
Knowledge Evolution in Neural Networks

Ahmed Taha Abhinav Shrivastava

University of Maryland, College Park

Larry Davis

Abstract

Deep learning relies on the availability of a large cor-

pus of data (labeled or unlabeled). Thus, one challenging

unsettled question is: how to train a deep network on a rela-

tively small dataset? To tackle this question, we propose an

evolution-inspired training approach to boost performance

on relatively small datasets. The knowledge evolution (KE)

approach splits a deep network into two hypotheses: the fit-

hypothesis and the reset-hypothesis. We iteratively evolve

the knowledge inside the fit-hypothesis by perturbing the

reset-hypothesis for multiple generations. This approach

not only boosts performance, but also learns a slim network

with a smaller inference cost. KE integrates seamlessly with

both vanilla and residual convolutional networks. KE re-

duces both overfitting and the burden for data collection.

We evaluate KE on various network architectures and

loss functions. We evaluate KE using relatively small

datasets (e.g., CUB-200) and randomly initialized deep net-

works. KE achieves an absolute 21% improvement margin

on a state-of-the-art baseline. This performance improve-

ment is accompanied by a relative 73% reduction in infer-

ence cost. KE achieves state-of-the-art results on classifi-

cation and metric learning benchmarks. Code available at

http://bit.ly/3uLgwYb

1. Introduction

Gene transfer is the transfer of genetic information from

a parent to its offspring. Genes encode genetic instructions

(knowledge) from ancestors to descendants. The ancestors

do not necessarily have better knowledge; yet, the evolution

of knowledge across generations promotes a better learn-

ing curve for the descendants. In this paper, we strive to

replicate this process for deep networks. We encapsulate

a deep network’s knowledge inside a subnetwork, dubbed

the fit-hypothesis H△. Then, we pass the fit-hypothesis’s

knowledge from a parent network to its offspring (next deep

network generation). We repeat this process iteratively and

demonstrate a significant performance improvement in the

descendant networks as shown in Fig. 1.

0 20 40 60 80 100

60

70

Generation # (g)

T
o

p
-1

FLW-KE

FLW-CE

CUB-KE

CUB-CE

Figure 1. Classification performance on Flower-102 (FLW) and

CUB-200 (CUB) datasets trained on a randomly initialized

ResNet18. The horizontal dashed-lines denote a SOTA cross-

entropy (CE) baseline [58]. The marked-curves show our ap-

proach (KE) performance across generations. The 100th genera-

tion KE-N100 achieves absolute 21% and 5% improvement mar-

gins over the Flower-102 and CUB-200 baselines, respectively.

The lottery ticket literature [8, 62, 34, 42, 10] regards

a dense network as a set of hypotheses (subnetworks).

Zhou et al. [62] propose a sampling-based approach, while

Ramanujan et al. [42] propose an optimization-based ap-

proach, to identify the best randomly-initialized hypothe-

sis. This hypothesis may be called the lottery ticket, but it

is still limited by its random initialization. In this paper, we

pick a random hypothesis, with inferior performance, and

iteratively evolve its knowledge.

The main contribution of this paper is an evolution-

inspired training approach. To evolve knowledge inside a

deep network, we split the network into two hypotheses

(subnetworks): the fit-hypothesis H△ and the reset hypoth-

esis H▽ as shown in Fig. 2. We evolve the knowledge inside

H△ by re-training the network for multiple generations.

For every new generation, we perturb the weights inside

H▽ to encourage the H△ to learn an independent repre-

sentation. This knowledge evolution approach boosts per-

formance on relatively small datasets and promotes a better

learning curve for descendant networks. Our intuitions are

presented in Sec. 3.3 and empirically validated in Sec. 5.

12843

GAP

Figure 2. A split network illustration using a toy residual network. (Left) A convolutional filter F with Ci = 3 input, Co = 4 output

channels, and 2D kernels (e.g., π ∈ R3×3). (Center-Right) A toy residual network N with a three-channel input (e.g., RGB image) and a

five-logit output (C = 5). GAP denotes a global average pooling layer while
⊕

denotes the add operation. We split N into a fit-hypothesis

H△ (dark-blue) and a reset-hypothesis H▽ (light-gray). The fit-hypothesis H△ is a slim network that can be extracted from the dense

network N to perform inference efficiently. The paper appendix shows the dimensions of a fit-hypothesis in the ResNet18 architecture.

The knowledge evolution (KE) approach requires

network-splitting. If we split the weights of a neural net-

work into two hypotheses (H△ and H▽) randomly, KE

will boost performance. This emphasizes the generality

of our approach. Furthermore, we propose a kernel-level

convolutional-aware splitting (KELS) technique to reduce

inference cost. KELS is a splitting technique tailored for

convolutional neural networks (CNNs). KELS splits a CNN

such that the fit-hypothesis H△ is a slim independent net-

work with a smaller inference cost as shown in Fig. 2. The

KELS technique supports both vanilla CNNs (AlexNet and

VGG) and modern residual networks.

KE supports various network architectures and loss func-

tions. KE integrates seamlessly with other regularization

techniques (e.g., label smoothing). While KE increases the

training time, the KELS technique reduces the inference

cost significantly. Most importantly, KE mitigates over-

fitting on relatively small datasets, which in turn reduces

the burden for data collection. Our community takes natu-

ral images for granted because they are available publicly.

However, for certain applications, such as autonomous nav-

igation and medical imaging, the data collection process is

expensive even when labeling is not required.

