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Abstract
The ability of discarding or hiding irrelevant informationhas been recognized as an important

feature for knowledge based systems, including answer set programming. The notion of strong
equivalence in answer set programming plays an important role for different problems as it gives
rise to a substitution principle and amounts to knowledge equivalence of logic programs. In this
paper, we uniformly propose a semantic knowledge forgetting, calledHT- andFLP-forgetting, for
logic programs under stable model andFLP-stable model semantics, respectively. Our proposed
knowledge forgetting discards exactly the knowledge of a logic program which is relevant to for-
gotten variables. Thus it preserves strong equivalence in the sense that strongly equivalent logic
programs will remain strongly equivalent after forgettingthe same variables. We show that this
semantic forgetting result is always expressible; and we prove a representation theorem stating that
the HT- andFLP-forgetting can be precisely characterized by Zhang-Zhou’s four forgetting postu-
lates under theHT- andFLP-model semantics, respectively. We also reveal underlyingconnections
between the proposed forgetting and the forgetting of propositional logic, and provide complexity
results for decision problems in relation to the forgetting. An application of the proposed forgetting
is also considered in a conflict solving scenario.

1. Introduction

Motivated by Lin and Reiter’s seminal work (Lin & Reiter, 1994), the notion of forgetting in propo-
sitional and first-order logics – distilling from a knowledge base only the part that is relevant to
a subset of the alphabet – has attracted extensive interestsin the KR community, (e.g., see Lang
& Marquis, 2010; Zhou & Zhang, 2011). In recent years, researchers have developed forgetting
notions and theories in other non-classical logic systems from various perspectives, such as for-
getting in description logics (Kontchakov, Wolter, & Zakharyaschev, 2008; Wang, Wang, Topor, &
Pan, 2010; Lutz & Wolter, 2011; Packer, Gibbins, & Jennings,2011), forgetting in logic programs
(Zhang & Foo, 2006; Eiter & Wang, 2008; Wong, 2009; Wang, Wang, & Zhang, 2013), and forget-
ting in modal logic (Zhang & Zhou, 2009; Su, Sattar, Lv, & Zhang, 2009; van Ditmarsch, Herzig,
Lang, & Marquis, 2009; Liu & Wen, 2011). As a logical notion, forgetting has also been studied
under some different terms such as variable elimination (Lang, Liberatore, & Marquis, 2003), ir-
relevance, independence, irredundancy, novelty, or separability (Bobrow, Subramanian, Greiner, &
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Pearl, 1997). It has been shown that in the study of modeling agents’ behaviors, forgetting plays an
important role in conflict resolution (Zhang & Foo, 2006; Lang & Marquis, 2010).

In propositional logic, the result of forgetting an atomp from a formulaϕ, writtenForget(ϕ, {p}),
is the formulaϕ[p/⊥] ∨ ϕ[p/>], whereϕ[p/⊥] andϕ[p/>] is the formula obtained fromϕ by re-
placing each occurrence of atompwith⊥ (false) and> (true) respectively. Forgetting a set of atoms
from a formulaϕ is defined asForget(ϕ, V ∪ {p}) = Forget(Forget(ϕ, {p}), V ) (Lin, 2001). It is
easy to see that the forgetting preserves logical equivalence. That is, logically equivalent formulas
(theories) will remain logically equivalent after forgetting the same atoms. It is well known that, if
ψ does not mention any atoms fromV then

ϕ |= ψ iff Forget(ϕ, V ) |= ψ.

In this sense the forgetting in propositional logic, calledpropositional forgetting, is a knowledge
forgetting sinceForget(ϕ, V ) exactly contains the “logical content” ofϕ that is irrelevant toV .

For logic programs under stable model/answer set semantics(Gelfond & Lifschitz, 1988), the is-
sue of logical equivalence is rather complicated due to its different notions of “equivalence”: (weak)
equivalence and strong equivalence. Two logic programsΠ1 andΠ2 are(weakly) equivalentif and
only if Π1 andΠ2 have the same stable models;Π1 andΠ2 arestrongly equivalentif and only if
Π1 ∪Π andΠ2 ∪Π are equivalent for every logic programΠ. It is well known that strong equiva-
lence is an important concept in answer set programming (ASP), because it amounts toknowledge
equivalencewhich captures thelogical contentof a logic program (Osorio & Zacarias, 2004; Osorio
& Cuevas, 2007; Delgrande, Schaub, Tompits, & Woltran, 2013), and can be used for simplifying
logic programs where two strongly equivalent rules may be interchangeable without affecting the
original logic programs’ stable models (Pearce, Tompits, &Woltran, 2001; Ferraris, Lee, & Lifs-
chitz, 2011; Lin & Chen, 2007; Lin & Zhou, 2011). The strong equivalence can be characterized
in the logic here-and-there (HT), viz, two logic programs are strongly equivalent if and only if they
have the sameHT-models (Lifschitz, Pearce, & Valverde, 2001). For instance, a rule of the follow-
ing form “p← p∧ϕ” has the sameHT-models as that of> (tautology), whereϕ can be an arbitrary
formula. Thus it can be safely removed from every logic programs without changing their stable
models.

Besides the stable model/answer set semantics of logic programs (Gelfond & Lifschitz, 1988),
FLP-stable model semantics also steadily gains its importance(Faber, Pfeifer, & Leone, 2011;
Truszczynski, 2010). The notion of strong equivalence is similarly generalized to logic programs
underFLP-stable models semantics: two theoriesΠ1 andΠ2 arestronglyFLP-equivalentif and only
if Π1 ∪Π andΠ2 ∪Π have the sameFLP-stable models for every logic programΠ. It is shown that
this strong equivalence can be characterized in terms ofFLP-models, viz, two logic programs are
stronglyFLP-equivalent if and only if they have the sameFLP-models (Truszczynski, 2010).

When we develop the notion of forgetting in logic programs, preserving strong equivalence is
important, like that the propositional forgetting preserves equivalence of propositional logic. Con-
sider that two agents need to achieve an agreement for a certain goal, where each agent’s knowledge
base is represented by a logic program. Suppose that there are two consistent1 logic programs, but
their combination is inconsistent. To achieve a consistentcombination, one may forget some atoms
from each of the logic programs, so that the combination of their forgetting results is consistent.
Then forgetting may be effectively used to solve the conflictbetween the two agents’ knowledge

1. A logic program isconsistentif it has some stable models.
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bases (Zhang & Foo, 2006; Eiter & Wang, 2008; Lang & Marquis, 2010). For the purpose of sim-
plicity, on the other hand, agents may also replace their knowledge bases with strongly equivalent
but syntactically simpler ones.

Let us consider a simple Yale Shooting scenario where the logic programΠ consisting of the
following rules:2

shoot← not aux; aux← not shoot; ← aux, shoot.

Hereaux is used to generate possible occurrences of actionshoot. One can be interested in which
logic program represents the same knowledge as that ofΠ when the auxiliary atomaux is ignored.
This intuitively results in a logic programΠ′ consisting of the rule3:

shoot← not not shoot,

which captures exactly the knowledge ofΠ that is irrelevant toaux. We will see thatΠ′ can be
obtained fromΠ by HT-forgettingaux (cf. Example 5 with other atom names), while it cannot be
obtained in terms of previous forgetting approaches in logic programming (cf. Example 11).

