
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2021) 11:100

https://doi.org/10.1007/s13278-021-00816-1

ORIGINAL ARTICLE

Knowledge distillation on neural networks for evolving graphs

Stefanos Antaris1,2 · Dimitrios Rafailidis3 · Sarunas Girdzijauskas1

Received: 28 February 2021 / Revised: 12 July 2021 / Accepted: 13 July 2021 / Published online: 20 October 2021

© The Author(s) 2021

Abstract

Graph representation learning on dynamic graphs has become an important task on several real-world applications, such

as recommender systems, email spam detection, and so on. To efficiently capture the evolution of a graph, representation

learning approaches employ deep neural networks, with large amount of parameters to train. Due to the large model size,

such approaches have high online inference latency. As a consequence, such models are challenging to deploy to an industrial

setting with vast number of users/nodes. In this study, we propose DynGKD, a distillation strategy to transfer the knowledge

from a large teacher model to a small student model with low inference latency, while achieving high prediction accuracy.

We first study different distillation loss functions to separately train the student model with various types of information

from the teacher model. In addition, we propose a hybrid distillation strategy for evolving graph representation learning to

combine the teacher’s different types of information. Our experiments with five publicly available datasets demonstrate the

superiority of our proposed model against several baselines, with average relative drop 40.60% in terms of RMSE in the link

prediction task. Moreover, our DynGKD model achieves a compression ratio of 21:100, accelerating the inference latency

with a speed up factor ×30 , when compared with the teacher model. For reproduction purposes, we make our datasets and

implementation publicly available at https:// github. com/ stefa nosan taris/ DynGKD.

Keywords Graph representation learning · Evolving graphs · Knowledge distillation

1 Introduction

Graph representation learning has been at the core of several

machine learning tasks on graphs, such as node classification

(Zhang et al. 2019; Qu et al. 2019; Kipf and Welling 2017)

and link prediction (Kumar et al. 2019; Zhang and Chen

2018). The main objective is to learn low-dimensional node

embeddings, so that the structure of the graph is reflected

on the embedding space. Early approaches work primar-

ily on static graphs (Grover and Leskovec 2016; Veličković

et al. 2018; Perozzi et al. 2014). However, most real-world

applications are dynamic, where graphs evolve over time.

Recently, dynamic approaches have been proposed to cap-

ture both the topological and temporal properties of evolving

graphs in the node embeddings (Sankar et al. 2020; Nguyen

et al. 2018; Pareja et al. 2020). Such approaches have dem-

onstrated remarkable performance on various applications,

such as email spam detection (Akoglu et al. 2015), recom-

mender systems (Cao et al. 2019; Ying et al. 2018), name

disambiguation in citation networks (Zhang et al. 2018),

molecular generation (You et al. 2018; Bresson and Laurent

2019), and so on.

Learning dynamic embeddings that preserve the time-

varying structure and node interactions of an evolving graph

is a fundamental problem. Existing representation strategies

apply several techniques among consecutive graph snapshots

to learn accurate node embeddings, such as recurrent neural

networks (Pareja et al. 2020), attention mechanisms (Sankar

et al. 2020), and temporal regularizers (Li et al. 2017). To

preserve the structural and temporal properties of evolving

graphs without loss of information, such strategies design

neural network architectures with a large amount of model

parameters. Given the large model size, existing strategies

 * Stefanos Antaris

 antaris@kth.se

 Dimitrios Rafailidis

 draf@uth.gr

 Sarunas Girdzijauskas

 sarunasg@kth.se

1 KTH Royal Institute of Technology, Stockholm, Sweden

2 HiveStreaming AB, Stockholm, Sweden

3 University of Thessaly, Vólos, Greece

http://orcid.org/0000-0002-1135-8863
https://github.com/stefanosantaris/DynGKD
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-021-00816-1&domain=pdf

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 2 of 16

present high online inference latency. Despite their remark-

able achievements in producing accurate node embeddings,

these strategies are not suitable for real-world applications

with almost real-time requirements of inference latency. For

example, distributed live video streaming solutions in large

enterprises, exploit the offices’ internal high bandwidth net-

work to distribute the video content among viewers/nodes

(Roverso et al. 2015). To select the high-bandwidth connec-

tions, distributed solutions exploit graph neural networks to

predict the throughput among viewers in real-time (Antaris

and Rafailidis 2020b). Based on the predicted throughput,

each viewer adapts the connections to efficiently distrib-

ute the video content. However, the high online inference

latency of the large models negatively impacts the distribu-

tion of the video stream in an enterprise network (Antaris

et al. 2020).

To reduce the online inference latency, knowledge dis-

tillation has been recently introduced to generate compact

models without any information loss (Hinton et al. 2015;

Bucilua et al. 2006). In particular, knowledge distilla-

tion trains a cumbersome model, namely teacher, without

stringent requirements on inference latency. Therefore, the

teacher model is trained as an offline process and employs

neural networks with large model sizes. Once the teacher

model is trained, the knowledge can be distilled to a compact

model, namely student, through a well-designed distillation

loss function. Therefore, the student model has significantly

lower number of model parameters than the teacher model,

while preserving high performance accuracy. Given the low

online inference latency due to the small model size, the stu-

dent model can be deployed to online applications (Phuong

and Lampert 2019; Tang and Wang 2018; Asif et al. 2020;

Qian et al. 2020; Kim and Rush 2016).

Existing knowledge distillation strategies fall in two main

categories: (1) feature-based strategies that exploit the gener-

ated features of either the last layer or the intermediate layers

as a supervision signal to train the student model (Romero

et al. 2015; Huang and Wang 2017; Gou et al. 2021), and (2)

response-based strategies where the distillation loss function

minimizes the differences between the predicted values of

the teacher and student models (Chen et al. 2017; Meng et al.

2019). Recently, the impact of knowledge distillation has

been studied for static graph representation learning strate-

gies (Yang et al. 2020; Chen et al. 2020; Ma and Mei 2019).

These representation strategies extract the structural knowl-

edge of a static graph and perform distillation to transfer the

acquired knowledge to a compact student model. However,

such approaches ignore the temporal aspect of the evolving

networks. A recent attempt to employ knowledge distilla-

tion on a dynamic graph representation learning strategy has

been presented in our preliminary study of the Distill2Vec

model (Antaris and Rafailidis 2020a). Distill2Vec trains a

teacher model on the offline graph snapshots and transfers

the knowledge to the student model when learning on the

online data. Distill2Vec employs a feature-based distillation

strategy, by adopting the Kullback-Liebler divergence on

the teacher and student node embeddings in the distillation

loss function. However, Distill2Vec focuses only on the final

node embeddings of the teacher model, ignoring the predic-

tion accuracy of the teacher model and the additional infor-

mation captured on the intermediate features/layers.

In this article, we propose a Dynamic Graph represen-

tation learning model with Knowledge Distillation. Dyn-

GKD extends the Distill2Vec model, making the following

contributions:

• We propose different distillation loss functions based on

the way that we transfer the knowledge from the teacher

model to the student model. We also present a hybrid

strategy to combine the teacher’s features and responses

in the distillation loss function, allowing the student

model to distill more information than incorporating only

one distillation strategy separately.

• We conduct an extensive experimentation on networks

with different characteristics, such as two real-world

social networks and three evolving networks generated

by live video streaming events. We demonstrate that our

hybrid distillation strategy for the student model signifi-

cantly reduces the model size, while constantly outper-

forms the teacher model and the baseline strategies in the

link weight prediction task.

The remainder of the paper is organized as follows: Sect. 2

reviews the related work and in Sect. 3 we formulate the

problem of knowledge distillation on dynamic graph repre-

sentation learning. Section 4 describes the proposed model

DynGKD, the experimental evaluation is presented in

Sect. 5, and we conclude the study in Sect. 6.

2 Related work

2.1 Graph representation learning

Static Approaches Graph representation learning has

attracted a surge of research in the recent years (Wang et al.

2020). Early attempts adopt traditional network embedding

techniques, by capturing the distribution of the positive node

pairs in the latent space (Hamilton et al. 2017b). DeepWalk

(Perozzi et al. 2014) performs random walks on the graph

and adopts the skip-gram model (Mikolov et al. 2013) to

learn accurate network embeddings that correspond to the

log-likelihood of observed nodes in the walks. Node2Vec

(Grover and Leskovec 2016) extends the DeepWalk model

by biasing the random walks, so as to compute different

properties of the graph. Recently, HARP (Chen et al. 2018a)

Social Network Analysis and Mining (2021) 11:100

1 3

Page 3 of 16 100

coarsens related nodes to supernodes to improve the perfor-

mance of random walks in DeepWalk and Node2Vec.

