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Abstract: The frequency-hopping spread spectrum (FHSS) technique is widely used in secure com-
munications. In this technique, the signal carrier frequency hops over a large band. The conventional
non-compressed receiver must sample the signal at high rates to catch the entire frequency-hopping
range, which is unfeasible for wide frequency-hopping ranges. In this paper, we propose an efficient
adaptive compressed method to measure and detect the FHSS signals non-cooperatively. In contrast
to the literature, the FHSS signal-detection method proposed in this paper is achieved directly with
compressed sampling rates. The measurement kernels (the non-zero coefficients in the measurement
matrix) are designed adaptively, using continuously updated knowledge from the compressed mea-
surement. More importantly, in contrast to the iterative optimizations of the measurement matrices in
the literature, the deep neural networks are trained once using task-specific information optimization
and repeatedly implemented for measurement kernel design, enabling efficient adaptive detection of
the FHSS signals. Simulations show that the proposed method provides stably low missing detection
rates, compared to the compressed detection with random measurement kernels and the recently
proposed method. Meanwhile, the measurement design in the proposed method is shown to provide
improved efficiency, compared to the commonly used recursive method.

Keywords: FHSS; knowledge-enhanced compressed measurement; signal detection; task-specific
information; deep neural network

1. Introduction

In both military and civilian secure communications, the spread spectrum (SS) tech-
niques have been widely used [1]. In these techniques, the spectra of base-band signals
are spread into a much wider band. Thus, the SS signals are more resistant to interference
or jamming, as common interference or jamming signals can only affect a small fraction
of the spread spectrum. Moreover, to catch the entire spread spectrum, the conventional
non-cooperative receivers must operate at a high sampling rate. This, in turn, makes the
SS signals resistant to non-cooperative detection or interception. The frequency-hopping
spread spectrum (FHSS) is one of the most used SS techniques. In the FHSS, the carrier
frequency of the signal altered rapidly in a pseudo-random manner, so that the base-band
signal is spread into the frequency-hopping range.

The non-cooperative detection of the FHSS signal is the first step of the entire sig-
nal interception procedure [2]. Although various methods has been rendered since the
1990s (e.g., methods based on time-frequency analysis [3–8], wavelet analysis [4,9–13],
auto-correlation analysis [9,14–16], likelihood analysis [17–21], etc.), energy thresholding is
the most commonly used in FHSS signal detection [22–24]. To reduce sampling rate while
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observing the entire frequency-hopping range, some strategies, such as the channelized fil-
ter bank [23,25] and the sweeping spectrum analyzer [20,26–29], were rendered by dividing
the entire spectrum into subbands and observing the individual subbands with relatively
lower sampling rates. The signal is claimed to be detected if the energy is higher than the
threshold in at least one observed subband. However, as the signals only fall in a relatively
narrow band at any given observation time in this scenario, most of the measurements are
normally done to background noises, leading to relatively high false-alarm rates.

In 2006, the theory of compressed sensing (CS) was rendered [30,31]. The CS the-
ory states that a signal can be recovered from sub-Nyquist samples with overwhelmed
probability, if it can be sparsely represented based on a transform or overcomplete dic-
tionary. In most of the existing literature on the CS-based signal detections, the sparse
representations of the signals were exploited, where the dictionaries were assumed to
be known [32–35] or established based on the signal properties. However, an interme-
diate step of signal reconstruction [36,37] was also proposed in some of these methods.
Other detection methods from compressed measurements assume the precise knowledge
of the signal expressions. More recently, Liu et al., proposed a method to directly detect
the FHSS signals from compressed samples [38,39]. Besides the random measurement
kernels (i.e., the non-zero coefficients in the measurement matrix) used in most of the CS
literature, a strategy to design the measurement matrix prior to the measurements was also
rendered with improved detection performance. However, the measurement kernel design
was made based on expensive recursive optimizations of Shannon information. Therefore,
it was not practical for online adaptive implementations, as a quick response is usually
required. Later, the information optimized compressed measurements [40] and information-
based pattern recognition of FHSS signals [41] were also studied by researchers. In 2020,
Wang et al., proposed a partial discrete Fourier transform (DFT)-based method to design
the measurement matrix for FHSS signal detection, where the mutual information between
the signals and the measurements was also considered [42]. However, the measurement
matrix was designed prior to the measurement process. Therefore, the measurements could
not be adjusted adaptively according to the posterior knowledge of the signals. In addition,
the signal samples or priori knowledge of the communication protocol are also required in
the training the measurement matrices in that method.