It turns out that preserving strong equivalence in forgetting is challenging. There have been
several attempts to define the notion of forgetting in logic programs, but none of these approaches
is fully satisfactory. Zhang and Foo (2006) first defined syntax oriented weak and strong forgetting
notions for normal logic programs. But these forgetting notions preserve neither (weak) equivalence
nor strong equivalence. Eiter and Wang (2008) then proposeda semantic forgetting for consistent
disjunctive logic programs, which preserves equivalence but not strong equivalence. They specif-
ically indicated the importance of preserving strong equivalence in logic programming forgetting
and raised this issue as a future work. Wong (2009) proposed two forgetting operators for disjunc-
tive logic programs. Although the two operators indeed preserve strong equivalence, it may lose the
intuition of weakening under various circumstances (see Section 5 for details). A recently proposed
forgetting for logic programs may introduce extra knowledge (cf., see Wang et al., 2013, Ex. 2).
Thus it is not a knowledge forgetting.

Together with preserving strong equivalence, expressiveness is another desired criterion for
logic programming forgetting. Ideally we would expect thatthe result of forgetting some atoms
from a logic program is still expressible by a logic program.This is particularly necessary when we
view agents’ knowledge bases as logic programs and forgetting is employed as a means of conflict
solving among these agents’ knowledge bases (Zhang & Foo, 2006). While previous logic program-
ming forgetting approaches all meet this criterion, as we will see in this paper, once we consider
forgetting in arbitrary logic programs, retaining expressibility is challenging objective to achieve for
a semantic forgetting notion.

Finally, we believe that as a way of weakening, knowledge forgetting in logic programs should
obey some common intuitions shared by forgetting in classical logics. For instance, forgetting
something from a logic program should lead to a weaker program in certain sense. On the other
hand, such weakening should only be associated to the relevant information that has been forgotten.
For this purpose, Zhang and Zhou (2009) proposed four forgetting postulates to formalize these
common intuitions and showed that forgetting in propositional logic and modal logic S5 can be
precisely captured by these postulates. Surprisingly, none of previous forgetting notions in logic

2. This is due to one of the anonymous reviewers.
3. The rule is strongly equivalent to the choice rule “0{shoot}1” but it is not a normal rule.
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programs actually satisfies Zhang-Zhou’s postulates. In this sense these previous forgetting notions
for logic programs are not knowledge forgetting operators.

In summary, we consider the following criteria that a knowledge forgetting notion in logic pro-
grams should meet:

• Expressibility. The result of forgetting in an arbitrary logic program should also be express-
ible via a logic program;

• Preserving strong equivalence. Two strongly equivalent logic programs should remain strongly
equivalent after forgetting the same variables;

• Satisfying common intuitions of forgetting. Preferably, forgetting in logic programs should
be semantically characterized by Zhang-Zhou’s four forgetting postulates.

In this paper we present a comprehensive study on knowledge forgetting in the context of arbi-
trary logic programs (propositional theories) under stable model andFLP-stable models semantics,
calledHT- andFLP-forgettingrespectively. We show that theHT- andFLP-forgetting meet all above
criteria, and hence have primary advantages when compared to previous logic program forgetting
notions.

The main contributions of the paper may be summarized as follows, where? ∈ {HT, FLP},

- As a starting point, we investigate the model theoretical characterization for strong equiva-
lence of logic programs under stable model andFLP-stable model semantics, and explore their
strong equivalence by the equivalence in propositional logic.

- We propose a semantic?-forgetting for logic programs under?-stable model semantics re-
spectively. HereHT-stable model means stable model. The?-forgetting result is always
expressible via a logic program and it preserves strong equivalence under stable model and
FLP-stable model semantics.

- We investigate semantic properties of the?-forgetting, and show that the?-forgetting satisfies
Zhang-Zhou’s four postulates under the?-model respectively. In particular, the forgetting
result consists of the logical content that is irrelevant toforgotten atoms.

- We establish the underlying connections between?-forgetting and propositional forgetting,
based on which we provide complexity results for some decision problems in relation to?-
forgetting. In particular, we show that resulting checking– deciding if a logic program is a
result of?-forgetting a set of atoms from a logic program – isΠP

2 -complete, while the related
inference problem in terms of?-forgetting varies from co-NP-complete toΠP

2 -complete.

The theoretical negative results confirm that it is not a easytask to simplify logic programs
by forgetting. But fortunately, this kind of simplificationcan be computed offline in general.
For instance, a problem domain description involves a lot ofauxiliary propositional variables.
One can firstly simplify the description by forgetting (partof) the auxiliary propositional
variables, like a kind of compilation (Lang et al., 2003).

- Finally we consider an application of knowledge forgetting in the solving of conflicts in the
context of logic programming.
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The rest of the paper is organized as follows. Section 2 briefly reviews necessary concepts and
notions of answer set programming. Section 3 presents the characterizations for strong equivalence
of logic programs. We firstly present a uniform definition of the knowledge forgetting for logic
programs in section 4, and then explore their expressibility, forgetting postulates, relationship with
propositional forgetting, computational complexity and an application of knowledge forgetting in
conflict solving. Section 5 discusses other forgetting approaches in logic programs, and finally,
Section 6 concludes the paper with some remarks. All the proofs in the paper are deferred to
Appendix for clarity.

This paper is the revised and extended version of a paper which appeared in Proceedings of KR
2012 (Wang, Zhang, Zhou, & Zhang, 2012).

2. Answer Set Programming

In this section we briefly recall the basic notions of logic programming under stable model seman-
tics, including its syntax, reduction, stable model (Ferraris, 2005) andFLP-stable models (Truszczyn-
ski, 2010) and strong equivalence (Lifschitz et al., 2001; Truszczynski, 2010). In the paper a “stable
model” is called anHT-stable model for convenience, and we assume? ∈ {HT, FLP}.

We assume a propositional languageLA over the finite setA of propositional atoms, which is
called thesignatureof the languageLA.

2.1 Syntax

The formulasof LA are built from the signature4 A and the 0-place connective⊥ (“ false”) using
the binary connectives∧,∨ and⊃ as follows:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

wherep ∈ A. > (“ true”) is the shorthand of⊥ ⊃ ⊥,¬ϕ for ϕ ⊃ ⊥, andψ ↔ φ for (ψ ⊃ φ)∧(φ ⊃
ψ). A theoryis a set of formulas.

An interpretationis a setI of atoms fromA, where each atom ofA is viewed to be true if it is in
I, and false otherwise. In propositional logic, the notions of modelandsatisfactionrelation |= are
defined as usual. In the following we denoteA \X byX for X ⊆ A, Mod(ϕ) for {M |M |= ϕ},
ϕ ≡ ψ for Mod(ϕ) = Mod(ψ) (i.e. ϕ is equivalentto ψ) andM for {I ⊆ A|I /∈ M} where
M⊆ 2A. A formulaϕ is irrelevant toa setV of atoms, writtenIR(ϕ, V ), if there exists a formula
ψ mentioning no atoms fromV such thatϕ ≡ ψ.

