
Knowledge Extraction by using an Ontologybased
Annotation Tool

Maria VargasVera, Enrico Motta, John Domingue,
Simon Buckingham Shum and Mattia Lanzoni

Knowledge Media Institute (KMi),
The Open University,

Walton Hall, Milton Keynes, MK7 6AA, United Kingdom�
m.vargas-vera, e.motta, j.b.domingue, s.buckingham.shum, m.lanzoni ✁ @open.ac.uk

ABSTRACT

This paper describes a Semantic Annotation Tool for extraction of
knowledge structures from web pages through the use of simple
user-defined knowledge extraction patterns. The semantic annota-
tion tool contains: an ontology-based mark-up component which
allows the user to browse and to mark-up relevant pieces of in-
formation; a learning component (Crystal from the University of
Massachusetts at Amherst) which learns rules from examples and
an information extraction component which extracts the objects and
relation between these objects. Our final aim is to provide support
for ontology population by using the information extraction com-
ponent. Our system uses as domain of study “KMi Planet”, a Web-
based news server that helps to communicate relevant information
between members in our institute.

Keywords

Ontology-based mark-up, Ontology population, Extraction of knowl-
edge, Information extraction technologies.

1. INTRODUCTION
Semantic annotation has been focused in isolated annotations of

web pages. However, semantic web tries to achieve the annota-
tion of pages with semantic information. In other words, the aim
is to enrich the content of web pages. Recent work on semantic
annotation guided by an ontology is discussed in [14]. However,
our approach has a different aim, we use the ontology as guider to
the human annotator of the training set (ie. the user is presented
with a set of possibles tags which could be used during the mark-
up process), and then the system learns rules by using the semantic
annotations, whilst in OntoAnnotate [14] the user selects the object
identifier and the appropriate class for it from a hierarchy of classes.
Then all the information which is in the Ontology for that particular
object identifier is presented to the user. If the object identifier is
not defined the user could create a new object or class relation.

One target of the system presented in this paper is to learn rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 089791886/97/05 ..$5.00

from texts by using a machine learning component called Crystal.
To extract rules from text, we had developed an environment which
allows user to perform four phases: browse, semantic annotation
of pages, learning rules and information extraction (IE) of the web
pages. Each of these phases are described as follows:

1. Browse

This option could by used by the user to select the kind of
browser in our case could be WebOnto or any other browser.
WebOnto [3] provides web-based visualisation, browsing and
editing support for the ontology. It allows easier develop-
ment and maintenance of the knowledge models, themselves
specified in OCML (Conceptual Modeling Language) [8].

2. The Markup phase. The activity of semantic tagging refers
to the activity of annotating text documents (written in plain
ASCII or HTML format) with an tags set defined on the
ontology, in particular we work with the hand-crafted KMi
ontology (ontology describing Knowledge Media Institute).
The semantic annotation tool provides means to browse the
event hierarchy (described in next section). In this hierarchy
each event is a class and the annotation component extracts
the set of possible tags from the slots defined in each class.
In general mark-up process might be difficult but in our case
the annotation component is guiding the user with the possi-
ble entities which could be marked in the text.

Other approach related to our work is the SHOE Knowledge
annotator which is a Java program that allows users to mark-
up web pages with the SHOE ontology [5]. However, in
SHOE there is not relation between the new annotations and
the original text.

3. Learning phase. This phase uses the marked text as training
set and learns relations from the stories. It uses crystal as a
learning component. Crystal works using the bottom-up ap-
proach. It finds rules for specific instances and it generalises
these rules.

4. The information extraction phase. The goal of a Infor-
mation Extraction system (IE) is to extract specific types of
information from text. For example, an IE system in the
domain of KMi (Knowledge Media Institute) organisation,
should be able to extract the name of KMi projects, KMi
funding organisations, awards, dates, etc. The main advan-
tage of IE task is that portions of a text that are not relevant
to the domain can be ignored. Therefore text could be pro-
cessed quickly.

Most IE systems use some form of partial parsing to recog-
nise syntactic constructs without generating a complete parse
tree for each sentence. Such partial parsing has the advan-
tages of greater speed and robustness. High speed is neces-
sary to apply the IE to a large set of documents.