In summary, the key contributions of this paper are:

1. A training approach, knowledge evolution (KE), that

boosts the performance of deep networks on relatively

small datasets (Sec. 3.1). We evaluate KE using both

classification (Sec. 4.1) and metric learning (Sec. 4.2)

tasks. KE achieves SOTA results.

2. A network splitting technique, KELS, which learns a

slim network automatically while training a deep net-

work (Sec. 3.2). KELS supports a large spectrum of

CNNs and introduces neither hyperparameters nor reg-

ularization terms. Our ablation studies (Sec. 5) demon-

strate how KELS reduces inference cost significantly.

2. Related Work

This section compares knowledge evolution (KE) with

two prominent training approaches: Born-Again Networks

(BANs) [9] and Dense-Sparse-Dense (DSD) [14]. In the

paper appendix, we compare KELS with the pruning litera-

ture [26, 16, 15, 13, 27, 54, 61, 31, 29, 57, 21]

DSD [14] starts with a dense-phase to learn connections’

weights and importance. Then, the sparse-phase prunes the

unimportant connections and resumes training given a spar-

sity constraint. The final dense-phase removes the sparsity

constraint, re-initializes the pruned connections, and trains

the entire dense network. KE differs from DSD in multiple

ways: (1) DSD masks (prunes) individual weights, while

KE masks complete convolution kernels. Thus, DSD deliv-

ers dense networks, while KE delivers both dense and slim

networks. (2) KE introduces the idea of a fit-hypothesis

to encapsulate a network’s knowledge and to evolve this

knowledge across generations.

BANs [9] is a knowledge-distillation based approach.

Similar to KE, BANs trains the same architecture iteratively.

However, to transfer knowledge between successive net-

works, BANs uses the class-logits distribution, while KE

uses the networks’ weights. This explains why BANs uses

the teacher-student terminology while KE uses the parent-

sibling terminology. This difference is important because

(1) training a teacher network, which teaches future stu-

dents, requires a large corpus of data (labeled or not). In

contrast, KE acknowledges the deficiency of a parent net-

work trained on a small dataset; (2) BANs randomly initial-

izes student networks while KE leverages the knowledge of

a parent network to initialize the next generation.

We distance our work from neural architecture search

(NAS) literature [63, 28] such as Neural Rejuvenation [40]

and MorphNet [11]. We assume the network’s connections

and the number of parameters are fixed.

12844

3. Knowledge Evolution

In this section, we present (1) the knowledge evolu-

tion (KE) approach (Sec. 3.1), (2) various network-splitting

techniques (Sec. 3.2), (3) intuitions behind KE (Sec. 3.3),

and (4) how we evaluate KE (Sec. 3.4).

3.1. The Knowledge Evolution Training Approach

We first introduce our notation. We assume a deep net-

work N with L layers. The network N has convolutional

filters F , batch norm Z, and fully connected layers with

weight W , bias B terms.

The Knowledge evolution (KE) approach starts by con-

ceptually splitting the deep network N into two exclusive

hypotheses (subnetworks): the fit-hypothesis H△ and the

reset-hypothesis H▽ as shown in Fig. 2. These hypothe-

ses are outlined by a binary mask M ; 1 for H△ and 0 for

H▽, i.e., H△ = MN and H▽ = (1 −M)N . We present

various splitting techniques in Sec. 3.2. After outlining the

hypotheses, the network N is initialized randomly, i.e., both

H△ and H▽ are initialized randomly. We train N for e

epochs and refer to the trained network as the first genera-

tion N1, where H
△
1 = MN1 and H▽

1 = (1−M)N1.

To learn a better network (the next generation), we (1)

re-initialize the network N using H
△
1 , then (2) re-train N

to learn N2. First, the network N is re-initialized using the

convolutional filters F and weights W in the fit-hypothesis

H
△
1 from N1, while the rest of the network (H▽) is initial-

ized randomly. Formally, we re-initialize each layer l, using

Hadamard product, as follows

Fl = MlFl + (1−Ml)F
r
l , (1)

where Fl is a convolutional filter at layer l, Ml is the corre-

sponding binary mask and F r
l is a randomly initialized ten-

sor. These three tensors (Fl, F
r
l , and Ml) have the same size

(∈ RCo×κ×κ×Ci). F r
l is initialized using the default initial-

ization distribution. For example, PyTorch uses Kaiming

uniform [18] for convolution layers.

Similarly, we re-initialize the weight Wl and bias Bl

through their corresponding binary masks. Modern archi-

tectures have bias terms in the single last fully connected

layer only (B ∈ RC). Thus, for these architectures, all

bias terms belong to the fit-hypothesis, i.e., B ⊂ H△. We

transfer the learned batch norm Z across generations with-

out randomization.

After re-initialization, we re-train N for e epochs to

learn the second generation N2. To learn better networks,

we repeatedly re-initialize and re-train N for g genera-

tions. Basically, we transfer knowledge (convolutional fil-

ters and weights) from one generation to the next through

the fit-hypothesis H△. It is important to note that (1)

the contribution of a network-generation ends immediately-

after initializing the next generation, i.e., each generation

1 1 0

1 0

0 0 0

0 0 0

1

0

0

0

0

Figure 3. The KELS technique for CNNs. Given a split-rate sr and

a convolutional filter Fl at a layer l, the binary split-mask Ml out-

lines the first ⌈sr × Ci⌉ kernels inside the first ⌈sr × Co⌉ filters.