For convenience, we also define the following notations. LetS be a finite set of formulas.
We denote

∨

S (resp.
∧

S) the disjunction (resp. conjunction) of all formulas inS, where
∨

∅
denotes⊥ and

∧

∅ denotes>, and|S| the cardinality ofS. Similarly by¬S (resp.¬¬S) we mean
{¬φ | φ ∈ S} (resp.{¬¬φ | φ ∈ S}).

2.2 Reduct and Stable Models

Letϕ be a formula andX ⊆ A. The?-reductof ϕ w.r.t.X, writtenRed?(ϕ,X), is recursively and
uniformly defined as follows:

4. In the rest of this paper, whenever there is no confusion, we may not explicitly mention the signature when we talk
about formulas ofLA.

35



WANG, ZHANG, ZHOU, & Z HANG

(?-R1) Red?(⊥,X) = ⊥;

(?-R2) Red?(p,X) = p if X |= p, and⊥ otherwise;

(?-R3) Red?(ϕ1 ◦ ϕ2,X) = Red?(ϕ1,X) ◦ Red?(ϕ2,X) if X |= ϕ1 ◦ ϕ2 where◦ ∈ {∧,∨}, and
⊥ otherwise;

(HT-R4) RedHT(ϕ1 ⊃ ϕ2,X) = RedHT(ϕ1,X) ⊃ RedHT(ϕ2,X) if X |= ϕ1 ⊃ ϕ2, and⊥ otherwise;

(FLP-R4) RedFLP(ϕ1 ⊃ ϕ2,X) =







ϕ1 ⊃ RedFLP(ϕ2,X), if X |= ϕ1 ∧ ϕ2;
>, if X 6|= ϕ1;
⊥, otherwise (i.e.X 6|= ϕ1 ⊃ ϕ2).

Definition 1 A setX ⊆ A is a?-stable modelof a formulaϕ if X is a minimal (under set inclusion)
model ofRed?(ϕ,X). We denote the set of?-stable models ofϕ by SM?(ϕ).

Please note that, traditionally, theHT-reduct is named “reduct”;RedHT(ϕ,X) is written as “ϕX ”;
HT-stable model is called “stable model” (Ferraris, 2005); and RedFLP(ϕ,X) is written as “ϕX ”
(Truszczynski, 2010).

It is known that,HT-stable models andFLP-stable models are not comparable in the sense that
someHT-stable models are notFLP-stable models, and someFLP-stable models are notHT-stable
models (cf., see Truszczynski, 2010, Exs. 1, 2, 4 and 5).

Example 1 Let us consider the following formulas:

• Letϕ = p ∨ ¬p ⊃ p. We have that

RedHT(ϕ, ∅) ≡ ⊥,RedHT(ϕ, {p}) ≡ >,RedFLP(ϕ, ∅) ≡ ⊥,RedHT(ϕ, {p}) ≡ p.

ThusSMHT(ϕ) = ∅, while SMFLP(ϕ) = {{p}}.

• Letϕ1 = p ∨ ¬p andϕ2 = ¬¬p ⊃ p. We have the following:

RedHT(ϕi, ∅) ≡ > andRedHT(ϕi, {p}) ≡ p, for i = 1, 2,

RedFLP(ϕ1, ∅) ≡ >,RedFLP(ϕ1, {p}) ≡ p,RedFLP(ϕ2, ∅) ≡ >,RedFLP(ϕ2, {p}) ≡ >.

Thus, whileSMFLP(ϕ1) = SMHT(ϕ1) = {∅, {p}}, SMFLP(ϕ2) = {∅}.

Definition 2 Two formulasϕ1 andϕ2 are?-SM-equivalent (under?-stable model semantics), writ-
tenϕ1 ≡

SM
? ϕ2, iff they have the same?-stable models.

Here the notion ofHT-SM-equivalence is indeed the notion of equivalence in logic programs
under stable model semantics (cf., see Lifschitz et al., 2001, Thm. 1).
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2.3 Strong Equivalence and Knowledge of Logic Programs

Unlike the equivalence in propositional logic, the equivalence of logic programs does not allow
equivalent replacement i.e.,ϕ ∧ ϕ1 andϕ ∧ ϕ2 may have different stable models, even thoughϕ1

andϕ2 are equivalent.

Example 2 Let ϕ1 = p ⊃ q andϕ2 = p ⊃ p. As SM?(ϕ1) = SM?(ϕ2) = {∅}, ϕ1 andϕ2 are
?-SM-equivalent; however,p ∧ ϕ1 has a?-stable model{p, q} while the unique?-stable model of
p ∧ ϕ2 is {p}. Thus it does not allow replacingϕ1 by ϕ2 in p ∧ ϕ1. It also indicates thatϕ1 has
different “knowledge” fromϕ2 under the?-stable model semantics.

This motivates the notion of strong equivalence.

Definition 3 Two formulasϕ1 andϕ2 are strongly?-equivalent (under?-stable model semantics)
iff ϕ ∧ ϕ1 ≡

SM
? ϕ ∧ ϕ2 for every formulaϕ. In the caseϕ1 andϕ2 are strongly?-equivalent, they

are?-knowledge equivalent.

It is known that the notion of strong?-equivalence can be captured in terms of?-models, where
a ?-interpretation is a pair〈X,Y 〉 such thatX ⊆ Y ⊆ A. The ?-satisfiability (thus?-models),
denoted by|=?, is recursively defined as follows:

(?-S1) 〈X,Y 〉 6|=? ⊥;

(?-S2) 〈X,Y 〉 |=? p if p ∈ X;

(?-S3) 〈X,Y 〉 |=? ϕ1 ∨ ϕ2 if 〈X,Y 〉 |=? ϕ1 or 〈X,Y 〉 |=? ϕ2;

(?-S4) 〈X,Y 〉 |=? ϕ1 ∧ ϕ2 if 〈X,Y 〉 |=? ϕ1 and〈X,Y 〉 |=? ϕ2;

(HT-S5) 〈X,Y 〉 |=HT ϕ1 ⊃ ϕ2 if Y |= ϕ1 ⊃ ϕ2; and〈X,Y 〉 |=HT ϕ1 implies〈X,Y 〉 |=HT ϕ2;

(FLP-S5) 〈X,Y 〉 |=FLP ϕ1 ⊃ ϕ2 if Y |= ϕ1 ⊃ ϕ2; andY 6|= ϕ1 orX 6|= ϕ1 or 〈X,Y 〉 |=FLP ϕ2.

By Mod?(ϕ) we denote the set of all?-models of formulaϕ. Please note here that,? can be
eitherHT or FLP. In particular,ModHT(ϕ) (resp.ModFLP(ϕ)) denotes the set of allHT-models (resp.
FLP-models) ofϕ. For the formulasϕ1 andϕ2 in Example 2, one can check that none of〈∅, {p}〉,
〈{p}, {p}〉 or 〈{p}, {p, q}〉 is a?-model ofϕ1, while every?-interpretation is a?-model ofϕ2.

Definition 4 A formulaψ is a logical?-consequenceof a formulaϕ, writtenϕ |=? ψ, iff Mod?(ϕ) ⊆
Mod?(ψ); two formulasϕ andψ are ?-equivalent (under?-model semantics), writtenϕ ≡? ψ, iff
Mod?(ϕ) = Mod?(ψ).

