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Abstract 

Prior knowledge in the form of multiple polyhedral sets, each be

longing to one of two categories, is introduced into a reformulation 
of a linear support vector machine classifier. The resulting formu

lation leads to a linear program that can be solved efficiently. Real 

world examples, from DNA sequencing and breast cancer prognosis, 
demonstrate the effectiveness of the proposed method. Numerical 
results show improvement in test set accuracy after the incorpo

ration of prior knowledge into ordinary, data-based linear support 
vector machine classifiers. One experiment also shows that a lin

ear classifier, based solely on prior knowledge, far outperforms the 

direct application of prior knowledge rules to classify data. 
Keywords: use and refinement of prior knowledge, sup
port vector machines, linear programming 

1 Introduction 

Support vector machines (SVMs) have played a major role in classification problems 

[18,3, 11]. However unlike other classification tools such as knowledge-based neural 

networks [16, 17, 7], little work [15] has gone into incorporating prior knowledge into 
support vector machines. In this work we present a novel approach to incorporating 

prior knowledge in the form of polyhedral knowledge sets in the input space of the 

given data. These knowledge sets, which can be as simple as cubes, are supposed 
to belong to one of two categories into which all the data is divided. Thus, a 

single knowledge set can be interpreted as a generalization of a training example, 

which typically consists of a single point in input space. In contrast, each of our 
knowledge sets consists of a region in the same space. By using a powerful tool from 

mathematical programming, theorems of the alternative [9, Chapter 2], we are able 

to embed such prior data into a linear program that can be efficiently solved by any 
of the publicly available solvers. 

We briefly summarize the contents of the paper now. In Section 2 we describe the 
linear support vector machine classifier and give a linear program for it. We then 

describe how prior knowledge, in the form of polyhedral knowledge sets belonging to 

one of two classes can be characterized. In Section 3 we incorporate these polyhedral 
sets into our linear programming formulation which results in our knowledge-based 

support vector machine (KSVM) formulation (19). This formulation is capable of 

generating a linear classifier based on real data and/or prior knowledge. Section 
4 gives a brief summary of numerical results that compare various linear and non

linear classifiers with and without the incorporation of prior knowledge. Section 5 

concludes the paper. 



We now describe our notation. All vectors will be column vectors unless transposed 
to a row vector by a prime I. The scalar (inner) product of two vectors x and y 

in the n-dimensional real space Rn will be denoted by x' y. For a vector x in Rn, 
the sign function sign(x) is defined as sign(x)i = 1 if Xi > a else sign(x)i = -1 if 

Xi::; 0, for i = 1, ... ,no For x ERn, Ilxll p denotes the p-norm, p = 1,2,00. The 
notation A E Rmxn will signify a real m x n matrix. For such a matrix, A' will 

denote the transpose of A and Ai will denote the i-th row of A. A vector of ones 
in a real space of arbitrary dimension will be denoted bye. Thus for e E Rm and 

y E R m the notation e'y will denote the sum of the components of y. A vector 

of zeros in a real space of arbitrary dimension will be denoted by O. The identity 
matrix of arbitrary dimension will be denoted by I. A separating plane, with respect 

to two given point sets A and B in Rn , is a plane that attempts to separate R n 

into two halfspaces such that each open halfspace contains points mostly of A or 

B. A bounding plane to the set A is a plane that places A in one of the two closed 
halfspaces that the plane generates. The symbol 1\ will denote the logical "and". 

The abbreviation "s.t." stands for "such that" . 

2 Linear Support Vector Machines and Prior Knowledge 
We consider the problem, depicted in Figure l(a), of classifying m points in the 

n-dimensional input space Rn , represented by the m x n matrix A, according to 
membership of each point Ai in the class A + or A-as specified by a given m x m 

diagonal matrix D with plus ones or minus ones along its diagonal. For this problem, 

the linear programming support vector machine [11, 2] with a linear kernel, which 
is a variant of the standard support vector machine [18, 3], is given by the following 

linear program with parameter v > 0: 

min {ve'y + Ilwlll I D(Aw - WI') + y ~ e, y ~ a}, (1) 
(W ,"Y,y)ERn +l += 

where II . III denotes the I-norm as defined in the Introduction, y is a vector of 
slack variables measuring empirical error and (w, 'Y) characterize a separating plane 

depicted in Figure 1. That this problem is indeed a linear program, can be easily 
seen from the equivalent formulation: 

