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Abstract

Graph representation learning on dynamic graphs has become an important task on several real-world applications, such 

as recommender systems, email spam detection, and so on. To efficiently capture the evolution of a graph, representation 

learning approaches employ deep neural networks, with large amount of parameters to train. Due to the large model size, 

such approaches have high online inference latency. As a consequence, such models are challenging to deploy to an industrial 

setting with vast number of users/nodes. In this study, we propose DynGKD, a distillation strategy to transfer the knowledge 

from a large teacher model to a small student model with low inference latency, while achieving high prediction accuracy. 

We first study different distillation loss functions to separately train the student model with various types of information 

from the teacher model. In addition, we propose a hybrid distillation strategy for evolving graph representation learning to 

combine the teacher’s different types of information. Our experiments with five publicly available datasets demonstrate the 

superiority of our proposed model against several baselines, with average relative drop 40.60% in terms of RMSE in the link 

prediction task. Moreover, our DynGKD model achieves a compression ratio of 21:100, accelerating the inference latency 

with a speed up factor ×30 , when compared with the teacher model. For reproduction purposes, we make our datasets and 

implementation publicly available at https:// github. com/ stefa nosan taris/ DynGKD.

Keywords Graph representation learning · Evolving graphs · Knowledge distillation

1 Introduction

Graph representation learning has been at the core of several 

machine learning tasks on graphs, such as node classification 

(Zhang et al. 2019; Qu et al. 2019; Kipf and Welling 2017) 

and link prediction (Kumar et al. 2019; Zhang and Chen 

2018). The main objective is to learn low-dimensional node 

embeddings, so that the structure of the graph is reflected 

on the embedding space. Early approaches work primar-

ily on static graphs (Grover and Leskovec 2016; Veličković 

et al. 2018; Perozzi et al. 2014). However, most real-world 

applications are dynamic, where graphs evolve over time. 

Recently, dynamic approaches have been proposed to cap-

ture both the topological and temporal properties of evolving 

graphs in the node embeddings (Sankar et al. 2020; Nguyen 

et al. 2018; Pareja et al. 2020). Such approaches have dem-

onstrated remarkable performance on various applications, 

such as email spam detection (Akoglu et al. 2015), recom-

mender systems (Cao et al. 2019; Ying et al. 2018), name 

disambiguation in citation networks (Zhang et al. 2018), 

molecular generation (You et al. 2018; Bresson and Laurent 

2019), and so on.

Learning dynamic embeddings that preserve the time-

varying structure and node interactions of an evolving graph 

is a fundamental problem. Existing representation strategies 

apply several techniques among consecutive graph snapshots 

to learn accurate node embeddings, such as recurrent neural 

networks (Pareja et al. 2020), attention mechanisms (Sankar 

et al. 2020), and temporal regularizers (Li et al. 2017). To 

preserve the structural and temporal properties of evolving 

graphs without loss of information, such strategies design 

neural network architectures with a large amount of model 

parameters. Given the large model size, existing strategies 
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present high online inference latency. Despite their remark-

able achievements in producing accurate node embeddings, 

these strategies are not suitable for real-world applications 

with almost real-time requirements of inference latency. For 

example, distributed live video streaming solutions in large 

enterprises, exploit the offices’ internal high bandwidth net-

work to distribute the video content among viewers/nodes 

(Roverso et al. 2015). To select the high-bandwidth connec-

tions, distributed solutions exploit graph neural networks to 

predict the throughput among viewers in real-time (Antaris 

and Rafailidis 2020b). Based on the predicted throughput, 

each viewer adapts the connections to efficiently distrib-

ute the video content. However, the high online inference 

latency of the large models negatively impacts the distribu-

tion of the video stream in an enterprise network (Antaris 

et al. 2020).

To reduce the online inference latency, knowledge dis-

tillation has been recently introduced to generate compact 

models without any information loss (Hinton et al. 2015; 

Bucilua et  al. 2006). In particular, knowledge distilla-

tion trains a cumbersome model, namely teacher, without 

stringent requirements on inference latency. Therefore, the 

teacher model is trained as an offline process and employs 

neural networks with large model sizes. Once the teacher 

model is trained, the knowledge can be distilled to a compact 

model, namely student, through a well-designed distillation 

loss function. Therefore, the student model has significantly 

lower number of model parameters than the teacher model, 

while preserving high performance accuracy. Given the low 

online inference latency due to the small model size, the stu-

dent model can be deployed to online applications (Phuong 

and Lampert 2019; Tang and Wang 2018; Asif et al. 2020; 

Qian et al. 2020; Kim and Rush 2016).

Existing knowledge distillation strategies fall in two main 

categories: (1) feature-based strategies that exploit the gener-

ated features of either the last layer or the intermediate layers 

as a supervision signal to train the student model (Romero 

et al. 2015; Huang and Wang 2017; Gou et al. 2021), and (2) 

response-based strategies where the distillation loss function 

minimizes the differences between the predicted values of 

the teacher and student models (Chen et al. 2017; Meng et al. 

2019). Recently, the impact of knowledge distillation has 

been studied for static graph representation learning strate-

gies (Yang et al. 2020; Chen et al. 2020; Ma and Mei 2019). 

These representation strategies extract the structural knowl-

edge of a static graph and perform distillation to transfer the 

acquired knowledge to a compact student model. However, 

such approaches ignore the temporal aspect of the evolving 

networks. A recent attempt to employ knowledge distilla-

tion on a dynamic graph representation learning strategy has 

been presented in our preliminary study of the Distill2Vec 

model (Antaris and Rafailidis 2020a). Distill2Vec trains a 

teacher model on the offline graph snapshots and transfers 

the knowledge to the student model when learning on the 

online data. Distill2Vec employs a feature-based distillation 

strategy, by adopting the Kullback-Liebler divergence on 

the teacher and student node embeddings in the distillation 

loss function. However, Distill2Vec focuses only on the final 

node embeddings of the teacher model, ignoring the predic-

tion accuracy of the teacher model and the additional infor-

mation captured on the intermediate features/layers.

In this article, we propose a Dynamic Graph represen-

tation learning model with Knowledge Distillation. Dyn-

GKD extends the Distill2Vec model, making the following 

contributions:

• We propose different distillation loss functions based on 

the way that we transfer the knowledge from the teacher 

model to the student model. We also present a hybrid 

strategy to combine the teacher’s features and responses 

in the distillation loss function, allowing the student 

model to distill more information than incorporating only 

one distillation strategy separately.

• We conduct an extensive experimentation on networks 

with different characteristics, such as two real-world 

social networks and three evolving networks generated 

by live video streaming events. We demonstrate that our 

hybrid distillation strategy for the student model signifi-

cantly reduces the model size, while constantly outper-

forms the teacher model and the baseline strategies in the 

link weight prediction task.

The remainder of the paper is organized as follows: Sect. 2 

reviews the related work and in Sect. 3 we formulate the 

problem of knowledge distillation on dynamic graph repre-

sentation learning. Section 4 describes the proposed model 

DynGKD, the experimental evaluation is presented in 

Sect. 5, and we conclude the study in Sect. 6.