In the following proposition, item (i) is proved by Lifschitz, Tang, and Turner (cf., see Lifschitz
et al., 1999, (iii) of Prop. 6).

Proposition 1 LetA,B,C,D be set of atoms. We have the following

(i)
∧

(A ∪ ¬B) ⊃
∨

(D ∪ ¬C) ≡HT

∧

(A ∪ ¬B ∪ ¬¬C) ⊃
∨

D.

(ii)
∧

(A ∪ ¬B) ⊃
∨

(D ∪ ¬C) |=FLP

∧

(A ∪ ¬B ∪ ¬¬C) ⊃
∨

D.
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Please note here that the inverse of (ii) does not generally hold. For instance,¬¬p ⊃ p ≡FLP >
while 〈∅, {p}〉 6|=FLP p ∨ ¬p.

Given two formulasϕ1 andϕ2, it is known thatϕ1 andϕ2 are stronglyHT-equivalent under
HT-stable model semantics if and only if they areHT-equivalent, viz.ϕ1 ≡HT ϕ2; ϕ1 andϕ2 are
strongly FLP-equivalent underFLP-stable model semantics if and only if they areFLP-equivalent,
viz. ϕ1 ≡FLP ϕ2 (cf., see Truszczynski, 2010, Thm. 7). It is commonly recognized that strong
equivalence amounts toknowledge equivalenceof formulas. That is, strong?-equivalence captures
the logical content of a formula under?-stable model semantics (Osorio & Zacarias, 2004; Osorio
& Cuevas, 2007; Delgrande et al., 2013). Now we formally define the knowledge of logic programs.

Definition 5 The?-knowledgeof a formulaϕ under?-stable model semantics, writtenCn?(ϕ),
consists of the logical?-consequence ofϕ, viz,Cn?(ϕ) = {ψ | ϕ |=? ψ}.

The ?-knowledge of a formula stands for the?-logical contentof the formula. For instance,
CnHT(>) = CnHT(p ⊃ p) ⊂ CnHT(p ⊃ q).

Recall that, under?-model semantics, every formula can be transformed into a conjunction of
formulas in the following normal form:

∧

(B ∪ ¬C) ⊃
∨

(A ∪ ¬D) (2)

whereA,B,C,D are sets of atoms (cf., for? = HT, see Cabalar & Ferraris, 2007, Thm. 2;
Truszczynski, 2010, Thm. 9 for? = FLP). That is, for every formulaϕ, there is a conjunction
of formulas in the form (2) which is strongly?-equivalent toϕ.

A formula of the form (2) is called arule, which is also generally written as

a1; . . . ; al;not d1; . . . ;not dn ← b1, . . . , bk, not c1, . . . , not cm (3)

whereA = {ai|1 ≤ i ≤ l}, B = {bi|1 ≤ i ≤ k}, C = {ci|1 ≤ i ≤ m} andD = {di|1 ≤ i ≤ n}.
A logic programis a finite set of rules. Letr be a rule of the form (2). It is said to be

• disjunctiveif D = ∅;

• positiveif C = D = ∅;

• normal if |A| ≤ 1 andD = ∅; and

• Horn if |A| ≤ 1 andC = D = ∅.

A logic program isdisjunctive(resp. positive, normal, andHorn) iff it consists of disjunctive
(resp. positive, normal, Horn) rules. A logic program is?-consistent (under?-stable model seman-
tics) if it has at least one?-stable model.

It is known that every logic program has the sameHT-models andFLP-models (cf., see Truszczyn-
ski, 2010, Prop. 8).

Proposition 2 Every logic program has the sameHT- and FLP-models.

3. Characterizations of Knowledge Equivalence

In the section, from the perspective of?-models, we consider the characterization for knowledge
equivalence of various logic programs firstly, and relate the knowledge equivalence to the equiva-
lence of propositional logic secondly.
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3.1 Model Theoretical Characterization

We firstly recall some basic properties of the?-satisfiability (Ferraris & Lifschitz, 2005; Ferraris,
2005; Truszczynski, 2010).

Proposition 3 Letϕ be a formula andX ⊆ Y ⊆ A.

(i) If 〈X,Y 〉 |=? ϕ then〈Y, Y 〉 |=? ϕ (i.e.,Y |= ϕ).

(ii) 〈X,Y 〉 |=? ¬ϕ iff Y |= ¬ϕ.

(iii) 〈X,Y 〉 |=? ϕ iff X |= Red?(ϕ, Y ).

A collectionM of ?-interpretations is?-expressiblewhenever there exists a formulaϕ such that
Mod?(ϕ) =M. A collectionM of ?-interpretations may be not?-expressible. For instance, there
is no formula whose?-models are the ones inM = {〈∅, {p}〉}. The reason is that if there is a
formulaϕ such thatMod?(ϕ) = M then we have〈{p}, {p}〉 |=? ϕ by (i) of Proposition 3. This
requires〈{p}, {p}〉 belonging toMod?(ϕ), a contradiction.

Given a formulaϕ andX ⊂ Y ⊆ A, 〈X,Y 〉 is a ?-countermodelof ϕ if 〈X,Y 〉 6|=? ϕ and
〈Y, Y 〉 |=? ϕ; 〈Y, Y 〉 is a?-countermodelof ϕ if 〈Y, Y 〉 6|=? ϕ. LetX ⊂ Y ⊆ A, we define the
following formulas:

λHT(X,Y ) =
∧

(X ∪ ¬Y ) ⊃
∨

((Y \X) ∪ ¬(Y \X)), (4)

λFLP(X,Y ) =
∧

(X ∪ ¬Y ) ⊃
∨

(X ∪ ¬Y ), (5)

λ(Y, Y ) =
∧

(Y ∪ ¬Y ) ⊃ ⊥, (6)

ξ(X,Y ) =
∧

(X ∪ ¬Y ) ⊃
∨

(Y \X). (7)

Hereλ?(X,Y ) andλ(Y, Y ) is to capture the?-countermodel〈X,Y 〉 and〈Y, Y 〉 respectively.
The following lemma shows that the?-countermodel can be captured by a formula (cf., for

? = HT, see Cabalar & Ferraris, 2007, Prop. 1; Truszczynski, 2010,Props. 5 and 6 for? = FLP).

Lemma 1 LetX ⊂ Y ⊆ A andU ⊆ V ⊆ A.

(i) 〈U, V 〉 is a?-countermodel ofλ?(X,Y ) iff U = X andV = Y .

(ii) 〈U, V 〉 is a?-countermodel ofλ(Y, Y ) iff V = Y .

Proposition 4 A collectionM of ?-interpretations is?-expressible iff

〈X,Y 〉 ∈ M implies〈Y, Y 〉 ∈ M. (8)

Actually, ifM satisfy condition (8) then the following logic program

Π? = {λ?(X,Y )|〈X,Y 〉 /∈ M and〈Y, Y 〉 ∈ M} ∪ {λ(Y, Y )|〈Y, Y 〉 /∈ M}

capturesM in the sense thatMod?(Π?) =M.
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Note that Wong (2009) presented a model-theoretical characterization for theHT-models of
disjunctive logic programs (cf., see Wong, 2009, Thm. 2.7).Formally speaking, a collectionM of
HT-interpretations isdisjunctivelyHT-expressible, i.e., there is a disjunctive logic programΠ such
thatModHT(Π) =M, iff the condition (8) and the following one hold:

if 〈X,Y 〉 ∈ M, Y ⊆ Y ′ and〈Y ′, Y ′〉 ∈ M then〈X,Y ′〉 ∈ M. (9)

Together with Proposition 2, we have

Corollary 1 A collectionM of FLP-interpretations is disjunctivelyFLP-expressible iff the condi-
tions (8) and (9) hold.

