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Abstract Prediction in a small-sized sample with a large number of covariates, the “small n,
large p” problem, is challenging. This setting is encountered in multiple applications, such
as in precision medicine, where obtaining additional data can be extremely costly or even
impossible, and extensive research effort has recently been dedicated to finding principled
solutions for accurate prediction. However, a valuable source of additional information,
domain experts, has not yet been efficiently exploited. We formulate knowledge elicitation
generally as a probabilistic inference process, where expert knowledge is sequentially queried
to improve predictions. In the specific case of sparse linear regression, where we assume the
expert has knowledge about the relevance of the covariates, or of values of the regression
coefficients, we propose an algorithm and computational approximation for fast and efficient
interaction, which sequentially identifies the most informative features on which to query
expert knowledge. Evaluations of the proposed method in experiments with simulated and
real users show improved prediction accuracy already with a small effort from the expert.

Keywords Bayesian methods · Experimental design · Human-to-machine transfer learning ·

Interactive machine learning · Statistics in high dimensions

1 Introduction

Datasets with a small number of samples n and a large number of variables p are nowadays
common. Statistical learning, for example regression, in these kinds of problems is ill-posed,
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and it is known that statistical methods have limits in how low in sample size they can go
(Donoho and Tanner 2009). A lot of recent research in statistical methodology has focused
on finding different kinds of solutions via well-motivated trade-offs in model flexibility and
bias. These include strong assumptions about the model family, such as linearity, low rank,
sparsity, meta-analysis and transfer learning from related datasets, efficient collection of new
data via active learning, and, less prominently, prior elicitation.

There is, however, a certain disconnect between the development of state-of-the-art statis-
tical methods and their application in challenging data analysis problems. Many applications
have significant amounts of previous knowledge to incorporate into the analysis, but this is
often unstructured and tacit. Building it into the analysis would require tailoring the model
and eliciting the knowledge in a suitable format for the analysis, which would be burdensome
for both experts in statistical methods and experts in the problem domain. More commonly,
new methods are developed to work well in some broad class of problems and data, and
domain experts use default approaches and apply their previous knowledge post-hoc for
interpretation and discussion. Even when experts in both fields are directly collaborating, the
feedback loop between the method development and application is often slow.

We propose to directly integrate the expert into the modelling loop by formulating knowl-
edge elicitation as a probabilistic inference process. We study a specific case of sparse linear
regression with the aim of solving prediction problems where the number of available sam-
ples (training data) is insufficient for statistically accurate prediction. A core characteristic
of the formulation is that it adapts to the feedback obtained from the expert and it sequen-
tially integrates every piece of information before deciding on the next query for the expert.
In particular, the predictive regression model and the feedback model are subsumed into a
joint probabilistic model, the related uncertainties of which can be sequentially updated, after
each expert interaction. The query selection is then naturally formulated as an experimental

design problem, aiming at maximizing the information gained from the expert in a limited
number of queries. This efficiently reduces the burden on the expert, since the most informa-
tive queries will be asked first, redundant queries can be avoided via the sequential updating,
and the expert’s effort is not wasted on aspects of the model, where the training data already
provides strong information. Notably, compared to pure prior elicitation, the reduction in
the number of interactions makes knowledge elicitation for high-dimensional parameters
(such as the regression weights in large p models) practicable. This paper contributes to the
interactive machine learning literature, focusing on probabilistic modelling for interactively
eliciting and incorporating expert knowledge. The other important aspect, of designing the
user interfaces, will be focused on in future work.

1.1 Contributions and outline

After discussing related work (Sect. 2), we rigorously formulate expert knowledge elicitation
as a probabilistic inference process (Sect. 3). We study a specific case of sparse linear regres-
sion, and in particular, consider cases where the expert has knowledge about the relevance of
the covariates or the values of the regression coefficients (Sect. 4). We present an algorithm
for efficient interactive sequential knowledge elicitation for high-dimensional models that
makes knowledge elicitation in “small n, large p” problems feasible (Sect. 4.3). We describe
an efficient computational approach using deterministic posterior approximations allowing
real-time interaction for the sparse linear regression case (Sect. 4.4). Simulation studies
are presented to demonstrate the performance and to gain insight into the behaviour of the
approach (Sect. 5). Finally, we demonstrate that real users are able to improve the predictive
performance of sparse linear regression in a proof-of-concept experiment (Sect. 5.4).
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2 Related work

The problem we study relates to several topics studied in the literature, either by the method,
goal, or by the considered setting. In this section, we highlight the main connections.

2.1 Interactive learning

Interactive machine learning includes a variety of ways to employ user’s knowledge, prefer-
ences, and human cognition to enhance statistical learning (Ware et al. 2001; Fails and Olsen
2003; Amershi 2012; Robert et al. 2016). These methods have been used successfully in
several applications, such as learning user intent (Ruotsalo et al. 2014) and preferential clus-
tering. For instance, the semi-supervised clustering method in Lu and Leen (2007); Balcan
and Blum (2008) uses feedback on pairs of items that should or should not be in the same
cluster, to learn user preferences. In addition to the differences coming from the learning
task, one notable contrast between these works and our method is that their aim is to identify
user preferences or opinions, whereas our goal is to use expert knowledge as an additional
source of information for an improved prediction model, by integrating it with the knowl-
edge coming from the (small n) data. As a probabilistic approach, our work relates to Cano
et al. (2011) and House et al. (2015), where expert feedback is used for improved learning of
Bayesian networks and for visual data exploration, respectively. In Sect. 3.3, we show how
these works can be seen as instances of the general approach we propose.