In this example, Co = Ci = 4 and sr = 0.5. Through KELS,

the binary mask M outlines the fit-hypothesis H△ such that it is

a slim network inside a dense network. The slim network H△ is

equivalent to a dense network with (1− s2r) sparsity.

is trained independently, (2) After training a new genera-

tion, the weights inside both hypotheses change, i.e., H
△
1 6=

H
△
2 and H▽

1 6= H▽

2 , and (3) all network generations are

trained using the exact hyperparameters, i.e., same number

of epochs, optimizer, learning rate scheduler, etc.

3.2. SplitNetworks

KE requires network-splitting. We support KE with two

splitting techniques: (1) a simple technique to highlight the

generality of KE, and (2) an efficient technique for CNNs.

The simple technique is the weight-level splitting

(WELS) technique. For every layer l, a binary mask Ml

splits l into two exclusive parts: the fit-hypothesis H△ and

the reset-hypothesis H▽. Given a split-rate 0 < sr < 1,

we randomly split the weights Wl ∈ R|Wl| using the mask

Ml ∈ {0, 1}
|Wl|, where |Wl| is the number of weights in-

side layer l and sum(Ml) = sr × |Wl|. The WELS tech-

nique supports a large spectrum of layers – fully connected,

convolution, recurrent, and graph convolution. This high-

lights the generality of KE.

Through WELS, KE boosts the network performance

across generations. However, WELS does not benefit from

the connectivity of CNNs. Thus, we propose a splitting

technique that not only boosts performance but also reduces

inference cost for relatively small datasets. We leverage the

CNNs’ connectivity and outline the fit-hypothesis H△ such

that it is a slim (pruned) network as shown in Fig. 2. In-

stead of masking individual weights, we mask kernels, i.e.,

kernel-level convolutional-aware splitting (KELS) tech-

nique. Given a split-rate sr and a convolutional filter Fl ∈
RCo×κ×κ×Ci , KELS outlines the fit-hypothesis to include

the first ⌈sr × Ci⌉ kernels inside the first ⌈sr × Co⌉ filters

as shown in Fig. 3. KELS guarantees matching dimensions

between consequence convolutional filters. Thus, KELS

integrates seamlessly in both vanilla CNNs (AlexNet and

VGG) and modern architectures with residual links.

For relatively small datasets, the performance of the slim

fit-hypothesis H△ reaches the performance of the dense

12845

Algorithm 1: The KE training approach splits a

dense network N , with L layers, into fit and reset

hypotheses using a split-rate sr and a binary mask

M . Then, KE trains N for g generations. The net-

work N has convolutional filters F , weight W , bias

B, and batch norm Z. We assume a single fully

connected layer for simplicity.

Result: Both a dense network Ng and a slim

network H△
g outlined by the split mask M

/* Set the split masks M for conv and FC layers

once and for all. */

1 for layer l to L do

2 if is conv(l) then

3 Co, κ, , Ci = Fl.shape;

4 Ml = zeros((Co, κ, κ, Ci));

5 if Ci == 3 then

6 Ml[: Co × sr, :, :, :] = 1 ; // First conv

7 else

8 Ml[: Co × sr, :, :, : Ci × sr] = 1;

9 end

10 else if is fc(l) then

11 Co, Ci = Wl.shape; // Co=C

12 Ml = zeros((Co, Ci));

13 Ml[:, : Ci × sr] = 1;

14 end

15 end

16 W,B,Z, F are initialized randomly;

17 for generation i to g do

18 Ni ← Train N for e epochs; // Learn W,B,Z,F

19 for layer l to L do

20 if is conv(l) then

21 F r
l = rand(Fl.shape);

22 Fl = MlFl + (1−Ml)F
r
l ;

23 else if is fc(l) then

24 W r
l = rand(Wl.shape);

25 Wl = MlWl + (1−Ml)W
r
l ;

26 end

27 end

28 end

network N . In these cases, H△ not only delivers the dense

network’s performance but also reduces the inference cost.

Through KELS, the slim H△ runs on general purpose hard-

ware, i.e., neither sparse BLAS libraries nor specialized

hardware [12] is required. Given a split rate sr, KELS deliv-

ers a slim H△ that is equivalent to a dense network N with

approximately (1 − s2r) sparsity. It is approximate because

the network’s end-points have sr sparsity. The first convo-

lutional layer operates on all input channels (e.g., RGB) and

fully connected layers have sr sparsity. Algorithm 1 sum-

marizes KE while applying the KELS technique.

DropoutSplit-Nets

Figure 4. Split-Nets vs Dropout: The reset-hypothesis H▽ and

dead neurons are highlighted in gray, while the fit-hypothesis H△

and “alive” neurons are highlighted in blue.

Res-NetsSplit-Nets

identity

Figure 5. Split-Nets vs Res-Nets: Res-Nets split a network into

an identity shortcut (blue) and a residual subnetwork R(x). Split-

Nets split a network into a fit-hypothesis H△ (blue) and a reset-

hypothesis H▽. By splitting a network into two branches, Res-

Net and Split-Net enable a zero-mapping in one of these branches

(R(x) and H▽) while keeping the network’s depth intact.

3.3. Knowledge Evolution Intuitions

To understand KE, we give two complementary intu-

itions. These intuitions do not require the KELS technique.

We use KELS for visualization purpose only (e.g., Fig. 4).

We empirically validate these intuitions in Sec. 5.

Intuition #1: Dropout

Dropout [45] randomly drops neurons during training

as shown in Fig. 4. This encourages neurons to rely

less on each other and to learn independent representa-

tions [5]. In KE, we drop the reset-hypothesis H▽ during

re-initialization by randomly initializing H▽ before every

generation. This encourages H△ to rely less on H▽ and to

learn an independent representation. We validate this intu-

ition by evaluating the performance of the slim H△ across

generations. We observe that the performance of H△ in-

creases as the number of generations increases.

