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Abstract

We present a CNF to Tree-of-BDDs (ToB) compiler
with complexity at most exponential in the tree width.
We then present algorithms for interesting queries on
ToB. Although some of the presented query algorithms
are in the worst case exponential in the tree width,
our experiments show that ToB can answer non-trivial
queries like clausal entailment in reasonable time for
several realistic instances. While our ToB-tool compiles
all the used 91 instances, d-DNNF compilation failed
for 12 or 8 of them based on the decomposition heuris-
tic used. Also, on the succeeded instances, a d-DNNF
is up to 1000 times larger than the matching ToB. The
ToB compilations are often an order of magnitude faster
than the d-DNNF compilation. This makes ToB a quite
interesting knowledge compilation form.

Introduction
The characteristics of a real-world system modeled in propo-
sitional theory could be used for reasoning the behavior of
the system. Knowledge compilation focuses on methods
for improving such reasoning. A recent focus has been to
compile the theory representing a system into a form such
that arbitrary number of interesting queries on the system
behavior can be quickly answered. The forms which have
been studied for compilation include OBDDs (Bryant 1986),
DNNF (Darwiche 2001) and d-DNNF (Darwiche & Marquis
2002). Applications of knowledge compilation include con-
figuration, model-based diagnosis and Bayesian inference.

The Tree-of-BDDs (ToB) (Subbarayan 2005) is a recently
introduced form in the context of configuration systems. We
present the properties of ToB, which makes it a quite inter-
esting form. Specifically, we show that a system modeled in
a CNF can be compiled into a canonical ToB with compi-
lation complexity exponential in a tree decomposition width
of the CNF. Hence, bounded treewidth CNF instances can
be compiled into ToBs using linear time and space. We then
present algorithms for several interesting queries on ToBs.
Although some of the presented query algorithms are not
polytime, our experiments show the viability of ToBs for
knowledge compilation.
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Our experiments on 91 realistic instances show that ToB
compilations often use an order of magnitude lesser time and
space than d-DNNF. In fact, while all the 91 instances are
compiled into ToBs within 926 seconds, several d-DNNF
compilations fail with 3600 seconds time allowed for each
instance. A d-DNNF successfully compiled is up to 1000
times larger than the matching ToB. Also, we observe that
non-trivial queries like clausal entailment can be answered
by ToBs in reasonable time even for several instances whose
d-DNNF compilation fails.

The next section defines the ToB and presents a CNF to
ToB compiler. The following section presents the algorithms
for queries on ToB. Subsequently, the empirical results are
presented followed by some concluding remarks.

The Tree-of-BDDs
We consider that the model to be compiled is given as a
CNF. But the presented techniques can be easily extended
for more general representations. Let the pair (V ,C) denote
a CNF, where V is a set of variables and C a set of clauses
over V . Let the set of variables occurring in a clause c be
denoted by vars(c). The terms like OBDD (DNNF) may re-
fer to a specific OBDD (DNNF), or the function represented
by an OBDD (a DNNF), or the set of all possible OBDDs
(DNNFs), which will be clear from the context.

Definitions
An ordered binary decision diagram (OBDD) (Bryant 1986)
is a rooted directed acyclic graph with two terminal nodes,
marked true (1) and false (0). Each internal node will have
two outgoing edges, one solid and another dashed. Each in-
ternal node will be associated a variable, such that in any
path from the root to a terminal node the variables associ-
ated with the nodes in the path occur at most once and occur
in a linear order. We only consider a special reduced ver-
sion of OBDDs in which a node n1 with both of its outgoing
edges reaching the same node n2 will be removed, and all
the incoming edges of n1 will be made to directly reach n2.
Also, isomorphic nodes, i.e., nodes {n1, . . . ni}, associated
with a same variable, whose solid and dashed edges reach
the same nodes ns and nd respectively, will be merged into
a single node n, with all the incoming edges of {n1, . . . ni}
now reaching n. Given an OBDD b defined over proposi-
tional variables P , and an assignment A to P , the corre-
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Figure 1: (a) An OBDD, (b) B(0), (c) B(1) and (d) A d-DNNF.

