
Knowledge Engineering with Software Agents

Louise Crow & Nigel Shadbolt

Artificial Intelligence Group,
Department of Psychology,
University of Nottingham,

University Park, Nottingham
NG7 2RD

U.K.
+44 (0) 115 9515280

lrc@psychology.nottingham.ac.uk, nrs@psychology.nottingham.ac.uk

Abstract
Increasingly diverse and useful information repositories
are being made available over the World Wide Web
(Web). However, information retrieved from the Web is
often of limited use for problem solving because it lacks
task-relevance, structure and context. This research draws
on software agency as a medium through which model-
driven knowledge engineering techniques can be applied
to the Web. The IMPS (Internet-based Multi-agent
Problem Solving) architecture described here involves
software agents that can conduct structured on-line
knowledge acquisition using distributed knowledge
sources. Agent-generated domain ontologies are used to
guide a flexible system of autonomous agents arranged in
a server architecture. Generic problem solving methods
developed within the expert system community supply
structure and context.

1 Knowledge Engineering and the Web

Knowledge engineering is concerned with the
development of knowledge-based (expert) systems to
perform tasks. In knowledge engineering, the ‘knowledge
acquisition bottleneck’ refers to the time- and resource-
intensive process of getting the knowledge about a
domain that is necessary to perform the required task.
Some examples of domains (subject areas) are respiratory
medicine, igneous petrology and electronic engineering.
Knowledge engineers acquire knowledge of the domain
from various sources and represent it in a form that can be
used in a knowledge based system. It is particularly
difficult to get access to human domain experts who are,
by definition, rare and often very busy. Therefore it is
usual to perform initial sessions of domain structuring and
representation using available resources such as
textbooks, manuals, and increasingly, electronic media.

While the Web could be a valuable source of
knowledge covering many subject areas, it also presents
the problem that there is often simply too much
information available to each Web user. Relevant facts

are obscured by masses of irrelevant data. An analysis of
the Web using the overlap between pairs of search
engines to estimate its size gave a lower bound on the size
of the “indexable Web” in December 1997 of 320 million
pages (Lawrence and Giles 1998). This may be a serious
underestimate of the size of the whole Web as search
engines typically do not index documents hidden behind
search forms and cannot index some documents, which
use the “robot exclusion standard” or require
authentication. The estimate also excludes dynamic on-
the-fly information serving over the Web. This exclusion
is significant because increasingly, the Web is being used
as a gateway for dynamic information transfer rather than
simple delivery of static HTML pages. Programs are
interfaced (e.g. through CGI-bin scripts) to the Web to
provide users with information compiled on-the-fly and
tailored to their needs. Even the static content of the Web
is continually changing. Information is constantly
updated, links are changed or expire, and pages (or entire
Web sites) are moved to new locations in virtual and real
space.

There are other factors to be considered when using
information from the Web. It holds information in many
different formats. Examples include institutional
databases, FAQ lists, interactive programs, publications,
statistics, descriptive texts, photographs, films, sound and
animation. A knowledge engineer will usually wish to
exploit more than one source of information. The use of
multiple formats and the distributed nature of the Web
make the integration of this information a non-trivial task.
Firstly each piece of information must be retrieved from
its location using network protocols, and re-represented in
a common format. Secondly, the pieces of information
must be integrated with respect to their meaning. This
poses problems as information from different sources may
have been created from different, possibly contradictory,
perspectives on the subject concerned.

Although the Web has become well established and
influential, we are only just beginning to explore the

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

potential of tools that retrieve collated information from
it. The ability to filter and reassemble information in an
appropriate structure and context will be increasingly
important as more and more information becomes
available on-line. This paper presents the IMPS (Internet-
based Multi-agent Problem Solving) architecture. IMPS is
an agent-based architecture driven by knowledge level
models. It is designed to facilitate the retrieval and
restructuring of information from the Web. Our purpose is
to use the resulting knowledge as problem solving
knowledge suitable for use in a knowledge based system.
However, the approach could have wider applicability.

A semantic distinction can be made at this point
between information and knowledge. Knowledge can be
thought of as the whole body of information that someone
brings to bear to solve a problem. One salient feature of
this definition of knowledge is the composition of
individual items of information into a larger pattern. The
other is the application of this information to reach a goal.
The advent of the Internet has increased the amount of
available electronic information. The Web holds
information on a vast number of domains. However, it
does not present convenient packages of domain
knowledge indexed by the kind of problems to which they
could be applied. Within each domain represented on the
Web, information is available which could be used for
solving many possible problems. IMPS uses an approach
that extracts and transforms information based on two
criteria. The approach considers firstly the subject or
domain (e.g. geology, respiratory medicine, electronic
engineering), and secondly the kind of task in which the
information is to be used (e.g. classification of objects,
diagnosis of faults in a system, scheduling a series of
tasks). In effect, this approach describes on-line
knowledge acquisition using knowledge level models.

1.1 Knowledge Level Models
Knowledge level models are widely used for knowledge
acquisition in the knowledge engineering community. The
term harks back to Newell’s original distinction between
the knowledge level and the symbol level (Newell 1982).
These are ways of interpreting the behaviour of any agent
seen by an external observer. The behavioral law used to
understand the agent at the knowledge level is the
principle of maximum rationality which states: "If an
agent has knowledge that one of its actions will lead to
one of its goals, then the agent will select that action". No
further attempt is made at this level to delve into how the
agent actually works. It is enough to know that it acts as if
according to the principle of maximum rationality. The
knowledge level is implemented by the symbol level. At
the symbol level, the agent is seen as a mechanism acting
over symbols, and its behaviour is described in these
terms.

This distinction has had a great influence on the
knowledge engineering community, notably in the
modeling approaches to building knowledge based
systems. Here, the systems are viewed as models of expert

problem solving behaviour. Using the knowledge level,
this behaviour can be modeled in terms of knowledge
content (i.e. epistemologically).
However, while Newell’s conceptualization did not allow
for any structure at the knowledge level, most of the
knowledge level models (KL-models) used in knowledge
based systems are highly structured (Van de Velde 1993).
Different kinds of knowledge model generally represent a
particular perspective on the knowledge level. Van de
Velde points out that in practical terms, knowledge can be
divided into relatively stable structures.

