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Abstract

Messages in human conversations inherently

convey emotions. The task of detecting emo-

tions in textual conversations leads to a wide

range of applications such as opinion mining

in social networks. However, enabling ma-

chines to analyze emotions in conversations is

challenging, partly because humans often rely

on the context and commonsense knowledge

to express emotions. In this paper, we address

these challenges by proposing a Knowledge-

Enriched Transformer (KET), where contex-

tual utterances are interpreted using hierarchi-

cal self-attention and external commonsense

knowledge is dynamically leveraged using a

context-aware affective graph attention mech-

anism. Experiments on multiple textual con-

versation datasets demonstrate that both con-

text and commonsense knowledge are consis-

tently beneficial to the emotion detection per-

formance. In addition, the experimental results

show that our KET model outperforms the

state-of-the-art models on most of the tested

datasets in F1 score.

1 Introduction

Emotions are “generated states in humans that re-

flect evaluative judgments of the environment, the

self and other social agents” (Hudlicka, 2011).

Messages in human communications inherently

convey emotions. With the prevalence of social

media platforms such as Facebook Messenger, as

well as conversational agents such as Amazon

Alexa, there is an emerging need for machines to

understand human emotions in natural conversa-

tions. This work addresses the task of detecting

emotions (e.g., happy, sad, angry, etc.) in textual

conversations, where the emotion of an utterance

is detected in the conversational context. Being

able to effectively detect emotions in conversa-

tions leads to a wide range of applications rang-

ing from opinion mining in social media platforms

No emotion

 socialize 

What do you plan to do for your 
birthday?

I want to have a picnic with my friends, 
Mum.

How about a party at home? That way 
we can get together and celebrate it.

OK, Mum. I'll invite my friends home.

 party  movie 

No emotion

Happiness

Happiness
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Response

Figure 1: An example conversation with annotated la-

bels from the DailyDialog dataset (Li et al., 2017). By

referring to the context, “it” in the third utterance is

linked to “birthday” in the first utterance. By lever-

aging an external knowledge base, the meaning of

“friends” in the forth utterance is enriched by associ-

ated knowledge entities, namely “socialize”, “party”,

and “movie”. Thus, the implicit “happiness” emotion

in the fourth utterance can be inferred more easily via

its enriched meaning.

(Chatterjee et al., 2019) to building emotion-aware

conversational agents (Zhou et al., 2018a).

However, enabling machines to analyze emo-

tions in human conversations is challenging, partly

because humans often rely on the context and

commonsense knowledge to express emotions,

which is difficult to be captured by machines. Fig-

ure 1 shows an example conversation demonstrat-

ing the importance of context and commonsense

knowledge in understanding conversations and de-

tecting implicit emotions.

There are several recent studies that model con-

textual information to detect emotions in conver-

sations. Poria et al. (2017) and Majumder et al.

(2019) leveraged recurrent neural networks (RNN)

to model the contextual utterances in sequence,

where each utterance is represented by a feature

vector extracted by convolutional neural networks

(CNN) at an earlier stage. Similarly, Hazarika

et al. (2018a,b) proposed to use extracted CNN
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features in memory networks to model contextual

utterances. However, these methods require sepa-

rate feature extraction and tuning, which may not

be ideal for real-time applications. In addition, to

the best of our knowledge, no attempts have been

made in the literature to incorporate commonsense

knowledge from external knowledge bases to de-

tect emotions in textual conversations. Common-

sense knowledge is fundamental to understand-

ing conversations and generating appropriate re-

sponses (Zhou et al., 2018b).

To this end, we propose a Knowledge-Enriched

Transformer (KET) to effectively incorporate con-

textual information and external knowledge bases

to address the aforementioned challenges. The

Transformer (Vaswani et al., 2017) has been

shown to be a powerful representation learning

model in many NLP tasks such as machine trans-

lation (Vaswani et al., 2017) and language under-

standing (Devlin et al., 2018). The self-attention

(Cheng et al., 2016) and cross-attention (Bah-

danau et al., 2014) modules in the Transformer

capture the intra-sentence and inter-sentence cor-

relations, respectively. The shorter path of in-

formation flow in these two modules compared

to gated RNNs and CNNs allows KET to model

contextual information more efficiently. In ad-

dition, we propose a hierarchical self-attention

mechanism allowing KET to model the hierarchi-

cal structure of conversations. Our model sepa-

rates context and response into the encoder and de-

coder, respectively, which is different from other

Transformer-based models, e.g., BERT (Devlin

et al., 2018), which directly concatenate context

and response, and then train language models us-

ing only the encoder part.