With the remarkable performance of neural networks,

graph representation learning adopts various architectures

to compute accurate node embeddings. Existing approaches

employ spectral convolutions on graphs to learn node

embeddings with similar structural properties (Kipf and

Welling 2017). To alleviate the scalability issues of spectral

convolutions on large graphs, GraphSage (Hamilton et al.

2017a) and FastGCN (Chen et al. 2018b) employ neighbr-

hood and importance sampling, respectively. GAT exploits

an attention mechanism to transform the node properties

to low-dimensional embeddings (Vaswani et al. 2017).

Recently, DAGNN decouples the convolution operation

to two key factors, that is node properties transformation

and propagation (Liu et al. 2020). This allows DAGNN to

improve the performance of convolution on graphs by adopt-

ing deeper neural network architectures than the previous

approaches. However, such approaches are applied on static

graphs, ignoring the dynamic properties of the nodes in

evolving graphs.

Dynamic Approaches Dynamic graph representation

learning approaches adopt various neural network archi-

tectures to model the structural and temporal properties of

evolving graphs. Early attempts model the evolving graph

as an ordered collection of graph snapshots and extend the

static approaches to learn accurate node embeddings (Ham-

ilton et al. 2017b). CTDNE employs temporal random walks

on consecutive graph snapshots and applies the skip-gram

model to learn the transition probability among two nodes

(Nguyen et al. 2018). DNE adopts random walks on each

graph snapshot and adjusts the embeddings of the nodes

that present significant changes among consecutive graph

snapshots (Du et al. 2018). DynGEM employs deep auto-

encoders to compute the structural properties of each graph

snapshot and exploits temporal smoothness methods to

ensure stability on the computed node embeddings among

consecutive graph snapshots (Goyal et al. 2018). Recently,

DynVGAE uses variational auto-encoders (Kipf and Well-

ing 2016) to ensure temporal smoothness by introducing

weight parameter sharing among consecutive models (Goyal

et al. 2018). DynamicTriad exploits the triadic closure as a

supervised signal to capture the social homophily property

in evolving social networks (Zhou et al. 2018). EvolveGCN

(Pareja et al. 2020) and DynGraph2Vec (Goyal et al. 2020)

adopt recurrent neural networks (RNNs) among consecutive

graph convolutional networks (Kipf and Welling 2017) to

model the evolution of the graph in the hidden state. Further-

more, DySAT (Sankar et al. 2020) employs graph attention

mechanisms to capture the evolution of the graph.

Recent approaches compute the node embeddings by

leveraging the time ordered node interactions of the evolv-

ing graph. DeepCoevolve exploits RNNs to define a point

process intensity function, which allows the model to com-

pute the influence of an interaction on the node embed-

ding over time (Dai et al. 2016). Jodie (Kumar et al. 2019)

employs both attention mechanism and RNN to predict

the evolution of the node and adapt the generated embed-

dings accordingly. Moreover, TigeCMN (Zhang et al. 2020)

designs coupled memory networks to store and update the

node embeddings, while TDIG-MPNN (Chang et al. 2020)

updates the embeddings through message passing on the

high-order correlation nodes. However, existing approaches

require large model sizes to efficiently capture the evolution

of the graph. Due to the large model sizes, such approaches

have significant online inference latency.

2.2 Knowledge distillation

Knowledge distillation has been widely adopted in several

machine learning domains, such as image recognition (Ba

and Caruana 2014; Hinton et al. 2015), recommender sys-

tems (Tang and Wang 2018; Chen et al. 2017), language

translation (Kim and Rush 2016) to generate compact stu-

dent models with low online inference latency (Bucilua et al.

2006). Knowledge distillation can be divided into three main

categories: (1) response-based, (2) feature-based, and (3)

relation-based strategies. The response-based strategies dis-

till knowledge to the student model by exploiting the output

of the teacher model. Response-based approaches consider

the final output of the teacher model as a soft label to regu-

larize the output of the student model (Hinton et al. 2015;

Mirzadeh et al. 2020; Kim et al. 2021). Accounting for the

output of teacher model to distill knowledge, the student

model fails to capture the intermediate supervision applied

by the teacher model (Gou et al. 2021). Instead, feature-

based approaches distill the high-level information acquired

by the teacher to the output features. FitNet incorporates

the features of the intermediate layers to supervise the stu-

dent model, minimizing the L2 distillation loss function

(Romero et al. 2015). Moreover, Zhou et al. (2018a) con-

sider the parameter sharing of intermediate layers among

teacher and student models. Recently, Chen et al. (2020)

formulate a feature embedding task to match the dimen-

sions of the output features generated by the teacher and

student models. Although response-based and feature-based

strategies distill knowledge from the outputs of specific lay-

ers in the teacher model, these approaches ignore the the

semantic relationship among the different layers. To handle

this issue, relation-based approaches explore the relation-

ships between different feature maps. SemCKD follows a

cross-layer knowledge distillation strategy to address the

different semantics of intermediate layers in the teacher and

student models (Chen et al. 2021). In the IRG model, the stu-

dent model distills knowledge from the Euclidean distance

between examples observed by the teacher model (Liu et al.

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 4 of 16

2019). In Zagoruyko and Komodakis (2017), Zagoruyko

et al. derive an attention map from the teacher’s features to

distill knowledge to the student model, while KDA (Qian

et al. 2020) employs the Nyström low-rank approximation

for kernel matrix to distill knowledge through landmark

points. Nevertheless, such approaches focus on image pro-

cessing, and have not been evaluated on evolving graphs.

A few attempts have been made to follow knowledge

distillation strategies to reduce the model size of graph rep-

resentation learning approaches. DMTKG calculates Heat

Kernel Signatures to compute the node features, which are

used as inputs into Graph Convolutional Networks (GCNs)

to learn accurate node embeddings (Lee and Song 2019).

DMTKG generates a compact student model by applying a

response-based knowledge distillation strategy based on the

weighted cross entropy distillation loss function. DistillGCN

is a feature-based strategy that exploits the output features of

the teachers’ GCN layers to transfer the structural informa-

tion of the graph to the student model (Yang et al. 2020).

The distillation loss function in DistillGCN minimizes the

prediction error of the student model on the online data and

the Kullback Leibler divergence of the features generated by

the teacher and student models. However, existing knowl-

edge distillation strategies are designed to transfer knowl-

edge from static graphs, ignoring the evolution of dynamic

graphs.

3 Problem formulation

We model the evolution of a dynamic graph as a collection

of graph snapshots over time, which is defined as follows

(Sankar et al. 2020; Pareja et al. 2020; Nguyen et al. 2018;

Antaris et al. 2020):

Definition 1 Evolving Graphs An evolving graph is

defined as a sequence of K discrete graph snapshots

G = {G1,… , G
K
} . At each timestep k = 1,… , K , a snapshot

G
k
= (V

k
, E

k
,�

k
) is a weighted undirected graph which con-

sists of N
k
= |V

k
| nodes, and a connection set E

k
 . Each node

u ∈ V
k
 has a c-dimensional feature vector �

k
(u) ∈ �

k
 , with

�
k
∈ ℝ

N
k
×c . For each graph G

k
 , we consider a weighted adja-

cency matrix �
�
 , where A

k
(u, v) > 0 if e

k
(u, v) ∈ E

k
.

In an evolving graph, the node set V
k
 and edge set E

k

vary among consecutive graph snapshots. As illustrated in

Fig. 1, node f ∈ V
2
 joins the evolving graph in the snap-

shot G
2
 , creating a new connection e2(f , d) ∈ E2 with node

d ∈ V
2
 . Moreover, in the final snapshot G

K
 , node b disap-

pears, removing the respective edges. A graph representation

learning strategy on evolving graphs is defined as follows

(Antaris et al. 2020; Antaris and Rafailidis 2020b; Pareja

et al. 2020):

De�nition 2 Dynamic Graph Representation Learning

Given a sequence of l ≪ K previous consecutive graph

snapshots G = {G
k−l

,… , G
k
} , the goal of dynamic graph

representation learning is to compute d-dimensional node

embeddings �
k
∈ ℝ

N
k
×d , with d ≪ N

k
 , at the k-th timestep.

The learned node embeddings �
k
 should accurately capture

the structural and temporal evolution of the graph, up to the

k-th timestep.