To efficiently extract the key features from the signals, fast signal feature extraction
methods were studied over decades. Although methods such as principal component
analysis, linear component analysis, independent component analysis, supporting vec-
tor machine, etc. were studied in various scenarios, the logics that can be represented
within such methods were constrained. In the 1970s, artificial neural networks (ANNs)
were proposed to model the logics between the input data and their features or pro-
cessed results. The ANN was originally rendered to solve the signal classification problem.
The model optimizations were done using the training procedure. In recent decades,
with the development of the parallel computing and the graphic processing unit (GPU)
techniques, the deep neural networks (DNNs) are enabled and is now adopted in var-
ious areas in signal processing, such as parameter estimations [43], audio and image
encoding [44,45], etc. Efforts were also devoted on the study of the robust DNN
training [46]. Recently, the DNNs were also proposed to estimate the parameters of the
FHSS signals [47,48]. However, as a common problem with these methods, there is a lack
of adaptivity in their implementations.

In this paper, we propose an efficient and adaptive method to detect the FHSS signals
non-cooperatively. The adaptivity of this method is achieved with the fusion of the posterior
knowledge enhancement algorithm and the DNNs. The posterior knowledge is gained
with the gradually increased task-specific information (TSI) [49] in the detection task,
while the DNNs are trained to adaptively design the measurement kernels given the
updated knowledge of the measured signal. Our proposed method includes several
novel contributions:
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(1) The FHSS signal-detection method proposed in this paper is achieved directly from
the low-rate sampling results without the reconstruction of the original signal.

(2) The quantitative Shannon information is analyzed based on the posterior information
of the channel output and is used in the measurement kernel design for the following
measurements, which ensures improvement in the FHSS signal-detection accuracy.

(3) More importantly, with an effective combination of the TSI optimization theory and
the DNNs in this paper, the inefficiency in the existing information-based method of
the compressed measurement matrix design is solved. In particular, in contrast to the
iterative optimizations of the measurement matrices in the literature, the DNNs are
trained once based on the TSI optimization and are repeatedly implemented to detect
the FHSS signals in an efficient manner. Thus, the practical online adaptivity of the
FHSS measurement and detection can be achieved with the method proposed in this
paper. From the signal processing aspect, the adaptivity in the FHSS signal processing
based on the DNNs is also achieved.

The remainder of this paper is organized as follows: In Section 2, the problem formu-
lation, including the signal and compressed measurement and detection models, are first
rendered. In Section 3, the principles of the energy detection and the adaptive measurement
kernel design based on the TSI optimization are described. Then in Section 4, the proposed
adaptive measurement and detection method of the FHSS signals based on the fusion of the
posterior information optimization and the DNNs is detailed. In Section 5, we provide the
simulation results to verify the proposed method. Finally, in Section 6, the conclusions are
drawn. It is worth mentioning that although the analysis and simulations were performed
with the assumptions that single FHSS signal is present in the frequency band of interest,
the proposed method can also be used for the multiple FHSS signal case.

2. Problem Formulation

In this paper, we propose a method to measure and detect the FHSS signals com-
pressively, adaptively and efficiently. The proposed method was verified through sim-
ulations, where the Gauss binary frequency shift keying FHSS signal of the Bluetooth
standard [50] were used, as a representative of the FHSS signals. Within each hopping
period, the expression of the Bluetooth signal is given as follows:

s(t) =

√
Es

Ts
exp[2π j fct + 2π jh

Ns

∑
r=1

crg(t− rTs)], (1)

where Ts and Es represent the symbol period and the energy of the signal in a symbol
period, respectively. Ns represents the number of symbol periods in a hopping period.
h is the modulation index of the FHSS signal. cr∈{−1, 1} (1 ≤ r ≤ Ns) is the rth symbol
content in the hopping period. The function g(t) is the Gauss filtering item and can be
expressed as:

g(t) =
Q
(
α(t− Ts

2 ))−Q(α(t + Ts
2 )
)

2Ts
, (2)

where Q(x) =
∫ ∞

x
exp(− x2

2 )√
2π

is the Q-function and α = π

Ts
√

log(2)
.

As specified in the Bluetooth standard, the carrier frequency of the signal randomly
hops among 79 channels from 2.402 to 2.480 GHz, with 1 MHz bandwidth for each channel.
The symbol period takes the value of 1 µs and the frequency-hopping period is 625 µs, i.e.,
625 symbol periods.

In this paper, the proposed adaptive measurements and detection of the FHSS signals
are done compressively and non-cooperatively using the framework described in Figure 1.
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Figure 1. The adaptive FHSS compressed measurement and detection framework.

In Figure 1, the wireless channel output is first passed through an input band-pass filter
to remove the frequency components that are out of the range of interest. The output from
the band-pass filter is then multiplied with the measurement kernels, and then integrated
using a low-pass filter. The result from the low-pass filter is sampled at a compressed
sampling rate, compared to the Nyquist rate respective to the entire FHSS hopping range.
The measurement results are collected, and the measurement energy is calculated. Finally,
the resulting energy is used to determine if the signal is present. The measurement kernels
are designed sequentially and adaptively based on posterior knowledge of the channel
output in a row-by-row manner, given the existing measurement data. Therefore, feedback
is added from the measurement data to the measurement kernel design module.