Moreover, to exploit commonsense knowledge,

we leverage external knowledge bases to facili-

tate the understanding of each word in the utter-

ances by referring to related knowledge entities.

The referring process is dynamic and balances

between relatedness and affectiveness of the re-

trieved knowledge entities using a context-aware

affective graph attention mechanism.

In summary, our contributions are as follows:

• For the first time, we apply the Transformer

to analyze conversations and detect emotions.

Our hierarchical self-attention and cross-

attention modules allow our model to exploit

contextual information more efficiently than

existing gated RNNs and CNNs.

• We derive dynamic, context-aware, and

emotion-related commonsense knowledge

from external knowledge bases and emotion

lexicons to facilitate the emotion detection in

conversations.

• We conduct extensive experiments demon-

strating that both contextual information and

commonsense knowledge are beneficial to

the emotion detection performance. In addi-

tion, our proposed KET model outperforms

the state-of-the-art models on most of the

tested datasets across different domains.

2 Related Work

Emotion Detection in Conversations: Early

studies on emotion detection in conversations fo-

cus on call center dialogs using lexicon-based

methods and audio features (Lee and Narayanan,

2005; Devillers and Vidrascu, 2006). Devillers

et al. (2002) annotated and detected emotions in

call center dialogs using unigram topic modelling.

In recent years, there is an emerging research trend

on emotion detection in conversational videos and

multi-turn Tweets using deep learning methods

(Hazarika et al., 2018b,a; Zahiri and Choi, 2018;

Chatterjee et al., 2019; Zhong and Miao, 2019; Po-

ria et al., 2019). Poria et al. (2017) proposed a long

short-term memory network (LSTM) (Hochreiter

and Schmidhuber, 1997) based model to capture

contextual information for sentiment analysis in

user-generated videos. Majumder et al. (2019)

proposed the DialogueRNN model that uses three

gated recurrent units (GRU) (Cho et al., 2014) to

model the speaker, the context from the preced-

ing utterances, and the emotions of the preceding

utterances, respectively. They achieved the state-

of-the-art performance on several conversational

video datasets.

Knowledge Base in Conversations: Recently

there is a growing number of studies on incorpo-

rating knowledge base in generative conversation

systems, such as open-domain dialogue systems

(Han et al., 2015; Asghar et al., 2018; Ghazvinine-

jad et al., 2018; Young et al., 2018; Parthasarathi

and Pineau, 2018; Liu et al., 2018; Moghe et al.,

2018; Dinan et al., 2019; Zhong et al., 2019),

task-oriented dialogue systems (Madotto et al.,

2018; Wu et al., 2019; He et al., 2019) and ques-

tion answering systems (Kiddon et al., 2016; Hao

et al., 2017; Sun et al., 2018; Mihaylov and Frank,

2018). Zhou et al. (2018b) adopted structured
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knowledge graphs to enrich the interpretation of

input sentences and help generate knowledge-

aware responses using graph attentions. The graph

attention in the knowledge interpreter (Zhou et al.,

2018b) is static and only related to the recognized

entity of interest. By contrast, our graph attention

mechanism is dynamic and selects context-aware

knowledge entities that balances between related-

ness and affectiveness.

Emotion Detection in Text: There is a trend

moving from traditional machine learning meth-

ods (Pang et al., 2002; Wang and Manning, 2012;

Seyeditabari et al., 2018) to deep learning methods

(Abdul-Mageed and Ungar, 2017; Zhang et al.,

2018b) for emotion detection in text. Khanpour

and Caragea (2018) investigated the emotion de-

tection from health-related posts in online health

communities using both deep learning features

and lexicon-based features.