CNF2ToB ( (V ,C), (N ,A) )
1 : ∀n ∈ N. B(n) := ∧c∈clauses(n)cl2bdd(c)
2 : Propagate ((N ,A,B))
3 : return (N ,A,B)

Propagate ((N ,A,B))
1 : for i := |N | to 2 // except the root node r
2 : n := BFOrder(i); p := parent(n)
3 : B(p) := B(p) ∧ ∃(V \vars(p)).B(n)
4 : for i := 1 to |N |
5 : n := BFOrder(i); H := children(n)
6 : ∀h ∈ H. B(h) := B(h) ∧ ∃(V \vars(h)).B(n)

Figure 2: The CNF to ToB compiler.

sponding path in b is the unique path from the root node of
b to a terminal node, such that the path contains the solid
outgoing edge of a node iff the variable corresponding to the
node takes true value in A. A function f is represented by
an OBDD iff the path corresponding to any solution (i.e., a
satisfying assignment) of f reaches the true terminal. The
size of an OBDD b, denoted |b|, is measured in terms of the
number of internal nodes or edges.

The operations on OBDDs we use are conjunction (∧),
disjunction (∨), restriction (|) and existential quantification
of a set of variables S (∃S). The time and space complex-
ity of ∧ and ∨ operations between two OBDDs b1 and b2

is O(|b1||b2|). The |-operation takes linear time. The time
and space complexity of ∃-operation of a variable is O(|b|2).
Given an OBDD b representing a function over variables V ,
the projection of b over a set of variables S is obtained by
∃(V \S).b. Given a CNF and a variable order, the OBDD
of the CNF could be compiled by ∧-operations over trivial
OBDDs representing the clauses.

A tree decomposition (Robertson & Seymour 1986;
Dechter 2003) of a CNF (V ,C) is a tree (N ,A), such that
N is the set of nodes and A the set of edges. Each node
n ∈ N will be associated vars(n) ⊆ V . For any n ∈ N , let
clauses(n) = {c | c ∈ C ∧ vars(c) ⊆ vars(n)}. Addition-
ally, (N ,A) has to satisfy two conditions: (1) for each clause
c ∈ C, ∃n ∈ N. c ∈ clauses(n) and (2) for each v ∈ V , the
set of nodes {n | n ∈ N ∧ v ∈ vars(n)} form a connected
subtree in (N ,A). By the first condition, for every clause
c ∈ C, at least one (need not be unique) node n ∈ N is such
that: vars(c) ⊆ vars(n). The second condition specifies that
all the nodes that share a variable form a connected subtree.
The width (w) of (N ,A) is maxn∈N{|vars(n)| − 1}.

A Tree-of-BDDs (ToB) (Subbarayan 2005) of a given
CNF (V ,C) is a triple (N ,A,B), where (N ,A) is a decompo-
sition of (V ,C), and B is a mapping such that ∀n ∈ N , the
B(n) is an OBDD representing the projection of the CNF
on vars(n). That is if the OBDD b represents the CNF, then
∀n ∈ N. B(n) = ∃(V \vars(n)).b. Note, all the B(n) OB-
DDs use a common variable order. Also, by the properties
of tree decomposition, conjunction of the OBDDs of each
node will be equivalent to the CNF, i.e., (b = ∧n∈NB(n)).
The size of a ToB (N ,A,B) is Σn∈N |B(n)|.

Similar to OBDDs each ToB also represents a function. A

ToB represents a function f iff for any assignment A satis-
fying f , for each n ∈ N , the path in B(n) corresponding to
A reaches the true terminal.

An example Lets consider an example CNF (V ,C) with
V = {a, b, c, d, e} and C = {(¬a∨¬e), (a∨b), (b∨¬c), (c∨
¬d), (¬b ∨ ¬d)}. The matching OBDD using the order a <
b < c < d < e is in Figure 1a. A matching ToB is (N ,A,B)
with N = {0, 1}, A = {(0, 1)}, vars(0) = {a, b, e} and
vars(1) = {b, c, d}. The Figures 1b and 1c show the B(0)
and B(1) OBDDs. The size of the OBDD is 14 edges, while
the size of the ToB is 12 edges.

We state the following theorem. The theorem follows im-
mediately from the canonicity (uniqueness) of an OBDD for
a function up to the used variable order.

Theorem 1. Given a CNF (V ,C), a tree decomposition of
the CNF (N ,A), a linear order < of V , the corresponding
ToB (N ,A,B) using < is canonical.