The compressed measurement using the framework described in Figure 1 can be
modeled as:

y = Φx, (3)

where the N × 1 vector x represents the Nyquist sampled result from the input low-
pass filter, regarding to the entire FHSS hopping range. The M × 1 (M << N) vector y
represents the vector of the measurement data. Let us denote the FHSS frequency-hopping
range as B. Then, using the framework in Figure 1, the M × N measurement matrix Φ is a
block diagonal matrix with each block as an 1 × CR vector, where

CR =
N
M

=
BTs

M
(4)

is defined as the compression ratio (CR) in the compressed measurement. With the system
framework described in Figure 1, each row block in the measurement matrix is defined
as the measurement kernel of a single measurement. In this work, we normalize each
row of Φ to unit energy before using them in the measurements. Thus, the rows of Φ are
orthonormal to each other.

Based on the compressed measurements, the detection decision is made from the two
following hypotheses:

H0 : y = Φn

H1 : y = Φ(s + n),
(5)

where H0 and H1 denote the signal absent and signal present hypotheses, respectively.
n denotes the channel noise, which is modeled as complex Gaussian white noise. The noise
variance is denoted by σ2

n in this paper. s denotes the Nyquist rate sampled FHSS signal of
s(t) in Equation (1) regarding to the entire FHSS hopping range.

In this paper, the signal detection is conducted based on the energy of the measure-
ment data, and the measurement matrix is designed adaptively based on the gradually
obtained measurement data. The principles of the proposed methods are detailed in the
following sections.
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3. The Theory of the Adaptive FHSS Signal Compressed Measurement and Detection

According to the noise folding theory [51], as the rows of the measurement matrix for
Figure 1 are orthonormal to each other, the noise components in the measurement data are
identically and independently distributed (i.i.d.) zero-mean complex Gaussian components
with the variance σ2

n. Then, the probability density function (PDF) of the measurement
energy in the signal absent case can be modeled as follows:

pr(λ|H0) =
λM−1e

− λ

σ2
n

σ2M
n M!

, (6)

where λ denotes the energy of the measurement data, and M! represents the factorial
operation of the number of compressed measurements M.

The signal detection is conducted by energy thresholding. More specifically, given a
positive threshold T, the theoretical false positive rate (FPR, i.e., false-alarm rate) is:

FPR =
∫ ∞

T
pr(λ|H0)dλ (7)

The measurement kernels in Figure 1 is adaptively and sequentially designed for
each single measurement at a time, based on the measurements that have been already
obtained and the TSI optimization. In this paper, we assume that no frequency hops happen
during a FHSS detection process. Then, we define the TSI in the signal-detection task as
the mutual information between the pre-filtered channel output and the measurement
result, conditional on the existing measurement kernels and data. With the kernel of the
first measurement randomly initialized, the measurement kernel in the kth (2 ≤ k ≤ M)
measurement is designed by solving the following problem:

Φk = max
Φ̂k

I(xk; yk|Λk−1, Φ̂k),

s.t. yk = Φ̂kxk and ‖Φ̂k‖l2 = 1
(8)

In Equation (8), Λk−1 = {Φ1, Φ2, . . . , Φk−1, y1, y2, . . . , yk−1}, where Φv and yv
(1 ≤ v < k) represent the measurement kernel and the measurement result during
the vth measurement, respectively. Φk, xk and yk represent the measurement kernel, pre-
filtered channel output and the measurement result, which are to be designed, observed and
obtained at the kth measurement, respectively. ‖ · ‖l2 represents the l − 2 norm operation.

According to the information theory,

I(xk; yk|Λk−1, Φ̂k) = h(yk|Λk−1, Φ̂k)− h(yk|xk, Λk−1, Φ̂k), (9)

where h(·|·) denotes the conditional entropy. To simplify, we further assume that the mea-
surements made at different times are independent of each other. Then, h(yk|xk, Λk−1, Φ̂k) =
h(yk|xk, Φ̂k) only depends on the variance of the channel noise, and thus is a constant.
Therefore, the optimization problem in Equation (8) is equivalent to:

Φk = max
Φ̂k

h(yk|Λk−1, Φ̂k),

s.t. yk = Φ̂kxk and ‖Φ̂k‖l2 = 1
(10)

To solve the optimization problem in Equation (10), we model the pre-filtered channel
output during the kth compressed measurement, i.e., xk, using the mixture of Gaussian
(moG) models, which were usually implemented to solve signal processing problems
with information analysis and optimizations in the literature [39,52–54]. In this paper, we
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uniformly divide the entire FHSS frequency-hopping range into L subbands and model the
posterior distribution of xk as:

pr(xk|Λk−1) = Pr(H0|Λk−1) f0(xk) + Pr(H1|Λk−1)
L

∑
l=1

Pr(Bl |H1, Λk−1) fl(xk), (11)

where Pr(H0|Λk−1), Pr(H1|Λk−1) and Pr(Bl |H1, Λk−1) (1 ≤ l ≤ L) are the probabilities of
signal absent, signal present cases and the probability that the lth subband is occupied
in the signal present case, respectively, given the measurement kernels and data from
the 1st through the (k− 1)th measurements. The item f0(xk) = CN(0, Cnn) represents
the zero-mean complex Gaussian component of the signal absent case, where Cnn is the
diagonal covariance matrix with the diagonal entries as σ2

n. fl(xk) = CN(0, Cxx,l) represent
the Gaussian component where the lth subband is occupied in the signal present case.
The covariance matrix in this case can be expressed as:

Cxx,l = Css,l + Cnn, (12)

where Css,l represents the covariance matrix of the noise-free FHSS signal falling in the lth
subband, modeled as complex Gaussian white noise within the lth subband.