IE has been used in several domains, for instance, scientific
articles such as MEDLINE (it contains abstracts of biomedi-
cal journals) [2], bibliographic notices [9], and medical records
[13]. Also, ontologies has been used in IE systems to help
them extract relations from semi or unstructured documents,
statements or terms [11]. Recent work on semi-automatic
ontology acquisition by means of IE, supported by machine-
learning methods, is described in [6, 4]. In similar lines there
is the CMU’s approach for extracting information from hy-
pertext using machine learning techniques (Bayes classifier)
and making use of an ontology [1]. However, we remark that
we are not creating an ontology, we are supporting ontology
population. The ontology population problem is an impor-
tant issue to be addressed since it is difficult to keep up to
date a hand-crafted ontology.

In our work, we had integrated the hand-crafted KMi On-
tology into the information extractor. The main task of the
ontology is to disambiguation of some extracted informa-
tion. For instance, in the event conferring an award “X was
granted Y amount of money”. X could be instantiated to
name of project or institution. In this case we make use of
the ontology to clarify the type of X.

In the construction of our IE component we had integrated
several components (Marmot, Badger and Crystal) from the
University of Massachusetts at Amherst (UMass) which are
fully described in Rillof[10]. We remark that in our IE com-
ponent the template matching itself is supported semanti-
cally by referring to the ontology, but also contains some
lightweight NLP techniques in order to syntactically identify
some fragments of the sentences. We believe it is important
to mix the syntactic and semantic. The semantic checking is
often necessary to resolve ambiguities, for example, ontolo-
gies can provide us with axioms of common sense knowl-
edge such “if someone is visiting a place then this someone
should be a person.” Conversely, some grammar construc-
tions (such as dates) can be recognized robustly.

Figure 1 illustrates the four phases. In particular la browse phase
has been launched.

Our primary contribution is to integrate a template-driven IE en-
gine with an ontology engine (including inference capabilities be-
sides lexicons such as Wordnet) in order to supply the necessary
semantic content and then to disambiguate extracted information
and finally our second contribution is to provide support for the
ontology population process.

The paper is organised as follows: In Section 2 we present a ty-
pology of two events as are defined in KMi ontology. Section 3
presents the mark-up phase. Section 4 shows the learning phase
using Crystal. Section 5 presents the extraction of information us-
ing Badger. Section 6 describes the use of ontology to cope with
the ambiguity in the identification of objects in the story. Section 7
shows the OCML 1 code generated after badger obtains template
instantiations. Section 8 discusses the process of populating an on-
tology as an activity in the life cycle of the ontology construction.
Finally, Section 9 gives conclusions and directions for future work.

✂
OCML is a language designed for knowledge modeling

Figure 1: System overview

2. EVENT TYPOLOGY
KMi ontology consists of KMi projects, people in KMi, events,

etc. In particular we will focus in a section of the KMi ontology
called events (activities happening in our Institute). The events are
defined formally in our ontology as classes. Currently, in our KMi
ontology we have defined 40 different types of events. As the event
typology is already defined in the KMi ontology. Then, for each
event we already had defined the slots which might be instantiated
by the IE component. Figure 2 shows a portion of the hierarchy of
events as defined in KMi ontology.

For the sake of space, we only present the structure of three
type of events from the event hierarchy: visiting-a-place-or-people,
conferring-a-monetary-award and demonstration-of-technology.

Class Event 1: visiting-a-place-or-people

slots:

visitor (list of person(s))
people-or-organisation-being-visited

(list of person(s) or organization)
has-duration (duration)
start-time (time-point)
end-time (time-point)
has-location (a place)
other agents-involved (list of person(s))
main-agent (list of person(s))

The structure of Event 1 (visiting-a-place-or-people) describes a
set of objects which might be encountered in story describing an
event visit, such as, visitor, people-or-organisation-being-visited,
other agents-involved, etc.

Class Event 2: conferring-a-monetary-award

Figure 2: Event hierarchy

slots:

monetary award (sum of money)
has-duration (duration)
start-time (time-point)
end-time (time-point)
has-location (a place)
main-agent (list of person(s))
other agents-involved (list of person(s))
location-at-start (a place)
location-at-end (a place)
awarding-body (an organization)
has-award-rationale (project goals)

In the event 2 the value for the slot has-award-rationale is ex-
tracted from text by using heuristics such as if the word goal ap-
pears in the story then the system will extract as rationale the sen-
tence until it finds full stop. The reason for this is because is to
general to be learned by an IE component. It does not follow any
grammar rule about how the rationale could be expressed by a jour-
nalist who writes an story describing a project’s award.

