions) 
are defined. Figure 5 illustrates the definition of rules using the previously defined predicators. 
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Figure 5. Rules Definition 

3.1.3 Instantiating Knowledge Bases 
During KB instantiation, a KB structure is used. Predicators originate facts, and rules are copied into 

the new KB. The most important step is the transformation of predicators in facts. For each predicator, a 
list of facts is created obtaining data from the environment. There are two ways of creating facts, 
according to the type of the predicator used: 

• ClassPredicator: generates facts with arity 1 (one), which logically represent the instances of 
its origin class. Each fact generated has the name of the predicator and, as its single term, one 
instance (object) of the class. For example, be a class predicator with name humanResource, 
whose origin class is HumanResource. If John is an instance of this class, then a fact 
humanResource([John]) is created.  

• MethodPredicator: generates facts with arity 2 (two), which are logical representations of 
attributes and associations of the origin class. The facts are created in the form 
method_predicator(instance, method_return). So, a method predicator named 
activity_state, that represents an association between objects of the classes Activity and 
ActivityState, originates facts like activity_state([Requirements Analysis],[In 
Execution]), indicating that the activity Requirements Analysis is in the state In 
Execution. 

At the end of instantiation, the lists of facts and rules are used to produce a Prolog file, which is the 
logical representation of a KB. The file generated has a set of facts and rules as shown in figure 6. Notice 
that constants created from business objects are represented by their respective object identifiers (oid). 
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% File Control.pl 
% Knowledge Base “Control” 
 
% Facts Base: 
project(oid50_0). 
project_process(oid50_0, oid50_10). 
process_activity(oid50_10, oid50_11). 
. . . 
process_activity(oid50_10, oid50_19). 
activity_name(oid50_11, 'Planning'). 
activity_name(oid50_12, 'Requirements Analysis'). 
activity_name(oid50_13, 'Design'). 
activity_name(oid50_14, 'Implementation'). 
activity_name(oid50_15, 'Tests'). 
activity_name(oid50_16, 'Risk Analysis'). 
activity_name(oid50_17, 'Quality Planning'). 
activity_name(oid50_18, 'Risk Management'). 
activity_name(oid50_19, 'Risk Identification'). 
subActivity_(oid50_16, oid50_11). 
subActivity_(oid50_17, oid50_11). 
subActivity_(oid50_18, oid50_16). 
subActivity_(oid50_19, oid50_16). 
. . . 
 
% Rules Base: 
% B is subactivity of A if the activity A has B as its subactivity. 
subActivity(A, B) :- subActivity_(A, B). 
 
% B is subactivity of A if B is subactivity of X, that is subactivity of A 
(transitivity). 
subActivity(A, B) :- subActivity_(A, X), subActivity(X, B). 
. . . 

Figure 6. Example of a generated Prolog File. 

 
3.1.4 Executing Inferences 

Creating KB structures (i.e., defining their predicators and rules), and instantiating them in KBs are 
steps that must occur previously to the inference execution. When the Inference Layer has an instantiated 
KB, it is able to attend to its main purpose: to perform logical inferences on knowledge, using a Prolog 
engine. A query can be done in two distinct ways, depending on the type of the predicator used: 

• Facts: since all terms in the query are constants, then the result indicates whether the fact is true 
or false; 

• OpenPredicate: since it has a variable as a term, the query result is a list containing the variable 
possible values. 

In both cases, what the Inference Layer does is to transform the objects in logical data and then 
perform the inference on the Prolog file generated during the KB instantiation, using a Prolog engine. The 
result of the inference is transformed into objects and returned to the application. 

The inferences can be executed in two modes: via graphical interface and via code. The first is 
simpler and used through a graphical application, in which the user mounts the desired queries and obtains 
the inference results only visually. The main goal of this functionality is to allow testing the KB structures 
defined and the KBs created, performing inferences in order to check coherence of the defined predicates 
and rules. Thus, the Knowledge Engineer can check a KB before it is effectively used in a system. 
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Besides, this approach facilitates users to learn how the inference layer works, so they can use the second 
mode of inference (via code) better. 

As shown in figure 7, the user defines the queries by choosing the corresponding elements needed to 
mount an open predicate or a fact. Initially, a predicator should be selected and its terms determined. After 
that, the inference is executed, and the results are presented in the frame on the right. It should be notice 
that business objects are shown as Strings between brackets. 

