
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

V. Akman, P.J.W. ten Hagen, J.L.H. Rogier, P. Veerkamp

Computer Science/Department of Interactive Systems

Knowledge engineering in d~ign

Report CS-R87 45 September

Bibfiotheek
Centnimvoor Wiskoode en'.!nf~:;.rml'!Uca

Amsterdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the· Netherlands Organization for the Advancement of Pure

Research (Z.W.O.).

. ~o

Copyright © Stichting Mathematisch Centrum, Amsterdam

Knowledge Engineering in Design

Varol Akman, Paul ten Hagen, Jan Rogier, Paul Veerkamp

Department of Interactive Systems

Center for Mathematics and Computer Science (CWI)

Kruislaan 413, 1098 SJ Amsterdam, the Netherlands

ABSTRACT

We present in a unifying framework the principles of the IllCAD (Intelligent,

Integrated, and Interactive Computer-Aided Design) system. IIICAD is a gen

eric design apprentice currently under development at CWI. IllCAD incor

porates three kinds of design knowledge. First, it has general knowledge about

the stepwise nature of design based on a set-theoretic design theory. Second, it

has domain-dependent knowledge belonging to the specific design areas where it

may actually be used. Finally, it maintains knowledge about the previously

designed objects; this is · somewhat similar to software reuse. Furthermore,

IllCAD uses AI techniques in the following areas: (i) formalisation of design

processes; extensional vs. intensional descriptions; modal and other nonstandard

logics as knowledge representation tools, (ii) common sense reasoning about the

physical world (naive physics); coupling symbolic and numerical computation,

(iii) integration of object-oriented and logic programming paradigms; develop

ment of a common base language for design.

Categories and Subject Descriptors: 1.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving - logic programming, nonmonotonic reasoning and belief revision; 1.2.4 [Artificial

Intelligence]: Knowledge Representation Formalisms and Methods - predicate logic,

representation languages, representations (procedural and rule-based); J.6 [Computer-Aided

Engineering]: computer-aided design (CAD)

General Terms: Design, Languages

Additional Key Words and Phrases: nonstandard logics, object-oriented programming, naive

physics, extensional/intensional descriptions

The authors are members of Group Bart Veth which additionally includes Peter Bemus (CWI) and Tetsuo Tomiya

ma (University of Tokyo). Acknowledgements are made to NFI for its financial support and to Tomiyama, Monique

Megens (CWI), and Eric Weijers (CWI) for their invaluable contributions to the work reported in this paper. A

preliminary version of this paper was presented at Second World Basque Conference on Artificial Intelligence,

Basque Country, Spain (Sept. 1987).

Report CS-R87 45

Centre for Mathematics and Computer Science
P.O. Box 40i9, 1009 AB Amsterdam, The Netherlands

Akman et al. Knowledge Engineering in Design

"In this paper, I have tried to argue that there is an important class of problems in knowledge represen

tation and commonsense reasoning, involving incomplete knowledge of a problem situation, that so far

have been addressed only by systems based on formal logic and deductive inference, and that, in some

sense, probably can be dealt with only by systems based on logic and deduction." (22]

1. Introduction

-2-

Recent research in Computer-Aided Design (CAD) (cf. [36, 9, 8, 28] for some representa

tive articles and [17] for a good, nontechnical review) has shown a visible interest in the intellec

tualisation of design. We find this a healthy trend since we believe that the ultimate aim of CAD

is the automation of the several knowledge-intensive activities performed today solely by

highly-specialised, hard to come by, expensive, and unfortunately error-prone human experts. In

fact, it is not too early to claim that manufacturers are already very interested in ''intelligent

CAD" since several useful research efforts have been made, e.g. Briggs & Stratton's Engineer

ing Design Assistant [25]. A common view goes like this: "Right now there are several

designers who know a little about all facets of engine design, but there is no individual who

could effectively design an entire engine. Eventually, however, it may be possible for one per

son, using a collection of expert systems, to do a considerable amount of the engine design pro

cess." [ibid.]

Intelligent CAD is practiced mainly by applying the already existing ideas of Artificial

Intelligence (AI) and Knowledge Engineering (KE) in several aspects of the design

process/object modeling. In addition to making CAD more intelligent, this approach has the

advantage that while studying the appropriate AI and KE techniques, CAD researchers contri

bute to the existing body of knowledge in these areas.

The need to make CAD more sophisticated is real and being felt today especially in the

J;righ-tech domains. As technologies advance, the management of the complexity as a result of

the amount and variety of information to be handled by design systems is becoming a gigantic

task. It is hoped that advances in AI will be a keystone in bringing promising long-term solutions

to structuring this potentially explosive domain of knowledge. The weaknesses of the existing

CAD systems today are basically due to the facts that (i) they have no task-domain knowledge to

reflect the thinking processes, terminology, and intentions of designers, and (ii) the system

software is written in an unstructured, ad hoe, and hard to maintain/upgrade way, with no sound

basis (in terms of a formal design theory).

We see intelligent CAD as a theory resting on a triad: a theory of knowledge, a theory of

design processes, and a theory of design entities (objects). Our work at CWI is aimed at contri

buting to these theories and evaluating their usefulness through prototype implementations treat

ing real design problems. We should immediately add that we are not interested in ''expert sys

tems for design" per se although we consider them as a part of the grand picture [2].

Clearly, the proposition that one has a "theory" to deal with design is rather pretentious

and even dangerous. We are aware of the fact that design is a ''mysterious'' activity which is

currently done in its entirety only by intelligent human designers. Yet, to quote Lansdown [17]:

"[I]n broad terms, most people would accept that designing is a cyclical process in

which concepts are devised and then tested against some criteria of performance, cost,

or aJ1pearance. The tests: logical, physical, or just intuitive, lead to the concepts either

being incorporated into the design or being rejected. In any event, the testing process

gives rise to the formulation of new concepts and, importantly, then to new criteria for

Aleman et al. Knowledge Engineering in Design

testing. The whole of designing thus is governed by what Ernst Gombrich calls

"schema and correction" - almost a trial and error process where experimentation

precedes correction which in tum leads to further experimentation."

-3-

We appreciate the difficulty of identifying and incorporating all the planning, heuristic, and

inventive knowledge that good designers tend to have. (Cf. [3, 21, 7] for several researchers'

views on the various aspects of design.) Nevertheless, the issue here is mainly that of a formal

language to ''communicate'' our results to the outside world. We believe that even in the vague

domain of design where any kind of formalisation would probably look superficial, a formal

outlook is the only way to do scientific research. We see logic as the essential framework of this

formal outlook. First, logic is precise and unambiguous with a well-understood semantics that

connects the formulas of logic and the real world that they talk about. Second, in its purity, logic

provides a high level abstraction since it is entirely nonprocedural. It also acts as a formal

specification since the knowledge is not buried in procedures. This issue is of substantial help in

writing software engineered CAD code.