Incorporating Knowledge in Sentiment Anal-

ysis: Traditional lexicon-based methods detect

emotions or sentiments from a piece of text based

on the emotions or sentiments of words or phrases

that compose it (Hu et al., 2009; Taboada et al.,

2011; Bandhakavi et al., 2017). Few studies in-

vestigated the usage of knowledge bases in deep

learning methods. Kumar et al. (2018) proposed to

use knowledge from WordNet (Fellbaum, 2012) to

enrich the text representations produced by LSTM

and obtained improved performance.

Transformer: The Transformer has been applied

to many NLP tasks due to its rich representa-

tion and fast computation, e.g., document machine

translation (Zhang et al., 2018a), response match-

ing in dialogue system (Zhou et al., 2018c), lan-

guage modelling (Dai et al., 2019) and understand-

ing (Radford et al., 2018). A very recent work

(Rik Koncel-Kedziorski and Hajishirzi, 2019) ex-

tends the Transformer to graph inputs and propose

a model for graph-to-text generation.

3 Our Proposed KET Model

In this section we present the task definition and

our proposed KET model.

3.1 Task Definition

Let {Xi
j , Y

i
j }, i = 1, ...N, j = 1, ...Ni be a collec-

tion of {utterance, label} pairs in a given dialogue

dataset, where N denotes the number of conversa-

tions and Ni denotes the number of utterances in

the ith conversation. The objective of the task is to

maximize the following function:

Φ =

N∏

i=1

Ni∏

j=1

p(Y i
j |Xi

j , X
i
j−1, ..., X

i
1; θ), (1)

where Xi
j−1, ..., X

i
1 denote contextual utterances

and θ denotes the model parameters we want to

optimize.

We limit the number of contextual utterances to

M . Discarding early contextual utterances may

cause information loss, but this loss is negligible

because they only contribute the least amount of

information (Su et al., 2018). This phenomenon

can be further observed in our model analysis re-

garding context length (see Section 5.2). Similar

to (Poria et al., 2017), we clip and pad each utter-

ance Xi
j to a fixed m number of tokens. The over-

all architecture of our KET model is illustrated in

Figure 2.

3.2 Knowledge Retrieval

We use a commonsense knowledge base Con-

ceptNet (Speer et al., 2017) and an emotion lex-

icon NRC VAD (Mohammad, 2018a) as knowl-

edge sources in our model.

ConceptNet is a large-scale multilingual seman-

tic graph that describes general human knowledge

in natural language. The nodes in ConceptNet

are concepts and the edges are relations. Each

〈concept1, relation, concept2〉 triplet is an asser-

tion. Each assertion is associated with a confi-

dence score. An example assertion is 〈friends,

CausesDesire, socialize〉 with confidence score of

3.46. Usually assertion confidence scores are in

the [1, 10] interval. Currently, for English, Con-

ceptNet comprises 5.9M assertions, 3.1M con-

cepts and 38 relations.

NRC VAD is a list of English words and

their VAD scores, i.e., valence (negative-

positive), arousal (calm-excited), and dominance

(submissive-dominant) scores in the [0, 1]
interval. The VAD measure of emotion is

culture-independent and widely adopted in Psy-

chology (Mehrabian, 1996). Currently NRC VAD

comprises around 20K words.

In general, for each non-stopword token t in

Xi
j , we retrieve a connected knowledge graph g(t)

comprising its immediate neighbors from Con-

ceptNet. For each g(t), we remove concepts that

are stopwords or not in our vocabulary. We fur-

ther remove concepts with confidence scores less
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Figure 2: Overall architecture of our proposed KET model. The positional encoding, residual connection, and

layer normalization are omitted in the illustration for brevity.

than 1 to reduce annotation noises. For each con-

cept, we retrieve its VAD values from NRC VAD.

The final knowledge representation for each to-

ken t is a list of tuples: (c1, s1,VAD(c1)),
(c2, s2,VAD(c2)), ..., (c|g(t)|, s|g(t)|,VAD(c|g(t)|)),
where ck ∈ g(t) denotes the kth connected con-

cept, sk denotes the associated confidence score,

and VAD(ck) denotes the VAD values of ck. The

treatment for tokens that are not associated with

any concept and concepts that are not included in

NRC VAD are discussed in Section 3.4. We leave

the treatment on relations as future work.