2.2 Active learning and experimental design

The method we propose for efficiently using expert feedback is related to active learning
techniques [see, for instance, Settles (2010)], where the algorithms actively select the most
informative data points to be used in prediction tasks. Our method similarly queries the
expert for information with the goal of maximising the information gain from each feedback
and thus learning more accurate models with less feedback. The same definition of effi-
ciency with respect to the use of samples also connects our work with experimental design
techniques (Kiefer and Wolfowitz 1959; Chaloner and Verdinelli 1995), which considers
designing informative experiments for collecting data in settings with limited resources.
This has been recently considered in sparse linear settings by Seeger (2008), Hernández-
Lobato et al. (2013), Ravi et al. (2016) and is important in many application fields (Busby
2009; Ferreira and Gamerman 2015; Martino et al. 2017). Our task, however, is different as
we do not aim at collecting new data samples, but the additional information comes from a
different source, the expert, with its respective bias and uncertainty. Indeed, our method will
be most useful in cases where obtaining additional input samples would be too expensive.
Active learning has also been used to query feature labels rather than new data points in
natural language processing applications (Druck et al. 2009; Settles 2011; Raghavan et al.
2006). The difference between these works and our paper comes from the task (they consider
classification rather than prediction), the model assumptions (they did not consider sparse
models which are suitable for “small n, large p” settings), and the feedback type.

2.3 Prior elicitation

Many works have studied approaches for efficient elicitation of expert knowledge. Typically,
the goal of prior elicitation techniques (O’Hagan et al. 2006) is to use expert knowledge to
construct a prior distribution for Bayesian data analysis and restrict the range of parameters
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to be later used in learning models. In particular, Garthwaite and Dickey (1988), Kadane
et al. (1980) study methods of quantifying subjective opinion about the coefficients of linear
regression models through the assessment of credible intervals. These elicitation methods
were shown to obtain prior distributions that represent well the expert’s opinion. Similar
elicitation methods have been employed in a wide range of application settings, in which
expert knowledge elicitation techniques have been studied, for instance preference model

elicitation (Azari Soufiani et al. 2013), or software development processes (Hickey and Davis
2003). Our approach goes beyond pure prior elicitation as the training data is used to facilitate
efficient user interaction. The concurrent works by Micallef et al. (2017), Afrabandpey et al.
(2016), and Soare et al. (2016) also use elicited expert knowledge for improving prediction.
Micallef et al. (2017) use a separate multi-armed bandit model to facilitate the elicitation and
directly modify the regression model priors, Soare et al. (2016) consider predictions for a
target patient in a simulated user setting, while Afrabandpey et al. (2016) consider pairwise
similarity feedback on features and uses those to create a better covariance matrix for the prior
of coefficients of ridge regression. Contrary to our work, these works do not formulate an
encompassing probabilistic model for the expert knowledge and prediction, a crucial feature
of our approach. Moreover, they do not consider a sparse regression model and the type of
feedback is different.

3 Knowledge elicitation as interactive probabilistic modelling

In the following, we formulate expert knowledge elicitation as a probabilistic inference
process.

3.1 Key components

Let y and x denote the outputs (target variables) and inputs (covariates), and θ and φy

the model parameters. Let f encode input (feedback) from the user, presumably a domain
expert, and φ f be model parameters related to the user input. We identify the following key
components:

1. An observation model p(y | x, θ, φy) for y.
2. A feedback model p( f | θ, φ f ) for the expert’s knowledge.
3. A prior model p(θ, φy, φ f ) completing the hierarchical model description.
4. A query algorithm and user interface that facilitate gathering f iteratively from the expert.
5. Update process of the model after user interaction.

The observation model can be any appropriate probability model. It is assumed that there
is some parameter θ , possibly high-dimensional, that the expert has knowledge about. The
expert’s knowledge is encoded as (possibly partial) feedback f that is transformed into
information about θ via the feedback model. Of course, there could be a more complex
hierarchy tying the observation and feedback models, and the feedback model can also be
used to model more user-centric issues, such as the quality of or uncertainty in the knowledge
or user’s interests.

The feedback model, together with a query algorithm and a user interface, is used to
facilitate an efficient interaction with the expert. The term “query algorithm” is used here
in a broad sense to describe any mechanism that is used to intelligently guide the user’s
focus in providing feedback to the system. This enables considering a high-dimensional f

without overwhelming the expert as the most useful feedbacks can be queried first. Crucially,
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this enables going beyond pure prior elicitation as the observed data can be used to inform
the queries via the dependence of the feedback and observation models. For example, the
queries can be formed as solutions to decision or experimental design tasks that maximize
the expected information gain from the interaction.

Finally, as the expert feedback is modelled as additional data, Bayes theorem can be used
to sequentially update the model during the interaction. For real-time interaction, this may
present a challenge as computation in probabilistic models can be demanding. It is known that
slow computation can impair effective interaction (Fails and Olsen 2003) and, thus, efficient
computational approaches are important.

3.2 Overall interaction scheme

Figure 1 depicts the information flow. First, the posterior distribution p(θ |D) given the obser-
vations D = {(yi , xi ) : i = 1, . . . , n} is computed. Then, the expert is queried iteratively
for feedback via the user interface and the query algorithm. The feedback is used to sequen-
tially update the posterior distribution. The query algorithm has access to the latest beliefs
about the model parameters and the predicted user behaviour, that is, the posterior predictive
distribution of f , p( ft+1 | D, f1, . . . , ft ), where the f j are possibly partial observations of
f . Based on this information, the query algorithm chooses the most informative queries, or
more generally interactions in the user interface.

3.3 Examples

The goal in this paper is to use the interaction scheme (Fig. 1) to help solve prediction
problems in the “small n, large p” setting. The approach as described above is, however,
more general and applicable to other problems as well. We briefly describe two earlier works
that can be seen as instances of it.

Cano et al. (2011) present a method for integrating expert knowledge into learning of
Bayesian networks. The observation model is a multinomial Bayesian network with Dirichlet
priors. The expert provides answers to queries about the presence or absence of edges in the
network and the feedback model assumes the answers to be correct with some probability.
Which edge to query about next is selected by maximising the information gain with regard to
the inclusion probability of the edges. Monte Carlo algorithms are used for the computation.