 
Figure 7. Inference Execution via Interface 

The second mode to use inferences is accomplished via implemented code. Even keeping rules 
isolated, the systems need to access them to work. The intention is to make the environment obtain results 
through rules of a KB. Working like this, operations purely codified can be replaced by calls to a KB, with 
the advantage that the rules involved in those operations, because they are interpreted, can be easily 
changed, without need to recompile the system. It is important to emphasize that the system continues to 
operate with objects, obtained, now, through a different paradigm. 

To perform inferences via code, the KnowledgeBase class provides two methods for query: one for 
facts and another for open predicates. For both methods, the name of the inference predicator and its 
terms should be passed as arguments. The constant terms are application objects and the variable terms 
are instances of the class Variable. 

Figure 8 shows a fragment of code used to perform an operation via logical inference, which the result 
is a list of objects. As it can be observed, what should be done to perform the operations is to infer on a 
KB, passing the predicator name and an array of objects as terms. Internally, the KB searches for the 
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predicator and creates the terms using the objects passed as arguments. Then the predicate is mounted to 
perform the inference and the result is treated and returned. 

//Get the subactivities of the passed activity 
public List getSubActivities(Activity activity) { 
  //Performing inference with OpenPredicate 
  Variable var = new Variable("X"); 
  Object[] terms = new Object[] {var, activity}; 
  List lstSubActivities = knowledgeBase.infer("subActivity", terms); 
  return lstSubActivities; 
} 

Figure 8. Inference Execution via Code  

 

4. PROCESS INTEGRATION IN ODE 
Since ODE is a process centered SEE, process integration is essential to it. ODE’s process kernel 

was built using the software process ontology presented in [1] as its foundation. This ontology was 
designed to support software process definition, tracking and integration in a PSEE. Every tool 
compromised with this ontology shares a common vocabulary, facilitating the communication between 
tools and allowing reuse.  

To deal with software processes, first the environment should support their definition. The process 
definition, in turn, is used to establish an explicit connection between the environment’s tools and the 
defined processes. In the next subsections, important features of the process integration in ODE are 
discussed, including process definition and process control, establishing the connection with the tools that 
automate it. 

 

4.1 Process Definition in ODE 
Software process definition is a hard and knowledge intensive task. To do that, project managers must 

have a high level of experience and knowledge. Several aspects should be considered, such as the 
development team characteristics, project specific features, and organization’s knowledge level in 
software engineering.   

ODE uses a three-level approach to process definition [13], as shown in Figure 9. Each level has 
different features that influence the processes definition in it. At the higher level, the standard process of 
the organization is defined. The organizational process contains the process assets (activity, artifacts, 
resources and procedures) that should be part of the processes of any organization’s project. At the 
intermediate level, the standard process can be specialized to consider development technologies, 
paradigms or specific application domains. During the specialization, process assets can be added or 
modified, in agreement with the context of the specialization (technology, paradigm or application domain). 
Finally, in the lowest level of the process definition model, it is the instantiation of a standard process or a 
specialized process for a specific project. The process instantiation consists in tailoring a standard or 
specialized process for a specific project. In this adaptation, particularities of the project and development 
team characteristics should be considered. At this moment, the life cycle model to be used during the 
development is defined, and new activities, as well as consumed and produced artifacts, used resources 
and adopted procedures, can be added to the process. 
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Figure 9.  Process Definition Model. 
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The different levels of process definition occur in the different levels of ODE's architecture (presented 
in the figure 1). The standard and specialized processes describe the activities (and the others process 
assets) that should belong to all the organization’s project processes. In other words, those processes 
describe the knowledge regarding the processes of that organization. This way, according to ODE's 
architecture, standard and specialized processes are defined in the Meta-Level, i.e., in the Knowledge 
Package, shown in Figure 10. 

Once the life cycle models for a standard or specialized process has been defined, these can be used 
in the project process instantiation. It should be emphasized that, unlike standard and specialized processes 
definition that occurs in the Meta-Level of ODE's architecture, the project process definition occurs in the 
base level, more specifically in the Control Package, shown partially in Figure 11. The class Process 
represents project processes, defined for specific software projects (represented by the class Project). 
A project process can be defined based on a standard or specialized process, or it can be defined starting 
from the knowledge repository of the environment. Therefore, a Process can have, or not, an association 
with KStandardProcess. When a project process is defined starting from a standard or specialized 
process, all their assets are replied for the new process, in agreement with the standard/specialized 
process and the life cycle model chosen. At that moment, the activities of the process are created as well 
as its associations with the corresponding artifacts (KArtifact), resources (KResource) and procedures 
(KProcedure). 
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Figure 11. The Control Package (Partial Model). 