min {ve'y+e't I D(Aw - q) +y ~ e,t ~ w ~ -t,y ~ a}, (2) 
(W ,"Y ,y ,t)ERn +l +=+n 

where e is a vector of ones of appropriate dimension. For economy of notation 

we shall use the first formulation (1) with the understanding that computational 

implementation is via (2). As depicted in Figure l(a), w is the normal to the 
bounding planes: 

x'w = 'Y + 1, x'w = 'Y - 1, (3) 

that bound the points belonging to the sets A + and A-respectively. The constant 

'Y determines their location relative to the origin. When the two classes are strictly 

linearly separable, that is when the error variable y = a in (1) (which is the case 

shown in Figure 1 (a)), the plane x' w = 'Y + 1 bounds all of the class A + points, 
while the plane x' w = 'Y - 1 bounds all of the class A-points as follows: 

AiW ~ 'Y + 1, for Dii = 1, AiW ::; 'Y - 1, for Dii = -1. (4) 

Consequently, the plane: 
x'w = 'Y, (5) 

midway between the bounding planes (3), is a separating plane that separates points 
belonging to A + from those belonging to A-completely if y = 0, else only approx

imately. The I-norm term Ilwlll in (1), which is half the reciprocal of the distance 

11,,7111 measured using the oo-norm distance [10] between the two bounding planes of 



(3) (see Figure l(a)), maximizes this distance, often called the "margin". Maximiz
ing the margin enhances the generalization capability of a support vector machine 

[18, 3]. If the classes are linearly inseparable, then the two planes bound the two 

classes with a "soft margin" (i.e. bound approximately with some error) determined 
by the nonnegative error variable y, that is: 

AiW + Yi 2: ry + 1, for Dii = 1, AiW - Yi ::; ry - 1, for Dii = -1. (6) 

The I-norm of the error variable Y is minimized parametrically with weight /J in 
(1), resulting in an approximate separating plane (5) which classifies as follows: 

x E A+ if sign(x'w - ry) = 1, x E A- if sign(x'w - ry) = -1. (7) 

Suppose now that we have prior information of the following type. All points x 
lying in the polyhedral set determined by the linear inequalities: 

Bx ::; b, (8) 

belong to class A +. Such inequalities generalize simple box constraints such as 

a ::; x ::; d. Looking at Figure 1 (a) or at the inequalities (4) we conclude that the 
following implication must hold: 

Bx::; b ===? x'w 2: ry+ 1. (9) 

That is, the knowledge set {x I Bx ::; b} lies on the A + side of the bounding plane 

x'w = ry+ 1. Later, in (19), we will accommodate the case when the implication (9) 
cannot be satisfied exactly by the introduction of slack error variables. For now, 

assuming that the implication (9) holds for a given (w, ry), it follows that (9) is 
equivalent to: 

Bx ::; b, x'w < ry + 1, has no solution x. (10) 

This statement in turn is implied by the following statement: 

B'u+w = 0, b'u+ry+ 1::; 0, u 2: 0, has a solution (u,w). (11) 

To see this simple backward implication: (10)¢=(11), we suppose the contrary that 

there exists an x satisfying (10) and obtain the contradiction b'u > b'u as follows: 

b'u 2: u'Bx = -w'x > -ry-l2: b'u, (12) 

where the first inequality follows by premultiplying Bx ::; b by u 2: O. In fact, under 

the natural assumption that the prior knowledge set {x I Bx ::; b} is nonempty, 

the forward implication: (10)===?(11) is also true, as a direct consequence of the 
nonhomogeneous Farkas theorem of the alternative [9, Theorem 2.4.8]. We state 
this equivalence as the following key proposition to our knowledge-based approach. 

Proposition 2.1 Knowledge Set Classification. Let the set {x I Bx ::; b} be 

nonempty. Then for a given (w, ry), the implication (9) is equivalent to the statement 

(11). In other words, the set {x I Bx ::; b} lies in the halfspace {x I w' x 2: ry + I} if 

and only if there exists u such that B'u + w = 0, b'u + ry + 1 ::; 0 and u 2: O. 