House et al. (2015) present a framework for interactive visual data exploration. They
describe two observation models, principal component analysis and multidimensional scal-

Model p

Data D

p(θ | D) p(θ | D, f1) p(θ | D, f1, f2)

Query F1 Query F2

Expert knowledge

Fig. 1 Information flow. The parameters φy and φ f are omitted from the posterior distributions for brevity
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ing, that are used for dimensionality reduction to visualise the observations in a two
dimensional plot. They do not have a query algorithm, but their user interface allows moving
points in a low-dimensional plot closer or further apart. A feedback model then transforms
the feedback into appropriate changes in the parameters shared with the observation model to
allow exploration of different aspects of the data. Their model affords closed form updates.

4 Feedback models and query algorithm for sparse linear regression

We next introduce the knowledge elicitation approach for sparse linear regression.

4.1 Sparse regression model

Let y ∈ R
n be the observed output values and X ∈ R

n×m the matrix of covariate values. We
assume a Gaussian observation model for the regression1:

y ∼ N(Xw, σ 2I),

where w ∈ R
m are the regression coefficients and σ 2 is the residual variance. We assume a

gamma prior on the inverse of σ 2 (that is, residual precision; or equivalently, inverse-gamma
prior on the variance):

σ−2 ∼ Gamma(ασ , βσ ).

Other tasks, such as classification, could be accommodated by changing the assumption about
the observation model to an appropriate generalized linear model.

A sparsity-inducing spike-and-slab prior (George and McCulloch 1993) is put on the
regression coefficients w:

w j ∼ γ j N(0, ψ2) + (1 − γ j )δ0, j = 1, . . . , m,

γ j ∼ Bernoulli(ρ), j = 1, . . . , m,

where the γ j are latent binary variables indicating inclusion or exclusion of the covariates
in the regression. For covariates included in the model, γ j = 1 and w j is drawn from a
zero-mean Gaussian distribution with variance ψ2. For covariates excluded from the model
γ j = 0 and w j = 0 via the Dirac delta point mass at zero, δ0. We will also refer to covariates
included in the model as relevant for the regression and covariates excluded as not-relevant.
The prior inclusion probability of the covariates ρ controls the expected number of covariates
included (i.e., the sparsity of model). The ασ , βσ , ψ2, and ρ are fixed hyperparameters.

After observing a training dataset D = (X, y), the posterior distribution of the regression
model is computed using the Bayes theorem2 as

p(w, γ , σ 2 | D) =
p( y | X,w, σ 2)p(σ 2)p(w | γ )p(γ )

p( y | X)
.

The predictive distribution for a new data point x̃ is

p(ỹ | x̃, D) =

∫

p(ỹ | x̃,w, σ 2)p(w, σ 2 | D)d(w, σ 2).

1 The parametrizations of the distributions follow Gelman et al. (2014, Appendix A).
2 We use the generic p(·)notation, where it is understood that the parameters identify the particular distribution.
See, e.g., Gelman et al. (2014, p. 6).
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4.2 Feedback models

Feedback models are used to incorporate the expert knowledge into the regression model.
They extend the regression model such that both parts are subsumed into a single proba-
bilistic model, where information flows naturally between the parts (following the Bayesian
modelling paradigm).

The feedback model is naturally dependent on the available type of expert knowledge in
the targeted application. For our formulation we consider two simple and natural feedback
models encoding knowledge about the individual regression coefficients:

– Expert has knowledge about the value of the coefficient ( fw, j ∈ R):

fw, j ∼ N(w j , ω
2). (1)

We do not assume that the expert can give exact values for the coefficients, but that there
is some uncertainty in the expert’s estimates, the amount of which is controlled by the
variance ω2. The smaller the ω2, the more accurate the knowledge is assumed a priori,
and the stronger the change in the model in response to the feedback.

– Expert has knowledge about the relevance of coefficient ( fγ, j ∈ {0, 1} for not-relevant,
relevant):

fγ, j ∼ γ j Bernoulli(π) + (1 − γ j ) Bernoulli(1 − π). (2)

Here, π models uncertainty of the knowledge (akin to ω2 above). A priori, the expert
feedback is expected to be 1 (relevant) with probability π if γ j = 1 (the covariate is
included in the regression). In other words, π can be thought of as the probability of the
expert being correct in his or her feedback relative to the state of the covariate inclusion
γ j .

The posterior distribution after getting a set F = ( f w, f γ ) of expert feedback, where,
with some abuse of notation, f w and f γ collect the given feedback (not assumed to be
necessarily available for all covariates) is

p(w, γ , σ 2 | D, F) =
p( y | X,w, σ 2)p(σ 2)p(w | γ )p(γ )p( f γ | γ )p( f w | w)

p( y, f γ , f w | X)
.

The predictive distribution follows as before but with the new posterior distribution. The pos-
terior distribution can be updated sequentially when more feedback is collected, as explained
in Sect. 3. In the following, we will assume only one type of feedback at a time in the
modelling, but this could be extended to multiple simultaneous types.

To relate the work to prior elicitation, we can think of first updating the posterior distribu-
tion with only the expert feedback F , and then, using the posterior as the prior distribution
for updating the model with the training set observations D. However, incorporating the
expert knowledge through the feedback models (instead of directly as priors) is crucial for
the sequential knowledge elicitation, as it allows computing the predictive distributions for
the feedback. Moreover, the sequential elicitation exploits the information in the training data
to facilitate an efficient elicitation process for high-dimensional parameters.

4.3 Query algorithm

Our aim is to improve prediction. Thus, the user interaction should focus on aspects of the
model (here, predictive covariates or features; we use the terms interchangeably) that would
be most beneficial towards this goal. We use the query algorithm to rank the features for
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choosing which one to ask feedback about next. The ranking is formulated as a Bayesian
experimental design task (Chaloner and Verdinelli 1995) given all information collected thus
far.