The organisation of this paper is as follows. In §2, we briefly look at a logical formalisation

of the design processes. In §3, knowledge representation issues in design are reviewed from the

angle of intensional vs. extensional descriptions. A theory of design entities based on naive phy

sics and coupled systems is summ,arised in §4. Combining object-oriented and logic program

ming styles to arrive at a design base language is studied in §5. Finally, §6 summarises the key

propositions of our approach and suggests future directions.

: This paper is a partial overview of our research. The reader is referred, in addition to

several other foundational articles by Tomiyama and Yoshikawa to be referenced later, to

[33, 34, 35, 29, 30, 32] for a detailed exposition of our work.

z. A Logical Formalisation of Design Processes

2.l. The Stepwise Nature of Design

We use General Design Theory [31] as a basis for formalising design processes and design

knowledge. The theory is based on axiomatic set theory and models design as a mapping from

the function space where the specifications are described in terms of functions, onto the attribute

space where the design solutions are described in terms of attributes. Roughly speaking, one

starts with a functional specification of the design object and ends with a manufacturable

description encompassing all its attributes.

The basic ideas behind a logical formalisation of design processes are as follows:

• From the given functional specifications a candidate is selected and refined in a stepwise

manner until the solution is reached, rather than trying to get the solution directly from the

specifications.

• Hence design can be regarded as an evolutionary process which transfers the model of the

design object from one state to another. We call this model, being a set of attributive

descriptions, a metamodel. (This rather confusing and uninformative name is kept for his

torical reasons.)

• Duril}g the design process new attributive descriptions will be added (and some existing

ones will be modified) and the metamodel will hopefully converge to the solution. Since

dead ends are natural occurrences in design, a technique to step back and select more

Akman et al. Knowledge Engineering in Design -4-

promising paths at any time is also required.

• To evaluate the current state of the design object (i.e. the metamodel), various kinds of

models of the design object need to be derived from the metamodel in order to see whether

the object satisfies the specifications or not. We call those models of the design object

worlds and they can be regarded as interpretations of the design object seen from certain

points of view - the concept of "multi-worlds." (In machine design, one such model

would be the finite element model of the design object, for instance.)

Considering the metamodel evolution model, the system starts from the specifications, s , of

the design object and continues with the design process until the goal, g , is reached. We define

qj as the set of propositions at the state of metamodel Mi with an interpretation in world w j . In

other words, if we have m worlds then q\, ... , qfn constitute the current state of knowledge

about the design object. There are two possibilities: either the current state of knowledge is com

plete and consistent or there is an incompleteness/inconsistency. In the first case, g has been

reached and we have finished the design process. In the latter case, there is a need to proceed to

the next metamodel Mi+l in order to resolve the incompleteness or inconsistency. (Note that we

don't care about the inconsistency of a particular world.)

The nature of design then, understood in the above sense, is to modify /add properties about

the design object. This means that we need language constructs to evaluate a metamodel by

creating worlds and to derive new properties or to update uncertain/unknown properties in such a

world in order to get more detailed knowledge about the design object. The crucial point is how

to ·proceed from Mi to Mi+l. Alternatively, we can pose the following questions. How do we

define qj? How do we derive new information from the current world and compare different

worlds? It has to be realised that we are not aiming at an automated design environment; our

system is meant to be a designer's apprentice. The designer should take the initiative for direct

ing the design process. This is where the interactive nature of design comes into play. Accord

ingly, the designer, regarding a certain world, can modify/add attributes about the design object.

The system evaluates the metamodel after these updates and checks it for consistency.

The reader may notice that it seems natural to choose modal logic as a representational

language since modal logic deals with interpretations of a model (understood in the "logical"

sense) in multiple worlds (again understood in the logical sense). We don't elaborate on the rela

tionship between the meanings we attach to "model," "world" and the usual interpretation of

these words as employed in modal logic, cf. [12] for details.

Design, at the highest level, is accomplished in IIICAD by interacting with the so called

scenarios which are (conceptually) frame-like structures describing standard design procedures.

The classical definition of frames is " ... a data structure for representing a stereotypical situation

like being in a certain kind of living room or going to a child's birthday party" [20]. Just like

frames, scenarios have information about the design objects/processes that play a role in stereo

typical design situations as well as the various relationships between these stored information.

Each scenario tells something about the way it is to be used and gives clues as to what to do if

something goes wrong with the current design while it is active. The notion of default values for

slots has the counterpart ''assumed'' attribute values for design entities. A scenario base is then

a collection of scenarios structured in terms of some organisational principles. The following

principle~ are well-known [23]:

• Classification/Generalisation: One can associate a scenario with its generic type. Thus a

scenario to design e.g. a bicycle lock belongs to the generic type "locks." The

Akman et al. Knowledge Engineering in Design -5-

generalisation relation between types is a partial order (lattice) and structures types into an

isa-hierarchy. An isa-hierarchy provides the means for the overall organisation and

management of a large scenario base. Additionally and more technically, isa-hierarchies

reduce the storage requirements by allowing properties associated with general objects to

be passed to more specialised ones.

• Aggregation: This relates a scenario to its components (parts). Aggregation can be applied

recursively to represent the parts of the parts. For example, the parts of a bridge are its toll

booths, supports, traffic lights, pavements, etc. In this case, different "subscenarios"

would be used to design the overall bridge; they would, most conveniently, be activated by

their mother scenario. Notice that, a bridge can also be viewed as an abstract object with

an address, a state highway classification number, an architectural style, a maintenance

cost-per-year, etc. Regarding design chiefly as a geometric activity has been the classical

pitfall of the CAD systems and we want to take heed of that.

Scenarios, like frames, allow other looser principles such as the notion of "similarity"

between two scenarios. The easiest way to do this would be pattern matching, cf. [20] for a

detailed exposition of frame similarity and additional techniques to achieve it.

2.2. Modal and Other Nonstandard Logics for Design

Modal logic can be seen as the logic of necessity and possibility[l2]. We will show the

basic notions that a system of modal logic is intended to express. We use the conventional nota

tion for the modal operators, necessary and possible, and introduce new notation for the default

and unknown operators.

Among true propositions we can distinguish between those which are merely true and

which are bound to be true. Similarly, we can distinguish among false propositions between

those which are bound to be false and those which are merely false. A proposition which is

bound to be true is called a necessary proposition (Np , it is necessary that p); one which is

bound to be false is called an impossible proposition (N-,p , it is impossible that p). If a proposi

tion is not impossible we call it a possible proposition (Pp, it is possible that p). We have now

informally introduced the monadic proposition forming operators N and P. These operators are

not truth-functional, i.e. the truth value of the proposition cannot be deduced even when the truth

value of the argument is given. However, a strategy exists to determine the validity of a neces

sary or possible proposition. We won't give the exact definition of this validity checking but

describe it informally.