Actually, ifM satisfies the conditions (8) and (9) then the following disjunctive logic program
capturesM.

Π = {ξ(X,Y )|〈X,Y 〉 /∈ M and〈Y, Y 〉 ∈ M} ∪ {λ(Y, Y )|〈Y, Y 〉 /∈ M}.

Lemma 2 LetA,B be two sets of atoms, andX ⊆ Y ⊆ A. 〈X,Y 〉 |=?

∧

B ⊃
∨

A iff X |=
∧

B ⊃
∨

A andY |=
∧

B ⊃
∨

A.

Proposition 5 A setM of ?-interpretations ispositively?-expressible, i.e., there is a positive logic
programΠ s.tMod?(Π) =M, iffM satisfies the criteria:

〈X,Y 〉 ∈ M iff X ⊆ Y, 〈X,X〉 ∈ M and〈Y, Y 〉 ∈ M. (10)

As a matter of fact, in the caseM satisfies the condition (10), the positive logic programΠ =
{
∧

X ⊃
∨

X|〈X,X〉 /∈ M} capturesM.

Corollary 2 Two positive logic programs are strongly?-equivalent if and only if they are equivalent
in propositional logic.

Eiter, Fink, Tompits, and Woltran (2004) have showed that a disjunctive logic programΠ is
strongly equivalent to a normal logic program if and only ifΠ is closed under here-intersection, i.e.,
for every pair ofHT-models〈X,Y 〉 and〈X ′, Y 〉 of Π, 〈X ∩X ′, Y 〉 is also anHT-model ofΠ (cf.,
see Eiter et al., 2004, Thms. 1 and 2). In terms of the characterization of disjunctive logic programs
and Proposition 2, we obtain a?-model characterization for normal logic programs as follows.

Corollary 3 A setM of ?-interpretations isnormally ?-expressible, i.e., there is a normal logic
programΠ such thatMod?(Π) = M, iff M satisfies, in addition to (8) and (9), the following
criteria:

if 〈X,Y 〉 ∈ M and〈X ′, Y 〉 ∈ M then〈X ∩X ′, Y 〉 ∈ M. (11)

Proposition 6 A collectionM of ?-interpretations isHorn?-expressible, i.e., there is a Horn logic
programΠ such thatMod?(Π) =M, iffM satisfies, in addition to (10), the following criteria:

〈X,Y 〉 ∈ M and〈H,T 〉 ∈ M⇒ 〈X ∩H,Y ∩ T 〉 ∈ M. (12)
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3.2 Relating Knowledge Equivalence to Propositional Logic

It is proved that strong equivalence of logic programs understable model semantics can be related
to the equivalence in propositional logic (Pearce et al., 2001; Lin, 2002). This holds for the strong
FLP-equivalence of logic programs as we will show in the following.

Firstly, we extend the languageLA to LA∪A′ whereA′ = {p′|p ∈ A} andp′s are fresh atoms.
For each expressionα of LA, byα′ we denote the result obtained fromα by replacing each atomp
fromA by the corresponding atomp′ in A′. In the following we denote

∆(A) = {p ⊃ p′ | p ∈ A}. (13)

Please note that, for each modelM of ∆(A),M has a splittingMA andMA′ whereMA =M ∩A
andMA′ = M ∩ A′ and, for everyp ∈ MA, the atomp′ of A′ belongs toMA′ . ForM ⊆ A′ we
denote byM∗ the set{p ∈ A|p′ ∈M}.

Definition 6 τHT[.] andτFLP[.] are recursively defined as follows:

(T1) τ?[⊥] = ⊥;

(T2) τ?[p] = p;

(T3) τ?[ϕ1 ◦ ϕ2] = τ?[ϕ1] ◦ τ?[ϕ2] where◦ ∈ {∧,∨};

(HT-T4) τHT[ϕ1 ⊃ ϕ2] = (ϕ′
1 ⊃ ϕ

′
2) ∧ (τHT[ϕ1] ⊃ τHT[ϕ2]);

(FLP-T4) τFLP[ϕ1 ⊃ ϕ2] = (ϕ′
1 ⊃ ϕ

′
2) ∧ (ϕ1 ∧ ϕ

′
1 ⊃ τFLP[ϕ2]).

Please note that the translationτHT is same to the translationτ defined by Pearce, Tompits, and
Woltran (2001). One can verify thatτHT[¬ϕ] = ¬ϕ

′ ∧ ¬τHT[ϕ], while τFLP[¬ϕ] = ¬ϕ
′. Given a

theoryΣ of LA, we defineτ?[Σ] = {τ?[ϕ] | ϕ ∈ Σ}. It is evident thatτ?[Σ] is in linear size ofΣ.

Example 3 Letϕ = p ∨ ¬p ⊃ p. We have that

τHT[ϕ] = ((p′ ∨ ¬p′) ⊃ p′) ∧ ((p ∨ ¬p ∧ ¬p′) ⊃ p) ≡ p′,

τFLP[ϕ] = ((p′ ∨ ¬p′) ⊃ p′) ∧ ((p ∨ ¬p) ∧ (p′ ∨ ¬p′) ⊃ p) ≡ p′ ∧ p.

The uniqueFLP-model (over the signature{p}) of ϕ is 〈{p}, {p}〉. However,ϕ has twoHT-models
〈∅, {p}〉 and〈{p}, {p}〉. Over the signature{p, p′}, one can easily check that{τHT[ϕ]} ∪∆(A) has
two models{p, p′} and{p′}, while {τFLP[ϕ]} ∪∆(A) has a unique model{p, p′}.

Proposition 7 Letϕ =
∧

(B ∪ ¬C) ⊃
∨

(A ∪ ¬D), whereA,B,C,D are subsets ofA. Then we
have∆(A) |= τFLP[ϕ]↔ τHT[ϕ].

The following proposition connects the?-equivalence with the equivalence in classical proposi-
tional logic (cf., for? = HT, see Pearce et al., 2001, Lem. 2).

Proposition 8 Let ϕ be a formula ofLA andX ⊆ Y ⊆ A. Then〈X,Y 〉 is a ?-model ofϕ iff
X ∪ Y ′ is a model of∆(A) ∪ {τ?[ϕ]}.
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The following theorem shows that the strong?-equivalence of logic programs under?-stable
model semantics can be reduced to the equivalence in propositional logic (cf., for ? = HT, see
Ferraris et al., 2011, Thm. 9; or Lin & Zhou, 2011, (5) of Thm. 6).

Theorem 4 Two formulasϕ andψ have the same?-models (overA) iff ∆(A)∪{τ?[ϕ]} and∆(A)∪
{τ?[ψ]} have the same models (overA ∪A′).

Based on the theorem, we obtain the following complexity result (cf., for ? = HT, see Pearce,
Tompits, & Woltran, 2009, Thms. 8 and 11).