Proof We establish the equivalence of (9) and (11) by showing the equivalence (10) 
and (11). By the nonhomogeneous Farkas theorem [9, Theorem 2.4.8] we have that 
(10) is equivalent to either: 

B'u + w = 0, b'u + ry + 1::; 0, u 2: 0, having solution (u, w), (13) 

or B'u = 0, b'u < 0, u 2: 0, having solution u. (14) 

However, the second alternative (14) contradicts the nonemptiness ofthe knowledge

set {x I Bx::; b}, because for x in this set and u solving (14) gives the contradiction: 

02: u'(Bx - b) = x' B'u - b'u = -b'u > O. (15) 

Hence (14) is ruled out and we have that (10) is equivalent to (13) which is (11). D 

This proposition will play a key role in incorporating knowledge sets, such as 

{x I Bx ::; b}, into one of two categories in a support vector classifier formula
tion as demonstrated in the next section. 
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Figure 1: (a): A linear SVM separation for 200 points in R2 using the linear programming 

formulation (1). (b): A linear SVM separation for the salTIe 200 points in R2 as those in 

Figure l(a) but using the linear programming forlTIulation (19) which incorporates three 

knowledge sets: { x I B ' x :'0 b'} into the halfspace of A + , and { x I C'x :'0 c'}, { x I C 2 x :'0 c2 } 

into the halfspace of A - , as depicted above. Note the substantial difference between the 

linear classifiers x' w = , of both figures. 

3 Knowledge-Based SVM Classification 

We describe now how to incorporate prior knowledge in the form of polyhedral sets 

into our linear programming SVM classifier formulation (1). 

We assume that we are given the following knowledge sets: 

k sets belonging to A+ : {x I B ix ::; bi } , i = 1, ... ,k 
IZ sets belonging to A- : {x I eix::; ci }, i = 1, ... ,IZ 

It follows by Proposition 2.1 that, relative to the bounding planes (3): 

There exist u i , i = 1, ... ,k, v j , j = 1, ... ,IZ, such that: 

B i ' i 0 bi ' i 1 < 0 i > O· 1 k u+w= , u+ 1'+ _, u _, Z= , ... , 

e j ' j - - 0 j' j - 1 < 0 j > 0 . - 1 fi V W - ,c v l' + _ ,v _ ,J - , ... ,1:-

(16) 

(17) 

We now incorporate the knowledge sets (16) into the SVM linear programming for

mulation (1) classifier , by adding the conditions (17) as constraints to it as follows: 

min ve'y + Ilwlll 
w" ,(y ,u i ,v j )2':O 

s.t. D(Aw - q ) +y > e ., . 
B " u" + w 0 (18) ., . 

i = 1, ... , k b" u" + l' + 1 < 0, 

ej'vj - w 0 ., . 

cJ vJ -1'+1 < 0, j = 1, ... ,IZ 

This linear programming formulation will ensure that each of the knowledge sets 

{ x I BiX::; bi } , i = 1, ... , k and { x I eix::; ci } , i = 1, ... ,IZ lie on the ap

propriate side of the bounding planes (3). However, there is no guarantee that 

such bounding planes exist that will precisely separate these two classes of knowl

edge sets, just as there is no a priori guarantee that the original points belonging 

to the sets A + and A-are linearly separable. We therefore add error variables 



ri, pi, i = 1, ... ,k, sj, (J"j, j = 1, ... ,£, just like the slack error variable y of the 

SVM formulation (1), and attempt to drive these error variables to zero by modi

fying our last formulation above as follows: 

k 

. min .. ve'y + j.L(l,)ri + /) 
W'f , (y , u~,r~,pt , vJ ,sJ ,aJ)~O i=l 

s.t. D(Aw - wy) + y 

_ri ::; Bil ui + W 
·1 . 

b"u"+I'+1 

-sj ::; e jl v j - w 
·1 . 

cJ vJ -I'+1 

e 

+ l,)sj + (J"j)) + Ilwlll 
j=l 

> e 

< ri 

< pi,i=I, ... ,k 

< sj 

< (J"j, j = 1, . .. ,£ 

(19) 

This is our final knowledge-based linear programming formulation which incorpo

rates the knowledge sets (16) into the linear classifier with weight j.L, while the 
(empirical) error term e'y is given weight v. As usual, the value of these two pa

rameters, v, j.L, are chosen by means of a tuning set extracted from the training 

set . If we set j.L = a then the linear program (19) degenerates to (1), the linear 
program associated with an ordinary linear SVM. However, if set v = 0, then the 

linear program (19) generates a linear SVM that is strictly based on knowledge 

sets, but not on any specific training data. This might be a useful paradigm for 
situations where training datasets are not easily available, but expert knowledge, 

such as doctors' experience in diagnosing certain diseases, is readily available. This 

will be demonstrated in the breast cancer dataset of Section 4. 