Class Event 3: demonstration-of-technology

technology-being-demostrated (technology)
has-duration (duration)
start-time (time-point)
end-time (time-point)
has-location (a place)

other agents-involved (list of person(s))
main-agent (list of person(s))
location-at-start (a place)
location-at-end (a place)
medium-used (equipment)
subject-of-the-demo (title)

Event 3 contains the structure for the event “demonstration-of-
technology”. Entities that need to be recognised are technology,
place, etc.

3. MARKUP PHASE
The mark-up component aims to help the manual annotation of

web pages. In this component the ontology plays a important role
guiding the mark-up process. The user does not know which is the
relevant information which might be annotated. Therefore, we con-
sider that is useful to have a such tool that presents user with pos-
sibles tags. An example of annotated story is shown in Figure 4.
The user selects an specific class on the hierarchy of events, for
example, “visiting-a-place-or-people”. Then a set of possibles tags
is presented to the user for the event “visiting-a-place-or-people”.
The set of tags are: has-duration, start-time, end-time, has-location,
other agents-involved, main-agent, visitor, people-or-organisation-
being-visited. From this set the user could select a subset of tags
and then automatically a template for the event “visiting-a-place-
or-people” is created. The created template is used later by the
component which make instantiations of templates (Badger). Fig-
ure 3 shows the user selection. In this particular example the user
only selects start-time, end-time, has-location and visitor.

Figure 3: Selection of tags

For the sake of space, let us assume that the user annotates the
story with two tags: visitor and place from the selected set. Figure 4
shows the semantic annotations which automatically are inserted in
the text. In the story David Brown was annotated as visitor and
The OU is annotated as place.

4. LEARNING PHASE
This phase was implemented by integrating two tools Marmot

and the learning component called Crystal both from Umass.
A brief description of Marmot (a text preprocessor) is giving

before the learning component Crystal is presented.

Figure 4: Annotated story

4.1 Marmot
Marmot (from UMass) is a natural language preprocessing tool

that accepts ASCII files and produces an intermediate level of text
analysis that is useful for IE applications. Sentences are sepa-
rated and segmented into noun phrases, verb phrases prepositional
phrases.

Marmot has several functionalities: preprocesses abbreviations
to guide sentence segmentation, resolves sentences boundaries, iden-
tifies parenthetical expressions, recognises entries from a phrasal
lexicon and replace them, recognises dates and duration phrases,
performs phrasal bracketing of noun, preposition and adverbial phrases,
finally scopes conjunctions and disjunctions.

We had defined our own verbs, nouns, abbreviations and tags in
order to apply Marmot to our KMi domain. For the sake of space
we would analyse only the first three sentences in the story given
in Figure 5.

In the first sentence, Marmot recognised two entities firstly a
subject (SUBJ) which is JOHN DOMINGUE and secondly a date.
The latest is recognised and marked between the symbol “@”. Dates
are recognised robustly as regular expressions.

SUBJ(1): JOHN DOMINGUE
ADVP(2): @WED_%COMMA%_15_OCT_1997@
PUNC(3): %PERIOD%

In sentence number 2, DAVID BROWN is recognised as sub-
ject (SUBJ), a prepositional phrase (PP) “FOR INDUSTRY” is en-
counter, the verb (VB) VISITS is also found, OBJ1 takes the value

of THE OU and finally a punctuation symbol (PUNC) is the full
stop is encountered at the end of the sentence.

SUBJ(1): DAVID BROWN %COMMA% UNIVERSITY
PP (2): FOR INDUSTRY
VB (3): VISITS
OBJ1(4): THE OU
PUNC(5): %PERIOD%

In the same fashion, in sentence number 3, DAVID BROWN is
recognised as subject, the word VISITED is recognised as verb and
OBJ1 as THE OU.

SUBJ(1): DAVID BROWN %COMMA% THE CHAIRMAN OF
THE UNIVERSITY
PP (2): FOR INDUSTRY DESIGN AND IMPLEMENTATION
ADVISORY GROUP AND CHAIRMAN OF MOTOROLA
PUNC(3): %COMMA%
VB (4): VISITED
OBJ1(5): THE OU

4.2 Crystal
Crystal is a dictionary induction tool. It derives a dictionary of

concept node (CN) from a training corpus. The first step in dictio-
nary creation is the annotation of a set of training texts by a domain
expert. Each phrase that contains information to be extracted is
tagged (with SGML style tags).