The compiler
Let BFOrder for a decomposition (N ,A) be an order the
nodes in N are visited by a breadth-first traversal of (N ,A)
starting at an arbitrary node r as root. Let BFOrder(i) denote
the ith element in the BFOrder. Then, for any non-root node
n ∈ N , let parent(n) denote the unique neighbor of n which
occurs before n in the BFOrder and let children(n) denote
the neighbors of n which occur after n in the BFOrder.

Let cl2bdd(c) be a function that takes a clause c as input
and returns the equivalent OBDD. The pseudo-code of the
function CNF2ToB which takes a CNF (V ,C) and a tree de-
composition (N ,A) as input, and returns a ToB (N ,A,B) is
shown in Figure 2. There are two phases in the function. In
the first phase, for each node n in the tree the clauses(n) are
compiled into equivalent OBDDs and conjoined to form an
initial B(n). In the next phase, the Propagate function is
called which results in a ToB (N ,A,B). In the lines 1-3 of
the Propagate function, in the reverse BFOrder, each node
projects its solution space on its parent node. In the lines 4-
6, in the BFOrder, each node projects its solution space over
its children, which results in a ToB. The correctness of the
pseudo-code CNF2ToB follows from the fact that the code is
just a CNF adaptation of a similar compiler in (Subbarayan
2005), which in turn is a compressed way of handling the
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well-known tree-clustering (Dechter 2003) process.
The following theorem shows that the complexity of

CNF2ToB is exponential in the width of the input tree de-
composition and hence linear for bounded treewidth CNFs.

Theorem 2. The complexity of CNF2ToB is O(|V |w222w).

Proof. The main cost of the CNF2ToB procedure is due
to projection and conjunction operations on B(n) OBDDs.
Since each vars(n) has at most w + 1 variables, the match-
ing B(n) never has more than 2w+1 paths (solutions) from
root to true terminal node. Since each path in a B(n) can
have at most w + 1 nodes, the number of nodes in a B(n) is
at most (w + 1)2w+1 at any moment. Also, in a good tree
decomposition |N | ≤ |V | . Hence by using the complexity
of the OBDD operations used, the complexity of CNF2ToB
is O(|V |w222w).

Queries: Algorithms and Complexity
In this section, following (Darwiche & Marquis 2002), we
define the NNF form, and present its subsets. We then
present algorithms for interesting queries on ToBs.

A negation normal form (NNF) is a rooted directed
acyclic graph with leaf nodes associated with either true,
false or a literal, and non-leaf nodes will be either an ∧
(AND) node or an ∨ (OR) node. A NNF represents the
function obtained by recursively defining the functionality
of OR and AND nodes to be ∨- and ∧- operations respec-
tively, over the functions of the child nodes. The size of a
NNF is the number of edges.

A NNF may be an OBDD, a DNNF or a d-DNNF based
on whether it satisfies some of the four properties: de-
composable (D), deterministic (d), decision, and ordering
(<). An AND node of a NNF is decomposable if the two
functions corresponding to any of the two conjuncts of the
AND node do not have a common variable. An OR node
of a NNF is deterministic if the two functions correspond-
ing to any two disjuncts of the OR node are inconsistent. A
NNF is decomposable (deterministic) if all of its AND (OR)
nodes are decomposable (deterministic). An OR node is a
decision-node if the OR node has precisely two disjuncts
and the disjuncts differ in a variable. That is a decision-node
is of the form (α∧ x∨ β ∧¬x), where x is a variable called
decision-variable. Note, a decision-node is also determin-
istic. A NNF has decision property if all of its OR nodes
are decision-nodes. A NNF has the ordering property if in
all the paths from the root to a leaf node, the variables corre-
sponding to the decision nodes in the path occur in a specific
linear order.

It has been shown in (Darwiche & Marquis 2002) that, a
DNNF is a NNF that is decomposable, a d-DNNF is a DNNF
that is also deterministic and an OBDD is a d-DNNF that has
both decision and ordering property. Note, while a DNNF or
a d-DNNF is directly a NNF, a NNF equivalent to an OBDD
can be obtained by converting each node n in the OBDD,
with x being the variable associated with n, into the form
(α∧x∨β∧¬x), where α and β correspond to the functions
represented by the solid edge and dashed edge child of the
node n. The Figure 1d shows a d-DNNF of size 15 edges,
which represents the CNF example.