A necessary proposition, Np, is valid in a certain world iff p is valid in all worlds accessi

ble to that world. A possible proposition, Pp , is valid in a certain world iff p is valid in one or

more world(s) accessible to that world. Briefly, a world W 2 is accessible to a world W 1 if W 2 is

conceivable by someone living in W 1. Consider the following example. We can conceive a

world without telephones but if there had been no telephones, it would be the case that in such a

world no one would know about what a telephone was and so no one would conceive of a world

(e.g. ours) in which there are telephones [12]. More technically, suppose that we have a set of

propositions. We can specify what the state of a world is by giving a list of which propositions

are true and which are false according to this world. Let 0 be a dyadic reflexive relation over the

worlds. 'Qien 0 is called the accessibility relation, i.e. world Wi is accessible by Wj iff Wi 0 Wj.

We use a different operator D to express default values. Thus, Dp means that p is con

sistent with the theory. A proposition is consistent if its negation cannot be derived within the

Aleman et al. Knowledge Engineering in Design -6-

theory. A default proposition, Dp, is considered to be valid if -,p cannot be proved. With this

mechanism, we have the possibility to deal with nonrnonotonicity [19]. During the design pro

cess, some properties about the design object may not yet be known; so we can assume some
default values. But as soon as contradictory information is derived, we discard the default pro

perty and base things on the newly obtained information. Notice that this is nothing but the
well-known truth-maintenance problem [6].

The modal operator U is used to denote uncertainty. A proposition is unknown if neither its
truth nor its falsity can be derived. An unknown proposition, Up , is considered to be valid if nei

ther p nor -,p can be found. Note that we now actually have introduced a third truth value (i.e.

unknown). The reason we avoid explicitly introducing a third truth value is that we want to keep
our logic as simple as possible. This further implies that we have the open world assumption

(23]. Nevertheless, if we request p the knowledge base must return false if it finds -,p or cannot
find p. Therefore, Up is required to know about the uncertainty of p.

2.3. Incomplete Information and Null Values

Several ideas to be mentioned in this subsection owe their origin to recent research in data
bases. We'll follow especially (18, 24] closely, for they too insist on using logic as a framework

for databases.

Since our envisioned design system will be based on KE principles, the existence of a
knowledge base (KB) is implicit as an integral part. Whatever supervisory mechanism (SPY)
we'll have in the system, it would like to query the KB about a particular design application. In

design, any KB would be incomplete since it is impossible to identify and store all the informa
tion necessary to answer a query. In this case, we should distinguish between what the KB
knows and what the truths are in the design domain. A KB may know that a shaft is attached to a

motor without knowing the motor's power rating; it may know that one of the cylinders of the
motor is faulty without knowing which one. Thus, one cannot treat a design KB as a realistic

replica of the application domain. Since design is an open-ended activity, it may turn out that

design KBs will never stabilise and one should find ways to deal with this ever-changing charac

ter of them.

Assuming that logic is the underlying formalism, for each query K: there are four possibili
ties: (i) true when K: can be inferred from the KB, (ii) false when -,K: can be inferred from the
KB, (iii) unknown when neither (i) nor (ii) holds, and (iv) contradiction when both (i) and (ii)

hold. We call a KB consistent if it contains no contradictory information. In an incomplete KB,
on the other hand, we may pose queries which have unknown as answer. Unknown information

may be in several disguises. Consider the following example. We know that "Door D 0023 has a
type L 0003 or L 0014 lock," but don't know which. A straightforward way to represent this fact

is to have two interpretations of D0023: one with £0003, the other with £0014. This type of

unknown is known in the database area as disjunctive information. Another common and more
challenging unknown is the null value, meaning "value at present unknown." Now, if we
accept the closed world assumption (viz. the negation of any atomic formula can be inferred

from the inability to infer the atomic formula, a.k.a. negation-by-failure in Prolog) then solving
the null value problem is easy since it reduces to the disjunctive information problem with the
disjuncts ~xpressing all the possible values (collected from the KB). However, under the open

world assumption the value will not necessarily be one of the some finite set of known possible
values. Consider the following. We know that "Pipe P 0254 feeds an oil tank" but don't know
which. Moreover, this tank may or may not be one of the known tanks T OOO 1 and T 0002. In first

Akman et al. Knowledge Engineering in Design

order theory, we would express this as

3X, oil-tank(X) A fed-by(X, P0254),

then choose a name, ro, for this object and rewrite the preceding as

oil-tank(ro) "fed-by (ro, P 0254).

-7-

In fact, ro has long been known in the logic terminology as a Skolem constant and provides a

way to eliminate the 3 sign in proof theory; databases introduced the more suggestive name null

values. It is important to observe that each time a new null value is introduced to the KB, it

should be denoted by a new name (distinct from all other names). Thus, the switch below to ro is
compulsory to express "Some tank (maybe the same one as TOOOl and T0002) is fed by pipe

P0789":

oil-tank(ro) "fed-by(ro, P0789).

In addition, the KB should be made aware of the existence of a null value in general. This means

that the allowable entities (e.g. the universe made of P 0254, TOOOl, T0002 in the first example)

must be expanded by introducing ro and the axioms should be revised as

';/ X, [oil-tank(X) ::> X :::TOOOl v X ::T0002 v X :::ro]

and

'if X , Y, ff ed -by (X , Y) ::>

(X = T OOO 1 " Y = P 0254) v (X = T 0002 " Y = P 0254) v (X = ro " Y = P 0254)].

2.4. Other Nonstandard Logics

Predicate calculus of higher order is useful to talk about inheritance. The following is prov

able in the second order predicate logic: ';/ F , [F (x) ::> G (x)]. (If an individual x has every pro

perty then x has any property G .) In third order predicate logic, we can prove that

';/ F , [V (F) ::> V (G)] . (Whatever is true of all functions of individuals is true of any function of

individuals G.) While they are, theoretically speaking, well-understood, the real challenge of

higher order logics lies in their implementation.

For temporal logic, we can use the following notation. Let t a. p denote that p holds after

time t and t 13 p denote that p holds before time t; [t i. t2] denotes a time interval. Several use

ful equalities can be written:

t a. op = -, (t a. p),

t a. (p " q) = (t a. p) " (t a q),

[t1, t2] a.p = (t1 a.p) /\ (t2 l3 p) /\ (t1<t2).

Using temporal logic, we can describe inference control for our system in a more explicit

way. For instance, in Prolog the order of rules matter [l]. In general, this knowledge is embed

ded in the interpreter of this language. By disclosing this control we may introduce suppler con

trol. As~ example, "detailing" knowledge for a design object may be a set of rules of the sort

(t1 a. qi) A (t2 a. qz) "(t1<t2) ::> t2 a. q3,

Akman et al. Knowledge Engineering in Design

(t1 a. q1) "(t2 a. qz)" (t2<t1) ::> t2 a. q4.

where qi 's are understood in the sense of §2.1.