Proposition 9 (i) The problem of deciding if a formula is?-satisfiable isNP-complete.
(ii) The problem of deciding if two formulas are?-equivalent isco-NP-complete.

4. Knowledge Forgetting in Logic Programs

As mentioned in the introduction, we concentrate on the knowledge forgetting of logic programs
under stable model semantics. It is formally stated as following:

Definition 7 (Knowledge forgetting) LetΠ be a logic program andV ⊆ A. A logic programΣ is
a result of?-knowledge forgettingV from Π, if and only ifΣ consists of the?-knowledge ofΠ that
mentions no atom fromV .

We will show that such a knowledge forgetting result always exists and it is unique up to strong
equivalence (cf. Theorem 6) after a semantic?-forgetting is defined and explored.

LetV,X, Y be sets of atoms. The setY isV -bisimilar toX, writtenY ∼V X, if Y \V = X\V .
It intuitively states that the interpretationsX andY agree with each other on those atoms not inV .
Two ?-interpretations〈H,T 〉 and〈X,Y 〉 areV -bisimilar, written 〈H,T 〉 ∼V 〈X,Y 〉, if H ∼V X
andT ∼V Y . Now, we are in the position to define the semantic knowledge forgetting in terms of
bisimulation.

Definition 8 (Semantic knowledge forgetting)Letϕ be a formula andV ⊆ A. A formulaψ is a
result of (semantic)?-forgettingV from ϕ whenever, for every?-interpretationM ,

M ∈ Mod?(ψ) iff ∃M ′ ∈ Mod?(ϕ) s.t M ∼V M ′. (14)

According the definition, one can see that the?-models ofψ can somehow exactly constructed from
those ofψ. This motivates us to define the following notion of extension.

Let V,X, Y be sets of atoms. TheV -extensionof X, denoted byX†V , is the collection of
interpretations that areV -bisimilar toX. TheV -extensionof a ?-interpretation〈H,T 〉, denoted
by 〈H,T 〉†V , is the collection of?-interpretations that areV -similar to 〈H,T 〉. For instance, let
〈H,T 〉 = 〈{p, q}, {p, q}〉 andV = {q, r}. Then 〈H,T 〉†V contains〈{p}, {p}〉, 〈{p}, {p, q}〉,
〈{p}, {p, q, r}〉, 〈{p, q, r}, {p, q, r}〉 and so on. Intuitively speaking, theV -extension of an inter-
pretationM is the collection of interpretations formed fromM by freely adding or removing some
atoms inV . TheV -extensionof a collectionM of (?-)interpretations, writtenM†V , is the collec-
tion

⋃

β∈M β†V .
In classical propositional logic ifM corresponds to a formulaϕ, i.e.M = Mod(ϕ), thenM†V

corresponds to a formula whose truth value has nothing to do with the atoms inV . The intended
meaning in the case of?-models is similar whenM†V corresponds to a formula under?-model
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semantics that is relevant to only the atoms not inV . In other words, supposeM†V = Mod?(ϕ).
If 〈X,Y 〉 |=? ϕ then 〈H,T 〉 |=? ϕ whereH (resp. T ) is obtained fromX (resp. Y ) by freely
adding or removing any atoms inV wheneverH ⊆ T . The following lemma shows an equivalent
condition for the semantic?-knowledge forgetting.

Lemma 3 Letϕ be a formula andV ⊆ A. A formulaψ is a result of?-forgettingV from ϕ, iff the
following condition holds:

Mod?(ψ) = Mod?(ϕ)†V . (15)

This condition of?-forgetting is a generalization of the forgetting in propositional logic (Lin &
Reiter, 1994) in terms of the following corollary.

Corollary 5 A formulaψ is a result of forgetting a setV of atoms in a formulaϕ iff Mod(ψ) =
Mod(ϕ)†V , whereMod(.) refers to classical propositional logic.

A syntactic counterpart of the forgetting in propositionallogic is defined as follows (Lin, 2001;
Lang et al., 2003):

Forget(ϕ, {p}) = ϕ[p/⊥] ∨ ϕ[p/>],

Forget(ϕ, V ∪ {p}) = Forget(Forget(ϕ, {p}), V )

whereϕ[p/>] (resp.ϕ[p/⊥]) is the formula obtained fromϕ by replacing every occurrence of the
atomp with > (resp.⊥).

As ?-interpretations are related to the given signatureA, in what follows, we shall assume that
the signature of a formula/theory is implicitly given by theatoms occurring in the formula/theory,
unless explicitly stated otherwise. The example below illustrates how?-forgetting results can be
computed.

Example 4 Letϕ be the following formula

(p ⊃ q) ∧ (q ⊃ p) ∧ (¬p ⊃ ⊥) ∧ (¬q ⊃ ⊥).

Over the signature{p, q}, we haveMod?(ϕ) = {〈∅, {p, q}〉, 〈{p, q}, {p, q}〉}. Please note here
that ? can be eitherHT or FLP. Then from Definition 8, we can verify thatMod?(ϕ)†{p} =
{〈∅, {q}〉, 〈{q}, {q}〉}†{p} . It corresponds to the formulaψ = (p∧¬q ⊃ ⊥)∧(¬p∧¬q) ⊃ ⊥ under
the?-model semantics by Proposition 4. As a matter of fact, we haveψ ≡? ¬q ⊃ ⊥ ≡? ¬¬q.

Note thatForget(ϕ, {p}) = ϕ[p/>] ∨ ϕ[p/⊥] ≡ q and¬¬q 6≡? q. It shows that, unlike the
syntactic counterpart of the forgetting in classical propositional logic, the?-forgetting results cannot
be computed viaϕ[p/>] ∨ ϕ[p/⊥] asMod?(¬¬q) = {〈∅, {q}〉, 〈{q}, {q}〉}, while Mod?(q) =
{〈{q}, {q}〉} (over the signature{q}). �

4.1 Expressibility

Please note that Definition 8 does not guarantee the existence of the forgetting results, however the
next theorem shows that the?-forgetting result always exists. It also implies that the?-forgetting
result is unique (up to strong?-equivalence).
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Theorem 6 (Expressibility theorem) Let ϕ be a formula andV a set of atoms. There exists a
formulaψ such thatMod?(ψ) = Mod?(ϕ)†V .

Here, the uniqueness up to strong?-equivalence of the?-forgetting result follows from the fact
that, if a formulaψ′ is a result?-forgettingV from ϕ as well thenMod?(ψ

′) = Mod?(ϕ)†V =
Mod?(ψ), which shows thatψ andψ′ are strongly?-equivalent under the?-stable model semantics.

Based on the expressibility result and by abusing the denotation, we denote the forgetting result
by Forget?(ϕ, V ):

Definition 9 Let ϕ be a formula andV ⊆ A. Forget?(ϕ, V ) is a formulaψ s.t Mod?(ψ) =
Mod?(ϕ)†V , i.e.,Forget?(ϕ, V ) is a result of?-forgettingV fromϕ.

In this senseForget? is an operator which maps a formula and a set of atoms to a formula. According
to Definition 8 and the expressibility theorem, the following corollary easily follows.

Corollary 7 Letψ,ϕ be formulas,V , V1 andV2 be sets of atoms.