A KL-model is a structure that is imposed on
knowledge when it is being put to use in a class of
problem situations

The common feature of this class of problem situations
may be that they are all in the same domain. In this case,
the model imposed may be described as a domain model.
This is a means of expressing domain knowledge in a
precise, systematic way. For example, if the domain being
considered was respiratory diseases, a domain model
might contain knowledge about the structure and function
of a pair of lungs. This model could be useful in various
tasks within the domain. It could facilitate diagnosis of
respiratory disease by providing a causal model for
linking diseases to symptoms, or it could be used to
classify respiratory diseases by their features.

Alternatively, the common feature of the class of
problem situations might be that they share a common
task structure, although they appear in different domains.
This would be true of classification problems in geology
and electronic engineering. Say the problems were a) to
classify an unknown igneous rock specimen b) to classify
an unknown circuit component. In both cases, a
knowledge model might be used which represents
knowledge about the classes that the unknown object may
belong to, the distinguishing attributes of those classes,
and the features of the unknown object which may be
matched against those attributes. This kind of model is
known as a task model. There may be more than one way
to solve problems that share a task model. For instance,
there are many problem solving methods for carrying out
classification tasks.

A full knowledge level model would bring together the
task model, domain model and problem solving method
into a coherent model that is sufficient to solve the task. If
this is the case, one may ask “Why use the separate
models in the first place?”. One of the reasons that these
different knowledge models are used is to guide
knowledge acquisition. If a new domain is being tackled,
a task model may impose a structure on knowledge that
can guide acquisition, even though a full domain model
has not yet been formed. For instance, in the case of rock
classification, although nothing may be known about the
features of rock, a knowledge engineer will know that
they must try to acquire information about distinguishing
properties of classes of rock.

Another reason for using the separate models is the
potential for knowledge reuse. Full knowledge level
models will rarely be reused, as it is unlikely that
knowledge engineers will encounter exactly the same
problem again. However, domain models, task models
and problem solving methods all have the potential to be
reused in problems which are similar in domain (in the
case of domain models), or task (in the case of task
models and problem solving methods).

1.1.1 Problem Solving Methods Reusable problem-
solving methods (PSMs) focus on the idea that certain
kinds of common task (e.g. classification) can be tackled
by using the same problem-solving behaviour (e.g.
generate and test a set of hypotheses), regardless of the
domain in which they appear. An abstract model of this
behaviour is a problem solving method. This method
relates the task and domain models together so that goals
can be accomplished. Knowledge roles (e.g. object class,
attribute) in the task model are instantiated by domain
knowledge. The problem solving method performs
transformations between the input roles of the task model
(i.e. the information that is given to the problem solver)
and the output roles (the solution which is expected of it).

The separation of a problem solving method from
domain knowledge has been used in various well-known
knowledge acquisition methodologies (Weilinga et al.
1991) (Klinker et al. 1991) (Steels 1990) (Chandrasekaran
1986). What these approaches have in common is the use
of a finite library of domain independent problem solving
methods, which may need some tuning to suit the domain
of application.

Some methods, such as ‘generate and test’ or ‘heuristic
search’ are so weak in their assumptions of domain
knowledge that they can be applied to a wide range of
tasks with little fine-tuning. However, these weak
methods tend not to be very efficient. Stronger, more
efficient methods have more requirements in terms of the
type and structure of domain knowledge and are therefore
less widely applicable (Bylander and Chandrasekaran
1988). Figure 1 shows a typical domain knowledge
schema for classification.

Additionally, problem solving methods are usually
specified not as a homogenous whole, but as a series of
components or inference steps. Each of these components
describes a relatively independent step taken in the
problem solving method. Each oval in Figure 2 represents
an inference step taken in the pruning classification
method. There is often some flexibility regarding the
order these steps are taken in. The term grainsize refers to
the size of these elemental components.

Methods with larger grainsize – fewer and larger
components – are less reusable and require more tuning
for new uses. Therefore the approach is moving towards a
smaller grainsize, with finer-grained problem-solving
strategies which can be configured together to form a
knowledge based system (Puerta et al. 1992) (Gil and
Melz 1996). Knowledge based system metatools have
appeared (Walther, Eriksson and Musen 1992) (Studer et
al. 1996) which store reusable components in libraries and
configure them according to the requirements of each
application.

Recently, researchers have begun to discuss the
implications of the Internet for problem solving method
reuse in particular and knowledge engineering in general
(e.g. Benjamins 1997). Fensel (Fensel 1997) points out
that one reason that actual reuse of PSMs hasn't occurred
as often as it might is that the PSMs that have been
implemented make strong assumptions on software and
hardware environments that limit reuse in other
environments. Although a PSM itself may be specified at
the knowledge level, the symbol level implementation of
these knowledge level models on a computer is a practical
impediment to reuse. It is difficult to reuse a PSM that has
been implemented in Lisp on a Mac in a system using
C++ on a Unix machine although they may be compatible
at the knowledge level. These kinds of limitations are
bypassed in an Internet-based architecture, such as IMPS,
which exploits the emerging open standards for
interoperation in Web-based software, such as the
platform-independent Java language.

object
type

object
class

attribute

class of

has attribute

requires

class
constraint

2+ 1+

value: UNIVERSAL

Figure 1: Typical domain-knowledge schema for
classification tasks (Schreiber et al. 1998)

classgenerate

match

specifyobject

truth
value

attribute

obtain

feature

Figure 2: Inference structure for the pruning
classification method (Schreiber et al. 1998)

1.1.2 Ontologies As we have discussed, it is the
conjunction of the domain and task models with the
problem solving method that allows a knowledge based
system to achieve goals. The idea of a library of domain
independent problem solving components, such as task
models and problem solving methods implies the
availability of domain models to instantiate these
components and turn them into knowledge based systems.