Intuition #2: Residual Network

Res-Nets set the default mapping, between consecutive lay-

ers, to the identity as shown in Fig. 5. Yet, from a differ-

ent perspective, Res-Nets enable a zero-mapping in some

subnetworks (residual links) without limiting the network’s

capacity [51, 55]. Similarly, KE enables a zero-mapping in

the reset-hypothesis H▽ by re-using the fit-hypothesis H△

across generations. After the first generation N1, H△ is al-

ways closer to convergence compared to H▽ that contains

random values. Thus, KE encourages new generations to

evolve the previous-generations’ knowledge inside the fit-

hypothesis H△ and suppress H▽.

We validate this intuition by measuring the mean abso-

lute value inside both hypotheses. We observe that H△ and

H▽ have comparable mean values at the first generation N1.

12846

a
s

p

h

m
e

Figure 6. Triplet loss tuple (anchor, positive, negative) and margin

m. The (h)ard, (s)emi-hard, and (e)asy negatives are highlighted

in black, gray, and white, respectively.

However, as the number of generations increases, the mean

absolute value inside H△ increases and H▽ decreases. This

supports our claim that KE promotes a zero-mapping inside

the reset-hypothesis H▽.

Please note that Split-Nets have one degree of freedom

that Res-Nets omit. Through the split-rate sr, we control

the size of the fit and reset hypotheses (H△ and H▽). If the

training data is abundant, a large split-rate is better where

a Split-Net reverts into a dense Res-Net. However, for rel-

atively small datasets, a small split-rate sr significantly re-

duces the inference cost while improving performance. In

the paper appendix, we elaborate more on both intuitions.

3.4. Evaluation Tasks

We evaluate KE using two supervised tasks: (1) classi-

fication and (2) metric learning. The performance of deep

networks on small datasets is studied extensively using the

classification task [48, 38, 7, 3, 35, 56, 59, 60, 58]. Thus, the

classification task provides a rigorous performance bench-

mark. The metric learning evaluation highlights the flexibil-

ity of our approach and shows the generality of KE beyond

mainstream literature that requires class logits.

We benchmark KE using both the cross-entropy and the

triplet loss. We use these loss functions because most su-

pervised tasks employ one of them.

Cross-Entropy (CE) Loss: We denote x ∈ X as an input

and y ∈ Y = {1, ...,C} as its ground-truth label. For a

classification network N , CE is defined as follows

CE(x,y) = − log
exp (N(x; y))

∑C

i=1 exp (N(x; i))
, (2)

where N(x; y) denotes the output logit for class y given x.

Triplet Loss: A metric learning network learns an embed-

ding where samples from the same class are close together,

while samples from different classes are far apart. To train

a metric learning network, we leverage triplet loss for its

simplicity and efficiency. Triplet loss is defined as follows

TL(a,p,n)∈T = [(Da,p −Da,n +m)]+, (3)

where [•]+ = max (0, •), m is the margin between classes.

Dx1,x2
= D(N(x1), N(x2)); N(•) and D(,) are the net-

work’s output-embedding and Euclidean distance, respec-

Table 1. Statistics of five classification datasets and their corre-

sponding train, validation, and test splits.

C Trn Val Tst Total

Flower-102 [36] 102 1020 1020 6149 8189

CUB-200 [52] 200 5994 N/A 5794 11788

Aircraft [33] 100 3334 3333 3333 10000

MIT67 [41] 67 5360 N/A 1340 6700

Stanford-Dogs [24] 120 12000 N/A 8580 20580

tively. In Eq. 3, a, p, and n are the anchor, positive, and

negative images in a triplet (a, p, n) from the triplets set T .

The performance of triplet loss relies heavily on the sam-

pling strategy. Since we train randomly initialized net-

works, we leverage the semi-hard sampling strategy for its

stability [43, 49]. In semi-hard negative sampling, instead

of picking the hardest positive-negative samples, all anchor-

positive pairs and their corresponding semi-hard negatives

are considered. Semi-hard negatives are further away from

the anchor than the positive exemplar yet within the banned

margin m as shown in Fig. 6. Semi-hard negatives (n) sat-

isfy Eq. 4

Da,p < Da,n < Da,p +m. (4)

4. Experiments

In this section, we evaluate KE using classification and

metric learning tasks.

4.1. Knowledge Evolution on Classification

Datasets: We evaluate KE using five datasets: Flower-

102 [36], CUB-200-2011 [52], FGVC-Aircraft [33],

MIT67 [41], and Stanford-Dogs [24]. Table 1 summarizes

the datasets’ statistics.

Technical Details: We evaluate KE using two architec-

tures: ResNet18 [19, 20] and DenseNet169 [22]. These

architectures demonstrate the efficiency of KE on modern

architectures. All networks are initialized randomly and op-

timized by stochastic gradient descent (SGD) with momen-

tum 0.9 and weight decay 1e-4. We use cosine learning rate

decay [30] with an initial learning rate lr = 0.256. We use

batch size b = 32 and train N for e = 200 epochs. We use

the standard data augmentation technique, i.e., flipping and

random cropping. For simplicity, we use the same training

settings (lr, b, e) for all generations. We report the network

accuracy at the last training epoch, i.e., no early stopping.