Our study focuses on knowledge distillation strategies

for dynamic graph representation learning approaches, as

defined in the following (Antaris and Rafailidis 2020a):

De�nition 3 Knowledge Distillation on Dynamic Graph

Representation Learning The goal of knowledge distillation

is to generate a compact student model S , which distills the

knowledge acquired by a large teacher model T . The teacher

model T learns the node embeddings �T based on the first m

graph snapshots GT = {GT

1
,… , G

T

m
} , with 1 < m < K , which

correspond to the offline data. Having pretrained the teacher

model T , the student S computes the node embeddings �S

on the online data GS = {GS

m+1
,… , G

S

K
} . The student model

S distills the knowledge from the teacher T through a distil-

lation loss function LD.

4 Proposed model

4.1 Method overview

As illustrated in Fig. 2, the DynGKD model consists of the

teacher and student models. The goal of the proposed Dyn-

GKD model is to train a large teacher model as an offline

process and distill the knowledge of the teacher model to a

small student model during training on the online data.

Teacher Model The teacher model takes as input the m

offline graph snapshots GT = {GT

1
,… , G

T

m
} . The role of the

teacher model is to learn the node embeddings �T to capture

both the structural and temporal evolution of the m offline

graph snapshots. Following Sankar et al. (2020), we adopt

two self-attention layers to capture the structural and temporal

evolution of the m graph snapshots. Provided that the teacher

Fig. 1 Overview of an evolving graph over time. We denote with dot-

ted lines the new nodes/edges of the graph snapshot

Social Network Analysis and Mining (2021) 11:100

1 3

Page 5 of 16 100

model is trained as an offline process, we employ a large num-

ber of model parameters to accurately capture the evolution of

the graph for the offline graph snapshots.

Student Model Having pretrained the teacher model, we

train a student model on the online graph snapshots. At each

timestep k, the student model learns the node embeddings

�
S

k
 , by employing two self-attention layers on the l previous

consecutive graph snapshots GS = {GS

k−l
,… , G

S

k
} . We adopt

a distillation loss function LD , during the online training of

the student model, to transfer the acquired knowledge by the

teacher model.

4.2 Teacher model on the offline data

The teacher model DynGKD-T learns the node embeddings

�
T based on l consecutive graph snapshots. Provided that

we pretrain the teacher model on the offline graph snapshots

G
T = {GT

1
,… , G

T

m
} , we consider all the m snapshots during

training (l = m), with m ≪ K . Following Sankar et al. (2020),

we capture the evolution of the graph by employing two self-

attention layers. The structural attention layer captures the

structural properties of each graph snapshot, and the temporal

attention layer learns the complex temporal properties of the

evolving graph.

Structural Attention Layer Given the offline graph snap-

shots GT = {GT

1
,… , G

T

m
} , the input of the structural attention

layer is the m feature vectors {�1,… ,�
m
} . The structural

attention layer computes l structural node representations

�(u) ∈ ℝ
l×d , with l = m , of the node u ∈ V by implementing

a multi-head self-attention mechanism as follows (Veličković

et al. 2018; Vaswani et al. 2017):

(1)�(u) = Concat(�1(u),… ,�
g(u))

where g is the number of attention heads, N
k
(u) is the

neighborhood set of the node u ∈ V
k
 at the graph snapshot

G
T

k
 , � ∈ ℝ

d×c is the weight transformation matrix of the

c-dimensional node features �
k
(u) , and ELU is the expo-

nential linear unit activation function. Variable a
k
(u, v) is

the attention coefficient among the node u ∈ V
k
 and v ∈ V

k
 ,

defined as follows:

where || is the concatenation operation to aggregate the

transformed feature vectors of the nodes u ∈ V
k
 and v ∈ V

k
 .

Variable �⊤ is a 2d-dimensional weight vector parameter-

izing the aggregated feature vectors. The attention weight

a
k
(u, v) expresses the impact of the node v on the node u at

the k-th timestep, when compared with the neighborhood set

N
k
(u) (Vaswani et al. 2017).

Temporal Attention Layer The input of the temporal atten-

tion layer is the m structural node embeddings {�1,… ,�
m
}

learned by the structural attention layer. The temporal atten-

tion layer aims to capture the evolution of the graph over time.

Therefore, we design the multi-head scale-dot product form

of attention to learn m temporal representation �(u) ∈ ℝ
m×d

of each node u ∈ V
k
 , as follows (Sankar et al. 2020; Vaswani

et al. 2017):

with �(u) = ELU

(l
∑

k=1

∑

v∈Nk(u)

a
k
(u, v)��

k
(u)

)

(2)

ak(u, v) =

exp

(
LeakyReLU(Ak(u, v)�⊤[��k(u)||��k(v)])

)

∑

w∈Nk(u)

exp

(
LeakyReLU(Ak(u, v)�⊤[��k(u)||��k(w)]

)

(3)
�(u) = Concat(�1(u),… , �p(u))

with �(u) = �(u)(�(u)�value)

Fig. 2 Overview of the Dyn-

GKD model, given a sequence

of discrete graph snapshots G .

The teacher model is trained

as an offline process based on

the offline graph snapshots

G
T . Then, the student model

is trained on the online graph

snapshots GS and distills knowl-

edge from the teacher model

through the distillation loss

function LD

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 6 of 16

where p is the number of attention heads, �value
∈ ℝ

d×d

is the weight parameter matrix to transform the structural

embeddings �(u) . Value �(u) ∈ ℝ
l×l is the attention weight

matrix, with l = m for the teacher model, calculated as

follows:

where �key
∈ ℝ

d×d and �query
∈ ℝ

d×d are the weight

parameter matrices of the l structured node embeddings

�(u) . The attention weight matrix �(u) indicates the dif-

ferences between the structural node embeddings over the l

graph snapshots (Vaswani et al. 2017).

Having learned the l structural node embeddings �(u) and

temporal node embeddings �(u) of the node u, we calculate

the final node embedding �T

l
(u) of the teacher model at the

l-th timestep, as follows:

To train the teacher model, we formulate the Root Mean

Squared Error (RMSE) loss function with respect to the

node embeddings �T

l
:

where � is the sigmoid activation function and the term

(�T

l
(u)�T

l
(v)⊤ − A

l
(u, v)) is the reconstruction error of the

neighborhood N
l
(u) of the node u ∈ V

l
 , at the l-th timestep.

We optimize the weight parameter matrices in both the

structural and temporal attention layers based on the loss

function in Eq. 6 and the backpropagation algorithm with

the Adam optimizer (Kingma and Ba 2015).

4.3 Knowledge distillation strategies

The student model learns the node embeddings �S based

on the online graph snapshots GS . Provided that the stu-

dent model distills knowledge from the pretrained teacher

model DynGKD-T , the student model requires a signifi-

cantly low number of model parameters. At each timestep

k = m + 1,… , K , the student model considers l consecutive

graph snapshots {G
k−l

,… , G
k
} , with l ≪ K . We compute the

l structural and temporal node embeddings based on Eqs. 1

and 3, respectively. The final node embeddings are computed

according to Eq. 5.

To transfer the knowledge from the teacher model, the

student model formulates a distillation loss function LD

(4)�(u) =

k
�

i,j=k−l

exp(
(�i(u)�

query)(�j(u)�
key)⊤

√

l
)

k
∑

r=k−l

exp(
(�i(u)�

query)(�r(u)�
key)⊤

√

l
)

(5)�
T

l
(u) = �

l
(u) + �

l
(u)

(6)

min
�

T

l

L
T =

√

√

√

√

1

N
l

∑

u∈Vl

∑

v∈Nl(u)

(

�(�T

l
(u)�T

l
(v)⊤ − A

l
(u, v)

)2

during the online training. As aforementioned in Sect. 1,

the knowledge distillation strategies can be categorized as

response-based and feature-based, according to the type of

information to transfer the information from the teacher

model (Gou et al. 2021). To evaluate the impact of each

distillation strategy on the learned embeddings �S of the

student model, we formulate one response-based and two

feature-based distillation loss functions. Moreover, we pro-

pose a hybrid distillation loss function that exploits both

the responses and features of the teacher model during the

online training process of the student model.

Response-Based Distillation Strategy (DynGKD-R) In

the response-based distillation strategy DynGKD-R , we

focus on the prediction accuracy of the teacher model on

the online data. The student model learns the node embed-

dings �S

k
 at the k-th timestep, by minimizing the following

distillation loss function (Antaris et al. 2020):

where LS

k
 is the root mean squared error of the student model

on the online data. Value LT

k
 is the prediction error of the

teacher model DynGKD-T in Eq. 6 on the online data.