Domain models can also be known as domain
ontologies. It has been argued (van Heijst, Schreiber and
Wielinga 1997) that explicit ontologies can be used to
underpin the knowledge engineering process. However,
the concept ‘domain ontology’ is used ambiguously in the
knowledge engineering community (Uschold 1998). It can
mean:

…the particular subject matter of interest in some
context…The nature and scope of a domain are
determined by what is of interest and the context.
The context includes the purpose for delimiting a
subject area.

An alternative perspective (also taken from Uschold) sees
the ontology covering

 the particular subject matter of interest in some
context considered separately from the problems or
tasks that may arise relevant to the subject.

According to the first definition, an ontology can be
task dependent – so a domain ontology might only contain
concepts and relationships relevant to the particular
problem solving method with which it was used. An
example of this might be an ontology of rocks to be used
in a simple classification task. This could contain the
mineral properties of different types of rock necessary for
identifying them, but would not necessarily contain
information about the causal processes that contributed to
rock formation. These causal concepts would be relevant
to a different problem solving method in which some
causal model of process was used.

The second conceptualization proposes that a domain
ontology should be constructed with no reference to the
kind of tasks that the knowledge engineer would be
hoping to tackle with it. This kind of domain ontology in
the field of geology would contain all the information
available about rocks. It has been suggested that a library
of such task-independent domain ontologies would
complement the existing libraries of task models and
problem solving methods. In Figure 3 it can be seen that
while a reusable problem solving method should be
situated in area C (which contains abstract task-relevant
knowledge), a domain ontology could be positioned either
in area A (if the first definition is used) or area B (if the
second definition is used).
We have discussed how problem solving methods can
make assumptions about the nature and structure of the
domain knowledge that can be used with them. Therefore,
if a domain ontology is not oriented towards the specific
task to be carried out in the domain (i.e. it is situated in

area B), there may have to be extensive modification of
the information in the domain ontology, or ‘mapping’, to
allow it (and subsequent knowledge acquisition based on
the ontology) to be fitted into the constraints of the
problem solving model. This process is much simpler if
the domain ontology is geared towards the task from the
outset – a situation that is difficult to achieve with a
library of reusable domain ontologies.

Other significant obstacles would need to be overcome
in the creation of such a library (van Heijst, Schreiber and
Wielinga 1997). In order to provide usable ontologies for
a significant range of domain areas, the library itself
would have to be huge. In order to make a system useful
in areas not covered by the library, some method for
supplying ontologies to 'cover the gaps' would be
required. Both this problem and the interaction between
PSMs and domain knowledge seem to indicate that an
alternative to the idea of ontology libraries might be
appropriate. Our hypothesis is that more use and reuse
will be obtained from a system that constructs ontologies
at runtime from some set of source material, fitting the
ontologies to the requirements of the problem solving
method being used.

Such an approach is also an asset in dealing with a
changing information environment in which an adequate
ontology of domain terms two years ago may no longer be
adequate today. Tennison and Shadbolt (Tennison and
Shadbolt 1998) argue for a move to “living ontologies”
whose development is integrated with that of the system
they are to be used in. A system that can integrate and use
knowledge from different sources to construct a domain-
specific, task-specific ontology could be used both to
create new ontologies for domains, and also to update
existing ontologies, or adapt ontologies created for
different tasks.

The idea of generating domain ontologies was explored
in the SENSUS project (Swartout et al. 1996). This
involved the use of a broad coverage general ontology to
develop a specialized, domain specific ontology semi-
automatically. The availability of high level ontologies on
the Internet is increasing. These high level ontologies are
attempts to produce a domain model for the world.
Systems such as the Generalized Upper Model (Bateman,
Magnini and Fabris 1995), the ‘upper CYC® ontology’
(Cycorp Inc. 1997), Ontolingua (Gruber 1993) and

All knowledge

Figure 3: How knowledge can be
separated into knowledge level models

Subject
knowledge

Task
relevant

knowledge

A

B C

WordNet (Miller 1990) are knowledge structures which
provide a framework which could organize all of the
concepts we use to describe the world, aiming to cover
every possible subject area with at least a low level of
detail. They are generally hierarchical and carve up the
world into a set of high level classes. For example, ‘event’
and ‘entity’ are top level classes in WordNet. It should be
possible, in theory, to position any concept somewhere in
the hierarchy of increasingly specific terms that springs
from these high level concepts. These ontologies may be
used to as a ‘bootstrapping’ method to bridge the gap
between “common sense” knowledge and domain specific
knowledge which can be obtained from specialist sources
by providing a general high-level structure in which to
situate domain specific knowledge.

2. Agent Technology
Having reviewed the influences from knowledge
engineering on our work, we will now look at those
aspects of agent technology that we exploit. 'Software
agency' is polysemous term. In this paper, it will be used
to imply characteristics of flexibility, autonomy,
intelligence, adaptability and high level communication in
a piece of software. We hope that these characteristics
will allow agents to give users an individually tailored
perspective on information. This function will be
indispensable in a world in which information is
multiplying, but becoming less structured (Bradshaw
1996). In this role, agents could act as the medium
through which people will access knowledge for new
tasks from large networked repositories. Agents are
already used on the Internet to filter and retrieve
information in a number of applications. Bradshaw
proposes a vision of the future in which,

Ultimately, all data would reside in a "knowledge
soup" where agents assemble and present small bits
of information from a variety of data sources on the
fly as appropriate to a given context.

In order to act in this way, the agent must be guided by
some particular perspective or goal.

A popular Internet agent architecture is one in which
the agent’s behaviour is informed by some kind of user
model (e.g. Lieberman 1995). For example, an
information filtering agent may keep details of documents
that it has already presented to the user, along with some
indication of whether the user liked them or not. These
records are used to produce a profile of the user’s
interests. This in turn guides the agent in its search for
new documents to present to the user. This approach has
some similarities to the IMPS approach. However, in
IMPS, the model used to guide information retrieval is a
task model rather than a user model. The profile
maintained describes the requirements of a particular task
type (selected by the user) in terms of domain
information. Thus, an agent primed with a model of

classification will be highly ‘interested’ in information
about object classes and properties.