The utility function used for scoring the alternative queries can be tailored according to the
application. In this paper we use information gain in the prediction, defined as the Kullback–
Leibler divergence (KL) between the current posterior predictive distribution p(ỹ | x̃, D, F)

and the posterior predictive distribution with the new feedback f j , p(ỹ | x̃, D, F, f j ).
The bigger the information gain, the bigger impact the new feedback has on the predictive
distribution. More specifically, the feature j∗ that maximizes the expected information gain
is chosen next:

j∗ = arg max
j /∈F

E
p( f̃ j |D,F)

[

∑

i

KL[p(ỹ | xi , D, F, f̃ j ) ‖ p(ỹ | xi , D, F)]

]

,

where j indexes the features, F is the set of feedbacks that have already been given, and
the summation over i goes over the training dataset. Since the feedback itself will only be
observed after querying the expert, we take the expectation over the posterior predictive
distribution of the feedback p( f̃ j | D, F). More details about the Bayesian experimental
design are provided in Appendix B.

As a side note, if the predictive distribution of y was Gaussian, the problem would be
simple. The expected information gain would be independent of y and the actual values
of the feedbacks (when feedback is on values of the regression coefficients), and would
only depend on the x and on which features the feedback was given (Seeger 2008). The
sparsity-promoting prior, however, makes the problem non-trivial.

4.4 Computation

The model does not have a closed-form posterior distribution, predictive distribution, or
solution to the information gain maximization problem. To achieve fast computation, we
use deterministic posterior approximations. Expectation propagation (Minka 2001) is used
to approximate the spike-and-slab prior (Hernández-Lobato et al. 2015) and the feedback
models, and variational Bayes (e.g., Bishop 2006, Chapter 10) is used to approximate the
residual variance σ 2. The form of the posterior approximation for the regression coefficients
w is Gaussian. The posterior predictive distribution for y is also approximated as Gaussian.
Details are provided in Appendix A.

Expectation propagation has been found to provide good estimates of uncertainty, which
is important in experimental design (Seeger 2008; Hernández-Lobato et al. 2013; Hernández-
Lobato et al. 2015). In evaluating the expected information gain for a large number of
candidate features, running the approximation iterations to full convergence for each is too
slow, however. We follow the approach of Seeger (2008), Hernández-Lobato et al. (2013) in
computing only a single iteration of updates on the essential parameters for each candidate.
We show in the results that this already provides a good performance for the query algorithm
in comparison to random queries. Details on the computations are provided in Appendix B.

Markov chain Monte Carlo (MCMC) methods could alternatively be used for computation,
but sampling efficiently over the binary space of size 2m for γ can be difficult (Peltola et al.
2012; Schäfer and Chopin 2013) and naive approaches would be slow. Sequential Monte
Carlo (SMC) algorithms (Del Moral et al. 2006; Schäfer and Chopin 2013) are designed
to move between distributions that change in steps and could provide a feasible alternative
to deterministic approximations here. However, designing efficient SMC algorithms for the
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spike and slab model is not trivial (see Schäfer and Chopin (2013) for an approach). We have
not evaluated using MCMC computation in this work.

5 Experiments

The performance of the proposed method is evaluated in several “small n, large p” regression
problems on both simulated and real data.3 A proof-of-concept user study is presented to
demonstrate the feasibility of the method with real users. We compare our sequential design
algorithm (Sect. 4.3) to two baselines in the experiments:

– Random feature suggestion,
– The non-sequential version of our algorithm, which chooses the sequence of features to

be queried before observing any expert feedback.

Additionally, to provide a yardstick, we plot the results of an “oracle,” which knows the
relevant features beforehand, and which is obviously not available in practice:

– Query first on the relevant features, and then choose at random from the features not
already selected.

We compare the performance of these strategies with synthetic and real data, and with both
simulated and real users providing feedback.

5.1 Synthetic data

We use synthetic data to study the behaviour of the approach in a wide range of controlled
settings.

5.1.1 Setting

The covariates of n training data points are generated from X ∼ N(0, I). Out of the m

regression coefficients w1, . . . , wm ∈ R, m∗ are generated from w j ∼ N(0, ψ2) and the rest
are set to zero. The observed output values are generated from y ∼ N(Xw, σ 2I). We consider
cases where the user has knowledge about the value of the coefficients (Eq. 1 with noise value
ω = 0.1) and where the user has knowledge about whether features are relevant or not (Eq. 2
with γ j = 1 if w j is non-zero, and γ j = 0 otherwise, and π = 0.95). For a generated set of
training data, all algorithms query feedback about one feature at a time. Mean squared error
(MSE) is used as the performance measure to compare the query algorithms. For the simulated
data setting, we use the known data-generating values for the fixed hyperparameters, namely:
ψ2 = 1, ρ = m∗/m, and σ 2 = 1 (instead of the inverse-gamma prior of σ 2 used in the rest
of the experiments).

5.1.2 Results

Sequential experimental design requires only few feedbacks to improve the MSE In Fig. 2,
we consider a “small n, large p” scenario, with n = 10, m∗ = 10 and with increasing
dimensionality (hence also increasing sparsity) from m = 12, . . . , 200. The heatmaps show
the average MSE values over 100 runs (repetitions of the data generation) for both feedback

3 All codes and data are available in https://github.com/HIIT/knowledge-elicitation-for-linear-regression.
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Fig. 2 Mean squared errors in simulated settings with increasing dimensionality. The number of relevant
coefficients m∗ = 10 and the number of training data points n = 10. The MSE values are averages over 100
independent runs. a Feedback on coefficient values, b feedback on coefficient relevances

models, as obtained by our sequential experimental design algorithm and by a strategy that
randomly selects the sequence of features on which to ask for expert feedback. The result
shows that our method achieves a faster improvement in the prediction, starting from the very
first expert feedbacks, for both feedback types, and at all the dimensionalities. Notably, in
the case of the random strategy, the performance decreases rapidly with the growing dimen-
sionality (even with 50 feedbacks, in the setting with 200 dimensions, the prediction error for
random strategy stays high), while the expert feedback via the sequential experimental design
is informative enough to provide good predictions even in large dimensionalities. Comparing
the two types of feedback, the feedback on the coefficient values gives better performance
for both strategies.