Hyper-parameter � ∈ [0, 1] controls the tradeoff between

the two losses. High � values balance the training of the

node representations �S

k
 towards the errors of the student

model, ignoring the knowledge of the teacher model. The

distillation loss function LD of DynGKD-R allows the stu-

dent model to mimic the reconstruction errors of the teacher

model based on Eq. 6, while significantly reducing the

model size (Antaris et al. 2020).

Feature-Based Distillation Strategies (DynGKD-F1

/DynGKD-F2) As aforementioned in Sect. 4.2, the teacher

model computes node embeddings �T that preserve both the

structural and temporal evolution of the graph. We exploit

the node embeddings �T to supervise the training of the

student model through the distillation loss function in the

feature-based distillation strategy DynGKD-F1 as follows:

where L
F1

k
= KL(�S

k
|�T

k
) is the Kullback-Liebler (KL)

divergence among the node embeddings �S

k
 and �T

k
 . The LF1

k

term prevents the student node embeddings �S

k
 to be sig-

nificantly different from the teacher node embeddings �T

k
 .

Therefore, by optimizing Eq. 8, the student model gener-

ates node embeddings �S

k
 that match the embedding space

of the teacher model. Instead, the distillation loss function

of the response-based strategy DynGKD-R in Eq. 7 allows

the student model to predict similar values with the teacher

model, regardless of the differences between the generated

node embeddings �S

k
 and �T

k
.

(7)min
�

S

k

L
D = �L

S

k
+ (1 − �)LT

k

(8)min
�

S

k

L
D = �L

S

k
+ (1 − �)LF1

k

Social Network Analysis and Mining (2021) 11:100

1 3

Page 7 of 16 100

To generate the final node embeddings �T , the teacher

model DynGKD-T computes intermediate structural embed-

dings �T and temporal embeddings �T based on Eqs. 1

and 3, respectively. Following (Romero et al. 2015), in the

second examined feature-based distillation strategy Dyn-

GKD-F2 , we adopt the intermediate embeddings as a super-

vision signal to improve the training of the student model.

We formulate the distillation loss function in DynGKD-F2

to incorporate both the structural and temporal embeddings

of the teacher model as follows:

where LF2

k
= KL(�S

k
|�T

k
) + KL(�S

k
|�T

k
) is the KL divergence

among the structural and temporal node embeddings of the

teacher and student models. Note that the feature-based

knowledge distillation of DynGKD-F1 in Eq. 8 allows the

student model to mimic only the final embeddings of the

teacher model. In contrast, the distillation loss function of

DynGKD-F2 in Eq. 9 transfers knowledge by matching both

the structural and temporal embedding spaces of the teacher

and student models. Therefore, the intermediate embeddings

�
S

k
 and �S

k
 of the student model are similar to the intermedi-

ate node embeddings �T

k
 and �T

k
 of the teacher model.

Hybrid Distillation Strategy (DynGKD-H) Although the

above strategies provide favorable information for the train-

ing of the student model, such strategies focus on transfer-

ring individual instance of knowledge from the teacher to the

student. In particular, the student model is trained to mimic

either the predicted values or the learned embeddings of the

teacher model. To train a student model that distills knowl-

edge from both the responses and the embeddings of the

teacher model, we formulate a hybrid strategy DynGKD-H

based on the following distillation loss function:

where L
H

k
= L

T

k
+ L

F2

k
 . The term L

T

k
 corresponds to the

prediction error of the teacher model based on Eq. 6, and

L
F2

k
 is the KL divergence of the intermediate embeddings

generated by the teacher and student models, according to

Eq. 9. In contrast to the previously examined distillation

strategies, the hybrid loss function in Eq. 10 allows the stu-

dent model to distill knowledge from different outputs of

(9)min
�

S

k

L
D = �L

S

k
+ (1 − �)LF2

k

(10)min
�

S

k

L
D = �L

S

k
+ (1 − �)LH

k

the teacher model at the same time. This means that the

L
T

k
 loss in Eq. 10 allows the student model to have simi-

lar prediction accuracy to the teacher model. In addition,

the structural and temporal embeddings �S

k
 and �S

k
 of the

student model reflect on the structural and temporal embed-

ding space of the teacher model. As we will demonstrate in

Sect. 5.4, this hybrid strategy allows the student model to

learn more accurate node embeddings, achieving high pre-

diction accuracy, while significantly reducing the number of

required parameters.

5 Experiments

5.1 Datasets

To evaluate the performance of the examined models in dif-

ferent network characteristics, we use two datasets of social

networks, and three datasets of live video streaming events.

In Table 1, we summarize the datasets’ statistics.

Social networks We consider two bipartite networks from

Yelp1 and MovieLens2(ML-10M). Each graph snapshot in

the Yelp dataset corresponds to the ratings of the users to

the businesses within a 6 month period. In ML-10M, each

graph snapshot consists of the user ratings to the movies

within a 1 year period.

Video streaming networks We consider three video

streaming datasets, which correspond to the connections of

the viewers in real live video streaming events in enterprise

networks (Antaris et al. 2020). The duration of each event is

80 minutes. As aforementioned in Sect. 1, each viewer estab-

lishes a limited number of connections, so as to distribute

the video content with other viewers, using the offices’ inter-

nal high bandwidth network. To efficiently identify the high-

bandwidth connections, each viewer periodically adapts

the connections. We monitor the established connections

during a live video streaming event and model the view-

ers interactions as an undirected weighted dynamic graph.

The weight of a graph edge corresponds to the throughput

measured between two nodes/viewers. Each dataset consists

of 8 discrete graph snapshots, where each graph snapshot

Table 1 Summary statistics of

the five datasets
Attributes Social networks Video streaming networks

Yelp ML-10M LiveStream-4K LiveStream-6K LiveStream-16K

#Nodes 6569 80,555 3813 6655 17,026

#Connections 95,361 10,000,054 11,066 787,291 482,185

#Time steps 16 14 8 8 8

1 https:// www. yelp. com/ datas et.
2 https:// group lens. org/ datas ets/ movie lens/.

https://www.yelp.com/dataset
https://grouplens.org/datasets/movielens/

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 8 of 16

corresponds to the viewers’ interactions with a 10 minute

period.

5.2 Evaluation protocol

We evaluate the performance of our proposed model on the

link weight prediction task on the online graph snapshots GS .

For the social networks, we consider the first 5 timesteps as

the offline data and the remaining timesteps are the online

data, that is 11 and 9 online graph snapshots for the Yelp and

ML-10M datasets, respectively. For each dataset of the video

streaming networks, we consider the first 3 graph snapshots

as the offline data, and the remaining 5 correspond to the

online data.

The task of link weight prediction is to predict the weight

of the unobserved edges U
k+1 = E

k+1 ⧵ {E1,… , E
k
} in the

k + 1 time step, given the node embeddings �S

k
 generated by

the student model at the k-th timestep. Following (Antaris

et al. 2020), we concatenate the node embeddings �S

k
(u) and

�
S

k
(v) , for each connection (u, v) ∈ E

k
 , based on the Had-

amard operator, and train a Multi-Layer Perceptron (MLP)

model, using negative sampling. Having trained the MLP

model, we input the concatenated node embeddings for the

unobserved edges U
k+1

 , to calculate the predicted weights.

We measure the prediction accuracy of each examined

model, based on the Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) metrics, defined as follows:

Note that the RMSE metric emphasizes on large prediction

errors, rather than the MAE metric does. Following Pareja

et al. (2020); Sankar et al. (2020); Antaris et al. (2020), to

train the model at each time step k, we randomly select 20%

of the unobserved links for validation set. The remaining

80% of the unobserved links are used as test set. We repeat

each experiment 5 times and report the average RMSE and

MAE over the five trials.

5.3 Examined models

We compare the performance of our proposed model with

the following examined models:

• DynVGAE Mahdavi et al. (2020) is a dynamic joint vari-

ational auto-encoder architecture that shares parameters

over consecutive graph auto encoders. Given that there

(11)RMSE =

√
1

|U
k+1|

∑

e(u,v)∈Uk+1

(A
k+1(u, v) − �

S
⊤

k
�

S

k
)2

(12)MAE =
1

|U
k+1|

∑

e(u,v)∈Uk+1

|A
k+1(u, v) − �

S
⊤

k
�

S

k
|

is no publicly available implementation, we implemented

DynVGAE from scratch and publish our code.3

• DynamicTriad4 Zhou et al. (2018b) a dynamic graph

representation learning approach that employs triadic

closure to capture the changes over different graph snap-

shots.