In addition to the characteristics mentioned above,
agency can also indicate cooperative abilities; agents are
often used not singly, but in a multi-agent architecture in
which tasks are divided in some way between software
entities. In this kind of architecture, agents can be
distributed in space and time. Each agent can also hold
separate logical and semantic beliefs. These properties
can be exploited to cope with the scale and distributed,
fast-changing and unreliable nature of the Internet.
However, the advantages must be traded off against issues
of problem dependent co-ordination (Bond and Gasser
1988).

In terms of the specific task of conducting knowledge
acquisition on the Internet, one of the great advantages of
the agent metaphor is that agents possess intentionality –
the ability to express ‘attitudes’ towards information. This
property becomes more significant in a multi-agent
architecture where the agents express their intentionality
in knowledge-level communication. An agent wanting to
communicate fact X to another agent will do so in the
form “I believe “All apples are red” to be true” or “I wish
you to believe that “All apples are red”” rather than
simply “All apples are red”. This allows the second agent
to reason about the fact that the first agent holds this
belief, rather than simply having to accept “All apples are
red” as a given. This is particularly important because
information on the Web may be contradictory or simply
incorrect. An intentional system has some capacity to
reason about conflicting information.

3 The IMPS Architecture

Having outlined the theoretical roots of the IMPS
architecture, this section will describe the architecture in
specific terms. We will trace the ideas introduced earlier
to their software implementations. IMPS is made up of
agent programs. While these agents are independent, they
cooperate at a high level to extract information from
Internet sources. They reformulate this information so
that it can be used in the kind of problem solving that is
typically seen in knowledge based systems. To do this, the
agents act together in a server architecture. The
architecture will be described in two sections, the first
detailing the internal structure and function common to all
the IMPS agents and the second relating the agents
together as a multi-agent system.

3.1 The Agent Level Architecture
Although each agent specializes in performing a certain
task and may therefore have abilities that the other agents
lack, all the agents are based on the same fundamental
structure. This allows them to communicate with other
IMPS agents via messages, retrieve information from the
Web and manipulate it internally.

3.1.1 JAT, The Java Agent Template The basic
structure on which all the IMPS agents are based is
supplied by the Java Agent Template (JAT) 0.3 (Frost
1996). The JAT provides a template, written in the Java
language, for constructing software agents that
communicate peer-to-peer with a community of other
agents distributed over the Internet. JAT agents are not
migratory - in contrast to many other agent technologies,
each IMPS agent has a static existence on a single
machine. All agent messages use KQML as a top-level
protocol or message wrapper (see section 3.1.3).

The template provides Java classes to support a virtual
knowledge base for each agent, and includes functionality
for dynamically exchanging "resources". These resources
include Java classes such as ‘languages’ – these are
essentially protocol handlers which enable a message to
be parsed and provide some high level semantics. Another
form of resource is an interpreter - a content handler,
providing a procedural specification of how a message,
constructed according to a specific ontology, should be
interpreted. Data files can also be treated as resources.

The architecture of the JAT is ideal for prototyping and
agent development. It was specifically designed to allow
for the replacement and specialization of major functional
components including the user interface, low-level
messaging, message interpretation and resource handling.

3.1.2 Jess, The Java Expert System Shell The JAT agent
template provides a range of common agent functions,
such as the KQML messaging. In IMPS we have
supplemented these functions with Jess which provides
the ‘brains’ of each agent. Jess is a version of the popular
expert system shell CLIPS, rewritten entirely in Java
(Friedman-Hill 1998). It provides the agents with internal
representation and inference mechanisms. In effect, the
addition of Jess means that whilst the agents share a
common architecture, each agent reasons and acts like a
small knowledge-based system following its own set of
rules. Jess can be used to manipulate external Java
objects in a rule-based manner. This means the agent’s
low level behaviours can be directly controlled by the
inference engine.

3.1.3 KQML, The Knowledge Query and Manipulation
Language IMPS uses the Knowledge Query and
Manipulation Language (KQML) for inter-agent
communication, as specified and supported by the JAT.
KQML has been proposed as a standard communication
language for distributed applications in which agents
communicate via "performatives" (Finin, Labrou and
Mayfield 1997). It has a theoretical basis in speech-act
theory. The sender explicitly represents and reasons about
communication primitives and their effects in order to try
to bring about specific mental states in the hearer
(Jennings 1992). KQML is intended to be a high-level
language to be used by knowledge-based systems to share
knowledge rather than an internal representation
language. As such, the semantics of its performatives
refer specifically to agents' knowledge bases. Each agent

appears to other agents to manage a knowledge base,
whether or not this is true of the actual architectural
implementation.

KQML supports the agent characteristic of
intentionality, by allowing agents to communicate
attitudes about information through performatives, such as
querying, stating, believing, requiring, subscribing and
offering. This provides the basis for an architecture in
which agents have some kind of model of other agents,
which in turn enables co-ordination. It also means that
whatever internal knowledge representation mechanisms
agents have, agent interaction is carried out at the
knowledge level - it is implementation independent.
KQML is indifferent to the format of the information
itself, so expressions can contain sub-expressions in other
languages. In IMPS, KIF statements are embedded in
KQML. KIF is used for conveying the actual information
content of knowledge bases, whilst KQML itself is used
to convey the location of knowledge sources, agents and
Java code modules.

3.1.4 KIF, The Knowledge Interchange Format
Knowledge Interchange Format (KIF), a formal language
for the interchange of knowledge among disparate
computer programs, is used for content communication
between agents. It has declarative semantics – so it is
possible to understand the meaning of expressions in the
language without appeal to an interpreter for manipulating
those expressions. KIF has been designed to maximize
translatability, readability and usability as a representation
(Genesereth and Fikes 1992). Each IMPS agent has a KIF
parser, written using the Java Compiler Compiler (JavaCC
– see section 3.2.2), which allows it to read KIF text
messages. KIF is maintained as a possible means of more
sophisticated knowledge representation and sharing with
other systems.