Sequential experimental design requires only few training data points to identify infor-

mative queries Figure 3 shows heatmaps for the same setting but with a fixed dimension
m = 100 and increasing numbers of training data points n = 5, . . . , 50. For very small
sample sizes (n < 10), a difference between the performance of the two methods starts being
visible after 20-30 feedbacks. For larger training samples sizes (10 < n < 30), the MSE
reduction in our method is more visible from the first feedbacks, while for n > 30, both
strategies have much smaller MSE after receiving the first feedbacks. Thus, the experiments
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Fig. 3 Mean squared errors as a function of the number of training data points (horizontal axis) and number of
expert feedbacks (vertical axis). The number of relevant coefficients m∗ = 10 and the number of dimensions
m = 100. The MSE values are averages over 100 independent runs. a Feedback on coefficient values, b
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relevances (Color figure online)

show that for all values of n there is an improvement in the prediction error, from the very
first expert feedback. An important observation is that the largest improvements come when
the training data does not alone provide enough information.

Expert feedback affects the next query We now study the difference between our method
and its non-sequential version for the two feedback models. The non-sequential version
chooses the sequence of features to be queried before observing any expert feedback. In
Fig. 4, we consider a “small n, large p” scenario, with n = 10, m = 100, m∗ = 10, and we
report the average MSE value over 500 runs. The figure shows that with both experimental
design methods the prediction loss decreases rapidly already in the first iterations. In other
words, both methods manage to rapidly identify the most informative coefficients and ask
about them. This is more evident in the feedback model about coefficient relevance (Fig. 4b).
It is also clearly visible that the sequential version is able to reduce the prediction error faster.
Also, as expected, the difference between the sequential and non-sequential experimental
designs is larger in the case of the stronger feedback model on coefficient values (Fig. 4a).
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Expert feedback improves the generalization performance We can get some insight into
the behaviour of the approach by comparing the training and test set errors shown in Figs. 4a
and 5a for the simulated data scenario described in the previous section with feedback on the
coefficient values. The training set error begins to increase as a function of the number of
expert feedbacks. This happens because the model without any feedbacks has exhausted the
information in the training data (to the extent allowed by the regularizing priors) and fits the
training data well. The expert feedback, however, moves the model away from the training
data optimum and towards better generalization performance. Indeed, the MSE curves for
the training and test errors converge close to each other as the number of feedbacks increases.
Moreover, Fig. 5b shows the average (over the replicate runs) query behaviour of each method,
indicating whether the methods have queried non-zero features (value 1 in the vertical axis)
or zero features (value 0 in the vertical axis). A comparison of Figs. 4a and 5b shows that the
convergence is faster for the query algorithms that start by suggesting the non-zero features,
implying that these features are more informative.

5.2 Real data: review rating prediction

We test the proposed method in the task of predicting review ratings from textual reviews in
subsets of Amazon and Yelp datasets. Each review is one data point, and each distinct word
is a feature with the corresponding covariate value given by the number of appearances of
the word in the review. Sparse linear regression models have been shown suitable for this
task in previous studies, for instance, in Hernández-Lobato et al. (2015).

Amazon data The Amazon data is a subset of the sentiment dataset of Blitzer et al. (2007).
This dataset4 contains textual reviews and their corresponding 1-5 star ratings for Amazon
products. Here, we only consider the reviews for products in the kitchen appliances category,
which amounts to 5149 reviews. The preprocessing of the data follows the method described
by Hernández-Lobato et al. (2015), where this dataset was used for testing the performance
of a sparse linear regression model. Each review is represented as a vector of features, where
the features correspond to unigrams and bigrams, as given by the data provided by Blitzer
et al. (2007). For each distinct feature and for each review, we created a matrix of occurrences
and only kept for our analysis the features that appeared in at least 100 reviews, that is, 824
features.

Yelp data The second dataset we use is a subset of the YELP (academic) dataset.5 The dataset
contains 2.7 million restaurant reviews with ratings ranging from 1 to 5 stars (rounded to half-
stars). Here, we consider the 4086 reviews from the year 2004. Similarly to the preprocessing
done for Amazon data, each review is represented as a vector of features (distinct words).
After removing non-alphanumeric characters from the words and removing words that appear
less than 100 times, we have 465 words for our analysis.

5.3 Simulated expert feedback

For all experiments on Amazon and Yelp datasets, we proceeded as follows: First, each
dataset was partitioned in three parts: (1) a training set of 100 randomly selected reviews,
(2) a test set of 1000 randomly selected reviews, and (3) the rest as a “user-data set” for

4 https://www.cs.jhu.edu/~mdredze/datasets/sentiment/.
5 https://www.yelp.com/dataset_challenge.
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Fig. 6 Mean squared errors when user feedback is on relevance of features for Amazon and Yelp data. The
MSE values are averages over 100 independent runs. Note that the red strategy is not available in practice. a

Amazon data, b Yelp data (Color figure online)

constructing simulated expert knowledge. The data were normalised to have zero mean and
unit standard deviation on the training and user-data sets. The simulated expert feedback
was generated based on the posterior inclusion probabilities E[γ ] in a spike-and-slab model
trained on the user-data partition. We only considered the more realistic case where the
expert can give feedback about the relevance of the words. For a word j selected by the
algorithm, the expert gives feedback that the word is relevant if E[γ j ] > π , not-relevant

if E[γ j ] < 1 − π , and uncertain otherwise. The intuition is that if the user-data indi-
cate that a feature is zero/non-zero with high probability, then the simulated expert would
select that feature as not-relevant/relevant. However, for uncertain words, the feedback
iteration passes without receiving any feedback. For both datasets, the model hyperpa-
rameters were set as ασ = 1, βσ = 1, the prediction parameters were tuned based on
cross-validation before observing any feedback to ψ2 = 0.01, and ρ = 0.3, and the proba-
bility that the simulated expert feedback is correct was set to π = 0.9. All algorithms query
feedback about one feature at a time and MSE is used as the performance measure. The
ground truth line represents the MSE after receiving expert feedback for all words in each
dataset.