-8-

Intuitionistic logic can also be incorporated into temporal logic. Let tp be the time when

proposition p is proved. By definition, we have tp a. p =true. Now, using the logical symbol

unknown we can formalise intuitionism in terms of temporality:

tp (3 (p v -,p) = unknown, tP a. (p v -,p) = true.

We note that incorporating the complete functionalities of these assorted logics may very

well result in high (even intractable) computational complexity. To avoid this, we must include

only those functionalities which are relevant to our design requirements. For example, in case of

temporality we may be satisfied with only a. and (3 although there is surely more to temporal

logic than these simple operators.

Once we extend the first order predicate logic with these operators, we have a powerful

notation to describe design knowledge in a flexible manner. Since a design object is constantly

updated during the design process, we need to describe it in a dynamic way. The constructs we

have envisioned above work with a multiworld mechanism realised in modal logic. This

mechanism helps the designer describe a design object seen from several viewpoints and express

default and uncertain information about a design object.

3. The Method of Extensions/lntensions

3. l. Philosophical Origins

We begin with a philosophical discussion about knowledge representation and then move

to more concrete issues. We'll start with a definition of L-truth, a notion also known as logical

truth, necessary truth [Leibniz], and analytic truth [Kant]. The subject matter is historical and

treated in great detail in [4]. Call a sentence, cr, L-true in a system, l:, iff cr is true in E in such a

way that its truth can be established on the basis of the rules of the system E alone, without refer

ence to (extra-linguistic) facts. This is, in a sense, what Leibniz meant when he stated "A neces

sary truth must hold in all possible worlds."

It is customary to regard two classes, say those corresponding to the predicates p and q,

identical if they have the same elements (e.g. p and q are equivalent). By the intension of the

predicate p we mean the property p ; by its extension we mean the corresponding class. The term

property is understood in an objective (physical) sense, not in a subjective, mental sense. Thus

"red" table should mean that the colour of the table (as understood, in the final analysis, as a

physical property) is red, not that the person who is looking at it perceives it (for some e.g.

psychological reason) as red. Thus, one may state that the table has the character Red whereas

the observer has the character Red-Seeing. An good account of intensions and extensions is

given in the following passage:

"Class may be defined either extensionally or intensionally. That is to say, we may

define the kind of object which is a class, or the kind of concept which denotes a class:

this is the precise meaning of the opposition of extension and intension in this connec

tion.~But although the general notion can be defined in this two-fold manner, particu

lar classes, except when they happen to be finite, can only be defined intensionally, i.e.

as the objects denoted by such and such concepts. I believe this distinction to be

Akman etal. Knowledge Engineering in Design

purely psychological: logically, the extensional definition appears to be equally appli

cable to infinite classes, but practically, if we were to attempt it, Death would cut short

our laudable endeavour before it had attained its goal. Logically, therefore, extension

and intension seem to be on a par" [Bertrand Russell].

-9-

For example, let S denote that something is a shaft and let L denote that something is two miles

long. The conjunction SAL would mean that something is a shaft and two miles long- denot

ing an empty yet not meaningless class. On the other hand, S A -8 would mean shaft and at the

same time not shaft - an L-empty statement. No factual knowledge is required for recognising

the fact that the last conjunction cannot be exemplified.

The method of intensions/extensions has its roots in the work of Frege who studied it in a

less rigorous way and called it the method of name-relation. This consists of regarding expres

sions as names of (concrete or abstract) entities in accordance with the following principles:

• Every name has exactly one entity named by it, i.e. its nominatum.

• Any sentence speaks about the nominata of the names occurring in it.

• If a name occurring in a true sentence is replaced by another name with the same nomina-

tum, the sentence remains true.

If the last principle is applied without restriction, contradictions may arise. Frege 's solution was

to draw a distinction between the nominatum and the ''sense'' of an expression. A classical

example is the two expressions "the morning star" and "the evening star." Although these

expressions have the same nominatum they certainly don't have the same sense. It will be seen

that nominatum resembles to extension and sense resembles to intension. (In fact, John Stuart

Mill used the more descriptive terms denotation and connotation, respectively, for the above

concepts.)

3.2. Describing Design Entities

We find the main use of intensions/extensions in describing design objects. Suppose that

we are trying to describe a pressure regulator. Normally, we would have a "method" which

knows about a certain type of pressure regulator, possibly parametrised so that one can create

(i.e. design) instances of it by changing the parameters. Thus, e.g.

pres-reg(max-pressure, max-deviation, input-area, output-area, valve-type, · · ·)

would be the way this method can be invoked. The suggestion is to visualise this as an inten

sional description. The method pres-reg comprises all the information one would require to deal

with this kind of regulator. In that sense, it embodies the concept of a regulator. This makes it

efficient in terms of design time since all the knowledge is there and one simply has to make the

right invocation of this method. On the other hand this intensional description is inflexible since

if one now wants to add a new "parameter," e.g. max-fluid-viscosity, one would face the prob

lem of studying and changing the whole method.

An extensional description of the same regulator is a collection of facts of the sort:

pres-reg(PR)

input-area (PR, areain)

output-area (PR, area0111)

Akman et al. Knowledge Engineering in Design

max-deviation (PR, max-dev)

max-pressure (PR , max-pres)

valve -type (PR , v -type)

-10-

and some procedural knowledge to structure these. Now, adding the new fact would be just the

addition of the new piece of information max-fluid-viscosity(PR, max-vis). Obviously, the pro

cedural parts should also change but this change is thought to be less and much more ''local.'' It

is not difficult to see, on the other hand, that this new method of describing the regulator suffers

from inefficiency since there are several facts which should be combined in some way, viz. the

available information is in bits and pieces and should be put together.

For design, the advantage of extensional descriptions should be clear. In design, we need an

integrated set of models each of which represents a different facet of the design object and possi

bly changes during the design process. From this viewpoint, intensional descriptions are very

rigid and data exchange between two different say, solid modeling systems based on these

description methods may suffer from loss of information or twist of meaning.

4. Naive Physics: A Theory of Design Objects?

We'll keep this section short since we are in the process of preparing a longer reply to the ques

tion posed in the section title.

4. l. Expressing Naive Physics Knowledge

Since its inception by Patrick Hayes a decade ago [11], Naive Physics (NP) has established

itself as an exciting branch of Al. The aim of NP is to represent and simulate the knowledge and

thought processes humans have about the physical world. A good example is attributed to Mar

vin Minsky: "You can pull with a string but not push with it." While we possess such trivial

knowledge it is exceedingly difficult to have computers appreciate and use it. Giving such com

mon sense physical knowledge to computers is essentially the aim of NP.