3.2 The Multi-Agent Architecture
As a model-driven architecture, IMPS aims to take the
task-oriented nature of agent software much further. It
uses PSM-oriented knowledge acquisition to create an
explicit domain ontology for a task. The PSM used
provides templates that describe the kind of knowledge
required, the types of role that this knowledge might play
and the inferences in which this knowledge might figure.
The ontology provides a conceptual framework for the
organization of knowledge. As it becomes instantiated
with further structured acquisition, it produces a domain
knowledge base that could in turn underpin agent-based
problem solving guided by the same PSM structure.

3.2.1 The Server Architecture In order to apply these
knowledge level models, IMPS uses a server architecture
(see Figure 4), in which two specialist server agents, the
Knowledge Extraction Agent (KExA) and the Ontology
Construction Agent (OCA) provide knowledge to
Inference Agents (IAs) on demand. The Inference Agents
embody primitive inference types and co-ordinate to enact

Figure 4: The IMPS server agents

Computer

Domain
database

OCA
User

KExA
Domain

Knowledge

Knowledge
Library

Extraction
Classes

PSMs
Thesaurus

the PSM. This discussion and the prototype will focus on
the server agents (see Section 4).

The KExA acts as a typical Agent Name Server (ANS)
for a multi-agent system. It holds a registry of the names
and locations of all active agents so that that this
information can be served to other agents on request.
Additionally, the KExA supervises the system’s
Knowledge Library (see Section 3.2.2), communicating to
other agents the location and type of knowledge sources
that are available to the system, and information about the
problem solving method being used. It is also the
interface between IMPS and the user during the first
stages of system operation. It provides the simple
knowledge acquisition interface through which the user
enters information that is then translated into KIF so that
all agents can store it in their knowledge bases.

The OCA uses the information communicated by the
KExA to retrieve a PSM code module from the
knowledge library. The PSM module contains information
that will be used to structure a relevant domain ontology
such as details of significant relationships. For example,
heuristic classification requires a domain ontology that is
strongly hierarchical, containing many 'is-a' relationships.
The OCA will match the kind of relations required against
the information sources that are available and the kind of
relations they are likely to contain. It will then retrieve
code modules from the library that will allow it to
interface with the information sources selected. Usually,
the OCA will begin by consulting a general online
ontology to get a basic structure of terms around which it
can build the domain ontology. It then assembles an
appropriate external knowledge representation to store the
information it extracts. Finally, it supplements the basic
structure with information extracted from other networked
sources.

The OCA has the ability to access and manipulate
information from this representation and can reason over
it. It uses this ability to integrate information from
different sources and present an ontology graphically for
negotiation with the user. Later, the OCA serves the
information from the knowledge representation to the
Inference Agents.

3.2.2 The Knowledge Library and Modularity The
long-term aim of much of the work being done on
knowledge sharing and reuse is that libraries of
knowledge components such as domain and task
ontologies be made available over the network. Therefore
the ideal architecture for the future would seem to be one
that is network-based, modular and extendible in such a
way that it will be able to use new knowledge
representation formats and standards as they arise.

The notion of modular PSMs is developed in IMPS -
the PSMs themselves are not the smallest independent
components. Smaller components - the KADS primitive
inference types (Schreiber et al. 1998) - are embodied in
agent shells to produce agents that specialize in
performing a particular kind of inference (see Figure 2).

For a classification task, agents might specialize in
generation of classes, specification of attributes, or
matching features. The knowledge based system arises
from the dynamic configuration of problem solving agents
reasoning over the external domain knowledge
representation as served to them by the OCA.

When IMPS is used on the Internet, the PSM drives

agent knowledge acquisition over highly implicit,
heterogeneous and distributed knowledge sources.
Therefore, standardization must occur at some point to
allow the system to use uniform modular components.
This happens in the knowledge library where the
knowledge extraction modules and PSM modules are
stored.

The knowledge library component of IMPS is as
essential to its operation as the agent component. The
extraction classes used to obtain particular kinds of
knowledge from knowledge sources are all based around a
common Java interface, with standard inputs and outputs.
The actual mechanisms by which the class extracts
information from a source and parses it into a form
comprehensible to Jess are completely hidden from the
agent loading the class, according to the Object Oriented
paradigm embodied in Java. New classes can be added to
the library as appropriate, in a 'plug-and-play' manner,
without any change to the rest of the architecture. This is
also true of the PSM components, which are based around
a (different) common interface. All the components in the
library do not need to be held at the same physical
location. They can be distributed across the network as
long as they are registered with the Knowledge Extraction
agent. Within the library, the knowledge sources are
indexed by type - e.g. database, plain text file, etc., so
new instances of a particular type of source just need to
be identified as such to be used by the system.

Knowledge sources available to the IMPS architecture
do not have to be static. In recognition of a global
network in which an increasing amount of the information
available is dynamically created, the classes can be
written in such a way that they allow agents to interact
with programs available over the network, such as search
engines. In the prototype, the OCA uses a knowledge
extraction class to interact with an interactive HTML
search interface to the WordNet lexical database.

The open ended nature of the architecture anticipates
the evolution of one or more meta-content languages on
the Web (the frontrunner for this role seems to be
extensible Markup Language (XML)). The widespread
use of content-based tagging on the Web would increase
the power of IMPS considerably by making the semantic
structure of information presented on the Web more
explicit. Once new standards are established, modules can
be written for them using tools such as JavaCC - the Java
compiler compiler. JavaCC is a tool that can
automatically generate parsers if the grammar of a
knowledge source can be expressed in a set format. If a
grammar can be written for a new information format,
then a code module can be generated semi-automatically
to interpret it.

3.2.3 Knowledge Representation The principal domain
knowledge representation is the domain ontology
constructed and served to other agents by the OCA.
Initially, the OCA uses a general online ontology in the
form of a lexical database to get a basic structure, which
is then supplemented with knowledge from domain
specific sources. The general ontology used by IMPS is
the WordNet semantically organized lexical database
(Miller 1990) which contains approx. 57,000 noun word
forms organized into around 48,800 word meanings
(synsets). WordNet has advantages over other general
ontologies in terms of a strong grounding in linguistic
theory, on-line status and implemented search software
(Beckwith and Miller 1990). In the long-term view, it has
a Java interface suitable for agent interaction over the
Internet, and several EuroWordNet projects are running.