2  Related work

2.1  Graph representation learning

Static Approaches Graph representation learning has 

attracted a surge of research in the recent years (Wang et al. 

2020). Early attempts adopt traditional network embedding 

techniques, by capturing the distribution of the positive node 

pairs in the latent space (Hamilton et al. 2017b). DeepWalk 

(Perozzi et al. 2014) performs random walks on the graph 

and adopts the skip-gram model (Mikolov et al. 2013) to 

learn accurate network embeddings that correspond to the 

log-likelihood of observed nodes in the walks. Node2Vec 

(Grover and Leskovec 2016) extends the DeepWalk model 

by biasing the random walks, so as to compute different 

properties of the graph. Recently, HARP (Chen et al. 2018a) 
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coarsens related nodes to supernodes to improve the perfor-

mance of random walks in DeepWalk and Node2Vec.

With the remarkable performance of neural networks, 

graph representation learning adopts various architectures 

to compute accurate node embeddings. Existing approaches 

employ spectral convolutions on graphs to learn node 

embeddings with similar structural properties (Kipf and 

Welling 2017). To alleviate the scalability issues of spectral 

convolutions on large graphs, GraphSage (Hamilton et al. 

2017a) and FastGCN (Chen et al. 2018b) employ neighbr-

hood and importance sampling, respectively. GAT exploits 

an attention mechanism to transform the node properties 

to low-dimensional embeddings (Vaswani et  al. 2017). 

Recently, DAGNN decouples the convolution operation 

to two key factors, that is node properties transformation 

and propagation (Liu et al. 2020). This allows DAGNN to 

improve the performance of convolution on graphs by adopt-

ing deeper neural network architectures than the previous 

approaches. However, such approaches are applied on static 

graphs, ignoring the dynamic properties of the nodes in 

evolving graphs.

Dynamic Approaches Dynamic graph representation 

learning approaches adopt various neural network archi-

tectures to model the structural and temporal properties of 

evolving graphs. Early attempts model the evolving graph 

as an ordered collection of graph snapshots and extend the 

static approaches to learn accurate node embeddings (Ham-

ilton et al. 2017b). CTDNE employs temporal random walks 

on consecutive graph snapshots and applies the skip-gram 

model to learn the transition probability among two nodes 

(Nguyen et al. 2018). DNE adopts random walks on each 

graph snapshot and adjusts the embeddings of the nodes 

that present significant changes among consecutive graph 

snapshots (Du et al. 2018). DynGEM employs deep auto-

encoders to compute the structural properties of each graph 

snapshot and exploits temporal smoothness methods to 

ensure stability on the computed node embeddings among 

consecutive graph snapshots (Goyal et al. 2018). Recently, 

DynVGAE uses variational auto-encoders (Kipf and Well-

ing 2016) to ensure temporal smoothness by introducing 

weight parameter sharing among consecutive models (Goyal 

et al. 2018). DynamicTriad exploits the triadic closure as a 

supervised signal to capture the social homophily property 

in evolving social networks (Zhou et al. 2018). EvolveGCN 

(Pareja et al. 2020) and DynGraph2Vec (Goyal et al. 2020) 

adopt recurrent neural networks (RNNs) among consecutive 

graph convolutional networks (Kipf and Welling 2017) to 

model the evolution of the graph in the hidden state. Further-

more, DySAT (Sankar et al. 2020) employs graph attention 

mechanisms to capture the evolution of the graph.

Recent approaches compute the node embeddings by 

leveraging the time ordered node interactions of the evolv-

ing graph. DeepCoevolve exploits RNNs to define a point 

process intensity function, which allows the model to com-

pute the influence of an interaction on the node embed-

ding over time (Dai et al. 2016). Jodie (Kumar et al. 2019) 

employs both attention mechanism and RNN to predict 

the evolution of the node and adapt the generated embed-

dings accordingly. Moreover, TigeCMN (Zhang et al. 2020) 

designs coupled memory networks to store and update the 

node embeddings, while TDIG-MPNN (Chang et al. 2020) 

updates the embeddings through message passing on the 

high-order correlation nodes. However, existing approaches 

require large model sizes to efficiently capture the evolution 

of the graph. Due to the large model sizes, such approaches 

have significant online inference latency.

2.2  Knowledge distillation

Knowledge distillation has been widely adopted in several 

machine learning domains, such as image recognition (Ba 

and Caruana 2014; Hinton et al. 2015), recommender sys-

tems (Tang and Wang 2018; Chen et al. 2017), language 

translation (Kim and Rush 2016) to generate compact stu-

dent models with low online inference latency (Bucilua et al. 

2006). Knowledge distillation can be divided into three main 

categories: (1) response-based, (2) feature-based, and (3) 

relation-based strategies. The response-based strategies dis-

till knowledge to the student model by exploiting the output 

of the teacher model. Response-based approaches consider 

the final output of the teacher model as a soft label to regu-

larize the output of the student model (Hinton et al. 2015; 

Mirzadeh et al. 2020; Kim et al. 2021). Accounting for the 

output of teacher model to distill knowledge, the student 

model fails to capture the intermediate supervision applied 

by the teacher model (Gou et al. 2021). Instead, feature-

based approaches distill the high-level information acquired 

by the teacher to the output features. FitNet incorporates 

the features of the intermediate layers to supervise the stu-

dent model, minimizing the L2 distillation loss function 

(Romero et al. 2015). Moreover, Zhou et al. (2018a) con-

sider the parameter sharing of intermediate layers among 

teacher and student models. Recently, Chen et al. (2020) 

formulate a feature embedding task to match the dimen-

sions of the output features generated by the teacher and 

student models. Although response-based and feature-based 

strategies distill knowledge from the outputs of specific lay-

ers in the teacher model, these approaches ignore the the 

semantic relationship among the different layers. To handle 

this issue, relation-based approaches explore the relation-

ships between different feature maps. SemCKD follows a 

cross-layer knowledge distillation strategy to address the 

different semantics of intermediate layers in the teacher and 

student models (Chen et al. 2021). In the IRG model, the stu-

dent model distills knowledge from the Euclidean distance 

between examples observed by the teacher model (Liu et al. 
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2019). In Zagoruyko and Komodakis (2017), Zagoruyko 

et al. derive an attention map from the teacher’s features to 

distill knowledge to the student model, while KDA (Qian 

et al. 2020) employs the Nyström low-rank approximation 

for kernel matrix to distill knowledge through landmark 

points. Nevertheless, such approaches focus on image pro-

cessing, and have not been evaluated on evolving graphs.

A few attempts have been made to follow knowledge 

distillation strategies to reduce the model size of graph rep-

resentation learning approaches. DMTKG calculates Heat 

Kernel Signatures to compute the node features, which are 

used as inputs into Graph Convolutional Networks (GCNs) 

to learn accurate node embeddings (Lee and Song 2019). 

DMTKG generates a compact student model by applying a 

response-based knowledge distillation strategy based on the 

weighted cross entropy distillation loss function. DistillGCN 

is a feature-based strategy that exploits the output features of 

the teachers’ GCN layers to transfer the structural informa-

tion of the graph to the student model (Yang et al. 2020). 