The interface for standard, specialized or project process definition is similar and it is presented in 
Figure 12. The tree located on the left part of the window contains the process assets already defined for 
the process in definition (activities, artifacts, resources and procedures). On the right part, a panel makes 
possible to choose the process assets for the selected item in the tree. 
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Figure 12. Standard, Specialized and Project Process Definition. 

In this panel, the right list contains the elements already defined for the process. The left list contains 
the assets suggested by inferences performed in the knowledge base using the Inference Layer of the 
environment. The knowledge bases, previously defined by the Knowledge Manager based on the 
Knowledge package, are instantiated in the initialization of the tool. They are used through inferences to 
give suggestions for the project manager who is defining the process, offering knowledge based support to 
him/her. 

Defining subactivities for a certain activity is an example of the use of inferences in the tool. The 
process definition tool should suggest, in a first moment, only the subactivities associated to an activity, as 
defined in the Knowledge package model. However, a more elaborated form of suggestion is given based 
on the subactivities rule  shown in Figure 13. According to that rule, the subactivities of the subactivities 
are also exhibited, in agreement with the transitivity imposed by the rule, turning more effective the support 
to the process definition.  

% Subactivity Rule (A is subactivity of B) 
subActivity(A, B) :- subActivity_(A, B). 
subActivity(A, B) :- subActivity_(A, X), subActivity(X, B). 
 
% Resource Rule (Activity A uses Resource R) 
use(A, R):- subActivity(X, A), use(X, R). 

Figure 13. Some Used Rules 
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In a similar way, the resource rule (also shown in Figure 13) provides more effective suggestions for 
resource allocation. As shown in the code fragment of the Figure 14, the use of that rule allows an activity 
allocate resources that were defined for their subactivities. As shown in Figure 12, the Planning activity 
can allocate a risks management tool even if Planning doe not have Risk Analysis as one of its 
subactivities in the process that is being defined. Although in the Knowledge model the risks management 
tool is associated only to the Risk Analysis activity, that allocation becomes possible. This is a consequence 
of the performed inference using the resource rule  (Figure 13) and of the fact that the Knowledge model 
defines Risk Analysis as a potential subactivity of Planning. 

  /** Gets the suggestion of resources for the argument activity. */ 
  public List getSuggestedResources(Activity activity) { 
    Variable var = new Variable("R"); 
    Object[] terms = new Object[] {var, activity.getKnowledge()}; 
    List lstKResources = knowledgeBase.infer("use",terms); 
    return lstKResources; 
  } 

Figure 14. Code Example  using the Inference Layer. 

 

4.2 Process Control in ODE 
Once the project process is defined and the project initiated, the environment should support project 

controlling and tracking. This control includes various functionalities such as managing the states of the 
activities and controlling the access to the software tools in the environment, allowing the execution of the 
process activities. 

During the definition of a project process, the types of necessary resource for accomplishing an 
activity are defined. For instance, a Software Engineer (instance of the class KHumanResource) can be 
assigned to execute the activity of Requirement Analysis. Only in a second moment, during resource 
allocation, a person is allocated, for instance, Maria (an instance of the class HumanResource of the 
Control package), that naturally should exercise Software Engineer's function. In a similar way, software 
tools are allocated to activities. For instance, once defined the need for a Modeling Tool to execute the 
activity of Requirements Analysis, there should be chosen which modeling tool available in the organization 
will really be used to support this activity.  

Based on the process activities, and human resources and software tools allocated to them, the 
environment is able to configure itself according to the user logged on. In other words, starting from the 
identification of the human resource that is using the environment, the functionalities are made available in 
a personalized way, according to the user profile and the resource allocation to projects. 

The availability of the tools of the environment is defined based on the project resource allocation and 
the states of the activities. In a project, a human resource should have access only to the necessary tools 
to perform his/her activities. Therefore, only those tools allocated to the activities to which the user is also 
allocated are shown in the menu. In addition, the activities should be in execution. Figure 15 shows this self 
configuration feature of ODE. It shows ODE’s main interface when a Project Manager is logged on the 
environment. In the tool menu, there are links for tools that support allocation of tools, quality planning 
(ControlQ), risks analysis, documentation, etc. Those tools constitute the whole set of tools that the user 
can access, considering the active activities of the process (Planning) to which he/she is allocated. 
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Figure 15. The Configured Environment. 

The selection of tools that will be shown in ODE’s tools menu is performed using the configuration 
knowledge base of the environment, which holds the use rule, shown in the figure 16, where ido1_131 
represents the state "In Execution".  