• TDGNN Nguyen et al. (2018) a graph representation

learning that applies aggregation functions on the tempo-

ral graph edges. For reproducability purposes, we imple-

mented TDGNN and made our code publicly available.5

• DyREP6 Trivedi et al. (2019) a two-time scale process

that captures the temporal node interactions by employ-

ing deep recurrent model, so as to calculate the prob-

ability of occurrence of future links between two nodes.

• EvolveGCN7 Pareja et al. (2020) a dynamic graph rep-

resentation learning model with Gated Recurrent Units

(GRUs) between the convolutional weights of consecu-

tive GCNs.

• DMTKG-T Ma and Mei (2019) the teacher model of the

DMTKG knowledge distillation strategy. DMTKG-T

employs Heat Kernel Signature (HKS) on static graph

snapshots and uses Convolutional Neural Network layers

to calculate the latent representations based on Deep-

Graph. To ensure fair comparison, we train DMTKG- T

per snapshot, with each snapshot containing aggregated

graph history up to k-th snapshot. We implemented

DMTKG-T from scratch and published our code,8 as

there was no implementation available.

• DMTKG-S Ma and Mei (2019) the student model of

DMTKG, which minimizes the distillation loss function

based on the root mean squared error.

• KDA-T Qian et al. (2020) the teacher model of the KDA

knowledge distillation strategy. Given that KDA is a

model-agnostic distillation strategy, we employed the

DynGKD model, presented in Sect. 4.2, for fair com-

parison.

• KDA-S Qian et al. (2020) the student model of KDA,

which distills knowledge from the teacher model by

adopting the Nyström low-rank approximation for a ker-

nel matrix Williams and Seeger (2001). For reproduca-

bility purposes, we publish our implementation,9 as there

is no publicly available implementation of KDA.

• DynGKD-T the teacher model of the proposed approach,

presented in Sect. 4.2.

3 https:// github. com/ stefa nosan taris/ DynVG AE.
4 https:// github. com/ lucki ezhou/ Dynam icTri ad.
5 https:// github. com/ stefa nosan taris/ TDGNN.
6 https:// github. com/ uogue lph- mlrg/ LDG.
7 https:// github. com/ IBM/ Evolv eGCN.
8 https:// github. com/ stefa nosan taris/ DMTKG.
9 https:// github. com/ stefa nosan taris/ KDA.

https://github.com/stefanosantaris/DynVGAE
https://github.com/luckiezhou/DynamicTriad
https://github.com/stefanosantaris/TDGNN
https://github.com/uoguelph-mlrg/LDG
https://github.com/IBM/EvolveGCN
https://github.com/stefanosantaris/DMTKG
https://github.com/stefanosantaris/KDA

Social Network Analysis and Mining (2021) 11:100

1 3

Page 9 of 16 100

• DynGKD-R the student model that distills the knowledge

from the DynGKD-T model based on the response-based

distillation strategy in Eq. 7.

• DynGKD-F1 the student model that employs the feature-

based distillation loss function in Eq. 8 to transfer knowl-

edge from the teacher model.

• DynGKD-F2 the student model that mimics the interme-

diate node embeddings of the teacher model through the

feature-based loss function in Eq. 9.

• DynGKD-H the proposed hybrid distillation strategy that

transfers knowledge from the teacher model through the

loss function in Eq. 10.

For all the examined models, we tuned the hyper-parameters

based on a grid selection strategy on the validation set and

report the results with the best configuration. In particular,

in DynVGAE and DynamicTriad, we set the embedding size

to d = 256 with window size l = 2 in all datasets. In TDGNN

and DyREP, the embedding size is set to d = 128 , with l = 3

previous graph snapshots. EvolveGCN uses d = 32 node

embeddings dimension and l = 2 window size. In DMTKG-

T , the emebdding size is fixed to d = 512 in all datasets.

In DMTKG-S , we reduce the embedding size to d = 32 .

In KDA-T and our teacher model DynGKD-T , we set the

embedding size to d = 128 , with l = 5 consecutive graph

snapshots, and the number of head attentions is set to 16 in

both Eqs. 1 and 3. In the feature-based student models Dyn-

GKD-F1 and DynGKD-F2 , the hybrid model DynGKD-H ,

and the relation-based student model KDA-S , we reduce the

number of head attentions to 2 and the window size l = 3 ,

while the node embedding dimension is set to d = 128 for

all datasets. The student model DynGKD-R achieves the

best performance when apply 8 head attentions, with d = 64

node embedding size and l = 2 previous graph snapshots. As

aforementioned in Sect. 4.3, the response-based distillation

strategy DynGKD-R focuses on the prediction error of the

teacher model, ignoring the information contained in the

generated feature embeddings. Therefore, the student model

DynGKD-R requires higher number of attention heads than

the feature-based models, to capture the multiple latent

facets of the online graph snapshots. Instead, the feature-

based approaches distill information from the teacher output

embeddings, which contain the information of the different

latent facets. Therefore, the feature-based approaches Dyn-

GKD-F1 , DynGKD-F2 and DynGKD-H require 2 attention

heads during training on the online data. All experiments

were executed on a single server with a CPU Intel Xeon

Bronze 3106, 1.70GHz and a GPU Geforce RTX 2080 Ti.

The operating system of the server was Ubuntu 18.04.5 LTS,

and we implemented the DynGKD model using PyTorch

1.7.1. In Sect. 5.5, we study the influence of the knowledge

distillation parameter � on the performance of each student

model.

5.4 Performance evaluation

In Fig. 3, we evaluate the performance of the proposed

hybrid student model DynGKD-H against the non-distil-

lation strategies, in terms of RMSE and MAE. We observe

that the proposed hybrid student model constantly outper-

forms the baseline approaches in all datasets. This suggests

that DynGKD-H can efficiently learn node embeddings �S

to capture the evolution of the online graph snapshots. Com-

pared with the second best method DyREP, the proposed

DynGKD-H model achieves high link weight prediction

Fig. 3 Performance comparison of the proposed hybrid student model

DynGKD-H against the non-distillation strategies in terms of RMSE

and MAE

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 10 of 16

accuracy, with average relative drops 38.32 and 88.68%

in terms of RMSE and MAE in Yelp, 15.77 and 30.07%

in the ML-10M dataset. For the video streaming datasets,

the DynGKD-H model achieves average relative drops

26.43 and 59.33% in LiveStream-4K, 33.44 and 22.89% in

LiveStream-6K, 89.35 and 19.17% in LiveStream-16K. The

DyREP model outperforms the other baseline approaches, as

the learned node embeddings capture the temporal changes

of each node’s neighborhood between consecutive graph

snapshots. Instead, the other baseline approaches focus

only on the structural changes of the graphs, ignoring the

evolution of the node interactions over time. However, the

DyREP model is designed to identify historical patterns on

the nodes connections over time (Trivedi et al. 2019). There-

fore, DyREP has low prediction accuracy on dynamic graphs

that are updated significantly over time (Liu et al. 2020). The

proposed DynGKD-H model overcomes this problem by

capturing both the structural and temporal evolution of the

graph using two self-attention layers. The structural attention

layer contains the information of the structural properties

of each graph snapshot, while the temporal attention layer

captures the evolution of the generated structural embed-

dings over time. Therefore, the learned node embeddings

of the DynGKD-H model reflect on the temporal variations

of the graph.

In Fig. 4, we demonstrate the performance of the exam-

ined knowledge distillation strategies in terms of RMSE

and MAE. We compare the proposed DynGKD model

against DMTKG (Ma and Mei 2019), a baseline approach

which employs a response-based distillation strategy on

graph neural networks. Moreover, we evaluate our pro-

posed model against KDA (Qian et al. 2020), a model-

agnostic relation-based strategy. Given that we exploit

the proposed DynGKD model, presented in Sect. 4 as the

teacher model KDA-T , we omit the results of KDA-T .