The following lemma shows that like OBDD, ToB also
defines a subset of NNF.

Lemma 3. ToB defines a subset of NNF

Proof. We show that for a given ToB we can obtain a NNF
representing the same function as the ToB in polytime and
hence ToB is a subset of NNF. Let Obdd2Nnf be a function
that maps an OBDD to its equivalent NNF. Let the given ToB
be (N ,A,B). An equivalent NNF is ∧n∈N Obdd2Nnf(B(n)).
That is, a NNF equivalent to a given ToB can be obtained by
just a conjunction on the NNFs equivalent to each OBDD in
the ToB.

The eight major queries used in (Darwiche & Marquis
2002) for comparing several compilation forms are: consis-
tency (CO), validity (VA), clausal entailment (CE), implicant
(IM), equivalence (EQ), sentential entailment (SE), model
counting (CT) and model enumeration (ME).

Let I1 and I2 be instances of a compilation form F , c be
a clause and t be a term. The eight queries correspond to:
(1) CO: I1 = false? (2) VA: I1 = true? (3) CE: I1 |= c?
(4) IM: t |= I1? (5) EQ: I1 = I2? (6) SE: I1 |= I2?
(7) CT: counting the number of models of I1 (8) ME: an
enumeration of the models of I1.

A compilation form F supports any one of the queries if
it can answer the query in time at most polynomial in either
the size of the query’s input or output.

Now, we show that ToB supports CO and VA.

Theorem 4. ToB supports CO and VA

Proof. If a ToB is false (true), then ∀n ∈ N.B(n) =
false (true). Since checking whether an OBDD is false (true)
takes constant time, ToB supports CO (VA).

A compilation form supports conditioning (CD) if for any
instance I1 in the form and a consistent term t, an instance
I2 in the form which is logically equivalent to I1|t can be
obtained in polytime.

Now, we state the two following lemmas.

Lemma 5. (Darwiche & Marquis 2002) If a subset of NNF
supports CO and CD, then it also supports ME and CE.

Lemma 6. (Darwiche & Marquis 2002) If a subset of NNF
supports VA and CD, then it also supports IM.

Finally, we state the following theorem. The proof of the
theorem follows from Theorem 4, and Lemmas 3, 5 and 6.

Theorem 7. If there exists a polytime CD algorithm for ToB,
then ToB supports CE, IM and ME.

We do not know whether any polytime algorithm exists
for conditioning a ToB. Let for a term t and a set of variables
P , t(P ) denotes restriction of the literals in t to the variables
in P . The Figure 3 presents an algorithm for conditioning a
ToB. Given a ToB (N ,A,B) and a consistent term t, we can
condition the ToB by first doing restrict operations: for each
n ∈ N. B(n) := B(n)|t(vars(n)). A following Propagate
operation will result in conditioning the given ToB with t.
Following (Darwiche & Marquis 2002), the Figure 3 also
presents algorithms for CE and IM. The complexity of the
CD, CE and IM algorithms in the figure are dominated by a
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Conditioning ((N ,A,B), t)
1 : ∀n ∈ N. B(n) := B(n)|t(vars(n))

2 : Propagate ((N ,A,B))

Project ((N ,A,B), K)
1 : for i := |N | to 2 // except the root node r
2 : n := BFOrder(i); p := parent(n)
3 : γ := V \(vars(p) ∪ K)
4 : B(p) := B(p) ∧ ∃γ.B(n)
5 : return ∃(vars(r)\K).B(r)

IsCE ((N ,A,B), c)
1 : Conditioning ((N ,A,B), ¬c)
2 : if B(r) = false return true
3 : else return false

IsIM ((N ,A,B), t)
1 : Conditioning ((N ,A,B), t)
2 : if ∀n ∈ N. t |= B(n) return true
3 : else return false

IsEQ ((N1,A1,B1),(N2,A2,B2))
1 : ∀n ∈ N1

2 : b := Project((N2, A2, B2), vars(n))
3 : if (b �= B1(n)) return false
4 : ∀n ∈ N2

5 : b := Project((N1, A1, B1), vars(n))
6 : if (b �= B2(n)) return false
7 : return true

Figure 3: The pseudo code for CD, Project, CE, IM and EQ.

call to Propagate, hence, exponential in the treewidth. Al-
though our conditioning algorithm is not polytime, the em-
pirical results in next section show that ToBs with these al-
gorithms, in reasonable time, can answer CE and IM queries
of many instances for which d-DNNF cannot be compiled.