Baselines: We benchmark KE using the cross-entropy

(CE), label-smoothing (Smth) regularizer [35, 48],

RePr [39], CS-KD [58], AdaCos [60], Dense-Sparse-

Dense (DSD) [14], and Born Again Networks (BANs) [9]

introduced in Sec. 2:

• DSD determines the duration of each training phase

(# epochs) using the loss-convergence criterion. For

small datasets, the loss converges rapidly to zero and

12847

Table 2. Quantitative classification evaluation (Top-1 ↑) using

ResNet18 with KELS. Ng denotes the performance of the gth net-

work generation. The first generation N1 is both a baseline and a

starting point for KE. As the number of generations increases, KE

boosts performance.

Method Flower CUB Aircraft MIT Dog

CE + AdaCos 55.45 62.48 57.06 56.25 65.34

CE + RePr 41.90 42.88 39.43 46.94 50.39

CE + DSD 51.39 53.00 57.24 53.21 63.58

CE + BANs-N10 48.53 53.71 53.19 55.65 64.16

CE (N1) 48.48 53.57 51.28 55.28 63.83

CE + KE-N3 (ours) 52.53 56.73 52.53 57.44 64.28

CE + KE-N10 (ours) 56.15 58.11 53.21 58.33 64.56

Smth (N1) 50.97 59.75 55.00 57.74 65.95

Smth + KE-N3 (ours) 56.87 62.88 57.47 58.78 66.91

Smth + KE-N10 (ours) 62.56 66.85 60.03 60.42 67.06

CS-KD (N1) 55.10 67.71 58.15 57.37 69.60

CS-KD + KE-N3 (ours) 61.74 71.63 59.97 58.41 70.62

CS-KD + KE-N10 (ours) 69.88 73.39 59.08 57.96 70.81

some datasets do not have validation splits (see Ta-

ble 1). So, we use e = 200, e = 100, and e = 100
epochs for the dense, sparse, dense phases, respec-

tively. We prune each layer to the default 30% sparsity.

• AdaCos maximizes the inter-class angular margin by

dynamically scaling the cosine similarities between

training samples and their corresponding class center.

Thus, AdaCos is a hyperparameter-free feature embed-

ding regularizer.

• CS-KD is a knowledge distillation inspired approach

that achieves state-of-the-art performance on small

datasets. It distills the logits distribution between dif-

ferent samples from the same class. Thus, it mitigates

overconfident predictions and reduces intra-class vari-

ations. We set CS-KD’s hyperparameters T = 4 and

λcls = 3 in all experiments.

• RePr is similar to DSD, but instead of pruning

weights, RePr prunes redundant convolutional filters.

Prakash et al. [39] recommend repeating the dense-

sparse-dense phases three times. Since we train N

for e = 200 epochs, we set RePr’s hyperparameters

S1 = 50 and S2 = 10. We use the default sparsity

rate (prune rate) p = 30%.

Results: Tables 2 and 3 present quantitative classification

evaluation using ResNet18 and DenseNet169, respectively.

For ResNet18, we use a split-rate sr = 0.8 and KELS, i.e.,

≈ 36% sparsity. For DenseNet169, we use sr = 0.7 and

WELS, i.e., 30% sparsity. We report the performance of

the dense network N because all baselines learn dense net-

works. In Sec. 5, we report the slim fit-hypothesis H△

performance and inference cost. Tables 2 and 3 present

the performance of the first generation (N1) as a baseline,

the third generation (N3) as the short-term benefit, and the

tenth-generation (N10) as the long-term benefit of KE.

A deeper network achieves higher accuracy when pre-

sented with enough training data. However, if the train-

Table 3. Quantitative evaluation using DenseNet169 with WELS.

Method Flower CUB Aircraft MIT Dog

CE + AdaCos 49.96 62.20 56.15 50.89 65.33

CE + RePr 39.75 47.01 36.04 49.77 55.63

CE + DSD 48.85 56.11 53.66 58.31 65.76

CE + BANs-N10 44.92 57.30 52.56 57.66 65.49

CE (N1) 45.85 55.16 51.73 56.62 64.82

CE + KE-N3 (ours) 52.44 57.75 56.70 59.67 67.06

CE + KE-N10 (ours) 60.15 58.01 59.73 58.71 67.75

Smth (N1) 46.34 59.93 57.74 57.81 65.12

Smth + KE-N3 (ours) 55.46 62.53 62.86 60.27 68.21

Smth + KE-N10 (ours) 64.18 61.34 65.86 59.75 67.46

CS-KD (N1) 46.97 67.32 58.87 56.62 69.83

CS-KD + KE-N3 (ours) 59.36 69.77 59.91 59.00 71.70

CS-KD + KE-N10 (ours) 65.27 70.36 61.22 57.44 70.72

ing data is scarce, a deeper network becomes vulnerable

to overfitting. This explains why regularization techniques

(e.g., AdaCos) deliver competitive performance on the

small ResNet18, but degrade on the large DenseNet169. In-

terestingly, KE remains resilient on the large DenseNet169

and delivers similar, if not superior, performance.

We applied KE on top of (1) the cross-entropy loss, (2)

the label smoothing (Smth) regularizer with its hyperparam-

eter [35] α = 0.1, and (3) the CS-KD regularizer. KE

is flexible and boosts performance on each baseline. N3

outperforms N1 on all datasets. After reaching a peak,

KE’s performance fluctuates. Thus, if N3 outperforms N10

marginally, this indicates that KE reached its peak. In Fig. 1,

KE reached its peak on CUB-200 after 20 generations, then

KE fluctuates for 80 generations without degrading.