(i) Forget?(Forget?(ϕ, V1), V2) ≡? Forget?(Forget?(ϕ, V2), V1).

(ii) If ψ ≡? ϕ thenForget?(ψ, V ) ≡? Forget?(ϕ, V ).

It firstly states that?-forgetting is independent of the order of forgotten atoms,and secondly, the
?-forgetting preserves strong?-equivalence of logic programs under?-stable model semantics.

To further investigate the properties of the forgetting, weintroduce a notion of irrelevance under
?-model semantics.

Definition 10 A formulaψ is ?-irrelevantto a setV of atoms, denoted asIR?(ψ, V ), if there exists
a formulaφ mentioning no atoms fromV andψ ≡? φ.

Some basic properties on?-forgetting are presented below.

Proposition 10 Letψ andϕ be two formulas andV a set of atoms.

(i) IR?(Forget?(ψ, V ), V ).

(ii) ψ has a?-model iffForget?(ψ, V ) has.

(iii) ψ |=? Forget?(ψ, V ).

(iv) If ψ |=? ϕ thenForget?(ψ, V ) |=? Forget?(ϕ, V ).

(v) Forget?(ψ ∨ ϕ, V ) ≡? Forget?(ψ, V ) ∨ Forget?(ϕ, V ).

(vi) Forget?(ψ ∧ ϕ, V ) |=? Forget?(ψ, V ) ∧ Forget?(ϕ, V ).

(vii) Forget?(ψ ∧ ϕ, V ) ≡? Forget?(ψ, V ) ∧ ϕ if IR?(ϕ, V ).
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Intuitively, (i) of the Proposition says that the?-forgetting result is irrelevant to atoms inV ,
i.e., those forgotten atoms. In this sense, the signature of?-forgetting result can be constrained
toA \ V . The intended meaning of the others can be easily read out. E.g., item (iii) says that this
forgetting is a kind of weakening, while item (v) shows that the forgetting has a distributive property
for disjunction.

As mentioned earlier, disjunctive programs, positive programs, normal logic programs and Horn
programs are four types of special cases of (arbitrary) logic programs under our setting. Then it is
interesting to consider whether the expressibility resultalso holds for each of these special programs.
For instance, we would like to know whether the result of?-forgetting in a disjunctive (positive,
normal, and Horn) logic program is still expressible by a disjunctive (resp. positive, normal, and
Horn) logic program.

As indicated by the following two examples,HT- andFLP-forgetting in disjunctive, positive and
normal logic programs is possibly not expressible in eitherdisjunctive or positive logic programs.
For simplicity, we identify a singleton set{α} asα when it is clear from its context, and thus we
denoteForget?(ψ, {p}) asForget?(ψ, p), andIR?(ψ, {p}) asIR?(ψ, p), andM†{p} asM†p etc..

Example 5 Consider the following normal logic programΠ over signature{p, q}:

(¬p ⊃ q) ∧ (¬q ⊃ p) ∧ (p ∧ q ⊃ ⊥).

We have thatMod?(Π) = {〈{p}, {p}〉, 〈{q}, {q}〉} and

Mod?(Π)†p = {〈∅, ∅〉, 〈{q}, {q}〉}†{p}.

Here〈{p}, {p}〉†{p} = 〈∅, ∅〉†{p}. It implies thatForget?(Π, p) ≡? q∨¬q. It can be easily seen that
q ∨¬q cannot be expressed as a disjunctive logic program becauseMod?(Π)†p does not satisfy (9).
HenceForget?(Π, p) cannot be expressed by a normal logic program.

Please note that¬¬q ⊃ q ≡HT q∨¬q. Thus¬¬q ⊃ q is also a result ofHT-forgettingp fromΠ.
However,¬¬q ⊃ q is not a result ofFLP-forgettingp from Π as¬¬q ⊃ q ≡FLP > 6≡FLP q ∨ ¬q. �

Example 6 LetΠ be a positive logic program over signature{p, q, r} as follows:

(p ∨ q ∨ r) ∧ (p ∧ q ⊃ r) ∧ (p ∧ r ⊃ q) ∧ (q ∧ r ⊃ p).

It is not difficult to verify that, over the signature{p, r}, Mod?(Π)†{q} consists of

〈∅, ∅〉, 〈∅, {p, r}〉, 〈{p}, {p}〉, 〈{p}, {p, r}〉, 〈{r}, {r}〉, 〈{r}, {p, r}〉, 〈{p, r}, {p, r}〉.

Clearly it does not satisfy the condition (9). Hence it can not captured by a disjunctive logic pro-
gram. As a matter of fact, we have the following

ForgetHT(Π, q) ≡HT λHT(∅, {p}) ∧ λHT(∅, {r}) = (¬r ⊃ p ∨ ¬p) ∧ (¬p ⊃ r ∨ ¬r),

ForgetFLP(Π, q) ≡FLP λFLP(∅, {p}) ∧ λFLP(∅, {r}) = (¬r ⊃ p ∨ r ∨ ¬p) ∧ (¬p ⊃ p ∨ r ∨ ¬r)

in terms of Proposition 4. Interestingly, this example alsoshows that, though a logic program may
have the sameHT-models asFLP-models, itsHT-forgetting result may be different from itsFLP-
forgetting result. �
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The HT- and FLP-forgetting in Horn logic programs is of special interest, because unlike dis-
junctive, positive and normal logic programs, the result ofHT- andFLP-forgetting result in a Horn
logic program is always expressible by a Horn logic program,as we show below.

Theorem 8 (Horn expressibility) LetΠ be a Horn logic program andV ⊆ A. There is a Horn
logic programΠ′ such thatForget?(Π, V ) ≡? Π

′.

Having obtained the model-theoretical characterization of the classes of disjunctive and normal
logic programs respectively, we can easily derive a sufficient and necessary condition forHT- and
FLP-forgetting results to remain in the same class, i.e., the result of HT- andFLP-forgetting a set of
atoms in a disjunctive (resp. normal) logic program is a disjunctive (resp. normal) logic program.

Proposition 11 Let Π be a disjunctive logic program,V ⊆ A. We have thatForget?(Π, V ) is
expressible in disjunctive logic programs if and only if,

〈H1, T1〉 |=? Π, 〈T2, T2〉 |=? Π andT1 ⊆ T2 ⇒ ∃〈H3, T3〉 |=? Π such that〈H3, T3〉 ∼V 〈H1, T2〉.

Proposition 12 LetΠ be a normal logic program,V ⊆ A. ThenForget?(Π, V ) is expressible in
normal logic programs if and only if, in addition to condition (16), the following condition holds,

〈H1, T1〉 |=? Π, 〈H2, T2〉 |=? Π andT1 ∼V T2

⇒ ∃〈H3, T3〉 |=? Π such thatH3 ∼V H1 ∩H2 and(T3 ∼V T1 or T3 ∼V T2). (16)

4.2 Forgetting Postulates

Zhang and Zhou (2009) proposed four forgetting postulates in their work of knowledge forgetting,
and showed that their knowledge forgetting can be preciselycharacterized by the four postulates.
They further argued that these postulates should be viewed as a general semantic characterization
for knowledge forgetting in other logics. Indeed, the classical propositional forgetting can be also
characterized by these postulates. In terms of forgetting in logic programs, as we addressed in the
introduction, imposing these postulates is not feasible for existing approaches. In the following,
we show that?-forgetting is exactly captured by these postulates, whichwe think is one major
advantage over other logic program forgetting approaches.