3.3 Embedding Layer

We use a word embedding layer to convert each

token t in Xi into a vector representation t ∈ R
d,

where d denotes the size of word embedding. To

encode positional information, the position encod-

ing (Vaswani et al., 2017) is added as follows:

t = Embed(t) + Pos(t). (2)

Similarly, we use a concept embedding layer to

convert each concept c into a vector representation

c ∈ R
d but without position encoding.

3.4 Dynamic Context-Aware Affective Graph

Attention

To enrich word embedding with concept represen-

tations, we propose a dynamic context-aware af-

fective graph attention mechanism to compute the

concept representation for each token. Specifi-

cally, the concept representation c(t) ∈ R
d for

token t is computed as

c(t) =

|g(t)|∑

k=1

αk ∗ ck, (3)

where ck ∈ R
d denotes the concept embedding

of ck and αk denotes its attention weight. If

|g(t)| = 0, we set c(t) to the average of all con-

cept embeddings. The attention αk in Equation 3

is computed as

αk = softmax(wk), (4)

where wk denotes the weight of ck.

The derivation of wk is crucial because it reg-

ulates the contribution of ck towards enriching t.

A standard graph attention mechanism (Velikovi

et al., 2018) computes wk by feeding t and ck into

a single-layer feedforward neural network. How-

ever, not all related concepts are equal in detect-

ing emotions given the conversational context. In

our model, we make the assumption that important

concepts are those that relate to the conversational

context and have strong emotion intensity. To this

end, we propose a context-aware affective graph

attention mechanism by incorporating two factors

when computing wk, namely relatedness and af-

fectiveness.
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Relatedness: Relatedness measures the strength

of the relation between ck and the conversational

context. The relatedness factor in wk is computed

as

relk = min-max(sk) ∗ abs(cos(CR(Xi), ck)),
(5)

where sk is the confidence score introduced in

Section 3.2, min-max denotes min-max scaling for

each token t, abs denotes the absolute function,

cos denotes the cosine similarity function, and

CR(Xi) ∈ R
d denotes the context representa-

tion of the ith conversation Xi. Here we compute

CR(Xi) as the average of all sentence represen-

tations in Xi as follows:

CR(Xi) = avg(SR(Xi
j−M ), ...,SR(Xi

j)), (6)

where SR(Xi
j) ∈ R

d denotes the sentence rep-

resentation of Xi
j . We compute SR(Xi

j) via hi-

erarchical pooling (Shen et al., 2018) where n-

gram (n ≤ 3) representations in Xi
j are first com-

puted by max-pooling and then all n-gram repre-

sentations are averaged. The hierarchical pooling

mechanism preserves word order information to

certain degree and has demonstrated superior per-

formance than average pooling or max-pooling on

sentiment analysis tasks (Shen et al., 2018).

Affectiveness: Affectiveness measures the emo-

tion intensity of ck. The affectiveness factor in wk

is computed as

affk = min-max(||[V(ck)−1/2,A(ck)/2]||2), (7)

where ||.||k denotes lk norm, V(ck) ∈ [0, 1] and

A(ck) ∈ [0, 1] denote the valence and arousal val-

ues of VAD(ck), respectively. Intuitively, affk con-

siders the deviations of valence from neutral and

the level of arousal from calm. There is no es-

tablished method in the literature to compute the

emotion intensity based on VAD values, but em-

pirically we found that our method correlates bet-

ter with an emotion intensity lexicon comprising

6K English words (Mohammad, 2018b) than other

methods such as taking dominance into consider-

ation or taking l1 norm. For concept ck not in

NRC VAD, we set affk to the mid value of 0.5.

Combining both relk and affk, we define the

weight wk as follows:

wk = λk ∗ relk + (1− λk) ∗ affk, (8)

where λk is a model parameter balancing the im-

pacts of relatedness and affectiveness on comput-

ing concept representations. Parameter λk can be

fixed or learned during training. The analysis of

λk is discussed in Section 5.2.

Finally, the concept-enriched word representa-

tion t̂ can be obtained via a linear transformation:

t̂ = W[t; c(t)], (9)

where [; ] denotes concatenation and W ∈ R
d×2d

denotes a model parameter. All m tokens in each

Xi
j then form a concept-enriched utterance em-

bedding X̂
i
j ∈ R

m×d.