The distillation loss function in DistillGCN minimizes the 

prediction error of the student model on the online data and 

the Kullback Leibler divergence of the features generated by 

the teacher and student models. However, existing knowl-

edge distillation strategies are designed to transfer knowl-

edge from static graphs, ignoring the evolution of dynamic 

graphs.

3  Problem formulation

We model the evolution of a dynamic graph as a collection 

of graph snapshots over time, which is defined as follows 

(Sankar et al. 2020; Pareja et al. 2020; Nguyen et al. 2018; 

Antaris et al. 2020):

Definition 1 Evolving Graphs An evolving graph is 

defined as a sequence of K discrete graph snapshots 

G = {G1,… , G
K
} . At each timestep k = 1,… , K , a snapshot 

G
k
= (V

k
, E

k
,�

k
) is a weighted undirected graph which con-

sists of N
k
= |V

k
| nodes, and a connection set E

k
 . Each node 

u ∈ V
k
 has a c-dimensional feature vector �

k
(u) ∈ �

k
 , with 

�
k
∈ ℝ

N
k
×c . For each graph G

k
 , we consider a weighted adja-

cency matrix �
�
 , where A

k
(u, v) > 0 if e

k
(u, v) ∈ E

k
.

In an evolving graph, the node set V
k
 and edge set E

k
 

vary among consecutive graph snapshots. As illustrated in 

Fig. 1, node f ∈ V
2
 joins the evolving graph in the snap-

shot G
2
 , creating a new connection e2(f , d) ∈ E2 with node 

d ∈ V
2
 . Moreover, in the final snapshot G

K
 , node b disap-

pears, removing the respective edges. A graph representation 

learning strategy on evolving graphs is defined as follows 

(Antaris et al. 2020; Antaris and Rafailidis 2020b; Pareja 

et al. 2020):

De�nition 2 Dynamic Graph Representation Learning 

Given a sequence of l ≪ K  previous consecutive graph 

snapshots G = {G
k−l

,… , G
k
} , the goal of dynamic graph 

representation learning is to compute d-dimensional node 

embeddings �
k
∈ ℝ

N
k
×d , with d ≪ N

k
 , at the k-th timestep. 

The learned node embeddings �
k
 should accurately capture 

the structural and temporal evolution of the graph, up to the 

k-th timestep.

Our study focuses on knowledge distillation strategies 

for dynamic graph representation learning approaches, as 

defined in the following (Antaris and Rafailidis 2020a):

De�nition 3 Knowledge Distillation on Dynamic Graph 

Representation Learning The goal of knowledge distillation 

is to generate a compact student model S , which distills the 

knowledge acquired by a large teacher model T  . The teacher 

model T  learns the node embeddings �T  based on the first m 

graph snapshots GT = {GT

1
,… , G

T

m
} , with 1 < m < K , which 

correspond to the offline data. Having pretrained the teacher 

model T  , the student S computes the node embeddings �S 

on the online data GS = {GS

m+1
,… , G

S

K
} . The student model 

S distills the knowledge from the teacher T  through a distil-

lation loss function LD.

4  Proposed model

4.1  Method overview

As illustrated in Fig. 2, the DynGKD model consists of the 

teacher and student models. The goal of the proposed Dyn-

GKD model is to train a large teacher model as an offline 

process and distill the knowledge of the teacher model to a 

small student model during training on the online data.

Teacher Model The teacher model takes as input the m 

offline graph snapshots GT = {GT

1
,… , G

T

m
} . The role of the 

teacher model is to learn the node embeddings �T  to capture 

both the structural and temporal evolution of the m offline 

graph snapshots. Following Sankar et al. (2020), we adopt 

two self-attention layers to capture the structural and temporal 

evolution of the m graph snapshots. Provided that the teacher 

Fig. 1  Overview of an evolving graph over time. We denote with dot-

ted lines the new nodes/edges of the graph snapshot
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model is trained as an offline process, we employ a large num-

ber of model parameters to accurately capture the evolution of 

the graph for the offline graph snapshots.

Student Model Having pretrained the teacher model, we 

train a student model on the online graph snapshots. At each 

timestep k, the student model learns the node embeddings 

�
S

k
 , by employing two self-attention layers on the l previous 

consecutive graph snapshots GS = {GS

k−l
,… , G

S

k
} . We adopt 

a distillation loss function LD , during the online training of 

the student model, to transfer the acquired knowledge by the 

teacher model.

4.2  Teacher model on the offline data

The teacher model DynGKD-T  learns the node embeddings 

�
T  based on l consecutive graph snapshots. Provided that 

we pretrain the teacher model on the offline graph snapshots 

G
T = {GT

1
,… , G

T

m
} , we consider all the m snapshots during 

training ( l = m ), with m ≪ K . Following Sankar et al. (2020), 

we capture the evolution of the graph by employing two self-

attention layers. The structural attention layer captures the 

structural properties of each graph snapshot, and the temporal 

attention layer learns the complex temporal properties of the 

evolving graph.

Structural Attention Layer Given the offline graph snap-

shots GT = {GT

1
,… , G

T

m
} , the input of the structural attention 

layer is the m feature vectors {�1,… ,�
m
} . The structural 

attention layer computes l structural node representations 

�(u) ∈ ℝ
l×d , with l = m , of the node u ∈ V by implementing 

a multi-head self-attention mechanism as follows (Veličković 

et al. 2018; Vaswani et al. 2017):

(1)�(u) = Concat(�1(u),… ,�
g(u))

where g is the number of attention heads, N
k
(u) is the 

neighborhood set of the node u ∈ V
k
 at the graph snapshot 

G
T

k
 , � ∈ ℝ

d×c is the weight transformation matrix of the 

c-dimensional node features �
k
(u) , and ELU is the expo-

nential linear unit activation function. Variable a
k
(u, v) is 

the attention coefficient among the node u ∈ V
k
 and v ∈ V

k
 , 

defined as follows:

where || is the concatenation operation to aggregate the 

transformed feature vectors of the nodes u ∈ V
k
 and v ∈ V

k
 . 

Variable �⊤ is a 2d-dimensional weight vector parameter-

izing the aggregated feature vectors. The attention weight 

a
k
(u, v) expresses the impact of the node v on the node u at 

the k-th timestep, when compared with the neighborhood set 

N
k
(u) (Vaswani et al. 2017).

Temporal Attention Layer The input of the temporal atten-

tion layer is the m structural node embeddings {�1,… ,�
m
} 

learned by the structural attention layer. The temporal atten-

tion layer aims to capture the evolution of the graph over time. 