Crystal initialises a CN dictionary for each positive instance of
each type of event. The initial CN definitions are designed to ex-
tract the relevant phrases in the training instance that creates them

Figure 5: Marmot output

but are too specific to apply to a unseen sentences. The main task of
Crystal is to gradually relax the constraints on the initial definitions
and also to merge similar definitions.

Crystal finds generalisations of its initial CN definitions by com-
paring definitions that are similar. This similarity is deduced by
counting the number of relaxations required to unify two CN def-
initions. Then a new definition is created with constraints relaxed.
Finally the new definition is tested against the training corpus to
insure that it does not extract phrases that were not marked with
the original two definitions. This means that Crystal takes similar
instances and generalises into a more general rule by preserving the
properties from each of the CN definitions which are generalised.

The inductive concept learning in Crystal is similar to the induc-
tive learning algorithm described in [7] a specific-to-general data-
driven search to find the most specific generalisation that covers
all positive instances. Crystal finds the most specific generalisation
that covers all positive instances but uses a greedy unification of
similar instances rather than breadth-first search.

Coming back to our example David Brown’s story. We have that
Crystal learns a conceptual node such as the one shown in Figure 7.

These conceptual node states that “X visited”. So that in the
future whenever the pattern “X visited ” appears in the text the case
frame will extract “X” as the visitor.

For the pattern X visited Y, we basically are extracting relations
r(X,Y) from texts which could be interpreted as “X visited Y” and
the Lexicon for relation r is the union of the lexicon(X) and lexi-
con(Y). If we find this relation in our texts then we find a instance
for the event “visiting-a-place-or-people”.

In this example we do not have the case that two different tem-
plates might apply to the same sentence. But it is possible to en-
counter these cases. Let us consider the following example from
the MUC domain (the MUC domain is a set of documents describ-

Figure 6: Crystal output

ing terrorist activities in Latin America):
“A visitor from Colombia was hurt when two terrorists attempted

to kill the major”.
if visitor from Colombia is marked as victim two terrorist are

marked as perpetrators and major as victim.
Crystal generates 3 frame cases that represents the following pat-

terns:
If a text contains the expression “X was hurt” then the system

extracts “X” as the victim.
If a text contains the expression “X attempted to kill” then the

system extracts “X” as perpetrator.
If the text contains the expression “attempted to kill Y” then the

system extracts “Y” as the victim.
In recent years had been great interest in annotated-based tech-

niques for producing automatically dictionaries. The reason for this
is that automatic creation of conceptual dictionaries is important
factor for portability and scalability of an IE system.

Crystal has been tested on corpus of 300 KMi stories. Crystal
was able to induce a dictionary of CN definitions for each event in
KMi ontology.

5. EXTRACTION PHASE
A third component called Badger (from UMass) which was also

integrated into our IE component.
Badger makes the instantiation of templates. The main task of

badger is to take each sentence in the text (in our case a story writ-
ten in a e-mail message) and see if it matches any of our CN defini-
tions. If no extraction CN definition applies to a sentence, then no
information will be extracted; this means that irrelevant text can be
processed very quickly.

It might occurs that Badger obtains more than one type of event
for an story. Then our IE system decides to classify the story ac-

Visitor: V (class_person)

Has−location: P (class_place)

Has−duration:

Start−time: ST (class time_point)

 End−time: ET (class time_point)

D (class duration)

Verb: visited (active verb)

Figure 7: Concept node for the visiting event

cording with the following criteria: how many feature for each type
were encountered in the story.

Badger obtained a case frame instantiations for Place and Vis-
itor using conceptual nodes defined in the dictionary constructed
by Crystal. In the Badger’s output the following conventions were
used: the name of the slot appears in the left hand side of the arrow
and the value for the slot on the right hand side of the arrow. In
David Brown story, Badger instantiated Place to The OU and visi-
tor to David Brown. The type of event is obtained from the value
of Type and the document ID from docid.

The output shown in Figure 8 means that Badger had instantiated
(using the CN definitions and domain lexicon) to a frame of the
form:

Concept Node:
CN-type: visiting-a-place-or-people
Slots:
Visitor tag: VI
Start-time tag: ST
End-Time tag: ET
Place tag: PL
Research-group tag: GR

Date is not stated in the story. So Start-time and End-time are
instantiated to the date in which the story was written.

6. INFERENCE CAPABILITIES BY USING

AN ONTOLOGY
An example of an story belonging to the type of event conferring-

a-monetary-award is defined as follows. This example is described
in this paper because shows the inference capabilities which could
be obtained from using an IE component plus an ontology.