Note that the I-norm term Ilwlll can be replaced by one half the 2-norm squared, 
~llwll~, which is the usual margin maximization term for ordinary support vector 
machine classifiers [18, 3]. However, this changes the linear program (19) to a 

quadratic program which typically takes longer time to solve. 

For standard SVMs, support vectors consist of all data points which are the com
plement of the data points that can be dropped from the problem without changing 

the separating plane (5) [18, 11]. Thus for our knowledge-based linear programming 

formulation (19), support vectors correspond to data points (rows of the matrix A) 
for which the Lagrange multipliers are nonzero, because solving (19) with these data 

points only will give the same answer as solving (19) with the entire matrix A. 

The concept of support vectors has to be modified as follows for our knowledge 
sets. Since each knowledge set in (16) is represented by a matrix Bi or e j , each 

row of these matrices can be thought of as characterizing a boundary plane of 

the knowledge set . In our formulation (19) above, such rows are wiped out if the 
corresponding components of the variables u i or v j are zero at an optimal solution. 

We call the complement of these components of the the knowledge sets (16), support 
constraints. Deleting constraints (rows of Bi or e j ), for which the corresponding 

components of u i or v j are zero, will not alter the solution of the knowledge-based 

linear program (19). This in fact is corroborated by numerical tests that were 
carried out. Deletion of non-support constraints can be considered a refinement of 

prior knowledge [17]. Another type of of refinement of prior knowledge may occur 

when the separating plane x' w = I' intersects one of the knowledge sets. In such 

a case the plane x'w = I' can be added as an inequality to the knowledge set it 
intersects. This is illustrated in the following example. 

We demonstrate the geometry of incorporating knowledge sets by considering a 
synthetic example in R2 with m = 200 points, 100 of which are in A + and the other 

100 in A -. Figure 1 (a) depicts ordinary linear separation using the linear SVM 

formulation (1). We now incorporate three knowledge sets into the the problem: 



{x I Blx ::; bl } belonging to A+ and {x I Clx ::; c l } and {x I C 2 x ::; c2 } belonging 

to A -, and solve our linear program (19) with f-l = 100 and v = 1. We depict the 

new linear separation in Figure 1 (b) and note the substantial change generated in 
the linear separation by the incorporation of these three knowledge sets. Also note 

that since the plane x'w = "( intersects the knowledge set {x I BlX ::; bl }, this 

knowledge set can be refined to the following {x I B 1 X ::; bl, w' x 2: "(}. 

4 Numerical Testing 
Numerical tests, which are described in detail in [6], were carried out on the 
DNA promoter recognition dataset [17] and the Wisconsin prognostic breast 

cancer dataset WPBC (ftp:j /ftp.cs.wisc.edu/math-prog/cpo-dataset/machine

learn/cancer/WPBC/). We briefly summarize these results here. 

Our first dataset, the promoter recognition dataset, is from the the domain of DNA 
sequence analysis. A promoter, which is a short DNA sequence that precedes a 

gene sequence, is to be distinguished from a nonpromoter. Promoters are impor

tant in identifying starting locations of genes in long uncharacterized sequences of 
DNA. The prior knowledge for this dataset, which consists of a set of 14 prior rules, 

matches none of the examples of the training set. Hence these rules by themselves 

cannot serve as a classifier. However, they do capture significant information about 
promoters and it is known that incorporating them into a classifier results in a 

more accurate classifier [17]. These 14 prior rules were converted in a straightfor

ward manner [6] into 64 knowledge sets. Following the methodology used in prior 
work [17], we tested our algorithm on this dataset together with the knowledge sets, 
using a "leave-one-out" cross validation methodology in which the entire training 

set of 106 elements is repeatedly divided into a training set of size 105 and a test 
set of size 1. The values of v and f-l associated with both KSVM and SVM l [2] 

where obtained by a tuning procedure which consisted of varying them on a square 
grid: {2-6, 2-5 , ... ,26} X {2-6, 2-5 , ... ,26}. After expressing the prior knowledge 

in the form of polyhedral sets and applying KSVM, we obtained 5 errors out of 106 

(5/106). KSVM gave a much better performance than five other different meth

ods that do not use prior knowledge: Standard I-norm support vector machine [2] 