An integral part of NP is Qualitative Reasoning (QR) about the physical processes. This

can best be explained with an example. Consider a sealed container full of water. If it is sub

jected to heat, it will eventually explode. The process that gives rise to this is the transformation

of water into steam which applies huge forces. In this style of reasoning we are not really

interested in the nuts and bolts of what is going on, i.e. we are hardly interested the ''exact''

physical relationships, equations, constants, etc. ultimately leading to this explosion. Qualitative

Physics (we prefer NP to this term) is a special kind of physics where we use QR instead of deal

ing with exact mathematical relationships. The main reason for this is that exact mathematical

analysis is not what human beings are thought to perform in ordinary circumstances. A more

technical reason is that exact analysis is sometimes exceedingly difficult and even impossible

(e.g. nonlinear differential equations).

Why are NP notions such as solids, liquids, force, time, etc. useful in design? The answer

is that design objects will, when manufactured, exist in the physical world where the above

notions will be in effect. Why do we need QR? There may be several answers but one good rea

son is that we want to determine the impact of unanticipated changes on an object in its destined

environment. The common example here is an event such as the Three-Mile Island where it is

AJ..man et al. Knowledge Engineering in Design -11-

now believed that a simple, clear way of reasoning qualitatively about the physical processes and

changes leading to the catastrophe would possibly prevent the accident.

Long time ago Hayes [11] proposed that one should use logic in describing NP knowledge.

We plan to take this route. For example, we have good examples which demonstrate the suitabil

ity of modal logic in encoding situational calculus. (Imagine e.g. modeling the possible out

comes of envisionment [15] with the help of the possible worlds of modal logic.) As an addi

tional tool, we want to use the "chunking" of knowledge - as done, for example, by de Kleer

[14] in his Restricted Access Local Consequent Methods (RALCM's) - to collect together and

use intelligently physical formulas. (Note that this can be done by using a class for each chunk.)

For QR, the need for a symbolic algebra based on confluences is immediate [15].

While in QR we have a reasonably complete mathematical model of a situation, this itself

is never sufficient for many tasks. QR is expected to interpret the numerical values of several

problem variables. Assume that p is a quantity directly proportional to the quotient r It. If r

increases while t stays constant or decreases, a QR system can draw the useful conclusion that p

increases. However, consider the case of both r and t increasing, albeit with unknown rates. In

this case, a QR system is helpless unless it can read the values from some measuring device and

do numerical computation. This need to switch back and forth between traditional computing

and qualitative analysis has paved the way to coupled systems.

4.2. Coupled Systems for Expert Computation

One of the main uses of computers since their invention (and in fact, one of the reasons for

their invention) has been ''numerical'' computation. It is difficult to define what is exactly

numerical (as opposed to symbolic) but it may suffice to point out that most of the numerical

analysis libraries such as IMSL™ are full of numerical code - code that computes integrals,

multiplies or inverts matrices, solves differential equations, etc. One unifying property of these

libraries is that they work on numbers and they produce numbers. Symbolic computation sys

tems such as MACSYMA ™, on the other hand, work on symbols and produce symbols.

If "the aim of computing is insight, not numbers," as Richard Hamming has been quoted to

advise, then numerical code provides little help to give insights to what is going on, especially in

huge computational tasks. More often than not, one gets, after hours of computation, a long list

of numbers which hardly say anything explicitly (thus necessitating a post-computational period

when the results are "analyzed") or quite disturbingly, messages like "underflow while comput

ing M-1."

Traditionally, numerical computing has been used in data processing, simulation, statistics,

etc. whereas symbolic computing was employed in data interpretation, cognitive modeling,

search and heuristics, and nondeterministic problem solving. It should be added that by using

the term symbolic computing we do not confine ourselves to symbolic algebra systems. Many

familiar expert systems (e.g. Mycin, Prospector, Dendral) have symbolic computation facilities

while they wouldn't be regarded as computer algebra systems: An informal definition would

then equate numerical computing with "number crunching" intensive processes while symbolic

computing is understood as logic, heuristic, and reason intensive.

A coupled system "must have some knowledge of the numerical processes embedded

within them and reason about the application or results of those numerical processes" [13]. It is

natural to assume that in a coupled system a symbolic supervisor is at the top level, scheduling

the numerical processes. Such a supervisor would have knowledge about the process's aim,

Akman et al. Knowledge Engineering in Design -12-

input/output behaviour, run-time limitations (e.g. the smallest and largest numbers it can deal
with; truncation characteristics), and so on.

We close this subsection with a general remark about the necessity of coupled systems.
Consider the design of a complex artifact such as a nuclear reactor or a space shuttle. On the
symbolic side there is a need for database management, truth maintenance, computing with con

straint equations, answering "what-if" questions (possibly for testing and fault simulation), etc.
On the numerical side, there is a need to have expert knowledge about computational mechanics,
fluid dynamics, earthquake engineering, materials science, Monte-Carlo techniques, etc. Human
designers solve problems of this scale with a careful mix of symbolic and numerical techniques.
Without a strong coupling of symbolic and numerical code, the automation of these complex
tasks cannot be expected.

5. Combining Object Oriented and Logic Programming

5. l.· Why Are We Doing This?

Logic languages such as Prolog provide the means to deal with a KB of facts; they espe
cially come up with a uniform computational mechanism such as unification to execute logic

formulas. Object-oriented languages such as Smalltalk [10] use encapsulation to structure data
and employ message-passing as the underlying computational principle [26]

An obvious shortcoming of existing logic languages is the overhead of an extensive data
base which is physically homogeneous. This has the result that without some metalevel control,
query evaluation may become hopelessly inefficient when the database is bulky. Another weak
ness is the lack of abstract data types. For existing object-oriented languages a major symptom
of unsuitability for CAD has been the fixed (run-time) structure of the inheritance lattice. It is
normally impossible to declare new objects which reside somewhere between the already exist
ing parents and children. This normally takes us to issues such as inheritance vs. delegation
which we want to avoid presently, despite their importance.

We hope that our draft proposal of a language to overcome these difficulties is pointing
more or less in the right direction to combine the paradigms of logic and object-orientation. We
have enumerated the requirements (originating from our desire to use it to code design
knowledge) for this language in [33] and, for brevity, won't repeat them here. For another
account of how to combine programming paradigms (the story of Loops) we refer the reader to
[27].

5.2. IDDL, a Design Base Language

In IDDL, constants and variables denote entities. They are both called objects. A predicate
denotes a relationship among entities and attributes which are expressed by functions. A func
tion represents an attribute of an entity. Note that it is possible to define a function even on a set
of predicates. Function definition can be done by procedures.

Logical implication and equivalence are literally so and work as a watch-dog in the KB.
Suppose that there is a clause p (X) -7 q (X) denoting the transformation rule that as soon as e.g.
p (a) is found, q (a) must be added to the KB. (Logical equivalence performs this bidirection
ally.) Note that, since we employ intuitionistic logic, we don't assume -ip (a) even when -,q (a)
is asserted. In the same way, deleting p (a) does not imply deleting q (a) or any other fact
derived from p (a).