With the signal model in Equation (11), it can be proved that the item for the signal
absent case does not affect the result of the measurement optimization problem, and
Equation (10) is equivalent to:

Φk = max
Φ̂k

h(yk|H1, Λk−1, Φ̂k),

s.t. yk = Φ̂kxk and ‖Φ̂k‖l2 = 1,
(13)

where

h(yk|H1, Λk−1, Φ̂k)≈− log[
L

∑
l=1

Pr(Bl |H1, Λk−1, Φ̂k)

π(Φ̂kCxx,l)
] (14)

The posterior probabilities of the subband usages given the signal present hypothesis,
i.e., Pr(Bl |H1, Λk−1) (1≤ l ≤ L) in Equation (11), are updated as the adaptive measurements
proceeds, based on the Bayes rule. With the measurement results modeled as independent
to each other, the Bayes update can be expressed as:

Pr(Bl |H1, Λk−1) = Pr(Bl |H1, Λk−2, Φk−1, yk−1)

=
pr(Bl , yk−1|H1, Λk−2, Φk−1)

pr(yk−1|H1, Λk−2, Φk−1)

=
Pr(Bl |H1, Λk−2, Φk−1)pr(yk−1|H1, Bl , Λk−2, Φk−1)

∑L
l=1 Pr(Bl |H1, Λk−2, Φk−1)pr(yk−1|H1, Bl , Φk−2, Φk−1)

=
Pr(Bl |H1, Λk−2)pr(yk−1|Bl , Φk−1)

∑L
l=1 Pr(Bl |H1, Λk−2)pr(yk−1|Bl , Φk−1)

,

(15)

where Pr(Bl |H1, Λ0) = Pr(Bl |H1) represents the prior probability that the lth subband is
used in the signal present case. The likelihood function pr(yk−1|Bl , Φk−1) is given by:

pr(yk−1|H1, Bl , Φk−1) =
1

πΦk−1Cxx,lΦ
H
k−1

e
− |ym−1 |

2

Φk−1Cxx,l ΦH
k−1 , (16)

where (·)H represents the Hermitian operation.
In the literature, the Shannon information-based optimization problems are usu-

ally solved with recursive gradient methods [41,50,51]. For the optimization problem in
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Equation (13), an update step for the measurement kernel in the recursive optimization
process can be expressed as:

Φ̃
(u+1)
k = Φ

(u)
k + µ∇Φk h(yk|H1, Λk−1, Φ

(u)
k ),

Φ
(u+1)
k =

Φ̃
(u+1)
k

‖Φ̃(u+1)
k ‖

,
(17)

where Φ
(u)
k and Φ

(u+1)
k represents the resulting measurement kernel at the kth row of the

measurement matrix at the uth and (u + 1)th iterations, respectively. µ is the optimization
step. According to Equation (14), the gradient can be found by:

∇Φk h(yk|H1, Λk−1, Φk)≈
∑L

l=1 Pr(Bl |H1, Λk−1)(ΦkCxx,lΦ
H
k )
−2ΦkCH

xx,l

∑L
l=1 Pr(Bl |H1, Λk−1)(ΦkCxx,lΦ

H
k )
−1

(18)

For interested readers, the derivations to Equations (13), (14) and (18) are provided in
Appendix A.

4. Knowledge-Enhanced Compressed Detection of Frequency-Hopping Spread
Spectrum Signals with Deep Neural Networks

Theoretically, the signal detection with a measurement matrix from the recursive
optimization in Equation (17) can acquire improved detection accuracy, compared to
the compressed detection with random measurement kernels. However, according to
simulations, it usually needs more than 20,000 iterations to converge the optimization
process and result in significantly improved detection performance, which usually leads
to a time-consuming process. Therefore, it is not feasible for online adaptive measure-
ment kernel design and signal-detection implementations. To improve the efficiency
of the method, we propose an DNN-based method to conduct the adaptive measure-
ments and detection of the FHSS signals. In contrast to the recursive method described in
Equation (17), the neural networks in the proposed method are trained once and used for
adaptive measurement kernel design, repeatedly.

4.1. The Structure and the Training of the Deep Neural Networks

The structure of the DNNs in the proposed method is shown in Figure 2.
As described in Figure 2, the architecture of the proposed DNNs is fully connected.