On inspection of Fig. 4, we observe that the hybrid stu-

dent model DynGKD-H constantly outperforms its vari-

ants in all datasets. Note that DynGKD-H exploits the

hybrid distillation strategy in Eq. 10 to transfer different

types of information from the teacher model. Therefore,

the DynGKD-H student model mimics both the prediction

accuracy and the generated structural and temporal node

embeddings of the teacher. Instead, the response-based

DynGKD-R and the feature-based DynGKD-F1 and Dyn-

GKD-F2 approaches, exploit only a single source of infor-

mation from the teacher. This means that the DynGKD-H

strategy distills rich information from the teacher model,

which allows the student model to capture the evolution

of the graph more efficiently than its variants. We also

observe that all the examined variants of the DynGKD

student model constantly outperform the DynGKD-T

teacher model in all datasets. This indicates that the gen-

erated student models overcome any bias introduced by the

teacher model DynGKD-T , during training on the offline

data. In addition, the proposed hybrid student model

DynGKD-H achieves higher prediction accuracy than the

DMTKG-T and DMTKG-S models in all datasets. This

occurs because DMTKG model is designed to learn node

embeddings on static graphs, ignoring the evolution of the

graph. Compared with the relation-based strategy KDA-

S , our proposed DynGKD-H model achieves superior

performance in all datasets. KDA employs the Nyström

low-rank approximation to distill knowledge through the

selected landmark points, ignoring the temporal evolution

of the nodes.

Fig. 4 Comparison of the examined teacher and student models in

terms of RMSE and MAE

Social Network Analysis and Mining (2021) 11:100

1 3

Page 11 of 16 100

In Tables 2, 3 and 4, we present the number of required

parameters in millions to train each examined distillation

strategy. Moreover, we report the online inference time in

seconds to compute the node embeddings. As aforemen-

tioned in Sect. 4, the teacher models DynGKD-T , DMTKG-

T and KDA-T learn the node embeddings based on the

offline graph snapshots GT . Therefore, the DynGKD-T ,

DMTKG-T and KDA-T models have the same number of

required parameters and inference times, when evaluated

on the online graph snapshots GS . As aforementioned in

Sect. 5.3, KDA-T adopts the DynGKD model, thus requir-

ing the same number of parameters as the DynGKD-T

model. Moreover, the feature-based strategies DynGKD-F1

and DynGKD-F2 and the hybrid strategy DynGKD-H

require the same number of parameters to train on the online

graph snapshots. This occurs because the distillation loss

functions in Eq. 8–10 exploit the features of the teacher to

transfer knowledge to the student model. Therefore, the stu-

dent model computes node embeddings that reflect on the

same embedding space as the teacher embeddings. Instead,

in DynGKD-R the student model distills knowledge from

the predicted values of the teacher model, ignoring the infor-

mation captured by the generated embeddings, thus having

different number of required parameters. In addition, the

response-based KDA-S strategy achieves high prediction

accuracy when setting the same number of parameters as

DynGKD-F1 , DynGKD-F2 and DynGKD-H , thus achiev-

ing similar inference time. On inspection of Tables 2, 3 and

4, we observe that the feature-based distillation strategies

DynGKD-F1 and DynGKD-F2 , and the hybrid strategy

DynGKD-H require significantly a lower number of param-

eters than the response-based approach DynGKD-R . This

occurs because the generated model in DynGKD-R strategy

requires high number of attention heads to capture the multi-

ple facets of the evolving graph. In addition, we calculate the

compression ratio of the DynGKD-H strategy, as the number

of parameters to train the student model, when compared

with the size of the teacher model. The DynGKD-H student

model achieves average compression ratios of 21:100 and

69:100 for the Yelp and ML-10M datasets, when compared

with the required parameters of the teacher model Dyn-

GKD-T . For the live video streaming datasets, the averaged

Table 2 Inference time in

seconds and #Parameters

in millions of the examined

distillation strategies for the

Yelp dataset

Baselines Time steps

1 2 3 4 5 6 7 8 9 10 11

DMTKGT-T

 #Parameters 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182 2.182

Inference time 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672

DMTKG-S

#Parameters 1.063 1.099 1.123 1.155 1.192 1.226 1.468 1.591 1.802 1.914 2.022

Inference time 0.484 0.491 0.512 1.121 0.579 0.682 0.699 0.832 0.905 0.952 1.035

KDA-T

#Parameters 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636

Inference time 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503

KDA-S

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-T

#Parameters 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636 6.636

Inference time 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503 1.503

DynGKD-R

#Parameters 1.626 1.813 1.200 2.179 2.345 2.525 2.719 2.910 3.094 3.219 3.410

Inference time 0.214 0.257 0.312 0.366 0.388 0.405 0.447 0.489 0.516 0.572 0.602

DynGKD-F1

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-F2

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

DynGKD-H

#Parameters 0.873 0.966 1.060 1.232 1.323 1.420 1.515 1.607 1.670 1.728 1.765

Inference time 0.198 0.201 0.203 0.205 0.208 0.210 0.240 0.280 0.366 0.397 0.401

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 12 of 16

compression ratios are 13:100 in LiveStream-4K, 14:100 in

LiveStream-6K, and 32:100 in Livestream-16K. Provided

that the proposed hybrid student model DynGKD-H reduces

the model size, we demonstrate the impact of the number of

parameters on the online inference time of the node embed-

dings. We observe that the DynGKD-H achieves a speed

up factor ×17 on average, for the latency inference time in

Yelp dataset, when compared with the DynGKD-T teacher

model. DynGKD-H achieves a speed up factor ×25 for the

latency inference time in ML-10M dataset, ×42 in LiveS-

tream-4K, ×23 in LiveStream-6K, and ×36 in Livestream-

16K. On inspection of Tables 2, 3 and 4 and Fig. 4, we

find that the feature-based strategies and the hybrid strat-

egy require the same amount of parameters during train-

ing. However, the DynGKD-H constantly outperforms the

feature-based strategies in terms of RMSE accuracy. This

occurs because the DynGKD-H exploits multiple types of

information from the teacher model, which allows the stu-

dent model to overcome any bias captured in the learned

node embeddings of the teacher model. Therefore, the pro-

posed DynGKD-H student model significantly reduces the

model size and the online inference latency, while achieving

high prediction accuracy.

5.5 Impact of knowledge distillation

In Fig. 5, we present the impact of the hyper-parameter �

(Eqs. 7–10) on the performance of each knowledge distil-

lation strategy. We vary the hyper-parameter � from 0.1 to

0.9 by a step of 0.1, to study the influence of the teacher

DynGKD-T model on the different distillation loss functions

L
D , during the online training process of the student model.

For each value of � , we report the average RMSE value

of each knowledge distillation strategy over all the online

graph snapshots GS . We observe that all strategies achieve

the best prediction accuracy when the hyper-parameter � is

set to 0.4 for the Yelp and ML-10M datasets, and 0.3 in

LiveStream-4K, LiveStream-6K and LiveStream-16K. For

low values of � , the distillation strategies emphasize more on

the knowledge of the teacher model than the student model.

Therefore, the student model prevents any additional train-

ing on the online data, which negatively impacts the learned

Table 3 Inference time in

seconds and #Parameters

in millions of the examined

distillation strategies for the

ML-10M dataset

Baselines Time steps

1 2 3 4 5 6 7 8 9

DMTKGT-T

#Parameters 30.562 30.562 30.562 30.562 30.562 30.562 30.562 30.562 30.562

Inference time 3.182 3.182 3.182 3.182 3.182 3.182 3.182 3.182 3.182

DMTKG-S

#Parameters 15.106 16.023 17.692 19.296 20.921 21.749 23.982 24.591 25.881

Inference time 2.682 2.703 2.713 2.785 2.792 2.817 2.2833 2.864 2.899

KDA-T

#Parameters 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019

Inference time 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864

KDA-S

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-T

#Parameters 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019 86.019

Inference time 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864 10.864

DynGKD-R

#Parameters 24.300 26.302 28.542 30.909 34.098 36.252 38.247 40.336 41.291

Inference time 3.874 4.125 5.011 5.123 5.872 6.023 6.249 7.038 7.492

DynGKD-F1

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-F2

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

DynGKD-H

#Parameters 12.210 13.212 14.332 15.515 17.110 18.187 19.185 20.229 20.707

Inference time 1.135 1.618 1.923 2.185 2.572 3.016 3.551 3.852 4.168

Social Network Analysis and Mining (2021) 11:100

1 3

Page 13 of 16 100

embeddings to capture the evolution of the graph. Instead,

increasing the value of � degrades the performance of the

distillation strategies. This occurs because the student model

is trained with low supervision from the teacher model.