3.5 Hierarchical Self-Attention

We propose a hierarchical self-attention mecha-

nism to exploit the structural representation of

conversations and learn a vector representation

for the contextual utterances Xi
j−1, ..., X

i
j−M .

Specifically, the hierarchical self-attention follows

two steps: 1) each utterance representation is

computed using an utterance-level self-attention

layer, and 2) a context representation is computed

from M learned utterance representations using a

context-level self-attention layer.

At step 1, for each utterance Xi
n, n=j − 1, ...,

j − M , its representation X̂
′i
n ∈ R

m×d is learned

as follows:

X̂
′i
n = FF(L

′

(MH(L(X̂i
n), L(X̂i

n), L(X̂i
n)))),

(10)

where L(X̂i
n) ∈ R

m×h×ds is linearly transformed

from X̂
i
n to form h heads (ds = d/h), L

′

linearly

transforms from h heads back to 1 head, and

MH(Q,K, V ) = softmax(
QKT

√
ds

)V, (11)

FF(x) = max(0, xW1 + b1)W2 + b2, (12)

where Q, K, and V denote sets of queries, keys

and values, respectively, W1 ∈ R
d×p, b1 ∈

R
p,W2 ∈ R

p×d and b2 ∈ R
d denote model pa-

rameters, and p denotes the hidden size of the

point-wise feedforward layer (FF) (Vaswani et al.,

2017). The multi-head self-attention layer (MH)

enables our model to jointly attend to information

from different representation subspaces (Vaswani

et al., 2017). The scaling factor 1√
ds

is added to

ensure the dot product of two vectors do not get

overly large. Similar to (Vaswani et al., 2017),

both MH and FF layers are followed by resid-

ual connection and layer normalization, which are

omitted in Equation 10 for brevity.



170

Dataset Domain #Conv. (Train/Val/Test) #Utter. (Train/Val/Test) #Classes Evaluation

EC Tweet 30160/2755/5509 90480/8265/16527 4 Micro-F1
DailyDialog Daily Communication 11118/1000/1000 87170/8069/7740 7 Micro-F1

MELD TV Show Scripts 1038/114/280 9989/1109/2610 7 Weighted-F1
EmoryNLP TV Show Scripts 659/89/79 7551/954/984 7 Weighted-F1
IEMOCAP Emotional Dialogues 100/20/31 4810/1000/1523 6 Weighted-F1

Table 1: Dataset descriptions.

At step 2, to effectively combine all utter-

ance representations in the context, the context-

level self-attention layer is proposed to hierarchi-

cally learn the context-level representation C
i ∈

R
M×m×d as follows:

C
i = FF(L

′

(MH(L(X̂i), L(X̂i), L(X̂i)))), (13)

where X̂
i denotes [X̂

′i
j−M ; ...; X̂

′i
j−1], which is the

concatenation of all learned utterance representa-

tions in the context.

3.6 Context-Response Cross-Attention

Finally, a context-aware concept-enriched re-

sponse representation R
i ∈ R

m×d for conversa-

tion Xi is learned by cross-attention (Bahdanau

et al., 2014), which selectively attends to the

concept-enriched context representation as fol-

lows:

R
i = FF(L

′

(MH(L(X̂
′i
j ), L(Ci), L(Ci)))), (14)

where the response utterance representation X̂
′i
j ∈

R
m×d is obtained via the MH layer:

X̂
′i
j = L

′

(MH(L(X̂i
j), L(X̂i

j), L(X̂i
j))), (15)

The resulted representation Ri ∈ R
m×d is then

fed into a max-pooling layer to learn discrimina-

tive features among the positions in the response

and derive the final representation O ∈ R
d:

O = max pool(Ri). (16)

The output probability p is then computed as

p = softmax(OW3 + b3), (17)

where W3 ∈ R
d×q and b3 ∈ R

q denote model

parameters, and q denotes the number of classes.

The entire KET model is optimized in an end-to-

end manner as defined in Equation 1. Our model

is available at here1.

1https://github.com/zhongpeixiang/KET

4 Experimental Settings

In this section we present the datasets, evaluation

metrics, baselines, our model variants, and other

experimental settings.