IBROW has been awarded 1 million Ecu from the Eu-
ropean Commission to carry out research in the area of
knowledge-based systems.

The output from Badger is shown as below.

Figure 8: Badger output

<cn>ID: 80 Type: conferring-a-monetary-award
docid = ibrow-story
sentence_num = 1
segment_num = 1
Funder ==> PP: FROM THE EUROPEAN COMMISSION
</cn>

<cn>ID: 106 Type: conferring-a-monetary-award
docid = ibrow-story
sentence_num = 1
segment_num = 1
Money ==> OBJ1: 1 MILLION ECU
</cn>

<cn>ID: 24 Type: conferring-a-monetary-award
docid = ibrow-story
sentence_num = 1
segment_num = 1
Project-Institution ==> SUBJ: IBROW
</cn>

In this last example, we need to use the KMi planet ontology to
find if Project-Institution is a institution name or a project name,
and this is done by a simple traversal of the inheritance links in
the ontology. Specifically, to remove ambiguity we sent a query to
Web-onto asking for the set of all educational-organizations using
the following query code.

web-onto display akt-kmi-planet-kb
ocml-eval(setofall ?x

(educational-organization ?x))

This gives a list containing all educational-organizations:

to give @(the-open-university
...
org-knowledge-media-institute)

IBROW does not match any of these, however, we also send a
query to Web-onto asking for the set of all kmi-projects:

web-onto display akt-kmi-planet-kb
ocml-eval(setofall ?x

(kmi-project ?x))

yielding

to give @(project-d3e
...
project-kmi-planet
...
project-ibrow
...
project-heronsgate-mars-buggy)

and hence a match of “IBROW” to project-ibrow
In a similar fashion a query is sent to webonto in order to find if

Funder is a valid funder body.

web-onto display akt-kmi-planet-kb
ocml-eval(setofall ?x

(awarding-body ?x))

to give @(...
org-european-commission
org-british-council)

At same time some semantic relations could be obtained by
using the KMi planet ontology. For our example about IBROW we
can derive the following semantic relations:

“ibrow is KMi project” and “KMi is part-of the Open-University”
The OCML query to derive that KMi is part of the open univer-

sity is as follows:

web-onto display akt-kmi-planet-kb

ocml-eval(setofall ?x
(organization-unit-part-of ?x

the-open-university))

to give @(knowledge-media-institute
acad-unit-department-of-earth-science
acad-unit-department-of-statistics-ou
acad-unit-faculty-of-maths-and-computing-ou
...
org-office-for-technology-development)

therefore we could conclude that:
“the Open-University has been awarded 1 million Ecu from the

European Commission”
In a future implementation we will be interested in finding more

complex relations by using our KMi Planet ontology.
Finally, we remark that OCML (the query language used by we-

bonto) has adopted the closed world assumption (CWA), in the
same fashion as Prolog, and so facts that are not provable are re-
garded as “false” as opposed to “unknown”.

7. OCML CODE GENERATED FROM OUR

SYSTEM
Our goal is to use the information obtained by Badger and KMi

ontology in order to be able to populate our KMi ontology with
new instances of classes. In order to accomplish this task we had
plugged another component which is a translator from Badger’s
output to OCML code. The main function of this translator is to
tokenise the Badger output and then find the CN definitions (cn
markers) and extract all the objects encountered in the story. The
name of each slot in the frame case corresponds to the name of the
field in the class definition and the value for the field is the extracted
information.

For the example David Brown’s story we end up with a visiting-
a-place-or-people event and produce the intermediate output:

(def-instance visit-of-david-brown-
the-chairman-of-the-university
visiting-a-place-people

((has-duration 1-day)
(start-time wed-15-oct-1997)
(end-time wed-15-oct-1997)
(has-location the-ou)
(visitor david-brown-the-
chairman-of-the-university)

)
)

where an instance of the type event visiting-a-place-or-people
has been defined with the name “visit-of-david-brown-the-chairman-
of-the-university”.

8. POPULATING THE ONTOLOGY
Building domain-specific ontologies often requires time-consuming

expensive manual construction. Therefore we envisage IE as a
technology that might help us during ontology maintenance pro-
cess. During the population step our IE system has to fill prede-
fined slots associated with each event, as already defined the on-
tology. Our goal is to automatically fill as many slots as possible.
However, some of the slots will probably still require manual inter-
vention. There are several reasons for this problem:

✄ there is information that is not stated in the story,

✄ none of our templates match with the sentence that might
provide the information (incomplete set of templates)

We note that there are some cases when the instances are not
defined in the ontology and then determining the type of an object is
not straightforward. This has to be derived from a proof. Currently,
we still looking to this aspect of our research.