Additionally, in Fig. 5, we study the influence of the

hyper-parameter � on the online inference latency of the

knowledge distillation strategies. For each value of � , we

report the average inference latency in seconds over all

the online graph snapshots. Given that DynGKD-F1 , Dyn-

GKD-F2 and DynGKD-H exploit the teacher embeddings

Table 4 Inference time in seconds and #Parameters in millions of the

examined distillation strategies for the LiveStream datasets

Time steps

1 2 3 4 5

LiveStream-4K

DMTKGT-T

#Parameters 3.673 3.673 3.673 3.673 3.673

Inference time 0.879 0.879 0.879 0.879 0.879

DMTKG-S

#Parameters 1.192 1.216 1.290 1.356 1.418

Inference time 0.634 0.679 0.684 0.692 0.705

KDA-T

#Parameters 6.960 6.960 6.960 6.960 6.960

Inference time 1.174 1.174 1.174 1.174 1.174

KDA-S

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-T

#Parameters 6.960 6.960 6.960 6.960 6.960

Inference time 1.174 1.174 1.174 1.174 1.174

DynGKD-R

#Parameters 1.639 1.690 1.754 1.762 1.770

Inference Time 0.471 0.534 0.577 0.593 0.612

DynGKD-F1

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-F2

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

DynGKD-H

#Parameters 0.879 0.905 0.937 0.941 0.945

Inference time 0.456 0.468 0.496 0.512 0.548

LiveStream-6K

DMTKGT-T

#Parameters 5.129 5.129 5.129 5.129 5.129

Inference time 6.016 6.016 6.016 6.016 6.016

DMTKG-S

#Parameters 2.564 2.758 2.897 2.918 2.994

Inference Time 2.015 2.102 2.113 2.127 2.174

KDA-T

#Parameters 10.042 10.042 10.042 10.042 10.042

Inference time 9.906 9.906 9.906 9.906 9.906

KDA-S

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-T

#Parameters 10.042 10.042 10.042 10.042 10.042

Inference time 9.906 9.906 9.906 9.906 9.906

DynGKD-R

#Parameters 2.549 2.645 2.648 2.670 2.695

Inference time 1.980 2.560 3.893 4.472 4.844

Table 4 (continued)

Time steps

1 2 3 4 5

DynGKD-F1

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-F2

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

DynGKD-H

#Parameters 1.334 1.382 1.384 1.395 1.407

Inference time 1.085 1.909 2.634 2.906 3.046

LiveStream-16K

DMTKGT-T

#Parameters 10.437 10.437 10.437 10.437 10.437

Inference time 8.015 8.015 8.015 8.015 8.015

DMTKG-S

#Parameters 5.219 5.934 7.824 8.012 8.135

Inference time 1.235 1.462 3.873 4.991 6.826

KDA-T

#Parameters 9.020 9.020 9.020 9.020 9.020

Inference Time 7.927 7.927 7.927 7.927 7.927

KDA-S

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-T

#Parameters 9.020 9.020 9.020 9.020 9.020

Inference time 7.927 7.927 7.927 7.927 7.927

DynGKD-R

#Parameters 3.381 4.648 6.219 6.882 6.915

Inference time 0.887 2.056 4.084 6.558 7.012

DynGKD-F1

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-F2

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

DynGKD-H

#Parameters 1.750 2.384 3.170 3.501 3.517

Inference time 0.529 1.228 2.359 4.179 6.184

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 14 of 16

to transfer knowledge to the student model, the generated

student models learn node embeddings that are similar

to the embeddings of the teacher model. Therefore, the

student models in DynGKD-F1 , DynGKD-F2 and Dyn-

GKD-H require the same number of parameters during

training. We omit the DynGKD-F1 and DynGKD-F2

strategies, as the student models have the same infer-

ence latency as DynGKD-H . On inspection of Fig. 5, we

observe that the best � values, in terms of online infer-

ence latency, are 0.4 in Yelp and ML-10M, and 0.3 in

LiveStream-4K, LiveStream-6K and LiveStream-16K.

Increasing the value of � negatively impacts the online

inference latency of the student model. This occurs

because the student model distills less knowledge from

the teacher model. As a consequence, the student model

requires a large amount of parameters to capture the evolu-

tion of the graph. This observation reflects on the impor-

tance of balancing the impact of the teacher model on the

training process of the student model.

6 Conclusions

In this article, we presented the DynGKD model, a knowl-

edge distillation strategy on neural networks for evolving

graphs. The proposed DynGKD model generates a com-

pact student model which efficiently captures the evolu-

tion of the online graph snapshots in the node embed-

dings, while achieving low online inference latency. We

introduced three distillation loss functions to transfer

different types of information from the teacher model to

the student model. Moreover, we proposed a hybrid dis-

tillation loss function that combines both the predicted

values and the embeddings of the teacher model to the

student model. This allows the student model to distill

different information from the teacher model and capture

the evolution of the online graph snapshots, while requir-

ing small model sizes. Evaluated against several baseline

approaches on five real-world datasets, we demonstrated

the efficiency of our model to reduce the online inference

latency on the online data, while achieving high predic-

tion accuracy. Our experiments showed that the proposed

hybrid student model DynGKD-H achieves 40.60 and

44.02% relative drops in terms of RMSE and MAE in

all datasets, respectively. Moreover, the proposed hybrid

student model achieves averaged compression ratio of

21:100, when compared with the teacher model, which

corresponds to a speed up factor ×30 on average for the

online inference time. An interesting future direction is to

explore adaptive aggregation strategies on the generation

of the structural and temporal embeddings in Eq. 5, aim-

ing to capture various properties of the graph evolution

(Hamilton et al. 2017a; Wang et al. 2020). Accounting

for the dynamic nature of the evolving graphs, we also

plan to investigate relation-based approaches with online

distillation strategies, where both the teacher and the stu-

dent models capture the semantics of the data examples

simultaneously (Guo et al. 2020; Mirzadeh et al. 2020; Sun

et al. 2021). This means that the teacher model will not

only compute the structural and temporal properties of an

evolving graph, but will also assist the student model with

updated information.

Fig. 5 Impact of parameter � on the prediction accuracy and online

inference latency of the examined DynGKD student models. We omit

the DynGKD-F1 and DynGKD-F2 strategies, as they have the same

model size with DynGKD-H for the online inference latency experi-

ments

Social Network Analysis and Mining (2021) 11:100

1 3

Page 15 of 16 100

Funding Open access funding provided by Royal Institute of

Technology.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detec-

tion and description: a survey. Data Min Knowl Discov

29(3):626–688

Antaris S, Rafailidis D (2020) Distill2vec: dynamic graph repre-

sentation learning with knowledge distillation. In: ASONAM

Antaris S, Rafailidis D (2020) Vstreamdrls: dynamic graph repre-

sentation learning with self-attention for enterprise distributed

video streaming solutions. In: ASONAM

Antaris S, Rafailidis D, Girdzijauskas S (2020) Egad: evolving graph

representation learning with self-attention and knowledge distil-

lation for live video streaming events

Asif U, Tang J, Harrer S (2020) Ensemble knowledge distillation for

learning improved and efficient networks

Ba J, Caruana R (2014) Do deep nets really need to be deep? In:

Advances in Neural Information Processing Systems, vol 27.

Curran Associates, Inc.

Bresson X, Laurent T (2019) A two-step graph convolutional decoder

for molecule generation. In: NeurIPS

Bucilua C, Caruana R, Niculescu-Mizil A (2006) Model compres-

sion. In: KDD, pp 535–541

Cao Y, Wang X, He X, Hu Z, Chua TS (2019) Unifying knowledge

graph learning and recommendation: towards a better under-

standing of user preferences. In: WWW, pp 151–161

Chang X, Liu X, Wen J, Li S, Fang Y, Song L, Qi Y (2020) Contin-

uous-time dynamic graph learning via neural interaction pro-

cesses, pp 145–154

Chen D, Mei JP, Zhang Y, Wang C, Wang Z, Feng Y, Chen C (2021)

Cross-layer distillation with semantic calibration. In: AAAI,

vol 35, pp 7028–7036

Chen G, Choi W, Yu X, Han T, Chandraker M (2017) Learning

efficient object detection models with knowledge distillation.