4.1 Datasets and Evaluations

We evaluate our model on the following five emo-

tion detection datasets of various sizes and do-

mains. The statistics are reported in Table 1.

EC (Chatterjee et al., 2019): Three-turn Tweets.

The emotion labels include happiness, sadness,

anger and other.

DailyDialog (Li et al., 2017): Human written

daily communications. The emotion labels in-

clude neutral and Ekman’s six basic emotions (Ek-

man, 1992), namely happiness, surprise, sadness,

anger, disgust and fear.

MELD (Poria et al., 2018): TV show scripts col-

lected from Friends. The emotion labels are the

same as the ones used in DailyDialog.

EmoryNLP (Zahiri and Choi, 2018): TV show

scripts collected from Friends as well. How-

ever, its size and annotations are different from

MELD. The emotion labels include neutral, sad,

mad, scared, powerful, peaceful, and joyful.

IEMOCAP (Busso et al., 2008): Emotional dia-

logues. The emotion labels include neutral, happi-

ness, sadness, anger, frustrated, and excited.

In terms of the evaluation metric, for EC and

DailyDialog, we follow (Chatterjee et al., 2019) to

use the micro-averaged F1 excluding the majority

class (neutral), due to their extremely unbalanced

labels (the percentage of the majority class in the

test set is over 80%). For the rest relatively bal-

anced datasets, we follow (Majumder et al., 2019)

to use the weighted macro-F1.

4.2 Baselines and Model Variants

For a comprehensive performance evaluation, we

compare our model with the following baselines:

cLSTM: A contextual LSTM model. An

utterance-level bidirectional LSTM is used to en-

code each utterance. A context-level unidirec-

tional LSTM is used to encode the context.
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Model EC DailyDialog MELD EmoryNLP IEMOCAP

cLSTM 0.6913 0.4990 0.4972 0.2601 0.3484
CNN (Kim, 2014) 0.7056 0.4934 0.5586 0.3259 0.5218

CNN+cLSTM (Poria et al., 2017) 0.7262 0.5024 0.5687 0.3289 0.5587
BERT BASE (Devlin et al., 2018) 0.6946 0.5312 0.5621 0.3315 0.6119

DialogueRNN (Majumder et al., 2019) 0.7405 0.5065 0.5627 0.3170 0.6121

KET SingleSelfAttn (ours) 0.7285 0.5192 0.5624 0.3251 0.5810
KET StdAttn (ours) 0.7413 0.5254 0.5682 0.3353 0.5861

KET (ours) 0.7348 0.5337 0.5818 0.3439 0.5956

Table 2: Performance comparisons on the five test sets. Best values are highlighted in bold.

Dataset M m d p h

EC 2 30 200 100 4
DailyDialog 6 30 300 400 4

MELD 6 30 200 100 4
EmoryNLP 6 30 100 200 4
IEMOCAP 6 30 300 400 4

Table 3: Hyper-parameter settings for KET. M : con-

text length. m: number of tokens per utterance. d:

word embedding size. p: hidden size in FF layer. h:

number of heads.

CNN (Kim, 2014): A single-layer CNN with

strong empirical performance. This model is

trained on the utterance-level without context.

CNN+cLSTM (Poria et al., 2017): An CNN is

used to extract utterance features. An cLSTM is

then applied to learn context representations.

BERT BASE (Devlin et al., 2018): Base version

of the state-of-the-art model for sentiment classifi-

cation. We treat each utterance with its context as

a single document. We limit the document length

to the last 100 tokens to allow larger batch size.

We do not experiment with the large version of

BERT due to memory constraint of our GPU.

DialogueRNN (Majumder et al., 2019): The state-

of-the-art model for emotion detection in textual

conversations. It models both context and speak-

ers information. The CNN features used in Dia-

logueRNN are extracted from the carefully tuned

CNN model. For datasets without speaker in-

formation, i.e., EC and DailyDialog, we use two

speakers only. For MELD and EmoryNLP, which

have 260 and 255 speakers, respectively, we addi-

tionally experimented with clipping the number of

speakers to the most frequent ones (6 main speak-

ers + an universal speaker representing all other

speakers) and reported the best results.