Therefore, we design the multi-head scale-dot product form 

of attention to learn m temporal representation �(u) ∈ ℝ
m×d 

of each node u ∈ V
k
 , as follows (Sankar et al. 2020; Vaswani 

et al. 2017):

with �(u) = ELU

( l
∑

k=1

∑

v∈Nk(u)

a
k
(u, v)��

k
(u)

)

(2)

ak(u, v) =

exp

(
LeakyReLU(Ak(u, v)�⊤[��k(u)||��k(v)])

)

∑

w∈Nk(u)

exp

(
LeakyReLU(Ak(u, v)�⊤[��k(u)||��k(w)]

)

(3)
�(u) = Concat(�1(u),… , �p(u))

with �(u) = �(u)(�(u)�value)

Fig. 2  Overview of the Dyn-

GKD model, given a sequence 

of discrete graph snapshots G . 

The teacher model is trained 

as an offline process based on 

the offline graph snapshots 

G
T  . Then, the student model 

is trained on the online graph 

snapshots GS and distills knowl-

edge from the teacher model 

through the distillation loss 

function LD
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where p is the number of attention heads, �value
∈ ℝ

d×d 

is the weight parameter matrix to transform the structural 

embeddings �(u) . Value �(u) ∈ ℝ
l×l is the attention weight 

matrix, with l = m for the teacher model, calculated as 

follows:

where �key
∈ ℝ

d×d and �query
∈ ℝ

d×d are the weight 

parameter matrices of the l structured node embeddings 

�(u) . The attention weight matrix �(u) indicates the dif-

ferences between the structural node embeddings over the l 

graph snapshots (Vaswani et al. 2017).

Having learned the l structural node embeddings �(u) and 

temporal node embeddings �(u) of the node u, we calculate 

the final node embedding �T

l
(u) of the teacher model at the 

l-th timestep, as follows:

To train the teacher model, we formulate the Root Mean 

Squared Error (RMSE) loss function with respect to the 

node embeddings �T

l
:

where � is the sigmoid activation function and the term 

(�T

l
(u)�T

l
(v)⊤ − A

l
(u, v)) is the reconstruction error of the 

neighborhood N
l
(u) of the node u ∈ V

l
 , at the l-th timestep. 

We optimize the weight parameter matrices in both the 

structural and temporal attention layers based on the loss 

function in Eq. 6 and the backpropagation algorithm with 

the Adam optimizer (Kingma and Ba 2015).

4.3  Knowledge distillation strategies

The student model learns the node embeddings �S based 

on the online graph snapshots GS . Provided that the stu-

dent model distills knowledge from the pretrained teacher 

model DynGKD-T  , the student model requires a signifi-

cantly low number of model parameters. At each timestep 

k = m + 1,… , K , the student model considers l consecutive 

graph snapshots {G
k−l

,… , G
k
} , with l ≪ K . We compute the 

l structural and temporal node embeddings based on Eqs. 1 

and 3, respectively. The final node embeddings are computed 

according to Eq. 5.

To transfer the knowledge from the teacher model, the 

student model formulates a distillation loss function LD 

(4)�(u) =

k
�

i,j=k−l

exp(
(�i(u)�

query)(�j(u)�
key)⊤

√

l
)

k
∑

r=k−l

exp(
(�i(u)�

query)(�r(u)�
key)⊤

√

l
)

(5)�
T

l
(u) = �

l
(u) + �

l
(u)

(6)

min
�

T

l

L
T =

√

√

√

√

1

N
l

∑

u∈Vl

∑

v∈Nl(u)

(

�(�T

l
(u)�T

l
(v)⊤ − A

l
(u, v)

)2

during the online training. As aforementioned in Sect. 1, 

the knowledge distillation strategies can be categorized as 

response-based and feature-based, according to the type of 

information to transfer the information from the teacher 

model (Gou et al. 2021). To evaluate the impact of each 

distillation strategy on the learned embeddings �S of the 

student model, we formulate one response-based and two 

feature-based distillation loss functions. Moreover, we pro-

pose a hybrid distillation loss function that exploits both 

the responses and features of the teacher model during the 

online training process of the student model.

Response-Based Distillation Strategy (DynGKD-R ) In 

the response-based distillation strategy DynGKD-R , we 

focus on the prediction accuracy of the teacher model on 

the online data. The student model learns the node embed-

dings �S

k
 at the k-th timestep, by minimizing the following 

distillation loss function (Antaris et al. 2020):

where LS

k
 is the root mean squared error of the student model 

on the online data. Value LT

k
 is the prediction error of the 

teacher model DynGKD-T  in Eq. 6 on the online data. 

Hyper-parameter � ∈ [0, 1] controls the tradeoff between 

the two losses. High � values balance the training of the 

node representations �S

k
 towards the errors of the student 

model, ignoring the knowledge of the teacher model. The 

distillation loss function LD of DynGKD-R allows the stu-

dent model to mimic the reconstruction errors of the teacher 

model based on Eq. 6, while significantly reducing the 

model size (Antaris et al. 2020).

Feature-Based Distillation Strategies (DynGKD-F1

/DynGKD-F2 ) As aforementioned in Sect. 4.2, the teacher 

model computes node embeddings �T  that preserve both the 

structural and temporal evolution of the graph. We exploit 

the node embeddings �T  to supervise the training of the 

student model through the distillation loss function in the 

feature-based distillation strategy DynGKD-F1 as follows:

where L
F1

k
= KL(�S

k
|�T

k
) is the Kullback-Liebler (KL) 

divergence among the node embeddings �S

k
 and �T

k
 . The LF1

k
 

term prevents the student node embeddings �S

k
 to be sig-

nificantly different from the teacher node embeddings �T

k
 . 

Therefore, by optimizing Eq. 8, the student model gener-

ates node embeddings �S

k
 that match the embedding space 

of the teacher model. Instead, the distillation loss function 

of the response-based strategy DynGKD-R in Eq. 7 allows 

the student model to predict similar values with the teacher 

model, regardless of the differences between the generated 

node embeddings �S

k
 and �T

k
.

(7)min
�

S

k

L
D = �L

S

k
+ (1 − �)LT

k

(8)min
�

S

k

L
D = �L

S

k
+ (1 − �)LF1

k
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To generate the final node embeddings �T  , the teacher 

model DynGKD-T  computes intermediate structural embed-

dings �T  and temporal embeddings �T  based on Eqs. 1 

and 3, respectively. Following (Romero et al. 2015), in the 

second examined feature-based distillation strategy Dyn-

GKD-F2 , we adopt the intermediate embeddings as a super-

vision signal to improve the training of the student model. 

We formulate the distillation loss function in DynGKD-F2 

to incorporate both the structural and temporal embeddings 

of the teacher model as follows:

where LF2

k
= KL(�S

k
|�T

k
) + KL(�S

k
|�T

k
) is the KL divergence 

among the structural and temporal node embeddings of the 

teacher and student models. Note that the feature-based 

knowledge distillation of DynGKD-F1 in Eq. 8 allows the 

student model to mimic only the final embeddings of the 

teacher model. In contrast, the distillation loss function of 

DynGKD-F2 in Eq. 9 transfers knowledge by matching both 

the structural and temporal embedding spaces of the teacher 

and student models. Therefore, the intermediate embeddings 

�
S

k
 and �S

k
 of the student model are similar to the intermedi-

ate node embeddings �T

k
 and �T

k
 of the teacher model.