Akman et al. Knowledge Engineering in Design -13-

There are two temporal connectives: before and after. There will be no two facts asserted

at the same time. Therefore, these connectives form a fact set with complete ordering. Every

object, well-formed formula, etc. has a set of information about its origin, destination, and time

stamp. These are used by the SPV for controlling the inference.

Modal operators based on the system T [12] are available, i.e. #N (necessity) and #P (pos

sibility). Since these two are based on the system T, they precede only predicates. There is an

unknown operator, %, which can precede only atomic predicates. The #D default operator is

another modal operator and can precede only atomic predicates. The necessity and possibility

operators deal with different worlds whereas the default operator deals with nonmonotonocity or

truth-maintenance within one world.

Two quantifiers are available: #A for the universal quantifier "if and #E for the existential

quantifier 3. A clause is defined by a list of predicates combined by connectives. Clauses and

rules can be quantified.

IDDL is based on intuitionistic logic which implies further the open world assumption.

Thus, IDDL uses, deep in its heart, three-valued logic including the unknown truth value rather

than the conventional two-valued logic. Intuitionism means that, to check a fact, unless one has

positive evidence, one is not able to say yes. The open world assumption is considered in terms

of the unknown modal operator on the level of IDDL programs. Three-valued logic including

unknown besides true and false is employed only internally. This means that the KB and the

SPV distinguish false and unknown but logically these two values are treated the same. The

unknown truth value is explicitly handled by the unknown modal operator. Thus, %p (a) returns

true when there is no p (a) and --.p (a).

IDDL has the concept of a world. It is defined as a partition of the KB such that worlds are

independent from each other but can be linked so that changes in one world can propagate to

others. There must always be at least one currently active world in the KB. Worlds are subject

to manipulation. A world consists of (i) objects, (ii) facts, and (iii) available functions. A world

is created or declared with these elements. There are global worlds and local worlds. Local

worlds are defined as those belonging to scenarios. Global worlds persist in the KB forever until

explicitly removed, while local worlds automatically disappear after the execution of scenarios.

Two types of action are possible: pure inquiries and assertions. Suppose that we want to

ask the KB p (X). If there is p (a) and p (b) then X is instantiated to the set {a, b } and true is

returned. If there are no such facts in the KB, X remains uninstantiated and false is returned.

Consider now the inquiry -,p (a, b). If -,p (a, b) is found, true is returned; however, if p (a, b)

is found, false is returned. If neither --.p (a , b) nor p (a , b) is found, unknown is returned.

#N and #P are used to deal with different (currently active) worlds. #Np(a) returns true

when all the currently active worlds have p (a); if there are some worlds where --.p (a) is found,

false is returned. If some or all of the active worlds do not have p (a), unknown is returned.

#Pp (a) returns true when there is at least one active world which has p (a); false is returned

when all of the active worlds have --.p (a). If there is neither p (a) nor --.p (a) in the active

worlds then unknown is returned.

A fact such as #Dp (a), matches #Dp (a) and returns true. Otherwise, it returns false

(because the problem is whether p (a) is qualified by #D or not). Assertions, on the other hand,

are assoc;iated with modifying the KB. Again consider asking p (X). If there exist p (a) and

p (b), X is instantiated to the set {a, b } and true is returned. In this case the assertion suc

ceeded. If there is no such fact in the current worlds, an object which is referred by X is created

Akman et al. Knowledge Engineering in Design -14-

and this fact is added to the current worlds. Finally, true is returned as the logical value of this
assertion to indicate that it succeeded. By assertion one may create new objects. The assertion
p (a) fails when there is already -,p (a) in the current worlds. We note that & (logical and) and
I (logical or) operators are different in terms of assertion. For example, consider the assertions
of p (a) & q (a) and p (a) I q (a). The and operator puts both p (a) and q (a) in the currently
active worlds. If either of them fails, the whole assertion fails. On the other hand, the or opera
tor creates a copy of the currently active world and puts p (a) and q (a) separately into the origi
nal world and the copied world. Having an or operator on the right hand side (RHS) of a rule,
one implicitly creates a new world. If both of those assertions fail, the whole assertion fails.

There is a built-in predicate assert which explicitly does an assertion. This predicate is, by
definition, a higher order predicate. Inquiries are specified by the built-in predicate inquire. The
opposite of assert is remove which retracts a fact from the KB. In case there is an equivalence
definition in the KB, by asserting a fact an equivalent fact might be added to the KB automati
cally. However, this will not happen when a fact is removed.

By asserting #Np (a), all currently active worlds will have p (a) and the assertion will
succeed. If there are some worlds where -,p (a) is found, the assertion fails. By asserting
#Pp (a), all the active worlds will have either p (a) or #Dp (a). Worlds which already have
-,p (a) are not touched. However, if all the active worlds already have -,p (a), the assertion
fails. When a fact qualified by the default modal operator #Dp (a) is asserted, p (a) is put into
the current worlds and labeled as default. Facts which are derived from those default facts will
be labeled as derived facts (fromp(a)). Sometime in the future, if p(a) is asserted then these
labels will be removed. If -,p (a) is asserted in the future, all the assumed facts and derived facts
will be removed from the current worlds and -,p (a) is asserted instead.

A rule has the well-known if-then syntax. Note that there is no logical implication in a
rule; this is completely different from the~ operator. Rules will be purely procedurally inter
preted by the SPY. A rule is interpreted as "if clause-I is true, then clause-2 must hold." Thus,
unless specified, the following is expected by default. If clause-I is found, then clause-2 is
asserted. For the left hand side (LHS) part of rules, normally clauses are regarded as inquiries.
For the right hand side part, assertions are assumed unless explicitly specified (such as just an
inquiry). If it is impossible to assert the entire clause, the assertion fails. If, for one reason or
another, the assertion on the RHS fails, it is taken that the rule failed.

An instantiation list is used to keep track of "once matched facts" so that they won't fire
again. Quantifiers are used to talk about objects instantiated to variables. Consider an inquiry
p(X) ~ q(X) and facts p(a), p(b), p(c), q(a), and q(b) in the KB. #A[X] p(X) ~ q(X)
returns unknown since there is no p(c). On the other hand, #E[X] p(X) ~ q(X) returns true
and its instantiation list in this case is {a , b } . In IDDL quantifiers can also quantify rules.