The nodes in the input layer represent posterior probabilities of the subband usage given
the designed coefficients in the measurement matrix and the measured results in the signal
present case, i.e., Pr(Bl |H1, Λk−1) (1 ≤ l ≤ L) in Equation (15). The width of the input
layer is equal to the number of subbands divided in the moG model of the FHSS signals.
The output layer of the DNN contains the CR designed coefficients in the measurement
kernel of a measurement. Considering that signals and the coefficients of the measurement
kernels are in the complex form, the width of output layer is 2CR, where CR nodes represent
the real part, and the others represent the imaginary parts. If the depth of neural network
is too high, the training process becomes difficult to converge; while if the depth of the
neural network is too low, the resulting measurement matrix may not be effective enough.
With simulation trials on various structures of the DNNs, we find that the 8-layer deep
neural networks are efficient to train, and meanwhile effectively improve the accuracy in
the adaptive FHSS signal detection. For the six hidden layers in the proposed DNN, the
width of 1st through the 5th hidden layers is 512 and the width of the 6th hidden layer is
1024. With the nodes in the input layer denoted with the row vector q0, the nodes in the
mth (1 ≤ m ≤ 6) hidden layers are then calculated by:

qm = tanh(qm−1·Wm), (19)
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where qm and qm−1 (m≤1) are row vectors, representing the nodes in the mth and (m− 1)th
layers of the DNN, respectively. Wm is the matrix of weights in the matrix multiplication
to obtain nodes of the mth layer. tanh(·) is the entry-wise hyperbolic tangent activation
function, which can be expressed as:

tanh(z) =
sinh(z)
cosh(z)

=
ez − e−z

ez + e−z (20)

Figure 2. The architecture of the deep neural networks used in the adaptive design of the measure-
ment kernels.

In our study, we found that deterministic input-output relationships in the feedback
route could lead to a wrong convergence for the adaptive measurement and decision
procedure of the entire system, if there exists even a little ideality during the training of
the DNN. To solve this problem, we add a dropout layer after the 6th hidden layer, with a
dropping rate of 0.95. The dropout layer works in both the training process of the DNN and
the adaptive FHSS measurement processing afterwards. Finally, a full-connection operation
is added to generate the output layer. Therefore, we have:

qout = Dropout(q6, 0.95)·Wout, (21)

where Dropout(·, 0.95) represents the dropout operation that replaces 95% of the entries in
the vector with zeros. Wm is the matrix of weights in the matrix multiplication to obtain
nodes of the output layer. qout represents the nodes in the output layer.

In this work, the training of the DNNs was conducted using the gradient-based back-
propagation method. The posterior subband usage probabilities from the simulations
of the adaptive measurement and detection process using the conventional recursive
optimization method were collected and used as the training data. The negativity of the
conditional differential entropy in Equation (13), −h(yk|H1, Λk−1, Φk), was used for the
training penalty, which could be approximated as a function of the data to input layer
and the result from output layer, i.e., Pr(Bl |H1, Λk−1) and Φk, according to Equation (14).
The number of subbands in Equation (14) was taken to be L = 20.

The DNN training was conducted using the TensorFlow 2.0 GPU version [55] based
on Python 3.7 on a computer with the NVDIA Quadro P2000 GPU. Each of the proposed
DNNs was trained using 20,000 training samples with the batch size of 100 and 400 training
epochs in total. To ensure that the noise components in the measurement results were i.i.d.
Gaussian components, the designed coefficients from the DNNs were further normalized
to unit l − 2 norm before used in the measurement.
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4.2. Combination of Knowledge-Enhanced Compressed Detection Architecture and the Deep
Neural Networks

With the trained DNNs, the proposed procedure of the adaptive compressed measure-
ment and detection of the FHSS signals can be described in Figure 3.

Figure 3. The Proposed Procedure of the Adaptive Compressed Measurement and Detection of the
FHSS Signals.

In the adaptive procedure described in Figure 3, the coefficients of the measurement
kernel in the first measurement are initialized using complex Gaussian identically indepen-
dent distributions, and then normalized to unit l − 2 norm. The prior probabilities of the
subband usage in the signal present case, i.e., Pr(Bl |H1) (1 ≤ l ≤ L) are taken to be equal to
each other, as no prior knowledge of the subband usage is assumed.

The first measurement result is obtained using the initialized measurement ker-
nel. Then the posterior probabilities of the subband usages are calculated according to
Equation (15), and passed to the trained neural network to design the measurement kernel
for the next measurement. In this manner, the measurements, the subband usage posterior
probability updates and the measurement kernel design steps with the DNN are done
sequentially and iteratively until the entire measurement procedure is finished. Finally,
the energy of the measurement data, i.e., the resulting λ in Figure 3, is used to make the
detection decision. As described in Section 3, if measurement energy is smaller than the
decision threshold T, the signal absent decision is made; otherwise, the signal present
decision is made.