(9/106), Quinlan's decision tree builder [13] (19/106), PEBLS Nearest algorithm 
[4] with k = 3 (13/106), an empirical method suggested by a biologist based on 
a collection of "filters" to be used for promoter recognition known as O'Neill's 

Method [12] (12/106), neural networks with a simple connected layer of hidden 

units trained using back-propagation [14] (8/106). Except for KSVM and SVM l , 

all of these results are taken from an earlier report [17]. KSVM was also compared 
with [16] where a hybrid learning system maps problem specific prior knowledge, 

represented in propositional logic into neural networks and then, refines this refor
mulated knowledge using back propagation. This method is known as Knowledge 

Based Artificial Neural Networks (KBANN). KBANN was the only approach that 
performed slightly better than our algorithm and obtained 4 misclassifications com

pared to our 5. However, it is important to note that our classifier is a much simpler 
linear classifier, sign(x'w - "(), while the neural network classifier of KBANN is a 

considerably more complex nonlinear classifier. Furthermore, we note that KSVM 

is simpler to implement than KBANN and requires merely a commonly available 
linear programming solver. In addition, KSVM which is a linear support vector 

machine classifier, improves by 44.4% the error of an ordinary linear I-norm SVM 
classifier that does not utilize prior knowledge sets. 

The second dataset used in our numerical tests was the Wisconsin breast cancer 

prognosis dataset WPBC using a 60-month cutoff for predicting recurrence or nonre
currence of the disease [2]. The prior knowledge utilized in this experiment consisted 

of the prognosis rules used by doctors [8] which depended on two features from the 

dataset: tumor size (T)(feature 31), that is the diameter of the excised tumor in 



centimeters and lymph node status (L) which refers to the number of metastasized 
axillary lymph nodes (feature 32). The rules are: 

(L:2: 5) 1\ (T:2: 4) ===} RECUR and (L = 0) 1\ (T S 1.9) ===} NON RECUR 

It is important to note that the rules described above can be applied directly to 
classify only 32 of the given 110 given points of the training dataset and correctly 

classify 22 of these 32 points. The remaining 78 points are not classifiable by 

the above rules. Hence, if the rules are applied as a classifier by themselves the 
classification accuracy would be 20%. As such, these rules are not very useful by 

themselves and doctors use them in conjunction with other rules [8]. However, 

using our approach the rules were converted to linear inequalities and used in our 

KSVM algorithm without any use of the data, i.e. l/ = 0 in the linear program (19). 
The resulting linear classifier in the 2-dimensional space of L(ymph) and T(umor) 

achieved 66.4% accuracy. The ten-fold, cross-validated test set correctness achieved 

by standard SVM using all the data is 66.2% [2]. This result is remarkable because 
our knowledge-based formulation can be applied to problems where training data 

may not be available whereas expert knowledge may be readily available in the form 
of knowledge sets. This fact makes this method considerably different from previous 

hybrid methods like KBANN where training examples are needed in order to refine 
prior knowledge. If training data are added to this knowledge-based formulation, 

no noticeable improvement is obtained. 

5 Conclusion & Future Directions 

We have proposed an efficient procedure for incorporating prior knowledge in the 
form of knowledge sets into a linear support vector machine classifier either in 
combination with a given dataset or based solely on the knowledge sets. This novel 

and promising approach of handling prior knowledge is worthy of further study, 
especially ways to handle and simplify the combinatorial nature of incorporating 
prior knowledge into linear inequalities. A class of possible future applications 

might be to problems where training data may not be easily available whereas 
expert knowledge may be readily available in the form of knowledge sets. This 

would correspond to solving our knowledge based linear program (19) with l/ = O. 

A typical example of this type was breast cancer prognosis [8] where knowledge sets 
by themselves generated a linear classifier as good as any classifier based on data 
points. This is a new way of incorporating prior knowledge into powerful support 

vector machine classifiers. Also, the concept of support constraints as discussed 
at the end of Section 3, warrants further study that may lead to a systematic 

simplification of prior knowledge sets. Other avenues of research include, knowledge 

sets characterized by nonpolyhedral convex sets as well as nonlinear kernels [18, ll] 
which are capable of handling more complex classification problems, as well as the 

incorporation of prior knowledge into multiple instance learning [1, 5] which might 
lead to improved classifiers in that field. 
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