Even though RePr seems similar to KE, the following

caveat explains RePr’s inferior performance. RePr ranks

the redundant filters across the entire network, i.e., no per-

layer ranking. Prakash et al. [39] report pruning more fil-

ters from deeper layers when training on large datasets. Yet,

RePr prunes many filters from earlier layers when training

on small datasets. The earlier layers get a small gradient

compared to deeper layers; and with small datasets, the ear-

lier filters remain close to their initialization, i.e., no signifi-

cant difference between earlier filters. Pruning earlier filters

cripples the optimization process and achieves an inferior

performance.

Another important difference between KE and RePr is

how filters are re-initialized. KE re-initializes the reset-

hypothesis randomly. Thus, KE makes no assumptions

about the network architecture. In contrast, RePr is de-

signed specifically for CNNs. RePr re-initializes the pruned

filters to be orthogonal to both their values before being

dropped and the current value of non-pruned filters. RePr

uses the QR decomposition on the weights of the filters

from the same layer to find the null-space, that is used

to find an orthogonal initialization point. Basically, RePr

stores the pruned filters to use them for re-initialization.

This makes RePr more complex compared to KE. In the

paper appendix, we highlight other differences.

12848

Table 4. Quantitative retrieval evaluation using standard metric

learning datasets and architectures.

ResNet50 GoogLeNet

Datasets NMI R@1 R@4 NMI R@1 R@4

CUB (N1) 0.396 13.01 30.37 0.396 10.16 25.71

CUB + KE-N3 (ours) 0.424 17.22 36.14 0.418 13.94 33.78

CUB + KE-N10 (ours) 0.429 18.25 39.40 0.419 15.34 34.30

Cars (N1) 0.374 11.63 28.66 0.319 5.29 17.94

Cars + KE-N3 (ours) 0.514 34.28 60.25 0.476 24.98 50.06

Cars + KE-N10 (ours) 0.523 42.36 68.11 0.495 32.63 58.84

Similar to KE, The BANs training approach trains a

network for multiple generations. However, BANs trans-

fers knowledge through the class-logits distribution. For

small datasets, a teacher’s logits distribution resembles the

ground-truth labels (one-hot vector) when the loss con-

verges to zero. Thus, BANs achieves regular cross-entropy

performance even after training for 10 generations.

4.2. Knowledge Evolution on Metric Learning

Datasets: We evaluate KE using two standard metric learn-

ing datasets: CUB-200-2011 [52], Stanford Cars196 [25].

Evaluation Metrics: For quantitative evaluation, we use

the Recall@K metric and Normalized Mutual Info (NMI)

on the test split.

Technical Details: We use the same hyperparameters (e, lr

scheduler) and optimizer used in the classification experi-

ments. However, the feature embedding ∈ Rd=128 is nor-

malized to the unit circle and we use a batch size b = 125.

Each mini-batch contains 25 different classes and 5 samples

per class. We use a small learning rate lr = 0.0256 to avoid

large fluctuations in the feature embedding during training.

Results: Table 4 presents a quantitative retrieval eval-

uation using two standard metric learning architectures:

ResNet50 [19, 20] and GoogLeNet [47]. We use a split-

rate sr = 0.8 and KELS with both architectures (See the

paper appendix on how KELS handles concatenation oper-

ations inside GoogLeNet). As the number of generations

increases, the retrieval performance of the dense network

increases. Through this experiment, we highlight how KE

supports a large spectrum of network architectures and loss

functions. Equipped with WELS, we expect KE to spread

beyond CNNs. It is straight forward to tweak WELS and

impose a regular sparsity, as in KELS, but for non CNNs.

5. Ablation Study

This section presents three ablation studies: We (1) val-

idate the dropout and Res-Net intuitions (from Sec. 3.3),

(2) compare WELS and KELS techniques, (3) present the

tradeoffs of the split-rate sr.

(1) Dropout and Res-Net intuitions’ validation

To validate the dropout and Res-Net intuitions, we monitor

the fit and reset hypotheses across generations. According

2 4 6 8 10

0

20

40

60

Generation # (g)

T
o
p
-1

Ng

N1

H△

g

H
△

1

2 4 6 8 10
0

5 · 10−2

0.1

Conv-1

2 4 6 8 10
0

1

2

3
·10−2

Conv-2

2 4 6 8 10
0

1

2

·10−2
Conv-3

2 4 6 8 10
0

0.5

1

1.5

·10−2
Conv-4

Ĥ△ Ĥ▽

Figure 7. Quantitative classification evaluation using CUB-200 on

VGG11 bn. The x-axis denotes the number of generations. The

fit-hypothesis H△ achieves an inferior performance at g = 1, but

its performance increases as the number of generations increases.

Ĥ△ and Ĥ▽ denote the mean absolute value inside H△ and H▽.

to the dropout intuition, the fit-hypothesis should learn an

independent representation. The KELS technique enables

measuring the fit-hypothesis’s performance. In this study,

we use the CUB-200 dataset, VGG11 bn [44], and a split-

rate sr = 0.5. Fig. 7 (Top) shows the performance of the

dense network N and the slim fit-hypothesis H△ for 10

generations. The horizontal dashed lines denote the perfor-

mance of the first generation (N1 and H
△
1). At the first

generation, the fit-hypothesis’s performance is inferior. Yet,

as the number of generations increases, the fit-hypothesis

performance increases. Table 5 (Top section) presents both

the performance and inference cost of both N and H△.