KET SingleSelfAttn: We replace the hierarchi-

cal self-attention by a single self-attention layer

to learn context representations. Contextual utter-

ances are concatenated together prior to the single

self-attention layer.

KET StdAttn: We replace the dynamic context-

aware affective graph attention by the standard

graph attention (Velikovi et al., 2018).

4.3 Other Experimental Settings

We preprocessed all datasets by lower-casing and

tokenization using Spacy2. We keep all tokens

in the vocabulary3. We use the released code

for BERT BASE and DialogueRNN. For each

dataset, all models are fine-tuned based on their

performance on the validation set.

For our model in all datasets, we use Adam opti-

mization (Kingma and Ba, 2014) with a batch size

of 64 and learning rate of 0.0001 throughout the

training process. We use GloVe embedding (Pen-

nington et al., 2014) for initialization in the word

and concept embedding layers4. For the class

weights in cross-entropy loss for each dataset, we

set them as the ratio of the class distribution in

the validation set to the class distribution in the

training set. Thus, we can alleviate the problem of

unbalanced dataset. The detailed hyper-parameter

settings for KET are presented in Table 3.

5 Result Analysis

In this section we present model evaluation results,

model analysis, and error analysis.

5.1 Comparison with Baselines

We compare the performance of KET against that

of the baseline models on the five afore-introduced

datasets. The results are reported in Table 2. Note

that our results for CNN, CNN+cLSTM and Di-

alogueRNN on EC, MELD and IEMOCAP are

slightly different from the reported results in (Ma-

jumder et al., 2019; Poria et al., 2019).

2https://spacy.io/
3We keep tokens with minimum frequency of 2 for Daily-

Dialog due to its large vocabulary size
4We use GloVe embeddings from Magnitude Medium:

https://github.com/plasticityai/magnitude
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Figure 3: Validation performance by KET. Top: different context length (M ). Bottom: different sizes of random

fractions of ConceptNet.

cLSTM performs reasonably well on short

conversations (i.e., EC and DailyDialog), but

the worst on long conversations (i.e., MELD,

EmoryNLP and IEMOCAP). One major reason is

that learning long dependencies using gated RNNs

may not be effective enough because the gradi-

ents are expected to propagate back through in-

evitably a huge number of utterances and tokens

in sequence, which easily leads to the vanishing

gradient problem (Bengio et al., 1994). In con-

trast, when the utterance-level LSTM in cLSTM

is replaced by features extracted by CNN, i.e.,

the CNN+cLSTM, the model performs signifi-

cantly better than cLSTM on long conversations,

which further validates that modelling long con-

versations using only RNN models may not be

sufficient. BERT BASE achieves very competi-

tive performance on all datasets except EC due to

its strong representational power via bi-directional

context modelling using the Transformer. Note

that BERT BASE has considerably more param-

eters than other baselines and our model (110M

for BERT BASE versus 4M for our model), which

can be a disadvantage when deployed to devices

with limited computing power and memory. The

state-of-the-art DialogueRNN model performs the

best overall among all baselines. In particular,

DialogueRNN performs better than our model on

IEMOCAP, which may be attributed to its detailed

speaker information for modelling the emotion dy-

namics in each speaker as the conversation flows.

It is encouraging to see that our KET model

outperforms the baselines on most of the datasets

tested. This finding indicates that our model is ro-

bust across datasets with varying training sizes,

context lengths and domains. Our KET vari-

ants KET SingleSelfAttn and KET StdAttn per-

form comparably with the best baselines on all

datasets except IEMOCAP. However, both vari-

ants perform noticeably worse than KET on all

datasets except EC, validating the importance

of our proposed hierarchical self-attention and

dynamic context-aware affective graph attention

mechanism. One observation worth mentioning

is that these two variants perform on a par with

the KET model on EC. Possible explanations are

that 1) hierarchical self-attention may not be crit-

ical for modelling short conversations in EC, and

2) the informal linguistic styles of Tweets in EC,

e.g., misspelled words and slangs, hinder the con-

text representation learning in our graph attention

mechanism.

5.2 Model Analysis

We analyze the impact of different settings on the

validation performance of KET. All results in this

section are averaged over 5 random seeds.