Figure 9 shows the extracted information from David Brown
story.

Once the system had extracted the information the user will pre-
sented with all extracted information even the one that cannot be
categorized as belonging to a type of object defined in our domain.
Therefore, before populating the ontology we will require that a
person check/complete the extracted information.

9. CONCLUSIONS AND FUTURE DIREC

TIONS
We had built a tool which extracts knowledge using an ontology,

an IE component and OCML translator. Currently, our system had

Figure 9: Extracted information

been trained using the archive of 300 stories that we had collected
in KMi. 2 The training step was performed using typical examples
of stories belonging to each of the different type events defined in
the ontology. We obtained results over 95% using the IE compo-
nent in KMi stories. However, in the future we would like to use
the IE component in a different domain. We are interested in using
our system in companies project reports, Curriculum Vitae (CV’s),
or application of jobs.

Another possible direction that we would like to explore is to
incorporate into the IE component a different Machine Learning
algorithm such as described in [12]. in order to compare perfor-
mance between them.

As medium term goal, we would like to have access to a library
of IE methods and to activate these over a web page or a collection
of web pages.

Besides the above issues, Badger could be extended in order to
save its output in XML (Extensible Markup Language). This will
increase the portability of our IE system as XML is the universal
format for structured documents and data on the Web.

Finally, we would like to integrate our IE component with vi-
sualisation component. This visualisation component will allow
visualisation of all entities extracted.

10. ACKNOWLEDGMENTS
The research described in this paper is supported by (EPSRC)

under the project name: Advanced Knowledge Technologies (AKT).

11. REFERENCES
[1] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, K. Nigam T. Mitchell, and

S. Slattery. Learning to Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence, 1999.☎

URL:http://kmi.open.ac.uk/planet/

[2] M. Craven and J. Kumlien. Constructing Biological Knowledge Bases by
Extracting Information from Text Sources. In Proceedings of The 7th

International Conference on Intelligent Systems for Molecular Biology

(ISMB-99), 1999.

[3] J.B. Domingue. Tadzebao and WebOnto:Discussing, Browsing and Editing
Ontologies on the Web. In Proceedings of the Knowledge Acquisition

Workshop, 1998.

[4] J-U. Kietz, A. Maedche, and R. Volz. A method for semi-automatic ontology
acquisition from a corporate intranet. In Proceedings of the EKAW’00 Workshop

on Ontologies and Text, Juan-Les-Pins, France, oct 2000.

[5] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web agents. In
Proceedings of the First International Conference on Autonomous Agents,
pages 59–66. ACM, 1997.

[6] A. Maedche and S. Staab. Semi-automatic engineering of ontologies from texts.
In Proceedings of the 12th International Conference on Software Engineering

and Knowledge Engineering, SEKE2000, Chicago, IL, USA, pages 231–239, jul
2000.

[7] T. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

[8] E. Motta. Reusable Components for Knowledge Modelling. IOS Press,
Netherlands, 1999.

[9] D. Proux and Y. Chenevoy. Natural Language Processing for Book Storage:
Automatic Extraction of Information from Bibliographic Notices. In
Proceedings of The Natural Language Processing Pacific Rim Symposium

(NLPRS’97), pages 229–234, 1997.

[10] E. Riloff. An Empirical Study of Automated Dictionary Construction for
Information Extraction in Three Domains. AI Journal, 85:101–134, 1996.

[11] C. Roux, D. Proux, F. Rechenmann, and L. Julliard. An Ontology Enrichment
Method for a Pragmatic Information Extraction System gathering Data on
Genetic Interactions. In Proceedings of The 14th European Conference on

Artificial Intelligence (Workshop on Ontology Learning ECAI-2000), 2000.

[12] S. Soderland. Learning Information Extraction Rules for Semi-structured and
free Text. Machine Learning, 34:1–44, 1999.

[13] S. Soderland, D. Aronow, D. Fisher, J. Aseltine, and W. Lehnert. Machine
Learning of Text Analysis Rules for Clinical Records. Tr 39, Center for
Intelligent Information Retrieval, 1995.

[14] S. Staab, A. Maedche, and S. Handschuh. An annotation framework for the
semantic web. In Proceedings of the First Workshop on Multimedia Annotation,
2001.