% The human resource HR can access the software tool ST if both are allocated 
to the same activity X and the state of X is In Execution. 
access(HR,SF) :- humanResource(HR), softwareTool(ST), allocate(X,HR), 

allocate(X,ST), activity_state(X, oid1_131). 

Figure 16. Rule of the Configuration Knowledge Base 

In that way, when a user logs on the environment, the tool menu is dynamically configured as a result 
of inferences using the method shown in the figure 17. In this case, the Inference Layer is also supporting 
process integration in ODE, allowing the configuration of ODE’s tool menu. This approach makes 
integration easier, more efficient and more flexible, since the used rule can be easily changed. 

 

  /** Gets the software tool available to the argument human resource. */ 
  public List getAvailableTools(HumanResource humanResource) { 
    Variable var = new Variable("ST"); 
    Object[] terms = new Object[] {humanResource, var}; 
    List lstTools = knowledgeBase.infer("use", terms); 
    return lstTools; 
  } 

Figure 17. Code Fragment of the Environment Configuration 

Suppose that another approach for menu configuration is considered better. In this approach, the user 
might have access to all the tools allocated to activities to which he/she is allocated, independently of the 
state of the activity. Therefore, the user could access tools allocated to future activities and he/she can 
review his/her work using tools allocated to activities already finished. This change in the operation mode 
of the environment is fully supported by the Inference Layer, without rewriting ODE’s code. In this case, 
the Knowledge Manager should only modify the use rule, removing its last condition and, later, instantiating 
the knowledge base again. In this way, it is not necessary to change or to recompile the code of the 
environment. 
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5. RELATED WORK 
TABA Workstation [14] is a meta-environment that generates software engineering environments 

suitable to specific projects, based on the software processes defined. As ODE, TABA Workstation has 
tools that support process definition and management. Process integration in TABA is considered when, 
from a defined process, a SEE is instantiated according to the process assets. Like TABA, ODE supports 
process definition and management; however, the environment configures itself dynamically from human 
resource and tool allocation to the current project’s process activities. It is worthwhile to point out that 
ODE is a configurable environment, while TABA is a meta-environment. Thus, ODE supports access to 
several projects in the same session, while the TABA’s instantiated environments are project specific. 

Prolog is also used in TABA to represent knowledge modules [1, 15]. It is used to formalize 
knowledge descriptions, transcribing ontology’s axioms for a logical representation. TABA’s and ODE’s 
approaches are quite similar as to encapsulation and communication with Prolog engine. However, the 
concept of Knowledge Base Structures does not exist in TABA, neither supporting for rule edition, letting 
this task for the knowledge engineer do directly in Prolog. Furthermore, there is no functionality to support 
checking the edited knowledge bases. 

Charon tool [15] provides support for software process modeling, simulation, execution and 
management. In this tool, facts are represented in knowledge bases and rules are incorporated into 
intelligent agents. An inference engine is used for the agents do queries and modifications in the 
knowledge bases. Thus, the facts are determined by the application and the modification of the rules 
consists in modification or inclusion of agents. There is no flexible way for maintaining facts or rules by the 
user. 

Other process centered environments, such as EPOS [16] and Oz [17], use rules for modeling 
processes. However, the majority of these approaches use logic for software development specific 
purposes, like process modeling. They are not worried about providing an infrastructure to represent and 
manipulate knowledge bases in logic. In other words, such approaches do not provide automated support 
for editing predicates and rules, and generally, work with rules embedded in the application code. 

 

6. CONCLUSIONS 
This paper presented the knowledge-based approach for process integration in ODE, a process-

centered environment. It presented ODE’s tool supporting software process definition, as well as others 
knowledge-based functionalities for process control and environment configuration. 

There is a strong connection between the tool of software process definition and the process ontology 
in which the environment is grounded. The use of inferences made possible to the tool to work in 
accordance with the ontology, respecting its relations and axioms. The situations discussed in the paper are 
part of a group of operations that approximate the tool to its conceptual model. Many times, performing 
those types of operations in the conventional way is extremely hard. However, the use of logical 
deductions made it possible to implement these operations in an easier way. This approach also focuses on 
the maintainability and extensibility of the environment. 

The approach of leveled software process definition can lead to a continuous software process 
improvement based on the experience captured and projects’ information that use the standard/specialized 
processes as basis. In this context, inferences can be used to support the retrieval and dissemination of 
historical data, obtained from previous projects, offering subsidies for a continuous process improvement. 
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