Once a skeletal ontology has been created from a
general ontology, the OCA supplements it with
information obtained from data representations which
contain explicit or implicit ontological statements, such as
Ontolingua statements or relational database formats. This
function serves as a 'proof of concept' for the design of a
set of protocols (implemented as Java classes). These
protocols would control the extraction of data from a
variety of sources, such as databases, natural language
text etc. that might be available to a distributed agent
architecture e.g. over the Internet. A set of heuristic rules
for the extraction of data from each kind of source could
exploit the implicit ontologies inherent in the structure of
information sources.

The domain ontology shared by the agents is used to
facilitate problem solving communication relating to the
domain. Problem solving knowledge is represented in the
PSM modules stored in the IMPS knowledge library.
These modules can be seen as indexed task ontologies
describing each PSM in terms of input and output roles,
inferences, and domain knowledge schema. These schema
describe the way in which domain knowledge must be
represented to be used by the PSM. As mentioned earlier,
the PSM modules in IMPS are stored as Java classes using
a common interface.

To present knowledge to the user, each agent has a user
interface that is divided into panels displaying the state of

the agent’s inference engine (Figure 5). The top left panel
shows the Jess output, used for communicating with the
user. The bottom left panel shows the facts that the agent
currently ‘believes’, and the bottom right panel shows the
most recently fired rule, or the set of rules that are ready
to fire. The top right panel is used for menu- and choice-
based interactions with the user. The IMPS interface also
shows the status of the agent as regards messaging (at the
bottom) and has various menus at the top, depending on
what kind of IMPS agent is being represented. The
ontology agent has the ability to present the ontology it
has created to the user in a graphical form.

4 The Prototype

The prototype IMPS system (P-IMPS) focuses on the
ontology construction stages of IMPS, rather than the later
problem solving phase, constructing a domain ontology
from online sources using two agents. The system has two
PSMs – pruning classification and diagnosis, and two
agents, which are:

• The Knowledge Extraction Agent (KExA), acting as an
Agent Name Server (ANS) and the interface through
which the user interacts with IMPS during
initialization.

• The Ontology Construction Agent (OCA), which is able
to use modules from the knowledge library to extract
information from networked knowledge sources (in
this example, WordNet, the online thesaurus/lexical
database and a plain text domain database in the field
of geology – the IGBA dataset).

Suppose a user is interested in performing a task in a
domain but has little or no information to work with.
Using a simple knowledge acquisition interface (Figure
5), the user provides the KExA with domain keywords,
and chooses a PSM from a list.

Figure 5: The KExA user interface

 The KExA selects and loads from the knowledge
library a Java code module giving details of the PSM to
be used. Then the user gives the names, types and URLs
of some possible knowledge sources (specifying whether
they are general sources, such as the thesaurus, or domain
specific). The KExA passes on the PSM, domain and
knowledge source information it has gathered to the OCA.
The OCA then consults the knowledge library and
extracts classes for handling the knowledge sources that
have been specified.
Control rules organize the behaviour of the OCA into
consecutive phases. The first phase is initialization – the
OCA gets information from the PSM module about what
kind of relationships between concepts and entities the
PSM requires.

Next, the agent uses the general knowledge sources to
get information on the domain keyword(s) given by the
user – this involves matching between the kinds of
information required by the PSM and the information
available about the keyword(s) from the source. The latter
is obtained through the knowledge source interface class
which has a method for scanning the knowledge source
and producing a list of the kinds of information that are
likely to be available from it. This interface is
implemented by all the knowledge extraction classes (in
different ways). At this point, an interaction with the user
occurs in which the OCA offers definitions of the
keyword which have been extracted from the general
source to the user for them to pick the one which most
closely matches the concept they had in mind. A
structured node in ontology representation is made for the
concept represented by the keyword, containing all the
information that has been found for it – synonyms,
definitions etc. New nodes are also added for entities that
are linked to the seed term in ways that are ‘interesting’ to
the PSM. If the task structure is classification, the
significant parts of the ontology will be hierarchical, and
significant relations will be 'is-a' (to elicit object classes)
and 'has-a' (to elicit attributes which will distinguish
between the classes).

Next, the agent uses the generalized source to develop a
simple ontology around the keyword concept. Each of the
‘leaf’ nodes that have been added is focused on in turn,
and the generalized knowledge source is queried for new
concepts related to these nodes in ways that are
significant to the PSM. In order to keep memory and
processor overheads at a minimum when creating a
hierarchical ontology, depth first search is used to exhaust
the possibilities for each path of related nodes before
exploring a new one. Some extra control rules are used to
filter out problems caused by inconsistency and repetition
in the knowledge sources. When each node has been
added to the external ontology representation, the OCA
removes information relating to the nodes that have been
created from its working memory, keeping the agent itself
‘light’ and fast.

The objects and relations extracted from the lexical
database are presented back to the user graphically

(Figure 6). This 'first pass' creates a skeletal ontology for
the domain. The “HAS_PROPERTY” attributes of the
nodes in Figure 6 have been generated by using very
simple parsing on the textual definitions of concepts
returned by WordNet.

Finally, the agent uses the secondary specialised source
to supplement this ontology. To the agent, this phase is
similar to the last one, but the sources used here are more
specialised to the domain and are providing more detailed
information. The information also needs to be integrated
seamlessly into the existing ontology representation. The
agent makes simple string-based matches between entities
found in the new source and those already represented and
confirms these with the user. These matches are used as
points of reference in integrating new entities into the
representation.

Different heuristic methods are used for extraction. For
example, the extraction module used with databases
identifies ‘unique’ columns in the database in which each
row has a different value, and ‘classifications’, in which
each value may appear more than once. It is inferred that
the unique values may be hyponyms (sub-classes) of the
classifications. They are then added to the ontology.
Matches between existing ontology entities and concepts

Figure 6: Fragment of an ontology of cats
developed for a classification PSM

found in the database are used to position them correctly.
This process creates an enriched ontology in terms of both
size and correct domain representation. In the domain of
geology, using only this simple heuristic rule, around 200
new entities were added to an ontology of igneous rocks
at this stage. The categorical concepts ‘volcanic’ and
‘plutonic’ were matched with existing concepts in the
ontology and the new subclass entities were added in
hyponymical relationships to the concepts (Figure 7). The
concepts marked with numbers have been added from the
second source.