5. Results

In this section, we provide Monte-Carlo simulation results to evaluate the performance
of the proposed method. We first studied the detection accuracy performance of the pro-
posed adaptive compressed detection method. In comparison, the non-compressed detec-
tion and the conventional compressed detection methods using the system in
Figure 1 were simulated. In the case of conventional compressed detection method, the mea-
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surement kernels were selected according to the identical independent complex Gaussian
distributions, and then each row of the measurement matrix was normalized to unit energy.
In addition, the FHSS signal compressed detection method [42] rendered in 2020, which
was conducted based on partial DFT and maximum energy thresholding of the compressed
samples, with each measurement kernel taking up an entire row of the measurement matrix,
was also studied in comparison. To obtain fair comparisons of the signal-detection perfor-
mances for different methods, we took energy thresholds T for the proposed method,
the non-compressed method and the conventional compressed method according to
Equations (6) and (7) by taking the theoretical FPR as 0.01 (In fact, any FPR value be-
tween 0 and 1 is valid). The threshold for the partial DFT-based method at each CR and
each SNR was determined by taking the simulated FPR as 0.01 from 10,000 simulations.

The simulated curves of missing detection rates versus the signal-to-noise ratio (SNR)
are shown in Figures 4 and 5, where the CRs were taken to be 10 and 20, respectively. The
DNNs to design the measurement kernels were trained using the TensorFlow 2.0 GPU
version based on Python 3.7 on a computer with the NVIDIA Quadro P2000 GPU. To train
the DNN for the adaptive measurement kernel design at CR = 10, it took 5.36 days. To train
the DNN for the adaptive measurement kernel design at CR = 20, it took 6.61 days. The SNR
is defined as the ratio between the signal power and the noise power. As specified above, the
number of Nyquist samples during the measurement procedure were N = 6400, resulting
in M = 640 and M = 320 for the two CR cases in the compressed measurement methods.
To generate the curves in Figures 4 and 5, the SNR varied from −30 dB to 20 dB. Each point
in the curves was generated using 100,000 simulations. The FHSS carrier frequency at each
simulation was randomly selected from the 79 channels with equal probabilities.

Figure 4. FHSS Signal-Detection Performance at CR = 10.

From the two figures, we observe that at any CR and certain false-alarm rate (i.e., false
positive rate), the missing rates (i.e., false negative rate) from all the four methods in
comparison decrease with increased SNRs. Non-compressed detection achieves the lowest
missing rate for most cases. The partial DFT-based compressed detection method can obtain
good detection performance at median SNR values. However, for higher SNR cases, the
missing detection rates can be even significantly higher than the conventional compressed
detection with random measurement kernels. The adaptive compressed detection method,
although obtaining higher missing rates than the non-compressed detection method and
obtaining higher missing rates than the partial DFT-based compressed detection method at
some median SNR values, outperforms the compressed method with random measurement
kernels for low and median SNR values at any CR. This improvement in terms of missing
rate can even be around an order at some SNRs. For high SNR values (above −6.5 dB at
CR = 10 and above−5 dB at CR = 20), the missing detection rates of the proposed method
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fall below 0.001, are close to those of the conventional compressed detection method with
random measurement kernels.

Figure 5. FHSS Signal-Detection Performance at CR = 20.

To have a deeper insight into the procedure of the adaptive measurements in the
proposed method, we performed a further analysis on the power spectra of the de-
signed measurement kernels. A larger value of the measurement kernel power spectrum
value within the true subband that the FHSS signal falls in indicates a higher SNR re-
sulted in the measurement data. In turn, higher detection accuracy would be expected.
As a representative, Figure 6 shows the averaged power spectrum value of the adaptive
measurement kernels on the true FHSS subbands versus the measurement index at CR = 20
and SNR = −10 dB over 100,000 adaptive compressed detection simulations. In each of
the simulations, the carrier frequency was randomly selected from the 79 channels. In
comparison, the averaged power spectrum value of the measurement kernels on the true
subbands in the partial DFT-based method and that of the conventional random measure-
ment kernels versus the measurement index at CR = 20 over 100,000 compressed detection
simulations are also plotted in Figure 6.

Figure 6. Evolution of the Averaged Power Spectrum Value at the True Subbands at CR = 20 and
SNR = −10 dB.

In Figure 6, we observe that the averaged power spectrum value of the adaptive
measurement kernels within the true subbands that the FHSS signals fall in increases
gradually as more measurements are done. In this case, a gradual reduction of the subband
usage uncertainty is obtained. In contrast, there are no incremental trends of averaged
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power spectrum value for the random measurement kernels and the measurement kernels
from partial DFT-based method during the measurement process, as those measurement
kernels are designed prior to the measurement processes.