Hybrid Distillation Strategy (DynGKD-H ) Although the 

above strategies provide favorable information for the train-

ing of the student model, such strategies focus on transfer-

ring individual instance of knowledge from the teacher to the 

student. In particular, the student model is trained to mimic 

either the predicted values or the learned embeddings of the 

teacher model. To train a student model that distills knowl-

edge from both the responses and the embeddings of the 

teacher model, we formulate a hybrid strategy DynGKD-H 

based on the following distillation loss function:

where L
H

k
= L

T

k
+ L

F2

k
 . The term L

T

k
 corresponds to the 

prediction error of the teacher model based on Eq. 6, and 

L
F2

k
 is the KL divergence of the intermediate embeddings 

generated by the teacher and student models, according to 

Eq. 9. In contrast to the previously examined distillation 

strategies, the hybrid loss function in Eq. 10 allows the stu-

dent model to distill knowledge from different outputs of 

(9)min
�

S

k

L
D = �L

S

k
+ (1 − �)LF2

k

(10)min
�

S

k

L
D = �L

S

k
+ (1 − �)LH

k

the teacher model at the same time. This means that the 

L
T

k
 loss in Eq. 10 allows the student model to have simi-

lar prediction accuracy to the teacher model. In addition, 

the structural and temporal embeddings �S

k
 and �S

k
 of the 

student model reflect on the structural and temporal embed-

ding space of the teacher model. As we will demonstrate in 

Sect. 5.4, this hybrid strategy allows the student model to 

learn more accurate node embeddings, achieving high pre-

diction accuracy, while significantly reducing the number of 

required parameters.

5  Experiments

5.1  Datasets

To evaluate the performance of the examined models in dif-

ferent network characteristics, we use two datasets of social 

networks, and three datasets of live video streaming events. 

In Table 1, we summarize the datasets’ statistics.

Social networks We consider two bipartite networks from 

Yelp1 and MovieLens2(ML-10M). Each graph snapshot in 

the Yelp dataset corresponds to the ratings of the users to 

the businesses within a 6 month period. In ML-10M, each 

graph snapshot consists of the user ratings to the movies 

within a 1 year period.

Video streaming networks We consider three video 

streaming datasets, which correspond to the connections of 

the viewers in real live video streaming events in enterprise 

networks (Antaris et al. 2020). The duration of each event is 

80 minutes. As aforementioned in Sect. 1, each viewer estab-

lishes a limited number of connections, so as to distribute 

the video content with other viewers, using the offices’ inter-

nal high bandwidth network. To efficiently identify the high-

bandwidth connections, each viewer periodically adapts 

the connections. We monitor the established connections 

during a live video streaming event and model the view-

ers interactions as an undirected weighted dynamic graph. 

The weight of a graph edge corresponds to the throughput 

measured between two nodes/viewers. Each dataset consists 

of 8 discrete graph snapshots, where each graph snapshot 

Table 1  Summary statistics of 

the five datasets
Attributes Social networks Video streaming networks

Yelp ML-10M LiveStream-4K LiveStream-6K LiveStream-16K

#Nodes 6569 80,555 3813 6655 17,026

#Connections 95,361 10,000,054 11,066 787,291 482,185

#Time steps 16 14 8 8 8

1 https:// www. yelp. com/ datas et.
2 https:// group lens. org/ datas ets/ movie lens/.

https://www.yelp.com/dataset
https://grouplens.org/datasets/movielens/
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corresponds to the viewers’ interactions with a 10 minute 

period.

5.2  Evaluation protocol

We evaluate the performance of our proposed model on the 

link weight prediction task on the online graph snapshots GS . 

For the social networks, we consider the first 5 timesteps as 

the offline data and the remaining timesteps are the online 

data, that is 11 and 9 online graph snapshots for the Yelp and 

ML-10M datasets, respectively. For each dataset of the video 

streaming networks, we consider the first 3 graph snapshots 

as the offline data, and the remaining 5 correspond to the 

online data.

The task of link weight prediction is to predict the weight 

of the unobserved edges U
k+1 = E

k+1 ⧵ {E1,… , E
k
} in the 

k + 1 time step, given the node embeddings �S

k
 generated by 

the student model at the k-th timestep. Following (Antaris 

et al. 2020), we concatenate the node embeddings �S

k
(u) and 

�
S

k
(v) , for each connection (u, v) ∈ E

k
 , based on the Had-

amard operator, and train a Multi-Layer Perceptron (MLP) 

model, using negative sampling. Having trained the MLP 

model, we input the concatenated node embeddings for the 

unobserved edges U
k+1

 , to calculate the predicted weights.

We measure the prediction accuracy of each examined 

model, based on the Root Mean Squared Error (RMSE) and 

Mean Absolute Error (MAE) metrics, defined as follows:

Note that the RMSE metric emphasizes on large prediction 

errors, rather than the MAE metric does. Following Pareja 

et al. (2020); Sankar et al. (2020); Antaris et al. (2020), to 

train the model at each time step k, we randomly select 20% 

of the unobserved links for validation set. The remaining 

80% of the unobserved links are used as test set. We repeat 

each experiment 5 times and report the average RMSE and 

MAE over the five trials.

5.3  Examined models

We compare the performance of our proposed model with 

the following examined models:

• DynVGAE Mahdavi et al. (2020) is a dynamic joint vari-

ational auto-encoder architecture that shares parameters 

over consecutive graph auto encoders. Given that there 

(11)RMSE =

√
1

|U
k+1|

∑

e(u,v)∈Uk+1

(A
k+1(u, v) − �

S
⊤

k
�

S

k
)2

(12)MAE =
1

|U
k+1|

∑

e(u,v)∈Uk+1

|A
k+1(u, v) − �

S
⊤

k
�

S

k
|

is no publicly available implementation, we implemented 

DynVGAE from scratch and publish our code.3

• DynamicTriad4 Zhou et al. (2018b) a dynamic graph 

representation learning approach that employs triadic 

closure to capture the changes over different graph snap-

shots.

• TDGNN Nguyen et al. (2018) a graph representation 

learning that applies aggregation functions on the tempo-

ral graph edges. For reproducability purposes, we imple-

mented TDGNN and made our code publicly available.5

• DyREP6 Trivedi et al. (2019) a two-time scale process 

that captures the temporal node interactions by employ-

ing deep recurrent model, so as to calculate the prob-

ability of occurrence of future links between two nodes.

• EvolveGCN7 Pareja et al. (2020) a dynamic graph rep-

resentation learning model with Gated Recurrent Units 

(GRUs) between the convolutional weights of consecu-

tive GCNs.

• DMTKG-T  Ma and Mei (2019) the teacher model of the 

DMTKG knowledge distillation strategy. DMTKG-T 

employs Heat Kernel Signature (HKS) on static graph 

snapshots and uses Convolutional Neural Network layers 

to calculate the latent representations based on Deep-

Graph. To ensure fair comparison, we train DMTKG- T 

per snapshot, with each snapshot containing aggregated 

graph history up to k-th snapshot. We implemented 

DMTKG-T  from scratch and published our code,8 as 

there was no implementation available.