We do not present an algorithm for ME in ToB, since sim-
ilar to the algorithms for CE and IM, the ME algorithm for
d-DNNF in (Darwiche & Marquis 2002) can be naturally
extended for ToB with our CD algorithm.

The Figure 3 also presents Project an algorithm for ob-
taining an OBDD which is a projection of the solutions of
(N ,A,B) over a set of variables K. Essentially, the Project
existentially quantifies all the variables in (V \K) in a
bottom-up fashion, resulting in a projection of the solutions
over K. By arguments similar to the proof of Theorem 2,
the complexity of the Project is O(|V |(w+|K|)222(w+|K|)),
where w is the width of (N ,A).

Although a ToB is canonical for a specific (N ,A) and or-
dering, checking the equivalence of two arbitrary ToBs is not
trivial. The Figure 3 presents IsEQ, a procedure for EQ us-
ing the Project operation. Given two ToBs (N1,A1,B1) and
(N2,A2,B2) using the same variable order, the IsEQ projects
the solutions of both the ToBs on the variables of each node
of the other ToB and checks whether they are equal.

Theorem 8. The IsEQ ((N1,A1,B1), (N2,A2,B2)) proce-
dure returns true iff (N1,A1,B1) = (N2,A2,B2).

Proof. Lets assume the case where the procedure returns
false. Wlog, assume that the line(3) of the procedure returns
false. Then, there exists a node n ∈ N1, such that a solution
of B1(n) cannot be extended to a solution of (N2,A2,B2) or
vice versa. Hence, the case.

Lets assume the case where the procedure returns true.
Then, given any solution S for (N1,A1,B1), then for each
n ∈ N2, S is also a solution for B2(n), hence S is also a so-
lution for (N2,A2,B2). Similarly, a solution for (N2,A2,B2)
is also a solution for (N1,A1,B1).

The complexity of the IsEQ is dominated by the projec-
tion process. If w1 and w2 are the widths of (N1,A1,B1)
and (N2,A2,B2) respectively, then the complexity of IsEQ
is O(|V |(w1 + w2)

222(w1+w2)). Hence, checking the equal-
ity of two bounded width ToBs take polytime.

From the IsEQ procedure, we can obtain a procedure for
SE by just removing the lines 4-6 of IsEQ and replacing the
condition in the if statement in line 3 to ¬(B1(n) |= b).

Form CO VA CE IM EQ SE CT ME
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
ToB<

√ √ † † � � ? †
d-DNNF

√ √ √ √
? ◦ √ √

OBDD<

√ √ √ √ √ √ √ √

Table 1: Complexity of queries on compilation forms.√
: polytime, ◦: not polytime unless P=NP, †: polytime

if CD is polytime, ?: unknown, <:some specific ordering,
�: possible in O(|V |(w1 + w2)

222(w1+w2)). Note: All the
presented ToB methods are at most exponential in treewidth.

The complexity of the important queries on DNNF, d-
DNNF, OBDD and ToB are listed in Table 1. The informa-
tion for DNNF, d-DNNF and OBDD< are from (Darwiche
& Marquis 2002). In the table, only for ToB the equiva-
lent NNF need not have decomposable property. Remember
that, a NNF equivalent to a ToB will have an AND node at
the root and it need not be decomposable. Hence, if decom-
posability is hard for some instances, then compiling ToB
will not suffer from that hardness.

The succinctness relation between ToB and DNNF (d-
DNNF) is open. But ToB is at least as succinct as OBDD,
as given an OBDD b, we can create an equivalent ToB with
only one node r in the tree, with B(r) = b.

Experiments
The objective of our experiments is to compare the compi-
lation time and size of ToB against d-DNNF, and to check
whether the non-trivial queries like CE and IM can be an-
swered by ToBs for realistic instances in reasonable time.

The constituents of the 91 instances used in our exper-
iments are CNFs modeling: 7 ISCAS85 circuits, 17 IS-
CAS89 circuits, 14 ISCAS93 Addendum circuits, 13 IS-
CAS99 circuits, 5 bounded model checking problems and
35 Mercedes car configuration problems. We have imple-
mented the CNF2ToB compiler in C++. The source code of
our CNF2ToB tool and the used instances, along with links
to their origin, are available online1.