5.3.1 MSE improvement with feedback on feature relevances

A first observation of Fig. 6 is that the use of additional knowledge coming from the simulated
expert reduces the prediction errors, for all algorithms and on both datasets. The second
observation is that the reduction in the prediction error differs significantly depending on
whether the methods manage to query feedback on the most informative features first. Indeed,
the goal is to make the elicitation as little burdensome as possible for the experts. To reach the
goal, a strategy needs to rapidly extract a maximal amount of information from the expert,
which here amounts to the careful selection of the features on which to query feedback. As
expected, the random query selection strategy has a constant and slow improvement rate, as
the number of feedbacks grows, leaving a big gap from the ground-truth performance in both
datasets, even after 200 expert feedbacks. If an “oracle” was available to tell which features
are relevant, the (unrealistic) strategy to first ask about relevant features would produce a
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Table 1 Number of samples/feedbacks needed to reach a particular MSE level in Yelp dataset

MSE More samples More feedback

Random Active (Seeger 2008) Random SeqExpDes

1.20 21 3 30 3

1.19 55 6 96 11

1.18 94 12 185 25

1.17 146 22 266 46

l.16 241 44 324 85

The values are averages over 100 independent runs

steep increase in performance for the first iterations (26 words for Amazon and 23 for Yelp
are marked as relevant, as computed from the full dataset); then it would continue with a
very slow improvement rate coming from asking not-relevant words. Our method manages
to identify the informative features rapidly and thus has a higher improvement compared to
random from the first expert feedbacks. In the case of Yelp data, our strategy manages to be
very close to the “oracle” in the initial feedbacks and then converges very close to the ground
truth after 200 interactions. Furthermore, there is a significant gap compared to the random
strategy for all amounts of feedbacks. In the more difficult (in terms of rating prediction
error and size of dimensions) Amazon dataset, the gap to the random strategy is clear but
our strategy exceeds the information gain obtained in the 26 non-zero features only after 140
feedbacks.

5.3.2 Expert knowledge elicitation versus collecting more samples

We next contrast the improvements in the predictions brought by eliciting the expert feedback
to improvements gained if additional samples could be measured. In this experiment, we do
have additional samples, and for choosing them we use two alternative strategies: randomly
selecting a sequence of reviews to be included in the training set, and an active learning strat-
egy, which selects samples based on maximizing expected information gain [an adaptation
of the method by Seeger (2008)].

Tables 1 and 2 show how many feedbacks (for the knowledge elicitation strategies in
the last two columns: random and our method; see Sect. 4.3) and respectively how many
additional samples (that is, additional reviews to be included in the train set) are needed to
reach set levels of MSE, noting that all strategies have the same “small n, large p” regression
setting as a starting point, with n = 100.

The number of expert feedbacks required for a given performance level is of the same
order of magnitude as the number of additional data needed (Table 1). This slightly surprising
finding is even more remarkable since the expert feedback is of a weak type (feedback on the
relevance of features). For instance, in Yelp dataset (Table 1) the same level of MSE=1.18
is obtained either by asking an expert about the relevance of 25 features and by actively
selecting 12 extra samples. When the active selection is not possible, we can see that the same
information gain requires 94 additional randomly selected samples. Naturally, the results
obtained are specific for this Yelp data and for the feedback model we assume. Nevertheless,
the comparison shows the potential of expert knowledge elicitation in prediction for settings
where getting additional samples is impossible or very expensive. The same observations
and intuitions hold for the Amazon data (see Table 2).
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Table 2 Number of samples/feedbacks needed to reach a particular MSE level in Amazon dataset

MSE More samples More feedback

Random Active (Seeger 2008) Random SeqExpDes

2.025 8 4 73 9

2 15 7 152 19

1.975 29 12 >200 31

1.95 44 43 >200 43

1.925 59 71 >200 64

l.9 98 92 >200 95

1.875 >200 144 >200 136

The results are averages over 100 independent runs

5.4 User study

The goal of the user study is to investigate the prediction improvement and convergence
speed of the proposed sequential method based on human feedback. Our focus is on testing
the accuracy of feedback from real users on the easily interpretable Amazon data rather than
on details of the user interface. We asked ten university students and researchers to go through
all the 824 words and give us feedback in the form of not-relevant, relevant, or uncertain.
This allowed for a fast collection of feedbacks and we could use the pre-given feedback to
test the effectiveness of several query algorithms. We assumed that the algorithms had access
to 100 training data points and at each iteration they could query the pre-given feedback of
the participant about one word. The whole process was repeated for 40 runs, where training
data were randomly selected. The hyperparameters of the model were set to the same values
as in the simulated data study with the only difference that the strength of user knowledge
was lowered to π = 0.7.

Figure 7 shows the average MSE improvements for each of the ten participants, when
using our proposed method and the random query order. From the very first feedbacks, the
sequential experimental design approach performs better for all users and captures the expert
knowledge more efficiently. The random strategy exhibits a constant rate of performance
improvement with increasing number of feedbacks, while the sequential experimental design
shows faster improvement rate in the beginning of the interaction. To further quantify the
statistical evidence for the difference, we computed the paired-sample t tests between the
random suggestion and the proposed method at each iteration (green and blue curves in
Fig. 7). Already after the first feedback, the difference between the methods is significant at
the Bonferroni corrected level α = 0.05/200.

We complement the analysis of the results of the user study with two illustrations. First, to
compare the convergence speed of different methods, we normalised the MSE improvements
at each iteration by the amount of total improvement obtained by each of the users, when
considering all their individual feedback. Figure 8a depicts the convergence speed of methods
based on this measure. As can be seen from the figure, for all participants, the proposed method
was able to capture most of the participants’s knowledge with small budget of feedback
queries (stabilizing at around 200 out of the total 824 features in the considered subset of
Amazon data). Then, in Fig. 8b, we show the average suggestion behaviour of the methods.
One can notice that our algorithm started by favoring queries about relevant words and
after exhausting them, the suggestion behaviour moved to querying not-relevant words. The
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Fig. 7 Mean squared errors for
ten participants (average values
over 40 independent runs)
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Fig. 8 a Convergence speed of different methods to reach the performance achieved by considering all the
individual user feedbacks. b Average suggestion behaviour of the methods.

relevant words were identified by considering all the data in Amazon dataset and training
an spike and slab model and then choosing words with E[γ j ] > 0.7 (words with high
posterior inclusion probability). Based on this threshold, 39 out of the total of 824 words
were considered as relevant.