According to the Res-Net intuition, the reset-hypothesis

should converge to a zero-mapping because, after the first

generation (N1), the fit-hypothesis is always closer to con-

vergence. Fig. 7 shows the mean absolute values (Ĥ△ and

Ĥ▽) inside the fit and reset hypotheses. We present these

values inside the first four convolution layers of VGG11 bn

(See paper appendix for all eight conv layers). Ĥ
△
1 and Ĥ▽

1

are comparable at N1. However, as the number of genera-

tions increases, Ĥ△ increases while Ĥ▽ decreases.

12849

Table 5. Quantitative evaluation for KELS using the number of

both operations (G-Ops) and parameters (millions). Accg denotes

the classification accuracy at the gth generation. Nops denotes the

relative reduction in the number of operations. Nacc denotes the

absolute accuracy improvement on top of the dense baseline N1.

CUB on VGG11 bn

sr Acc1 Acc10 Nacc #Ops Nops #Param

Ng 0.5
63.47 69.65 6.1% 15.22 - 259.16

H△

g 0.52 68.84 5.3% 3.85 74.7% 65.20

FLW on ResNet18

sr Acc1 Acc100 Nacc #Ops Nops #Param

Ng 0.8
53.87 75.62 21.7% 3.63 - 22.44

H△

g 6.41 75.62 21.7% 2.39 34.1% 14.43

Ng 0.5
52.62 74.60 21.9% 3.63 - 22.44

H△

g 0.37 74.60 21.9% 0.96 73.5% 5.64

CUB on GoogLeNet

sr Acc1 Acc10 Nacc #Ops Nops #Param

Ng 0.8
64.76 72.93 8.1% 3.00 11.59

H△

g 0.64 71.67 6.9% 1.98 34.0% 7.54

Ng 0.5
65.18 72.44 7.2% 3.00 11.59

H△

g 0.50 57.23 -7.9% 0.81 73.0% 3.00

(2) WELS vs KELS techniques

KE requires a network-splitting technique. WELS delivers

a dense network N only. Thus, we compare WELS and

KELS using N . Fig. 8 (Left) compares WELS and KELS

using Flower-102, cross-entropy with the CS-KD regular-

izer [58], ResNet18, and two split-rates (sr = {0.5, 0.8}).
KELS and WELS achieve comparable performance. This is

promising because WELS can be applied to any neural net-

work. Fig. 8 (Right) re-assures that KELS delivers high per-

formance while reducing inference cost as shown in Table 5

(middle section). The performance of H
△
100 matches N100

because H△ has enough capacity for the small Flower-102.

With sr = 0.5, KELS achieves an absolute 21% improve-

ment margin while reducing inference cost by 73%.

(3) The split-rate sr tradeoffs

The split-rate sr controls the size of the fit-hypothesis; a

small sr reduces the inference cost. Yet, a small sr reduces

the capacity of H△. Fig. 9 (Left) compares two split-rate

(sr = {0.5, 0.8}) using CUB-200 and GoogLeNet for 10

generations. Both split-rates achieve significant improve-

ment margins on the dense network N . However, Fig. 9

(Right) shows that the large split-rate sr = 0.8 helps the

fit-hypothesis H△ to converge faster and to achieve better

performance. Table 5 (third section) highlights this perfor-

mance and inference-cost tradeoff. For a large dataset, a

large split-rate is required to deliver a slim fit-hypothesis

H△ with competitive performance.

5.1. Discussion

ImageNet [6] will eventually become a toy dataset given

the increasing size of deep networks [4, 46, 32, 1] (e.g.,

GPT-3). To train these large networks, unsupervised [23, 2]

20 40 60 80 100

60

70

T
o
p
-1

WELS-sr = 0.5 sr = 0.8

KELS-sr = 0.5 sr = 0.8

20 40 60 80 100

0

20

40

60

80

KELS-sr = 0.5

KELS-sr = 0.8

Figure 8. Quantitative evaluation for both KELS and WELS using

Flower-102 on ResNet18 for 100 generations. The x and y axes

denote the number of generations and the top-1 accuracy, respec-

tively. (Left) The classification performance of the dense network

N . (Right) The performance of the slim fit-hypothesis H△.

2 4 6 8 10
64

66

68

70

72

74

T
o
p
-1

KELS-sr = 0.5

KELS-sr = 0.8

2 4 6 8 10

0

20

40

60

KELS-sr = 0.5

KELS-sr = 0.8

Figure 9. Quantitative evaluation for different split-rates using

CUB-200 on GoogLeNet for 10 generations. (Left) The classi-

fication performance of the dense network N . (Right) The perfor-

mance of the slim fit-hypothesis H△.

and self-supervised [53, 37, 17, 50] learning mitigate the

burden of data annotation. However, these learning ap-

proaches still require storing and maintaining a large corpus

of data. This is (1) expensive even if neither labeling nor cu-

rating is required, (2) impractical for applications with pri-

vacy concerns like medical imaging. KE tackles the prob-

lem of training deep networks on relatively small datasets.

KE’s main limitation is the training time. It takes≈ 8 hours

to train 100 generations, 200 epochs each, on Flower-102

using GTX1080Ti GPU. This long training time can be re-

duced by monitoring the performance on a validation split.

6. Conclusion

We have proposed knowledge evolution (KE) to train

deep networks on relatively small datasets. KE picks a

random subnetwork (fit-hypothesis), with inferior perfor-

mance, and evolves its knowledge. We have equipped

KE with a kernel-level convolution-aware splitting (KELS)

technique to learn a slim network automatically while train-

ing a dense network. Through KELS, KE reduces the infer-

ence cost while boosting performance. Through the weight-

level splitting (WELS) technique, KE supports a large spec-

trum of architectures. We evaluated KE using classification

and metric learning tasks. KE achieves SOTA results.