As the process continues, it becomes clear that there is
a thin line between this kind of ontology construction and
knowledge acquisition. The same model could be used to
describe the acquisition of domain knowledge from
multiple sources. The real power is the amount of
automated domain acquisition that has been achieved by
using software agents driven by knowledge level models.

It should be noted that there is a wide variety of PSMs
in standard libraries. If a different PSM is used, the

concepts and relationships featured in the ontology are
qualitatively different. For example, if the prototype is
initialized with a diagnosis PSM and a domain term from
the field of medicine, the initial ontology produced is
structurally very different, as the focus is on causal
relationships (see Figure 8). Again, the causal attributes
are extracted by simple textual parsing.

5 Evaluation

It is difficult to thoroughly evaluate a system such as the
IMPS prototype, which draws on several areas of research
and integrates various technological components.
However, some aspects of the system can be earmarked as
suitable for formal evaluation. The ontologies created by
IMPS are the most obvious example. We plan to perform
empirical evaluations on the ontologies produced by the
prototype to test several hypotheses.
1. The IMPS system produces initial domain ontologies

for tasks that are comparable in quality to those
produced by hand by domain novices experienced in
knowledge acquisition. The novices and IMPS will
use the same knowledge representation and the same
knowledge sources.

2. The IMPS system can use PSM oriented domain
schema to produce initial domain ontologies that are
adequate for problem solving. These ontologies are
superior in terms of problem solving to those
produced by IMPS using another PSM domain
schema or those produced by IMPS without using a
PSM domain schema.

3. IMPS produces ontologies using two knowledge
sources that are superior to those produced using a
single source.

4. The ontologies produced by IMPS using a single source
are superior to the ontologies represented implicitly
in the source itself.

5. IMPS can construct meaningful ontologies using the
same PSM oriented domain schema in different
domains.

All the hypotheses can be tested using an experimental
design in which ontologies will be presented to domain

Figure 8: Fragment of an ontology of
symptoms developed for a diagnosis PSM

Figure 7: Fragment of an ontology of igneous
rocks developed for a classificatory PSM

experts who will evaluate them. This evaluation will be
based on qualitative measures of ontology ‘goodness’ as
used in Tennison’s (Tennison 1998) evaluation of a
collaborative ontology construction tool. The criteria used
in that evaluation were precision, breadth, consistency,
completeness, readability and utility.

The experimental design for hypothesis 1 will involve a
comparison between the IMPS ontologies and handcrafted
ontologies created by subjects who are experienced both
in knowledge engineering (i.e. in the process of eliciting
and representing knowledge) and in using the Web. These
subjects will not, however, be expert in the domains in
which they will be constructing ontologies.

The reasoning behind the choice of subjects in this
experiment is that these KA-experienced subjects are the
kind of people who might be expected to use a system
such as the IMPS prototype to assist them. Therefore, if
IMPS can show significant improvements over what the
subjects can do by hand, this will be an indication that it
could be an asset in the knowledge acquisition process.

As mentioned already, we intend to develop the IMPS
system further so that it can use documents that have been
marked up in an XML-compliant way as secondary
knowledge sources. This will allow the system to operate
fully over a much wider range of domains. This expansion
of scope will have the secondary effect of making
evaluation an easier task in terms of finding experts to
evaluate the ontologies (see comments on rarity of experts
in section 1).

Some aspects of the system are not yet mature enough
for formal evaluation. This is the case with the Inference
Agents that embody inference steps from PSMs and act
over the domain ontologies. Long-term evaluation aims
would be to assess whether the complete IMPS
architecture could perform PSM construction and
opportunistic collaboration, together with ontology
construction and knowledge, to create an on-line expert
system on-the-fly.

6 Conclusions

In this paper, we have described a multi-agent approach to
the problem of getting useful knowledge from distributed
and implicit information sources. In (Crow and Shadbolt
1998) we describe the position of IMPS with respect to
other related work. The IMPS architecture features clean
syntactic integration of information presented originally
in different formats, and rule-based semantic information
integration. It does this through the use of standardised
modular components to filter information while
maintaining a lightweight agent architecture. The modular
design means that IMPS is open to the use of new
technologies and standards.

IMPS applies knowledge level models to Web
information sources through a server architecture. In this
way, it accomplishes preliminary ontology construction,
KA and problem solving. The architecture does not
merely represent a ‘bolting together’ of existing

technologies. It proposes a solution to the research issue
of what components are necessary to create a rational and
scalable architecture. It demonstrates that significant
knowledge acquisition and problem solving agents can be
designed and implemented, and that complex
communication between them can be generated and
implemented in the light of domain ontologies, problem
solving models and acquisition activities.

Acknowledgements

Louise Crow is supported by a University of Nottingham
Research Scholarship.

References

Bateman, J.; Magnini, B.; and Fabris, G. 1995. The
generalized upper model knowledge base: Organization
and use. In Mars, N. ed., Towards very large knowledge
bases: knowledge building and knowledge sharing 60-72.
Amsterdam.:IOS Press.

Beckwith, R., and Miller, G. A. 1990. Implementing a
lexical network. International Journal of Lexicography 3
(4): 302 - 312.

Benjamins, R. 1997. Problem-Solving Methods in
Cyberspace. In Proceedings of the Workshop on Problem-
Solving Methods for Knowledge-based Systems at the
Fifteenth International Joint Conference on Artificial
Intelligence. Nagoya, Japan.: International Joint
Conferences on Artificial Intelligence, Inc.

Bond, A. H., and Gasser, L. eds. 1988. Readings in
Distributed Artificial Intelligence. San Mateo, CA:
Morgan Kaufmann.

Bradshaw, J. ed. 1996. Software Agents. Menlo Park, CA:
AAAI Press/The MIT Press.