Analysis of context length: We vary the context

length M and plot model performance in Figure 3

(top portion). Note that EC has only a maximum

number of 2 contextual utterances. It is clear that

incorporating context into KET improves perfor-

mance on all datasets. However, adding more con-

text is contributing diminishing performance gain

or even making negative impact in some datasets.

This phenomenon has been observed in a prior

study (Su et al., 2018). One possible explanation

is that incorporating long contextual information

may introduce additional noises, e.g., polysemes

expressing different meanings in different utter-

ances of the same context. More thorough investi-

gation of this diminishing return phenomenon is a

worthwhile direction in the future.

Analysis of the size of ConceptNet: We vary the

size of ConceptNet by randomly keeping only a

fraction of the concepts in ConceptNet when train-
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Dataset 0 0.3 0.7 1

EC 0.7345 0.7397 0.7426 0.7363
DailyDialog 0.5365 0.5432 0.5451 0.5383

MELD 0.5321 0.5395 0.5366 0.5306
EmoryNLP 0.3528 0.3624 0.3571 0.3488
IEMOCAP 0.5344 0.5367 0.5314 0.5251

Table 4: Analysis of the relatedness-affectiveness

tradeoff on the validation sets. Each column corre-

sponds to a fixed λk for all concepts (see Equation 8).

Dataset KET -context -knowledge

EC 0.7451 0.7343 0.7359
DailyDialog 0.5544 0.5282 0.5402

MELD 0.5401 0.5177 0.5248
EmoryNLP 0.3712 0.3564 0.3553
IEMOCAP 0.5389 0.4976 0.5217

Table 5: Ablation study for KET on the validation sets.

ing and evaluating our model. The results are il-

lustrated in Figure 3 (bottom portion). Adding

more concepts consistently improves model per-

formance before reaching a plateau, validating the

importance of commonsense knowledge in detect-

ing emotions. We may expect the performance of

our KET model to improve with the growing size

of ConceptNet in the future.

Analysis of the relatedness-affectiveness trade-

off: We experiment with different values of λk ∈
[0, 1] (see Equation 8) for all k and report the re-

sults in Table 4. It is clear that λk makes a notice-

able impact on the model performance. Discard-

ing relatedness or affectiveness completely will

cause significant performance drop on all datasets,

with one exception of IEMOCAP. One possible

reason is that conversations in IEMOCAP are

emotional dialogues, therefore, the affectiveness

factor in our proposed graph attention mechanism

can provide more discriminative power.

Ablation Study: We conduct ablation study to in-

vestigate the contribution of context and knowl-

edge as reported in Table 5. It is clear that both

context and knowledge are essential to the strong

performance of KET on all datasets. Note that re-

moving context has a greater impact on long con-

versations than short conversations, which is ex-

pected because more contextual information is lost

in long conversations.

5.3 Error Analysis

Despite the strong performance of our model, it

still fails to detect certain emotions on certain

datasets. We rank the F1 score of each emotion

per dataset and investigate the emotions with the

worst scores. We found that disgust and fear are

generally difficult to detect and differentiate. For

example, the F1 score of fear emotion in MELD is

as low as 0.0667. One possible cause is that these

two emotions are intrinsically similar. The VAD

values of both emotions have low valence, high

arousal and low dominance (Mehrabian, 1996).

Another cause is the small amount of data avail-

able for these two emotions. How to differentiate

intrinsically similar emotions and how to effec-

tively detect emotions using limited data are two

challenging directions in this field.

6 Conclusion

We present a knowledge-enriched transformer to

detect emotions in textual conversations. Our

model learns structured conversation represen-

tations via hierarchical self-attention and dy-

namically refers to external, context-aware, and

emotion-related knowledge entities from knowl-

edge bases. Experimental analysis demonstrates

that both contextual information and common-

sense knowledge are beneficial to model perfor-

mance. The tradeoff between relatedness and af-

fectiveness plays an important role as well. In ad-

dition, our model outperforms the state-of-the-art

models on most of the tested datasets of varying

sizes and domains.

Given that there are similar emotion lexicons

to NRC VAD in other languages and ConceptNet

is a multilingual knowledge base, our model can

be easily adapted to other languages. In addition,

given that NRC VAD is the only emotion-specific

component, our model can be adapted as a generic

model for conversation analysis.
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