In addition to the simulations on the detection accuracy and the measurement kernel
components above, we also conducted simulations to compare the time costs of the pro-
posed adaptive detection method using the DNNs and that using recursive measurement
kernel optimization method discussed in Section 2. In addition, the time cost partial DFT-
based compressed detection method in [42] was also compared. The cases at CR = 10 and
CR = 20 were both studied, and 100 FHSS detection simulations at SNR = −10 dB were
done for each of the methods at each CR case. To achieve the detection accuracy of the
proposed method at such CR values, 20,000 iterations are usually needed for the recursive
method to design the measurement kernel of a single measurement, which was imple-
mented in the simulations. Similar to the theoretical analysis and simulation discussed
above, 6400 Nyquist samples respective to the entire FHSS hopping range were included
to decide whether the signal is present or absent for each simulation, resulting in 640 and
320 measurements in each detection simulation for CR = 10 and CR = 20, respectively.
A computer with the CPU of Intel Xeon E3-1225 v5 @ 3.30 GHz and the RAM size of 16.0 GB
was implemented to run these simulations. The statistics of the timing results to conduct
each of these 100 detection simulations are shown in Table 1.

From Table 1, we observe that as the measurement matrix for the partial DFT-based
method is designed non-adaptively prior to the measurement process, the partial DFT-based
method cost the least time in the measurement and detection process. More importantly,
from the timing results of the two adaptive methods, we observed that the efficiency of
the proposed adaptive method is significantly improved, compared to the method with
recursively optimized measurement kernels. In the case of CR = 10, this improvement
can be more than 320 times on average; while in the case of CR = 20, the efficiency
improvement can reach more than 380 times on average. Although the time costs of
the proposed method as stated in Table 1 still seems relatively long for the practical
FHSS detections, the implementation efficiency can be expected to be further improved
considerably with specifically designed hardware and software modules to implement the
DNN and the signal detection in this paper. The designing of such modules will be studied
in our future work.

Table 1. Comparison of Time Costs between the Proposed Adaptive Compressed FHSS Measurement
and Adaptive Compressed FHSS Measurement with Recursive Measurement Kernel Optimization
for Each of the 100 Detection Simulations.

Compression Method Maximum Minimum Average
Ratio Time Cost Time Cost Time Cost

10

Partial DFT-Based Method 0.0217 s 0.0052 s 0.0098 s

Proposed Adaptive Method 14.1356 s 5.3613 s 10.5885 s

Recursively Optimized 4221.7262 s 2674.4538 s 3492.5201 sAdaptive Method

20

Partial DFT-Based Method 0.0133 s 0.0025 s 0.0049 s

Proposed Adaptive Method 6.5995 s 2.5448 s 5.2072 s

Recursively Optimized 2509.2800 s 1526.8290 s 1991.2884 sAdaptive Method

6. Conclusions

In this paper, a knowledge-enhanced compressed measurement method was pro-
posed for adaptive and non-cooperative detection of the FHSS signals using the DNNs.
In contrast to the conventional non-compressed receiver, which was unfeasible for wide
frequency-hopping bandwidths, the proposed method in this paper conducted the FHSS
signal detection with compressed sampling rates. The measurement kernels were de-
signed adaptively based on the continuously updated knowledge from the compressed
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measurement. Moreover, in contrast to the iterative measurement kernel optimizations, the
DNNs was trained once off-line based on the TSI optimization, and implemented repeat-
edly online to adaptively design the measurement kernels, enabling efficient FHSS signal
detection. Simulation results showed that the proposed adaptive compressed detection
method achieved stably low missing detection rates, compared to the compressed detection
system with random measurement kernels and the recently proposed work. In addition,
through the simulations, we also showed that the efficiency of the proposed adaptive FHSS
detection method with the implementation of the DNNs was proved to be significantly
higher than that using the recursive measurement kernel optimization methods. Thus, the
measurement kernel design procedure improved its efficiency significantly, and became
much more practical for the online adaptive measurements and detection of FHSS signals.
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Abbreviations
The following abbreviations are used in this manuscript:

SS Spread spectrum
FHSS Frequency-hopping spread spectrum
CS compressed sensing
DFT discrete Fourier transform
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GPU Graphic processing unit
DNN Deep neural network
TSI Task-specific information
CR Compression ratio
i.i.d. Identically and independently distributed
PDF Probability density function
FPR False positive rate
moG Mixture of Gaussian
SNR Signal-to-noise ratio

Appendix A. Derivations on Equations (13), (14) and (18)

In the Appendix of this paper, we provide the detailed derivations of Equations (13),
(14) and (18) in Section 3.

In the measurement kernel design stage, the pre-filtered signal from the wireless
channel is modeled with an moG distribution as described in Equation (11). As a com-
pressed measurement can be treated as a weighted sum of neighbored Nyquist samples,
the distribution of the measured result yk (1 ≤ k ≤ M), given the measurement kernel Φk
and the measurement kernels and data in the 1st through the kth measurements is also an
moG distribution:

pr(yk|Λk−1, Φk) = Pr(H0|Λk−1)g0(yk|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(yk|Φk), (A1)