In: NeurIPS, pp 742–751

Chen H, Perozzi B, Hu Y, Skiena S (2018) Harp: hierarchical repre-

sentation learning for networks. In: Proceedings of the AAAI

conference on artificial intelligence, vol 32

Chen H, Wang Y, Xu C, Xu C, Tao D (2020) Learning student net-

works via feature embedding. IEEE Trans Neural Netw Learn

Syst 32(1):25–35

Chen J, Ma T, Xiao C (2018) Fastgcn: fast learning with graph con-

volutional networks via importance sampling. Preprint arXiv:

1801. 10247

Chen Y, Bian Y, Xiao X, Rong Y, Xu T, Huang J (2020) On self-

distilling graph neural network. Preprint arXiv: 2011. 02255

Dai H, Wang Y, Trivedi R, Song L (2016) Deep coevolutionary net-

work: embedding user and item features for recommendation.

Preprint arXiv: 1609. 03675

Du L, Wang Y, Song G, Lu Z, Wang J (2018) Dynamic network

embedding: an extended approach for skip-gram based network

embedding. In: IJCAI, pp 2086–2092

Gou J, Yu B, Maybank SJ, Tao D (2021) Knowledge distillation: a

survey. Int J Comput Vis 129(6):1789–1819

Goyal P, Chhetri SR, Canedo A (2020) dyngraph2vec: capturing

network dynamics using dynamic graph representation learning.

Knowl-Based Syst 187:104816

Goyal P, Kamra N, He X, Liu Y (2018) Dyngem: deep embedding

method for dynamic graphs. Preprint arXiv: 1805. 11273

Grover A, Leskovec J (2016) Node2vec: scalable feature learning for

networks. In: KDD, pp 855–864

Guo Q, Wang X, Wu Y, Yu Z, Liang D, Hu X, Luo P (2020) Online

knowledge distillation via collaborative learning. In: CVPR,

pp 11020–11029

Hamilton WL, Ying R, Leskovec J (2017a) Inductive representation

learning on large graphs. In: NeurIPS, pp 1025–1035

Hamilton WL, Ying R, Leskovec J (2017b) Representation learn-

ing on graphs: methods and applications. Preprint arXiv: 1709.

05584

Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a

neural network. In: NIPS

Huang Z, Wang N (2017) Like what you like: knowledge distill via

neuron selectivity transfer. Preprint arXiv: 1707. 01219

Kim J, Hyun M, Chung I, Kwak N (2021) Feature fusion for online

mutual knowledge distillation. In: ICPR, pp 4619–4625

Kim Y, Rush AM (2016) Sequence-level knowledge distillation. In:

EMNLP, pp 1317–1327

Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-

tion. In: ICLR

Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv:

abs/ 1611. 07308

Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. In: ICLR

Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embed-

ding trajectory in temporal interaction networks. In: SIGKDD,

pp 1269–1278

Lee S, Song BC (2019) Graph-based knowledge distillation by multi-

head attention network. Preprint arXiv: 1907. 02226

Li J, Dani H, Hu X, Tang J, Chang Y, Liu H (2017)Attributed net-

work embedding for learning in a dynamic environment. In:

CIKM, pp 387–396

Liu M, Gao H, Ji S (2020) Towards deeper graph neural networks.

In: KDD, pp 338–348

Liu Y, Cao J, Li B, Yuan C, Hu W, Li Y, Duan Y (2019) Knowl-

edge distillation via instance relationship graph. In: CVPR, pp

7096–7104

Liu Z, Huang C, Yu Y, Song P, Fan B, Dong J (2020) Dynamic

representation learning for large-scale attributed networks. In:

CIKM, pp 1005–1014

Ma J, Mei Q (2019) Graph representation learning via multi-task

knowledge distillation. Preprint arXiv: 1911. 05700

Mahdavi S, Khoshraftar S, An A (2020) Dynamic joint variational

graph autoencoders. In: Machine learning and knowledge dis-

covery in databases, pp 385–401

Meng Z, Li J, Zhao Y, Gong Y (2019) Conditional teacher-student

learning. In: ICASSP, pp 6445–6449

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distrib-

uted representations of words and phrases and their composi-

tionality. In: NIPS, pp 3111–3119

Mirzadeh SI, Farajtabar M, Li A, Levine N, Matsukawa A,

Ghasemzadeh H (2020) Improved knowledge distillation via

teacher assistant. In: AAAI, pp 5191–5198

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/2011.02255
http://arxiv.org/abs/1609.03675
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1707.01219
http://arxiv.org/abs/abs/1611.07308
http://arxiv.org/abs/abs/1611.07308
http://arxiv.org/abs/1907.02226
http://arxiv.org/abs/1911.05700

 Social Network Analysis and Mining (2021) 11:100

1 3

100 Page 16 of 16

Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018)

Continuous-time dynamic network embeddings. In: WWW, pp

969–976

Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H,

Kaler T, Schardl TB, Leiserson CE (2020) EvolveGCN: evolv-

ing graph convolutional networks for dynamic graphs. In: AAAI

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning

of social representations. In: KDD, pp 701–710

Phuong M, Lampert C (2019) Towards understanding knowledge

distillation. In: ICML, pp 5142–5151

Qian Q, Li H, Hu J (2020) Efficient kernel transfer in knowledge

distillation. arXiv: abs/ 2009. 14416

Qu M, Bengio Y, Tang J (2019) Gmnn: graph markov neural net-

works. In: ICML, pp 5241–5250

Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y

(2015) Fitnets: hints for thin deep nets. In: ICLR

Roverso R, Reale R, El-Ansary S, Haridi S (2015) Smoothcache

2.0: Cdn-quality adaptive http live streaming on peer-to-peer

overlays. In: MMSys, pp 61–72

Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep neural

representation learning on dynamic graphs via self-attention net-

works. In: WSDM, pp 519–527

Sun L, Gou J, Yu B, Du L, Tao D (2021) Collaborative teacher-student

learning via multiple knowledge transfer. Preprint arXiv: 2101.

08471

Tang J, Wang K (2018) Ranking distillation: learning compact rank-

ing models with high performance for recommender system. In:

KDD, pp 2289–2298

Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning rep-

resentations over dynamic graphs. In: ICLR

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN,

Kaiser LU, Polosukhin I (2017) Attention is all you need. In: Neu-

rIPS, vol 30

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y

(2018) Graph attention networks. In: ICLR

Wang X, Bo D, Shi C, Fan S, Ye Y, Yu PS (2020) A survey on hetero-

geneous graph embedding: methods, techniques, applications and

sources. Preprint arXiv: 2011. 14867

Williams C, Seeger M (2001) Using the nyström method to speed up

kernel machines. In: NeurIPS, vol 13

Yang Y, Qiu J, Song M, Tao D, Wang X (2020) Distilling knowledge

from graph convolutional networks. In: CVPR

Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J

(2018) Graph convolutional neural networks for web-scale recom-

mender systems. In: KDD, pp 974–983

You J, Liu B, Ying R, Pande V, Leskovec J (2018) Graph convolutional

policy network for goal-directed molecular graph generation. In:

NeurIPS

Zagoruyko S, Komodakis N (2017) Paying more attention to attention:

improving the performance of convolutional neural networks via

attention transfer. In: ICLR

Zhang M, Chen Y (2018) Link prediction based on graph neural net-

works. In: NeurIPS

Zhang Y, Zhang F, Yao P, Tang J (2018) Name disambiguation in

aminer: clustering, maintenance, and human in the loop. In: KDD,

pp 1002–1011

Zhang Y, Pal S, Coates M, Ustebay D (2019) Bayesian graph convo-

lutional neural networks for semi-supervised classification. In:

AAAI, pp 5829–5836

Zhang Z, Bu J, Ester M, Zhang J, Yao C, Li Z, Wang C (2020) Learn-

ing temporal interaction graph embedding via coupled memory

networks. In: WWW, pp 3049–3055

Zhou G, Fan Y, Cui R, Bian W, Zhu X, Gai K (2018a) Rocket launch-

ing: a universal and efficient framework for training well-perform-

ing light net. In: AAAI

Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018b) Dynamic network

embedding by modelling triadic closure process. In: AAAI

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/abs/2009.14416
http://arxiv.org/abs/2101.08471
http://arxiv.org/abs/2101.08471
http://arxiv.org/abs/2011.14867

	Knowledge distillation on neural networks for evolving graphs
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph representation learning
	2.2 Knowledge distillation

	3 Problem formulation
	4 Proposed model
	4.1 Method overview
	4.2 Teacher model on the offline data
	4.3 Knowledge distillation strategies

	5 Experiments
	5.1 Datasets
	5.2 Evaluation protocol
	5.3 Examined models
	5.4 Performance evaluation
	5.5 Impact of knowledge distillation

	6 Conclusions
	References