If on the LHS there are facts labeled default or derived-from, the facts on the RHS will be
asserted with the label derived-from the fact in the LHS. By doing so, one keeps track of
assumed facts (viz. truth maintenance). ·

A scenario is defined as a set of rules. A scenario set (or a scenario base) is a set of
scenarios. A scenario has the following elements:

e Scenario name (List-of-Worlds)

• Flowdeclaration reference (to resolve the destination references)

• World declaration reference, which further consists of:

Akman etal. Knowledge Engineering in Design -15-

• Object declaration reference

• Function declaration reference

• Object declaration reference

• Function declaration reference

• Rules

A scenario is active when the control is passed to it by the SPV or another scenario. The

argument List-of-Worlds defines worlds passed by the caller. A scenario can have those

imported worlds as well as local worlds declared in the world declaration references. There is a

world called default-world which can be used without declaration and is local only to that

scenario. Object and function declarations on the same level as the world declaration belong to

this local world, default-world. The object declaration in a world defines local objects which can

be used only in that world. Global objects are declared as local objects of a global world. From

scenarios there must be a reference to those global objects. Local objects will never be seen

from upper level scenarios. The idea of object declaration almost corresponds to the idea of

"typing" in conventional languages.

Worlds cannot be accessed from scenarios which have no declarations referring to them. In

case a scenario has more than two worlds, which world is to be considered is specified by the

enter built-in predicate. (The opposite is exit predicate.) Note that one cannot switch worlds that

are created by an I operator. These copied worlds are equally treated as the original worlds. By

declaring objects in the object declaration part, the current world contains only those declared

objects. Two or more worlds can share objects by referring or by importing/exporting. This

takes place in such a way that a declared object and its relevant clauses and functions associated

with objects are automatically collected and put into the current world.

A world can be created by the enclose(World, List-of-Objects) built-in predicate. This

predicate creates a new world called World with List-of-Objects. This is an enclosure mechan

ism. After the enclosure, the enclosed world will be treated as an object. The type of World is

defined by its object declaration. Whether World is global or local is dependent on that. After

enclosure, the contents of the world can be accessed only by functions. The enclosure mechan

ism can be, therefore, perceived as "intensionalising extensions," and functions are used to

"find the anatomy" of an enclosed world. Similarly, it is not far-fetched to regard functions as

equivalent to messages.

A scenario will be executed in the following way. Examining the rules from the top, the

first rule whose LHS is satisfied is selected. Then the RHS of this rule is asserted. If the asser

tion was successful, search for the next matching rule starts with the rule following the previ

ously executed rule. If the assertion failed, once again search starts and another rule will be

selected. In case the execution terminates successfully, all the results will be preserved. In case

of failure, all the results will be removed. If the search for the next applicable rule comes back

to the most recently executed rule because the search "wraps around," it is judged that there are

no applicable rules and the execution of the entire scenario stops (i.e. no-more-rule situation).

The execution of a scenario can also be stopped by the execution of either success or fail built-in

predicates. When a scenario terminates successfully, worlds related to that scenario are

preserved. When a scenario terminates unsuccessfully, related worlds are removed from the KB.

When a rUle is selected, an instantiation list is created. This list is preserved until the end of the

execution of the entire scenario so that the same rule will not be applied to the identical objects

in the same situation.

Akman et al. Knowledge Engineering in Design -16-

One can "open" an object andregard it as a world (called by the name of the object). This
is done by the open built-in predicate. To leave that world, one can use the close built-in predi
cate. The former assumes the enter predicate, and the latter assumes exit as prerequisites. A
select predicate changes the active scenario to a new one and restricts the active objects used in
that scenario to List-ofObjects. In case this list is empty, the active objects are not restricted.
On the other hand, a use predicate adds the new scenario name to the active scenario and res
tricts the active objects used to List-of-Objects. This predicate, therefore, enlarges the set of
available rules. The last two predicates can be true when the subscenario is finished by the exe
cution of a success built-in predicate or by the no-more-rule situation. They can be false when
the subscenario is explicitly terminated by the execution of a fail. This means "selection"
switches active scenarios while ''using'' shows details of the presently manipulated objects via
more dedicated rules. These two predicates are important to realise the so-called "multiworld
mechanism" of §2.1. Finally, in order to restrict active objects without changing scenarios, one
can use the predicates consider(List-of-Objects) and unconsider(List-of-Objects).

6. Summary and Future Directions

The aim of our work is to develop an integrated, interactive, and intelligent computer-aided
design system. IDCAD will be a generic system which may be used in any design domain and
will incorporate three types of design knowledge. First, the system has general knowledge about
the design processes based on a set-theoretic design theory. Second, it has domain-dependent
knowledge belonging to a specific area (e.g. VLSI) where it is actually used. Third, the system
maintains knowledge about previously designed entities. This kind of history mechanism enables
the system to reuse its knowledge in the forthcoming design activities. It is useful to imagine
this as a variant of software reuse.

The work on IIICAD is divided into several areas of interest in which different AI tech

niques are used:

• Formalisation of general design theory; modal and other nonstandard logics as a knowledge
representation language.

• Common sense reasoning about the physical world (naive physics) and coupled systems.

• Integration of object oriented and logic programming paradigms.

As a result, a formal definition of a kernel language for design will be generated. This
language for integrated data description (called IDDL) will be used to implement the IDCAD

system. IDDL, equipped with nonstandard logics, enables the IDCAD system to describe design
knowledge and to control the design process in a highly expressive and robust manner. In §5.2,
we gave a taste of IDDL, cf. [35] for full draft specifications. Formalisation of the design theory
will take place by means of frame-like structures called scenarios. We use General Design
Theory [31] as a basis for formalising design processes and knowledge.

The NP and QR knowledge which will be used during the design process, performs com
mon sense reasoning about the physical world. Depending on the phase of the design process,
the declaration of the physical qualities of a design object takes place in logic and by means of
references to physics laws. Interface between the IIICAD system and already existing qualita
tive reasoning systems (such as ENVISION [15] and QSIM [16]) should also be studied.

Declaration of knowledge about a design object may be done by logically manipulating the
object's attributes. At the same time, the knowledge itself refers to the specific behaviour of the
object. These two characteristics lead to a need to integrate object oriented and logic

Akman et al. Knowledge Engineering in Design -17-

programming styles into one language. One of the major areas of interest within illCAD, there

fore, is to find out how this integration to be achieved (i.e. multi-paradigm languages) and what

additional properties our draft proposal, IDDL, should have. We use the Smalltalk-80™ [10]

programming environment to implement IDDL (and IlICAD) and regard Smalltalk's excellent

user interface and debugging tools as major aids for software development in this scale.

"What has happened to the design ''guru''? Didn't every design and development engineering depart

ment once have one? At one of my first jobs the department manager and his assistant sat in their

glassed-in offices in one corner of our lab. The rest of us each had our 8-foot section of bench. Except

for our guru. He sat outside the bosses' offices at a desk of his very own. And while we toiled at' scopes

and breadboards, he didn't do anything. Nothing, that is, except answer questions the rest of us could

not." [5]

References

1. D. Bobrow, "If Prolog is the answer, what is the question? or What it talces to support AI programming para

digms," IEEE Trans. Software Engineering 11(11), pp. 1401-1408 (Nov. 1985).