In our experiments we compare our ToB-tool against c2d2

(version 2.20), the state-of-the-art CNF to d-DNNF com-
piler. All our experiments are done in an Intel Xeon 3.2 GHz

1CNF2ToB: http://www.itu.dk/people/sathi/tob/
2c2d: http://reasoning.cs.ucla.edu/c2d/
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Instance d-DNNF (hg) d-DNNF (mf) ToB ToB - CE Time ToB - IM Time
Name |V | |C| w (mf) Time Size Time Size Time Size Mean Max >1s% Mean Max >1s%
c1908 751 2053 46 269 26.11 TO 0.1 0.02 0.01 0.06 0 0.01 0.04 0
c7552 3185 8588 44 371 28.89 TO 1.02 0.22 0.06 0.46 0 0.06 0.49 0
s1269 623 1616 40 119 10 TO 0.18 0.05 0.02 0.13 0 0.02 0.14 0
s3271 1714 4269 35 TO TO 0.55 0.15 0.04 0.19 0 0.04 0.19 0
s4863 2495 6434 33 FSE FSE 5.09 1.31 0.29 6.13 6 0.31 4.49 5
s6669 3392 8423 26 TO 348 57.53 0.44 0.16 0.03 0.31 0 0.05 0.33 0
cnt09 9207 30678 23 TO 168 0.01 1.86 0.09 0.02 0.07 0 0.02 0.07 0
cnt10 20470 68561 26 TO TO 5.41 0.21 0.04 0.17 0 0.04 0.16 0

C168FW 1909 7477 110 TO 296 5.54 8.05 0.21 0.02 0.23 0 0.04 0.22 0
C170FR 1874 10610 203 TO 365 5.9 15 0.58 0.04 0.77 0 0.11 0.75 0
C202FS 1990 8883 88 TO TO 9.58 0.41 0.04 0.75 0 0.1 0.76 0
C202FW 2038 11342 99 TO TO 65 0.94 0.09 2.62 2 0.21 2.26 4
C208FC 1922 7518 194 TO 243 9.56 18 0.93 0.17 1.42 3 0.17 1.37 3
C210FS 1990 7982 84 TO 2370 51.34 12 0.91 0.09 2.16 2 0.22 2.17 5
C210FW 2024 9705 98 TO 3352 71.63 663 3.64 0.38 10.7 4 1.01 10.42 30

Table 2: Instances for which at least one of the d-DNNF compilations fail. w (mf): Min-fill heuristic width. TO: 3600 seconds
time limit exceeded. FSE: File system limit exceeded abort message. Size in 106 edges. >1s%: % of 10000 queries requiring
more than one second to respond.

Linux machine with 4GB RAM. Each experiment on an in-
stance was given 3600 seconds time limit. The two criteria
used for comparison are the time taken for compilation and
the size of the resulting representation (a d-DNNF or ToB).

We did not compare our tool against an OBDD com-
piler as it has been established in (Huang & Darwiche 2005;
Subbarayan 2005) that d-DNNFs and ToBs are usually very
small when compared with OBDDs. As we are not aware of
any publicly available DNNF compiler, similar to (Huang &
Darwiche 2005), we do not use a DNNF compiler for com-
parison.

We use Min-fill (Kjærulff 1990) heuristic for decomposi-
tions as we found that the Hinge method (Gyssens, Jeavons,
& Cohen 1994) used in (Subbarayan 2005) gives quite larger
width decompositions than min-fill. In fact, experiments us-
ing hinge failed for most of the instances.

Our ToB-tool just uses the lexicographic ordering of vari-
ables. Using any good heuristic for variable ordering may
only improve our results. Our experiments using c2d are
done with two decomposition methods in c2d: hypergraph
partitioning (c2d-hg) and min-fill heuristic (c2d-mf).

d-DNNF (hg) d-DNNF (mf) ToB
#compiled 79 83 91

#failed 12 8 0
Total time† 13656.33 13176.43 926.26
Total size† 412736839 602249675 17591544

Table 3: Overview. †: for successful compilations.