• DMTKG-S Ma and Mei (2019) the student model of 

DMTKG, which minimizes the distillation loss function 

based on the root mean squared error.

• KDA-T  Qian et al. (2020) the teacher model of the KDA 

knowledge distillation strategy. Given that KDA is a 

model-agnostic distillation strategy, we employed the 

DynGKD model, presented in Sect. 4.2, for fair com-

parison.

• KDA-S Qian et al. (2020) the student model of KDA, 

which distills knowledge from the teacher model by 

adopting the Nyström low-rank approximation for a ker-

nel matrix Williams and Seeger (2001). For reproduca-

bility purposes, we publish our implementation,9 as there 

is no publicly available implementation of KDA.

• DynGKD-T  the teacher model of the proposed approach, 

presented in Sect. 4.2.

3 https:// github. com/ stefa nosan taris/ DynVG AE.
4 https:// github. com/ lucki ezhou/ Dynam icTri ad.
5 https:// github. com/ stefa nosan taris/ TDGNN.
6 https:// github. com/ uogue lph- mlrg/ LDG.
7 https:// github. com/ IBM/ Evolv eGCN.
8 https:// github. com/ stefa nosan taris/ DMTKG.
9 https:// github. com/ stefa nosan taris/ KDA.

https://github.com/stefanosantaris/DynVGAE
https://github.com/luckiezhou/DynamicTriad
https://github.com/stefanosantaris/TDGNN
https://github.com/uoguelph-mlrg/LDG
https://github.com/IBM/EvolveGCN
https://github.com/stefanosantaris/DMTKG
https://github.com/stefanosantaris/KDA
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• DynGKD-R the student model that distills the knowledge 

from the DynGKD-T  model based on the response-based 

distillation strategy in Eq. 7.

• DynGKD-F1 the student model that employs the feature-

based distillation loss function in Eq. 8 to transfer knowl-

edge from the teacher model.

• DynGKD-F2 the student model that mimics the interme-

diate node embeddings of the teacher model through the 

feature-based loss function in Eq. 9.

• DynGKD-H the proposed hybrid distillation strategy that 

transfers knowledge from the teacher model through the 

loss function in Eq. 10.

For all the examined models, we tuned the hyper-parameters 

based on a grid selection strategy on the validation set and 

report the results with the best configuration. In particular, 

in DynVGAE and DynamicTriad, we set the embedding size 

to d = 256 with window size l = 2 in all datasets. In TDGNN 

and DyREP, the embedding size is set to d = 128 , with l = 3 

previous graph snapshots. EvolveGCN uses d = 32 node 

embeddings dimension and l = 2 window size. In DMTKG-

T  , the emebdding size is fixed to d = 512 in all datasets. 

In DMTKG-S , we reduce the embedding size to d = 32 . 

In KDA-T  and our teacher model DynGKD-T  , we set the 

embedding size to d = 128 , with l = 5 consecutive graph 

snapshots, and the number of head attentions is set to 16 in 

both Eqs. 1 and 3. In the feature-based student models Dyn-

GKD-F1 and DynGKD-F2 , the hybrid model DynGKD-H , 

and the relation-based student model KDA-S , we reduce the 

number of head attentions to 2 and the window size l = 3 , 

while the node embedding dimension is set to d = 128 for 

all datasets. The student model DynGKD-R achieves the 

best performance when apply 8 head attentions, with d = 64 

node embedding size and l = 2 previous graph snapshots. As 

aforementioned in Sect. 4.3, the response-based distillation 

strategy DynGKD-R focuses on the prediction error of the 

teacher model, ignoring the information contained in the 

generated feature embeddings. Therefore, the student model 

DynGKD-R requires higher number of attention heads than 

the feature-based models, to capture the multiple latent 

facets of the online graph snapshots. Instead, the feature-

based approaches distill information from the teacher output 

embeddings, which contain the information of the different 

latent facets. Therefore, the feature-based approaches Dyn-

GKD-F1 , DynGKD-F2 and DynGKD-H require 2 attention 

heads during training on the online data. All experiments 

were executed on a single server with a CPU Intel Xeon 

Bronze 3106, 1.70GHz and a GPU Geforce RTX 2080 Ti. 

The operating system of the server was Ubuntu 18.04.5 LTS, 

and we implemented the DynGKD model using PyTorch 

1.7.1. In Sect. 5.5, we study the influence of the knowledge 

distillation parameter � on the performance of each student 

model.

5.4  Performance evaluation

In Fig. 3, we evaluate the performance of the proposed 

hybrid student model DynGKD-H against the non-distil-

lation strategies, in terms of RMSE and MAE. We observe 

that the proposed hybrid student model constantly outper-

forms the baseline approaches in all datasets. This suggests 

that DynGKD-H can efficiently learn node embeddings �S 

to capture the evolution of the online graph snapshots. Com-

pared with the second best method DyREP, the proposed 

DynGKD-H model achieves high link weight prediction 

Fig. 3  Performance comparison of the proposed hybrid student model 

DynGKD-H against the non-distillation strategies in terms of RMSE 

and MAE
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accuracy, with average relative drops 38.32 and 88.68% 

in terms of RMSE and MAE in Yelp, 15.77 and 30.07% 

in the ML-10M dataset. For the video streaming datasets, 

the DynGKD-H model achieves average relative drops 

26.43 and 59.33% in LiveStream-4K, 33.44 and 22.89% in 

LiveStream-6K, 89.35 and 19.17% in LiveStream-16K. The 

DyREP model outperforms the other baseline approaches, as 

the learned node embeddings capture the temporal changes 

of each node’s neighborhood between consecutive graph 

snapshots. Instead, the other baseline approaches focus 

only on the structural changes of the graphs, ignoring the 

evolution of the node interactions over time. However, the 

DyREP model is designed to identify historical patterns on 

the nodes connections over time (Trivedi et al. 2019). There-

fore, DyREP has low prediction accuracy on dynamic graphs 

that are updated significantly over time (Liu et al. 2020). The 

proposed DynGKD-H model overcomes this problem by 

capturing both the structural and temporal evolution of the 

graph using two self-attention layers. The structural attention 

layer contains the information of the structural properties 

of each graph snapshot, while the temporal attention layer 

captures the evolution of the generated structural embed-

dings over time. Therefore, the learned node embeddings 

of the DynGKD-H model reflect on the temporal variations 

of the graph.

In Fig. 4, we demonstrate the performance of the exam-

ined knowledge distillation strategies in terms of RMSE 

and MAE. We compare the proposed DynGKD model 

against DMTKG (Ma and Mei 2019), a baseline approach 

which employs a response-based distillation strategy on 

graph neural networks. Moreover, we evaluate our pro-

posed model against KDA (Qian et al. 2020), a model-

agnostic relation-based strategy. Given that we exploit 

the proposed DynGKD model, presented in Sect. 4 as the 

teacher model KDA-T  , we omit the results of KDA-T  . 