where Pr(H0|Λk−1), Pr(H1|Λk−1) and Pr(Bl |H1, Λk−1) represent the posterior probabilities
of the signal absent case, the signal present case and the probability that the lth subband is
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occupied in the signal present case, respectively, given the measurement kernels and data
during the 1st through the (k− 1)th measurements (i.e., Λk−1). g0(yk|Φk) and gl(yk|Φk)
(1 ≤ l ≤ L) denote the Gaussian component in the signal absent case and the Gaussian
component where the lth subband is occupied in the signal present case, respectively.
Let CN(·, ·) stand for the PDF of the complex Gaussian distribution with the first and
second parameters representing the mean and covariance matrix/variance for the distribu-
tion, respectively. As the rows of the measurement matrix are normalized to unit energy,
we have:

g0(yk|Φk) = CN(0, ΦkCnnΦH
k ) (A2)

and
gl(yk|Φk) = CN(0, ΦkC(l)

xx ΦH
k ), (A3)

where Cnn is diagonal matrix with its diagonal entries equal to the channel noise variance
σ2

n. C(l)
xx = C(l)

ss + Cnn, with C(l)
ss representing the covariance matrix of the noise-free FHSS

signal that falls into the lth subband in the signal present case.
According to the information theory, the differential entropy of the measurement result

yk given the measurement kernels and data in the 1st through the (k− 1)th measurements
and the measurement kernel in the kth measurement can be expressed as:

h(yk|Λk−1, Φk)

=−
∫

pr(yk|Λk−1, Φk)log
[

pr(yk|Λk−1, Φk)

]
dyk

=−
∫

pr(yk|Λk−1, Φk)log
[

Pr(H0|Λk−1)g0(yk|Φk)

+
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(yk|Φk)

]
dyk

(A4)

Using Taylor expansion at yk = 0, the logarithm item in Equation (A4) can be
expressed as:

log
[

Pr(H0|Λk−1)g0(yk|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(yk|Φk)

]

=log
[

Pr(H0|Λk−1)g0(0|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(0|Φk)

]
+ Σ(0)yk + . . . ,

(A5)

where

Σ(0) =∇yklog
[

g(yk|Λk−1, Φk)

]∣∣∣∣
yk=0

=∇yklog
[

Pr(H0|Λk−1)g0(yk|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(yk|Φk)

]∣∣∣∣
yk=0

(A6)
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Approximating the logarithm in Equation (A4) with the first two items of its Taylor
expansion in Equation (A5), Equation (A4) can be further derived as follows:

h(yk|Λk−1, Φk)

=−
∫

pr(yk|Λk−1, Φk)

[
log
[

Pr(H0|Λk−1)g0(0|Φk)

+
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(0|Φk)

]
+ Σ(0)yk + . . .

]
dyk

≈− log
[

Pr(H0|Λk−1)g0(0|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(0|Φk)

]
∫

pr(yk|Λk−1, Φk)dyk − Σ(0)
∫

yk pr(yk|Λk−1, Φk)dyk

=− log
[

Pr(H0|Λk−1)g0(0|Φk) +
L

∑
l=1

Pr(H1|Λk−1)Pr(Bl |H1, Λk−1)gl(0|Φk)

]

=− log
[

Pr(H0|Λk−1)

π(σ2
nΦkΦH

k )
+ Pr(H1|Λk−1)

L

∑
l=1

Pr(Bl |H1, Λk−1)

π(ΦkC(k,l)
xx ΦH

k )

]
.

(A7)

As the posterior probability value of Pr(H0|Λk−1) becomes a constant in the optimiza-
tion problem of the measurement kernel Φ, when the measurement kernels and data from
the 1st to the (k− 1)th measurements are known. Therefore, the optimization of Φ through
the maximization of h(yk|Λk−1, Φk) in Equation (10) is equivalent to the optimization
problem described in Equation (13), with:

h(yk|H1, Λk−1, Φk) ≈ −log
[ L

∑
l=1

Pr(Bl |H1, Λk−1)

π(ΦkC(k,l)
xx ΦH

k )

]
. (A8)

Using the chain rule of the gradient operation, we then obtain the following derivations
from Equation (A8):

∇Φk h(yk|H1, Φk, Λk−1)

≈∇Φk

{
− log

[ L

∑
l=1

Pr(Bl |H1, Λk−1)

π(ΦkC(k,l)
xx ΦH

k )

]}

= −
∑L

l=1 Pr(Bl |H1, Λk−1)π
−1∇Φk

{
(ΦkC(k,l)

xx ΦH
k )−1

}
∑L

l=1 Pr(Bl |H1, Λk−1)π−1(ΦkC(k,l)
xx ΦH

k )−1

= −∑L
l=1 Pr(Bl |H1, Λk−1)π

−1(ΦkC(k,l)
xx ΦH

k )−2ΦkC(k,l)
xx

H

∑L
l=1 Pr(Bl |H1, Λk−1)π−1(ΦkC(k,l)

xx ΦH
k )−1

= −∑L
l=1 Pr(Bl |H1, Λk−1)(ΦkC(k,l)

xx ΦH
k )−2ΦkC(k,l)

xx
H

∑L
l=1 Pr(Bl |H1, Λk−1)(ΦkC(k,l)

xx ΦH
k )−1

.

(A9)
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