2. D. Bobrow, S. Mittal, and M. Stefik, "Expert systems: Perils and promise," Communications of the ACM

29(9), pp. 880-894 (Sept. 1986).

3. D.C. Brown and B. Chandrasekaran, "Knowledge and control for a mechanical design expert system," IEEE

Computer 19(7), pp. 92-100 (July 1986).

4. R. Camap, Meaning and Necessity: A Study in Semantics and Modal Logic, The Univ. of Chicago Press, Chi

cago, Ill. (1947).

5. D. Christiansen, "On good designers," IEEE Spectrum (Special report: On good design) 24(5), p. 25 (May

1987).

6. J. Doyle, "A truth maintenance system," Artificial Intelligence 12, pp. 231-272 (1979).

7. MG. Dyer, M. Flowers, and J. Hodges, "EDISON: An engineering design invention system operating

naively," Artificial Intelligence in Engineering 1(1), pp. 36-44 (1986).

8. J.S. Gero (ed.), Knowledge Engineering in Computer Aided Design, North-Holland, Amsterdam (1985).

9. J.S. Gero (ed.), fapert Systems for Computer Aided Design, North-Holland, Amsterdam (1987, to appear).

10. A. Goldberg, Smalltalk-80: the Interactive Programming Environment, Addison-Wesley, Reading, Mass.

(1983).

11. P. Hayes, "The second naive physics manifesto," pp. 1-36 in Formal Theories of the Commonsense World,

ed J. Hobbs and R. Moore, Ablex, Norwood, New Jersey (1985).

12. G.E. Hughes and M.J. Cresswell, An Introduction to Modal Logic, Methuen, London (1972).

13. C.T. Kitzmiller and J.S. Kowalik, "Symbolic and numerical computing in knowledge based systems," pp.

3-17 in Coupling Symbolic and Numerical Computing in Expert Systems, ed. J.S. Kowalik, Elsevier, Amster

dam (1986).

14. J. de Kleer, "Qualitative and quantitative knowledge in classical mechanics," AI-TR-352, Artificial Intelli

gence Lab, MIT, Cambridge, Mass. (Dec. 1975).

15. J. de Kleer and J.S. Brown, "A qualitative physics based on confluences," Artificial Intelligence 24, pp. 7-83

(1984).

16. B. Kuipers, "Qualitative simulation," Artificial Intelligence 29, pp. 289-338 (1986).

17. J. Lansdown, "Graphics, design, and artificial intelligence," in Theoretical Foundations of Computer

IMSL is a txademark of IMSL, Inc. MACSYMA is a trademark of Symbolics, Inc. Smalltalk-80 is a trademark of

Xerox Cotp. Mention of commercial products in this article doesn't imply endorsement.

Akman et al. Knowledge Engineering in Design -18-

Graphics and CAD, ed. R.A. Earnshaw, NATO ASI Series, Springer-Verlag, Heidelberg (1988, to appear).

18. H.J. Levesque, "The logic of incomplete knowledge bases," pp. 165-189 in On Conceptual Modelling (Per

spectives from Artificial Intelligence, Databases, and Programming Languages), ed. M.L. Brodie, J. Mylo
poulos, and J.W. Schmidt, Springer-Verlag, New York (1984).

19. D. McDermott, "Nonmonotonic logic II: Nonmonotonic modal theories," Journal of ACM 29(1), pp. 33-57
(Jan. 1982).

20. M. Minsky, "A framework for representing knowledge," pp. 211-277 in The Psychology of Computer Vision,

ed. P. Winston, McGraw-Hill, New York (1975).

21. S. Mittal, C.L. Dym, and M. Morjaria, ''PRIDE: An expert system for the design of paper handling systems,''
IEEE Computer 19(7), pp. 102-114 (July 1986).

22. R.C. Moore, "The role of logic in knowledge representation and commonsense reasoning," pp. 336-341 in
Readings in Knowledge Representation, ed. R.J. Brachman and H.J. Levesque, Morgan Kaufmann, Los Altos,
Calif. (1985).

23. J. Mylopoulos and H.J. Levesque, "An overview of knowledge representation," pp. 3-17 in On Conceptual

Modelling (Perspectives from Artificial Intelligence, Databases, and Programming Languages), ed. M.L. Bro
die, J. Mylopoulos, and J.W. Schmidt, Springer-Verlag, New York {1984).

24. R. Reiter, "Towards a logical reconstruction of relational database theory," pp. 191-233 in On Conceptual

Modelling (Perspectives from Artificial Intelligence, Databases, and Programming Languages), ed. M.L. Bro
die, J. Mylopoulos, and J.W. Schmidt, Springer-Verlag, New York (1984).

25. J. Skylar, "A cut above: A manufacturer of lawnmower engines pushes computer-aided design software to
new limits," Logic (a publication of Control Data), pp. 3-7 (Spring 1987).

26. M. Stefik and D. Bobrow, "Object oriented programming: themes and variations," AI Magazine 6(4),
pp. 40-62 {Winter 1986).

27. M. Stefik, D. Bobrow, and K. Kahn, "Integrating access oriented programming with a multi.paradigm
environment," IEEE Software 3(1), pp. 10-18 (Jan. 1986).

28. P. ten Hagen and T. Tomiyama (ed.), Intelligent CAD Systems 1: Theoretical and Methodological Aspects,

Springer-Verlag, Heidelberg (1987, to appear).

29. T. Tomiyama and P. ten Hagen, "Representing knowledge in two distinct descriptions: extensional vs. inten
sional," CWI Report CS-R8728, Centre for Mathematics and Computer Science, Amsterdam (June 1987).

30. T. Tomiyama and P. ten Hagen, "The concept of intelligent integrated interactive CAD systems," CWI

Report CS-R87 l 7, Centre for Mathematics and Computer Science, Amsterdam (April 1987).

31. T. Tomiyama and H. Yoshikawa, "Extended general design theory," pp. 95-130 in Design Theory for CAD,

ed H. Yoshikawa and E.A. Warman, North-Holland, Amsterdam (1987).

32. T. Tomiyama and P. ten Hagen, "Organization of design knowledge in an intelligent CAD environment," in
Expert Systems for Computer-Aided Design, ed. J. Gero, North-Holland, Amsterdam (1987, to appear).

33. B. Veth, "An integrated data description language for coding design knowledge," in Intelligent CAD Systems

1: Theoretical and Methodological Aspects, ed. P. ten Hagen and T. Tomiyama, Springer-Verlag, Heidelberg
(1987, to appear).

34. B. Veth, "Design as a formal, knowledge engineered activity," CWI Report, Center for Mathematics and

Computer Science, Amsterdam (1987, to appear).

35. B. Veth, "IDDL, an Integrated Data Description Language," CWI Report, Center for Mathematics and
Computer Science, Amsterdam (1987, to appear).

36. H. Yoshikawa and E.A. Warman (ed), Design Theory for CAD, North-Holland, Amsterdam (1987).