The Table 3 presents an overview of the compilations.
While our ToB tool is able to compile all the instances, c2d-
hg (c2d-mf) fails to compile 12 (8) instances. The Total Time
entry in the table mentions the total time taken by a tool to
compile all the instances, excluding time taken for the failed
compilations. Even then, for the successful compilations the
c2d takes around 13000 seconds with each of the two op-
tions. But, all the 91 instances are compiled by the ToB-tool
in just 926 seconds. The 91 ToBs require just 17.6 million

edges, while the c2d-hg (c2d-mf) requires 412.7 (602) mil-
lion edges to represent 79 (83) d-DNNFs.

In Table 2, we list the compilation details of the presum-
ably hard instances: for which at least one of the d-DNNF
compilations fail. In case of the c1908 instance, c2d-mf fails
while c2d-hg results in a d-DNNF more than 1000 times
larger than the matching ToB.

As shown in Table 2, the ToB compilation for C210FW
instance requires 663 seconds. Since the total time taken by
ToB-tool for all the 91 instances is 926 seconds, the 90 ToBs
other than that of C210FW are compiled in just 263 seconds.

The Table 2 also lists the mean and maximum response
time for 10000 random CE and IM queries for each instance.
Each random CE (IM) query will use a random clause (term)
with at most |V |/10 consistent literals. The table shows that
on the average ToB takes at most one second even for the
listed hard instances for d-DNNF. In case of C210FW, ToB
takes 10 seconds to respond in the worst case, but the size
of ToB is around 20 times smaller than the d-DNNF-mg that
we definitely get a trade-off, even if d-DNNF gives shorter
response time.

In Figure 4, we plot the compilation time taken by ToB
versus d-DNNF. In Figure 5, we have a similar plot compar-
ing size. The figures show that the ToB compilations often
require relatively very small time and space.

Related Work
Although BDD-trees (McMillan 1994) and ToB have a sim-
ilar name, they are quite different. The BDD-trees represen-
tation uses a binary tree decomposition, while the decompo-
sition used by ToB need not be a binary tree decomposition.
Each node in a ToB maps to precisely one OBDD, while
each node in a BDD-trees will have a two-dimensional ma-
trix of OBDDs. If the left and right child functions of a node
in a BDD-trees has m and n equivalence classes of solutions
respectively, then the matrix of the node will be of size m*n.
Each entry in the matrix will be an OBDD. Hence, BDD-
trees are quite complex compared to ToB.

Each node in an AND/OR BDD (Mateescu & Dechter
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Figure 4: Compilation time: ToB vs. d-DNNF.
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2006) represents a function of the form: ((α1 ∧ α2 ∧ · · · ∧
αn1

) ∧ x ∨ (β1 ∧ β2 ∧ · · · ∧ βn2
) ∧ ¬x), where αis and βis

are functions represented by the children of the node and x
is the decision variable of the node. Hence, AND/OR BDDs
define a subset of d-DNNFs and satisfy the decomposable
property. The AND/OR MDDs (Mateescu & Dechter 2006)
are multi-valued versions of AND/OR BDDs.

Both the tree-driven automata (Fargier & Vilarem 2004)
and the Ordered DDGs (Fargier & Marquis 2006) are de-
composable, and hence different from ToBs.

Conclusion and Future Work
We have presented a CNF to ToB compiler with compilation
complexity exponential in the width of a tree decomposition
of the CNF. Hence, the compilation takes linear time and
space for bounded width CNFs. We have also presented al-
gorithms for several interesting queries on ToBs.

We have presented experiments on several instances,
which show that ToB compilation is usually fast and re-
sults in smaller representations than d-DNNF compilation.
In some instances d-DNNF compilation fails, while ToB

compilation succeeds all the used instances. Even in the in-
stances for which d-DNNF compilation succeeds, a resulting
d-DNNF is up to 1000 times larger than the matching ToB.

Our experiments show that ToBs are able to answer non-
trivial queries like clausal entailment in reasonable time
even for several realistic instances whose d-DNNF compi-
lation fails. This makes ToB a quite interesting form for
knowledge compilation.

Avenues for future work include studying the succinct-
ness of ToBs, and the transformations supported by ToBs.
For example, the negation transformation of a ToB is triv-
ial, by just switching the two terminal nodes, while it is not
known to be polytime for d-DNNFs. Also, the ToB could
be adapted for exploiting multi-core CPUs. For instance, if
there are four cores in a CPU, then the child subtrees of the
root node can be partitioned into four groups and the pro-
cessing in each group can be allocated to a core.
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