Bylander, T., and Chandrasekaran, B. 1988. Generic tasks
in knowledge-based reasoning: the right level of
abstraction for knowledge acquisition. In Gaines, B and
Boose, J. eds. Knowledge Acquisition for Knowledge-
based Systems 1:65-77. London: Academic Press.

Chandrasekaran, B. 1986. Generic tasks in knowledge-
based reasoning: High-level building blocks for expert
system design. IEEE Expert 1 (3): 23-30.

Crow, L. R., and Shadbolt, N. R. 1998. Internet Agents
for Knowledge Engineering. In Proceedings of the
Eleventh Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop. Banff, Canada.: SRDG
Publications.

Cycorp, Inc. 1997. The Cycorp homepage. WWW:
http://www.cyc.com/

Fensel, D. 1997. An Ontology-based Broker: Making
Problem-Solving Method Reuse Work. In Proceedings of

the Workshop on Problem-Solving Methods for
Knowledge-based Systems at the Fifteenth International
Joint Conference on Artificial Intelligence, Nagoya,
Japan.: International Joint Conferences on Artificial
Intelligence, Inc.

Finin, T.; Labrou, Y.; and Mayfield, J. 1997. KQML as an
agent communication language. In Bradshaw J. M. ed.
Software Agents. Cambridge, MA.: AAAI/MIT Press.

Friedman-Hill, E. J. 1998. Jess, The Java Expert System
Shell, Technical Report, SAND98-8206 (revised), Sandia
National Laboratories, Livermore. WWW:
http://herzberg.ca.sandia.gov/jess

Frost, H. R. 1996. Documentation for the Java(tm) Agent
Template, Version 0.3. Center for Design Research,
Stanford University. WWW:
http://cdr.stanford.edu/ABE/documentation/index.html

Genesereth, M. R., and Fikes, R. E. 1992. Knowledge
Interchange Format Version 3.0 Reference Manual,
Technical Report, Logic-92-1, Computer Science
Department, Stanford University.

Gil, Y., and Melz, E. 1996. Explicit representations of
problem-solving strategies to support knowledge
acquisition. Proceedings of the Thirteenth National
Conference on Artificial Intelligence, 469-476. Menlo
Park, CA.: AAAI Press/MIT Press.

Gruber, T. R. 1993. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition 5(2):
199-220.

Jennings, N. R. 1992. Towards a cooperation knowledge
level for collaborative problem solving. In Proceedings of
the Tenth European Conference on Artificial Intelligence,
224-228. Vienna, Austria.: John Wiley & Sons.

Klinker, G.; Bhola, C.; Dallemagne, G.; Marques, D.; and
McDermott, J. 1991. Usable and reusable programming
constructs. Knowledge Acquisition 3 (2): 117-136.

Lawrence, S., and Giles, C. L. 1998. Searching the World
Wide Web. Science 280: 98-100.

Lieberman, H. 1995. Letizia: An Agent that Assists Web
Browsing. In Working Notes of AAAI-95 Fall
Symposium Series on AI Applications in Knowledge
Navigation and Retrieval 97-102. Cambridge, MA.: The
AAAI Press.

Miller, G. 1990. WordNet: An on-line lexical database.
International Journal of Lexicography, Vol. 3 (4): 235-
312.

Newell, A. 1982. The Knowledge Level. Artificial
Intelligence 18: 87-127.

Puerta, A. R.; Eriksson, H.; Egar, J. W.; and Musen, M.
A. 1992. Generation of Knowledge-Acquisition Tools
from Reusable Domain Ontologies, Technical Report

KSL 92-81 Knowledge Systems Laboratory, Stanford
University.

Schreiber, A Th.; Akkermans, J. M.; Anjewierden A. A.;
de Hoog H., Shadbolt, N. R.; Van de Velde, W.; and
Weilinga, B. J. 1998. Engineering and Managing
Knowledge. The CommonKADS Methodology [version
1.0]. Amsterdam, The Netherlands.: Department of Social
Science Informatics, University of Amsterdam.

Steels, L. 1990. Components of Expertise. AI Magazine,
Vol. 11 (2):29-49.

Studer, R.; Eriksson, H.; Gennari, J.; Tu, S.; Fensel, D.;
and Musen, M. 1996. Ontologies and the Configuration
of Problem-solving Methods. In Proceedings of the Tenth
Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop. Banff, Canada.: SRDG Publications.

 Swartout, B.; Patil, R.; Knight, K.; & Russ, T. 1996.
Toward Distributed Use of Large-Scale Ontologies. In
Proceedings of the Tenth Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop. Banff,
Canada.: SRDG Publications.

Tennison, J. 1998. Collaborative Knowledge
Environments on the Internet. Forthcoming Ph.D. Thesis,
Dept of Psychology, University of Nottingham.

Tennison, J., and Shadbolt, N. R. 1998. APECKS: A Tool
to Support Living Ontologies. In Proceedings of the
Eleventh Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop. Banff, Canada.: SRDG
Publications.

Uschold, M. 1998. Knowledge Level Modelling:
Concepts and terminology. The Knowledge Engineering
Review 13 (1): 5-30.

Van de Velde, W. 1993. Issues in Knowledge Level
Modelling. In David, J. M., and Krivine, J. P, and
Simmons, R. eds. Second Generation Expert Systems.
Berlin.: Springer Verlag.

van Heijst, G.; Schreiber, A. Th.; and Wielinga, B. J.
1997. Using Explicit Ontologies for KBS Development.
International Journal of Human-Computer
Studies/Knowledge Acquisition, 2(3):183-292.

Walther, E.; Eriksson, H.; and Musen, M. 1992. Plug-and-
Play: Construction of task-specific expert-system shells
using sharable context ontologies. Technical Report KSI-
92-40, Knowledge Systems Laboratory, Stanford
University.

Weilinga, B.; Van de Velde, W.; Schreiber, G.; and
Akkermans, H. 1991. Towards a unification of knowledge
modelling approaches, Technical Report KADS-
II/T1.1/UvA/004/2.0, Dept. of Social Science Informatics,
University of Amsterdam.