6 Conclusion and future work

We introduced an interactive knowledge elicitation approach for high-dimensional sparse
linear regression. The results for “small n, large p” problems in simulated and real data with
simulated and real users, and with expert knowledge on the regression weight values and on
the relevance of features, showed improved prediction accuracy already with a small number
of user interactions. The knowledge elicitation problem was formulated as a probabilistic
inference process that sequentially acquires and integrates expert knowledge with the training
data. Compared to pure prior elicitation, the approach can facilitate richer interaction and be
used in knowledge elicitation for high-dimensional parameters without overwhelming the
expert.

123



Mach Learn (2017) 106:1599–1620 1615

As a by-product of our study, we noticed that even for the rather weak feedback on the
relevance of features, the number of expert feedbacks and the number of randomly acquired
additional data samples needed to reach a certain level of MSE reduction were of the same
order. Although this observation was obtained on a noisy dataset and for a simplifying user
interaction setting, the fact that the considered feedback type was rather weak highlights that
elicitation from experts is promising.

The presented knowledge elicitation method is widely applicable also beyond the specific
assumptions made in this paper. Since all assumptions have been explicated as a probabilistic
model, the assumptions can rigorously tailored to match specifics of other data, feedback
models, and knowledge elicitation setups, and hence the approach can be applied more
generally. The presented results show that it is possible to improve predictions even with
preliminary types of feedback, and can be seen as a proof-of-concept of the approach. An
important thing to keep in mind is that the amount of improvement in different applications
naturally depends on the knowledge experts of that domain have, and their willingness to give
the feedback. While our work dwells on improving prediction by using expert knowledge and
facilitating elicitation, appropriate interface and visualization techniques are also required
for a complete and effective interactive elicitation. These considerations are left for future
work.

As for the applications where our method can be employed, of particular interest for future
work are the medical settings, where because of the implied risks it is not always possible to
increase the sample size. On the other hand, an expert may give feedback on the relevance
of certain variables, or an expert might know how much some clinical and behavioural
variables explain of the risk. For instance, we plan to test our methods in genomic cancer
medicine cases, where the feature size is in the order of thousands (typically including gene
expression, mutation data, copy number variation, and cytogenetic marker measurements),
while the sample size (number of patients with known measurements) is in the order of
hundreds. For different types of cancer, features that are indicative of the drug response (i.e.,
biomarkers) are well known in the literature (see for instance Garnett et al. 2012). Thus,
based on the updated domain knowledge and experience, experts can identify and provide
feedback on the relevance of some features.
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Appendix A: Posterior approximation

The posterior distribution of the model and its approximation are

p(w, σ−2, γ | D) ∝ p( f γ | γ )p( f w | w)p( y | X,w, σ 2)p(σ−2)p(w | γ )p(γ ) ≈ q(w, σ−2, γ ),

where D = ( y, X, f γ , f w) are the training data observations together with the sets of
observed expert feedback. The individual terms are approximated as
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p( f γ | γ ) =
∏

j∈Fγ

[

γ j Bernoulli( fγ, j | π) + (1 − γ j ) Bernoulli( fγ, j | 1 − π)
]

≈
∏

j∈Fγ

t̃Bernoulli(γ j | ρ̃
fγ
j ),

p( f w | w) =
∏

j∈Fw

N( fw, j | w j , ω
2) =

∏

j∈Fw

t̃N(w j | µ̃
fw
j , τ̃

fw
j ),

p( y | X,w, σ 2) = N( y | Xw, σ 2 I) ≈ t̃N(w | µ̃y, Γ̃
y
)t̃Gamma(σ

−2 | α̃y, β̃ y),

p(σ−2) = Gamma(σ−2 | ασ , βσ )

= t̃Gamma(σ
−2 | ασ − 1,−βσ ),

p(w | γ ) =
∏

j

[

γ j N(w j | 0, ψ2) + (1 − γ j )δ0(w j )
]

≈
∏

j∈Fγ

t̃N(γ j | µ̃w
j , τ̃w

j )t̃Bernoulli(γ j | ρ̃w
j ),

p(γ ) =
∏

j

Bernoulli(γ j | ρ) =
∏

j

t̃Bernoulli(γ j | logit(ρ)).

Here, Fγ and Fw denote the sets of indices of the features that have received relevance
feedback and weight feedback, respectively. π , ω2, ασ , βσ , and ψ2 are assumed fixed
hyperparameters. t̃· denote the exponential family forms of the corresponding distributions
parametrized by the precision-adjusted mean and precision for normal distribution, and the
natural parameters for Bernoulli and gamma distributions. Note that the terms p(σ−2),
p( f w | w), and p(γ ) need not be approximated as they are already of the correct exponential
family form. The full posterior approximation follows as q(w, σ−2, γ ) = q(w)q(σ−2)q(γ )

with

q(w) = N(w | m̄, Σ̄),

q(σ−2) = Gamma(σ−2 | ᾱσ , β̄σ ),

q(γ ) =
∏

j

Bernoulli(γ j | ρ̄ j ),

where the parameters can be identified from the products of the corresponding site term
approximations and are

m̄ = Σ̄(µ̃y + µ̃
w

+ µ̃
fw ),

Σ̄ = (Γ̃
y
+ diag(τ̃

w
) + diag(τ̃

fw ))−1,

ᾱσ = ασ + α̃y,

β̄σ = βσ − β̃ y,

ρ̄ j =
1

1 + exp(−(ρ̃w
j + logit(ρ) + ρ̃

fγ
j ))

,

where diag(·) is a diagonal matrix with the parameter as the diagonal and feedback term
approximation parameters are zero for feedbacks that have not been observed.