Acknowledgments: This work was partially funded by in-

dependent grants from Facebook AI and DARPA SAIL-ON

program (W911NF2020009).

12850

References

[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. arXiv preprint

arXiv:2005.14165, 2020.

[2] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In ECCV, 2018.

[3] Binghui Chen, Weihong Deng, and Haifeng Shen. Vir-

tual class enhanced discriminative embedding learning. In

NeurIPS, 2018.

[4] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan

Catanzaro, and Ng Andrew. Deep learning with cots hpc

systems. In ICML, 2013.

[5] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry

Zitnick, and Dhruv Batra. Reducing overfitting in deep

networks by decorrelating representations. arXiv preprint

arXiv:1511.06068, 2015.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009.

[7] Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and

Nikhil Naik. Maximum-entropy fine grained classification.

In NeurIPS, 2018.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv

preprint arXiv:1803.03635, 2018.

[9] Tommaso Furlanello, Zachary C Lipton, Michael Tschan-

nen, Laurent Itti, and Anima Anandkumar. Born again neural

networks. arXiv preprint arXiv:1805.04770, 2018.

[10] Sharath Girish, Shishira R Maiya, Kamal Gupta, Hao

Chen, Larry Davis, and Abhinav Shrivastava. The lot-

tery ticket hypothesis for object recognition. arXiv preprint

arXiv:2012.04643, 2020.

[11] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & simple

resource-constrained structure learning of deep networks. In

CVPR, 2018.

[12] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A Horowitz, and William J Dally. Eie: efficient

inference engine on compressed deep neural network. ACM

SIGARCH Computer Architecture News, 2016.

[13] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[14] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao

Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar

Paluri, John Tran, et al. Dsd: Dense-sparse-dense training

for deep neural networks. arXiv preprint arXiv:1607.04381,

2016.

[15] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

NeurIPS, 2015.

[16] Babak Hassibi and David G Stork. Second order derivatives

for network pruning: Optimal brain surgeon. In NeurIPS,

1993.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. arXiv preprint arXiv:1911.05722, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving Deep into Rectifiers: Surpassing Human-Level Per-

formance on ImageNet Classification. In ICCV, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016.

[21] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. In CVPR, 2018.

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In CVPR, 2017.

[23] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej

Chum. Mining on manifolds: Metric learning without labels.

In CVPR, 2018.

[24] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Fei-Fei Li. Novel dataset for fine-grained image

categorization: Stanford dogs. In Proc. CVPR Workshop on

Fine-Grained Visual Categorization (FGVC), 2011.

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

ICCV workshops, 2013.

[26] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In NeurIPS, 1990.

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.

[28] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018.

[29] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017.

[30] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016.

[31] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, 2017.

[32] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens Van Der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, 2018.

[33] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. Technical re-

port, 2013.

12851

[34] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong

Tian. One ticket to win them all: generalizing lottery ticket

initializations across datasets and optimizers. In NeurIPS,

2019.

[35] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.

When does label smoothing help? In NeurIPS, 2019.

[36] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In 2008

Sixth Indian Conference on Computer Vision, Graphics &

Image Processing, 2008.

[37] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.

[38] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz

Kaiser, and Geoffrey Hinton. Regularizing neural networks

by penalizing confident output distributions. arXiv preprint

arXiv:1701.06548, 2017.

[39] Aaditya Prakash, James Storer, Dinei Florencio, and Cha

Zhang. Repr: Improved training of convolutional filters. In

CVPR, 2019.

[40] Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan L Yuille.

Neural rejuvenation: Improving deep network training by

enhancing computational resource utilization. In CVPR,

2019.

[41] Ariadna Quattoni and Antonio Torralba. Recognizing indoor

scenes. In CVPR, 2009.

[42] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-

havi, Ali Farhadi, and Mohammad Rastegari. What’s hidden

in a randomly weighted neural network? In CVPR, 2020.

[43] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015.

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The journal of

machine learning research, 2014.

[46] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-

nav Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In ICCV, 2017.

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015.

[48] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016.

[49] Ahmed Taha, Yi-Ting Chen, Teruhisa Misu, Abhinav Shri-

vastava, and Larry Davis. Boosting standard classification

architectures through a ranking regularizer. In WACV, 2020.

[50] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv preprint arXiv:1906.05849,

2019.

[51] Andreas Veit, Michael J Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

works. In NeurIPS, 2016.

[52] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011.

[53] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In ICCV, 2015.

[54] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In NeurIPS, 2016.

[55] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

In CVPR, 2018.

[56] Ting-Bing Xu and Cheng-Lin Liu. Data-distortion guided

self-distillation for deep neural networks. In AAAI, 2019.

[57] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In CVPR, 2018.

[58] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin.

Regularizing class-wise predictions via self-knowledge dis-

tillation. In CVPR, 2020.

[59] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-

glong Bao, and Kaisheng Ma. Be your own teacher: Im-

prove the performance of convolutional neural networks via

self distillation. In ICCV, 2019.

[60] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hong-

sheng Li. Adacos: Adaptively scaling cosine logits for effec-

tively learning deep face representations. In CVPR, 2019.

[61] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more:

Towards compact cnns. In ECCV, 2016.

[62] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski.

Deconstructing lottery tickets: Zeros, signs, and the super-

mask. In NeurIPS, 2019.

[63] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

12852