On inspection of Fig. 4, we observe that the hybrid stu-

dent model DynGKD-H constantly outperforms its vari-

ants in all datasets. Note that DynGKD-H exploits the 

hybrid distillation strategy in Eq. 10 to transfer different 

types of information from the teacher model. Therefore, 

the DynGKD-H student model mimics both the prediction 

accuracy and the generated structural and temporal node 

embeddings of the teacher. Instead, the response-based 

DynGKD-R and the feature-based DynGKD-F1 and Dyn-

GKD-F2 approaches, exploit only a single source of infor-

mation from the teacher. This means that the DynGKD-H 

strategy distills rich information from the teacher model, 

which allows the student model to capture the evolution 

of the graph more efficiently than its variants. We also 

observe that all the examined variants of the DynGKD 

student model constantly outperform the DynGKD-T  

teacher model in all datasets. This indicates that the gen-

erated student models overcome any bias introduced by the 

teacher model DynGKD-T  , during training on the offline 

data. In addition, the proposed hybrid student model 

DynGKD-H achieves higher prediction accuracy than the 

DMTKG-T  and DMTKG-S models in all datasets. This 

occurs because DMTKG model is designed to learn node 

embeddings on static graphs, ignoring the evolution of the 

graph. Compared with the relation-based strategy KDA-

S , our proposed DynGKD-H model achieves superior 

performance in all datasets. KDA employs the Nyström 

low-rank approximation to distill knowledge through the 

selected landmark points, ignoring the temporal evolution 

of the nodes.

Fig. 4  Comparison of the examined teacher and student models in 

terms of RMSE and MAE
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In Tables 2, 3 and 4, we present the number of required 

parameters in millions to train each examined distillation 

strategy. Moreover, we report the online inference time in 

seconds to compute the node embeddings. As aforemen-

tioned in Sect. 4, the teacher models DynGKD-T  , DMTKG-

T  and KDA-T  learn the node embeddings based on the 

offline graph snapshots GT  . Therefore, the DynGKD-T  , 

DMTKG-T  and KDA-T  models have the same number of 

required parameters and inference times, when evaluated 

on the online graph snapshots GS . As aforementioned in 

Sect. 5.3, KDA-T  adopts the DynGKD model, thus requir-

ing the same number of parameters as the DynGKD-T  

model. Moreover, the feature-based strategies DynGKD-F1 

and DynGKD-F2 and the hybrid strategy DynGKD-H 

require the same number of parameters to train on the online 

graph snapshots. This occurs because the distillation loss 

functions in Eq. 8–10 exploit the features of the teacher to 

transfer knowledge to the student model. Therefore, the stu-

dent model computes node embeddings that reflect on the 

same embedding space as the teacher embeddings. Instead, 

in DynGKD-R the student model distills knowledge from 

the predicted values of the teacher model, ignoring the infor-

mation captured by the generated embeddings, thus having 

different number of required parameters. In addition, the 

response-based KDA-S strategy achieves high prediction 

accuracy when setting the same number of parameters as 

DynGKD-F1 , DynGKD-F2 and DynGKD-H , thus achiev-

ing similar inference time. On inspection of Tables 2, 3 and 

4, we observe that the feature-based distillation strategies 

DynGKD-F1 and DynGKD-F2 , and the hybrid strategy 

DynGKD-H require significantly a lower number of param-

eters than the response-based approach DynGKD-R . This 

occurs because the generated model in DynGKD-R strategy 

requires high number of attention heads to capture the multi-

ple facets of the evolving graph. In addition, we calculate the 

compression ratio of the DynGKD-H strategy, as the number 

of parameters to train the student model, when compared 

with the size of the teacher model. The DynGKD-H student 

model achieves average compression ratios of 21:100 and 

69:100 for the Yelp and ML-10M datasets, when compared 

with the required parameters of the teacher model Dyn-

GKD-T  . For the live video streaming datasets, the averaged 

Table 2  Inference time in 

seconds and #Parameters 

in millions of the examined 

distillation strategies for the 

Yelp dataset

Baselines Time steps

1 2 3 4 5 6 7 8 9 10 11

DMTKGT-T

 #Parameters 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182

Inference time 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672

DMTKG-S

#Parameters 1.063 1.099 1.123 1.155 1.192 1.226 1.468 1.591 1.802 1.914 2.022

Inference time 0.484 0.491 0.512 1.121 0.579 0.682 0.699 0.832 0.905 0.952 1.035

KDA-T

#Parameters 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636

Inference time 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503

KDA-S

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-T

#Parameters 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636

Inference time 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503

DynGKD-R

#Parameters 1.626 1.813 1.200 2.179 2.345 2.525 2.719 2.910 3.094 3.219 3.410

Inference time 0.214 0.257 0.312 0.366 0.388 0.405 0.447 0.489 0.516 0.572 0.602

DynGKD-F1

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-F2

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-H

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401
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compression ratios are 13:100 in LiveStream-4K, 14:100 in 

LiveStream-6K, and 32:100 in Livestream-16K. Provided 

that the proposed hybrid student model DynGKD-H reduces 

the model size, we demonstrate the impact of the number of 

parameters on the online inference time of the node embed-

dings. We observe that the DynGKD-H achieves a speed 

up factor ×17 on average, for the latency inference time in 

Yelp dataset, when compared with the DynGKD-T  teacher 

model. DynGKD-H achieves a speed up factor ×25 for the 

latency inference time in ML-10M dataset, ×42 in LiveS-

tream-4K, ×23 in LiveStream-6K, and ×36 in Livestream-

16K. On inspection of Tables 2, 3 and 4 and Fig. 4, we 

find that the feature-based strategies and the hybrid strat-

egy require the same amount of parameters during train-

ing. However, the DynGKD-H constantly outperforms the 

feature-based strategies in terms of RMSE accuracy. This 

occurs because the DynGKD-H exploits multiple types of 

information from the teacher model, which allows the stu-

dent model to overcome any bias captured in the learned 

node embeddings of the teacher model. Therefore, the pro-

posed DynGKD-H student model significantly reduces the 

model size and the online inference latency, while achieving 

high prediction accuracy.

5.5  Impact of knowledge distillation

In Fig. 5, we present the impact of the hyper-parameter � 

(Eqs. 7–10) on the performance of each knowledge distil-

lation strategy. We vary the hyper-parameter � from 0.1 to 

0.9 by a step of 0.1, to study the influence of the teacher 

DynGKD-T  model on the different distillation loss functions 

L
D , during the online training process of the student model. 

For each value of � , we report the average RMSE value 

of each knowledge distillation strategy over all the online 

graph snapshots GS . We observe that all strategies achieve 

the best prediction accuracy when the hyper-parameter � is 

set to 0.4 for the Yelp and ML-10M datasets, and 0.3 in 

LiveStream-4K, LiveStream-6K and LiveStream-16K. For 

low values of � , the distillation strategies emphasize more on 

the knowledge of the teacher model than the student model. 