Expectation propagation (EP) and variational Bayes (VB) inference are used to find the
parameters of the posterior approximation (Minka 2001, 2005; Bishop 2006). Expectation
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propagation for linear regression with spike and slab prior has been introduced by Hernández-
Lobato et al. (2008) (see Hernández-Lobato et al. (2015) for a more extensive treatment).
We update the t̃N(w | µ̃y, Γ̃

y
) and t̃Gamma(σ

−2 | α̃y, β̃ y) term approximations using VB
and all other terms using EP. The parameter update steps in the algorithm, to be iterated until
convergence, are

1. p(w | γ ) approximation using parallel EP update.
2. p( y | X,w, σ 2) approximation using VB update.
3. p( f γ | γ ) approximation using parallel EP update.

All of the computations have closed form solutions. The VB update is used, because there is
no closed form EP update for the term. Importantly, a full covariance matrix in the posterior
approximation of the regression weights w is retained. Alternatively, an approximate EP
update, following Hernandez-Lobato et al. (2015), would be possible.

Appendix B: Bayesian experimental design

The task is to find the feedback that maximises the expected information gain:

j∗ = arg max
j /∈F

E
p( f̃ j |D)

[

∑

i

KL[p(ỹ | xi , D, f̃ j ) ‖ p(ỹ | xi , D)]

]

,

where F is the set of feedbacks that have already been given (to simplify notation, those are
here assumed included in D) and the summation over i goes over the training dataset. The
evaluation of the expected information gain is described in the following.

The posterior predictive distribution is approximated as Gaussian:

p(ỹ | x̃, D) ≈ N(ỹ | x̃⊤m̄, x̃⊤Σ̄ x̃ + s̄2),

where s̄2 =
β̄σ

ᾱσ
is the posterior mean approximation for the residual variance. Similarly,

the posterior predictive distributions of the feedbacks for the two feedback types follow as
approximate Gaussian and Bernoulli distributions:

p( f̃w, j | D) ≈ N( f̃w, j | m̄ j , Σ̄ j j + ω2),

p( f̃γ, j | D) ≈ Bernoulli( f̃γ, j | πρ̄ j + (1 − π)(1 − ρ̄ j )).

The information gain between the predictive distributions is

KL[p(ỹ | x̃, D, f̃ j ) ‖ p(ỹ | x̃, D)]

=
1

2

⎡

⎣log
x̃⊤Σ̄ x̃ + s̄2

x̃⊤Σ̄
f̃
x̃ + s̄2

f̃

+
x̃⊤Σ̄

f̃
x̃ + s̄2

f̃
+ (x̃⊤m̄

f̃
− x̃⊤m̄)2

x̃⊤Σ̄ x̃ + s̄2
− 1

⎤

⎦ .

As running the EP algorithm to full convergence would be too costly for evaluating a large
number of candidates, we approximate the posterior distribution with the new feedback with
partial EP updates. This is similar to the approach of Seeger (2008) and Hernández-Lobato
et al. (2013) for experimental design for sparse linear model. We consider the two types of
feedback separately.

In the case of feedback directly on the regression weight, we add the corresponding site
term (which is already of Gaussian form and does not need approximation, as noted above)
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and do not update the approximations of the other site terms (including assuming s̄2
f̃

= s̄2).

The new posterior approximation of w with these assumptions is

Σ̄
f̃w, j

= (Σ̄
−1

+ T ee⊤)−1,

m̄
f̃w, j

= Σ̄
f̃w, j

(Σ̄
−1

m̄ + he), (3)

where e is a vector of zeros except for 1 at j th element, T = 1
ω2 , and h =

f̃w, j

ω2 . Notably, Σ̄
−1

and Σ̄
−1

m̄ are the precision and the precision-adjusted mean of the posterior approximation
without the new feedback and are directly available from the previous EP approximation.
The new posterior covariance is independent of the value of the feedback f̃w, j and it can
be efficiently evaluated using the matrix inversion lemma as Σ̄

f̃
= Σ̄ − 1

T −1+Σ̄ j j
Σ̄ee⊤Σ̄ .

Furthermore, the expectation over the feedback in the expected information gain affects only
the term with the squared difference of the means. This is

E
p( f̃ j |D)

[

(x̃⊤m̄
f̃
− x̃⊤m̄)2

]

= E
p( f̃ j |D)

[

(

T j j

1 + T Σ̄ j j

x̃⊤Σ̄e

)2 (

h

T
− m̄ j

)2
]

=

(

T

1 + T Σ̄ j j

x̃⊤Σ̄e

)2

(Σ̄ j j + ω2),

where the first equality follows from substituting the Eq. 3 and using the matrix inversion
lemma, and the second equality from h

T
= f̃w, j and the remaining expectation being equal

to the variance of the predictive distribution of the feedback.
In the case of relevance feedback, we add the corresponding site term for the feedback

and run single EP update on it and the corresponding prior term p(w j | γ j ). These updates
are purely scalar operations and do not require any costly matrix operations. Other site
term approximations are not updated. The new posterior approximation of w with these
assumptions is

Σ̄
f̃γ, j

= (Σ̄
−1

+ T ee⊤)−1,

m̄
f̃γ, j

= Σ̄
f̃γ, j

(Σ̄
−1

m̄ + he),

where T = [Σ̄
−1
f̃γ, j

] j j − [Σ̄
−1

] j j and h = [Σ̄
−1
f̃γ, j

m
f̃γ, j

] j − [Σ̄
−1

m̄] j . That is, now T and h

are the changes in the precision and the precision adjusted mean in the j th feature and these
are available with cheap scalar operations. The expectation over the value of the feedback
in the expected information gain is in this case a sum of two terms and we evaluate both of
the terms separately using the above scheme. Again, we use the matrix inversion lemma to
avoid full inversions in computing the new posterior covariance.
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