Therefore, the student model prevents any additional train-

ing on the online data, which negatively impacts the learned 

Table 3  Inference time in 

seconds and #Parameters 

in millions of the examined 

distillation strategies for the 

ML-10M dataset

Baselines Time steps

1 2 3 4 5 6 7 8 9

DMTKGT-T

#Parameters 30.562 30.562 30.562 30.562 30.562 30.562 30.562 30.562 30.562

Inference time 3.182 3.182 3.182 3.182 3.182 3.182 3.182 3.182 3.182

DMTKG-S

#Parameters 15.106 16.023 17.692 19.296 20.921 21.749 23.982 24.591 25.881

Inference time 2.682 2.703 2.713 2.785 2.792 2.817 2.2833 2.864 2.899

KDA-T

#Parameters 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019

Inference time 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864

KDA-S

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-T

#Parameters 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019

Inference time 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864

DynGKD-R

#Parameters 24.300 26.302 28.542 30.909 34.098 36.252 38.247 40.336 41.291

Inference time 3.874 4.125 5.011 5.123 5.872 6.023 6.249 7.038 7.492

DynGKD-F1

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-F2

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-H

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168
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embeddings to capture the evolution of the graph. Instead, 

increasing the value of � degrades the performance of the 

distillation strategies. This occurs because the student model 

is trained with low supervision from the teacher model.

Additionally, in Fig. 5, we study the influence of the 

hyper-parameter � on the online inference latency of the 

knowledge distillation strategies. For each value of � , we 

report the average inference latency in seconds over all 

the online graph snapshots. Given that DynGKD-F1 , Dyn-

GKD-F2 and DynGKD-H exploit the teacher embeddings 

Table 4  Inference time in seconds and #Parameters in millions of the 

examined distillation strategies for the LiveStream datasets

Time steps

1 2 3 4 5

LiveStream-4K

DMTKGT-T

#Parameters 3.673 3.673 3.673 3.673 3.673

Inference time 0.879 0.879 0.879 0.879 0.879

DMTKG-S

#Parameters 1.192 1.216 1.290 1.356 1.418

Inference time 0.634 0.679 0.684 0.692 0.705

KDA-T

#Parameters 6.960 6.960 6.960 6.960 6.960

Inference time 1.174 1.174 1.174 1.174 1.174

KDA-S

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-T

#Parameters 6.960 6.960 6.960 6.960 6.960

Inference time 1.174 1.174 1.174 1.174 1.174

DynGKD-R

#Parameters 1.639 1.690 1.754 1.762 1.770

Inference Time 0.471 0.534 0.577 0.593 0.612

DynGKD-F1

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-F2

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-H

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

LiveStream-6K

DMTKGT-T

#Parameters 5.129 5.129 5.129 5.129 5.129

Inference time 6.016 6.016 6.016 6.016 6.016

DMTKG-S

#Parameters 2.564 2.758 2.897 2.918 2.994

Inference Time 2.015 2.102 2.113 2.127 2.174

KDA-T

#Parameters 10.042 10.042 10.042 10.042 10.042

Inference time 9.906 9.906 9.906 9.906 9.906

KDA-S

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-T

#Parameters 10.042 10.042 10.042 10.042 10.042

Inference time 9.906 9.906 9.906 9.906 9.906

DynGKD-R

#Parameters 2.549 2.645 2.648 2.670 2.695

Inference time 1.980 2.560 3.893 4.472 4.844

Table 4  (continued)

Time steps

1 2 3 4 5

DynGKD-F1

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-F2

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-H

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

LiveStream-16K

DMTKGT-T

#Parameters 10.437 10.437 10.437 10.437 10.437

Inference time 8.015 8.015 8.015 8.015 8.015

DMTKG-S

#Parameters 5.219 5.934 7.824 8.012 8.135

Inference time 1.235 1.462 3.873 4.991 6.826

KDA-T

#Parameters 9.020 9.020 9.020 9.020 9.020

Inference Time 7.927 7.927 7.927 7.927 7.927

KDA-S

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-T

#Parameters 9.020 9.020 9.020 9.020 9.020

Inference time 7.927 7.927 7.927 7.927 7.927

DynGKD-R

#Parameters 3.381 4.648 6.219 6.882 6.915

Inference time 0.887 2.056 4.084 6.558 7.012

DynGKD-F1

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-F2

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-H

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184
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to transfer knowledge to the student model, the generated 

student models learn node embeddings that are similar 

to the embeddings of the teacher model. Therefore, the 

student models in DynGKD-F1 , DynGKD-F2 and Dyn-

GKD-H require the same number of parameters during 

training. We omit the DynGKD-F1 and DynGKD-F2 

strategies, as the student models have the same infer-

ence latency as DynGKD-H . On inspection of Fig. 5, we 

observe that the best � values, in terms of online infer-

ence latency, are 0.4 in Yelp and ML-10M, and 0.3 in 

LiveStream-4K, LiveStream-6K and LiveStream-16K. 

Increasing the value of � negatively impacts the online 

inference latency of the student model. This occurs 

because the student model distills less knowledge from 

the teacher model. As a consequence, the student model 

requires a large amount of parameters to capture the evolu-

tion of the graph. This observation reflects on the impor-

tance of balancing the impact of the teacher model on the 

training process of the student model.

6  Conclusions

In this article, we presented the DynGKD model, a knowl-

edge distillation strategy on neural networks for evolving 

graphs. The proposed DynGKD model generates a com-

pact student model which efficiently captures the evolu-

tion of the online graph snapshots in the node embed-

dings, while achieving low online inference latency. We 

introduced three distillation loss functions to transfer 

different types of information from the teacher model to 

the student model. Moreover, we proposed a hybrid dis-

tillation loss function that combines both the predicted 

values and the embeddings of the teacher model to the 

student model. This allows the student model to distill 

different information from the teacher model and capture 

the evolution of the online graph snapshots, while requir-

ing small model sizes. Evaluated against several baseline 

approaches on five real-world datasets, we demonstrated 

the efficiency of our model to reduce the online inference 

latency on the online data, while achieving high predic-

tion accuracy. Our experiments showed that the proposed 

hybrid student model DynGKD-H achieves 40.60 and 

44.02% relative drops in terms of RMSE and MAE in 

all datasets, respectively. Moreover, the proposed hybrid 

student model achieves averaged compression ratio of 

21:100, when compared with the teacher model, which 

corresponds to a speed up factor ×30 on average for the 

online inference time. An interesting future direction is to 

explore adaptive aggregation strategies on the generation 

of the structural and temporal embeddings in Eq. 5, aim-

ing to capture various properties of the graph evolution 

(Hamilton et al. 2017a; Wang et al. 2020). Accounting 

for the dynamic nature of the evolving graphs, we also 

plan to investigate relation-based approaches with online 

distillation strategies, where both the teacher and the stu-

dent models capture the semantics of the data examples 

simultaneously (Guo et al. 2020; Mirzadeh et al. 2020; Sun 

et al. 2021). This means that the teacher model will not 

only compute the structural and temporal properties of an 

evolving graph, but will also assist the student model with 

updated information.

Fig. 5  Impact of parameter � on the prediction accuracy and online 

inference latency of the examined DynGKD student models. We omit 

the DynGKD-F1 and DynGKD-F2 strategies, as they have the same 

model size with DynGKD-H for the online inference latency experi-

ments
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