The notion of forgetting is closely related to that of uniform interpolation property (Visser, 1996;
Goranko & Otto, 2007), for instance, the forgetting in description logics (Lutz & Wolter, 2011) and
the semantic forgetting in logic programs (Gabbay, Pearce,& Valverde, 2011). The following
corollary follows from Theorem 6, which actually implies theuniform interpolation propertyof the
logics under?-model semantics. Namely, for any formulasϕ andψ with ψ |=? ϕ, there exists a
formulaξ such thatψ |=? ξ, ξ |=? ϕ andξ contains only the atoms occurring in bothψ andϕ. The
formulaξ is called auniform interpolantof ψ andϕ. This is stated as:

Corollary 9 Letψ andϕ be two formulas,V a set of atoms andIR?(ϕ, V ).

ψ |=? ϕ iff Forget?(ψ, V ) |=? ϕ.

Let ψ andϕ be two formulas andV a set of atoms. The following are Zhang-Zhou’s four
postulates for logic programs under?-model semantics.
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(W) Weakening:ψ |=? ϕ.

(PP) Positive persistence: ifIR?(ξ, V ) andψ |=? ξ thenϕ |=? ξ.

(NP) Negative persistence: ifIR?(ξ, V ) andψ 6|=? ξ thenϕ 6|=? ξ.

(IR) Irrelevance:IR?(ϕ, V ).

By specifyingϕ ≡? Forget?(ψ, V ), (W), (PP), (NP) and (IR) are calledpostulates for knowledge
forgetting in logic programs under?-stable model semantics. Viz,ϕ is a result of?-forgettingV
in ψ. Based on the uniform interpolation property (cf. Corollary 9), we can show the following
representation theorem.

Theorem 10 (Representation theorem)Letψ andϕ be two formulas andV a set of atoms. Then
the following statements are equivalent:

(i) ϕ ≡? Forget?(ψ, V ).

(ii) ϕ ≡? {ϕ
′ | ψ |=? ϕ

′ and IR?(ϕ
′, V )}.

(iii) Postulates (W), (PP), (NP) and (IR) hold.

This theorem justifies that the knowledge forgetting (cf. Definition 7) exists and is unique up to
strong equivalence.

An obvious consequence follows from the representation theorem is that

Forget?(ϕ, V ) ≡? {ψ | ϕ |=? ψ andIR?(ψ, V )}.

It says that the result of?-forgetting V from ϕ consists of the?-logical consequence ofϕ that
is ?-irrelevant toV . For this reason the forgetting is a knowledge forgetting oflogic programs
under stable models semantics. As we have mentioned in the introduction that none of the other
forgetting approaches in logic programs is a knowledge forgetting since it does not satisfy some of
the postulates (see Section 5 for details).

One should note that the representation theorem is applicable for the forgetting in classical
propositional logic, viz,Forget(ϕ, V ) ≡ {ψ | ϕ |= ψ andIR(ψ, V )}.

4.3 Relating to Propositional Forgetting

It has been shown that strong equivalence of logic programs may be related to the equivalence of
propositional logic (Pearce et al., 2001; Lin, 2002). As the?-forgetting preserves strong equivalence
of logic programs under?-stable model semantics, it is worth exploring further connections between
?-forgetting and the forgetting in propositional logic. In this section, we undertake an in-depth
investigation on this aspect.

We first provide a direct connection between?-forgetting and propositional forgetting via the
following proposition.

Proposition 13 Let ϕ,ϕ′, ψ be formulas andV ⊆ A such thatϕ ≡? Forget?(ψ, V ) and ϕ′ ≡
Forget(ψ, V ). Then

(i) ϕ ≡ ϕ′.
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(ii) ϕ′ |=? ϕ.

The result (i) in Proposition 13 simply says that the result of ?-forgetting and classical proposi-
tional forgetting are equivalent in classical propositional logic. Thus the forgetting in classic propo-
sitional logic can be computed by a?-forgetting in logic programs. However as we have seen in
Example 4,Forget?(ψ, V ) is possibly not?-equivalent toForget(ψ, V ). The reverse of (ii) does not
hold generally. For instance,Forget?(¬¬p, q) ≡? ¬¬p, while Forget(¬¬p, q) ≡ p, and evidently
¬¬p 6|=? p. From this result and Theorem 8, we immediately have the following corollary.

Corollary 11 LetΠ be a Horn logic program andV a set of atoms. ThenForget(Π, V ) is express-
ible by a Horn logic program.

The following result states that, for Horn logic programs,?-forgetting and the forgetting of
propositional logic are strongly?-equivalent. Thus it provides a method of computing?-forgetting
results of Horn logic programs through the propositional forgetting.

Proposition 14 LetΠ andΠ′ be two Horn logic programs, andV a set of atoms such thatΠ′ ≡
Forget(Π, V ). ThenΠ′ ≡? Forget?(Π, V ).

The following proposition states that the?-forgetting of double negative formulas is closely
connected with the classical propositional forgetting, which will be used to prove some complexity
results later.

Proposition 15 Letψ andϕ be two formulas andV a set of atoms.

(i) ϕ ≡ Forget(ψ, V ) iff ¬¬ϕ ≡? Forget?(¬¬ψ, V ).

(ii) Forget(ϕ, V ) ≡ Forget(ψ, V ) iff Forget?(¬¬ϕ, V ) ≡? Forget?(¬¬ψ, V ).

As it is known that the strong equivalence of logic programs is closed related to the equivalence
in propositional logic by translating logic programs into propositional theories (Pearce et al., 2001;
Lin, 2002). This motivates us to investigate the connectionbetween the forgettings in the view of
the translations. Now our main result of this section is stated as follows.

Theorem 12 (?-forgetting vs propositional forgetting) Let ψ andϕ be two formulas ofLA and
V ⊆ A. Then

ϕ ≡? Forget?(ψ, V ) iff ∆(A) |= τ?[ϕ]↔ Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V
′).

By Theorem 12, we know that to check whether a formulaϕ is a result of?-forgetting a set
V of atoms from a formulaψ, it is equivalent to check whetherτ?[ϕ] is classically equivalent
to Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V

′) under the theory∆(A). The following example shows an
application of this theorem.

Example 7 [Example 5 continued] Recall thatΠ is the following formula:

(¬p ⊃ q) ∧ (¬q ⊃ p) ∧ (p ∧ q ⊃ ⊥)
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andForget?(Π, p) ≡? q ∨ ¬q. Over the signature{p, q}, ∆(A) = (p ⊃ p′) ∧ (q ⊃ q′) and, the
program translation yields:

τ?(Π) ≡ (¬p′ ⊃ q) ∧ (¬p′ ⊃ q′) ∧ (¬q′ ⊃ p) ∧ (¬q′ ⊃ p′) ∧ (¬p′ ∨ ¬q′).

Now we have thatForget(τ?[Π] ∪∆(A), {p, p′}) is equivalent to:

(¬q ∧ ¬q′) ∨ (q ∧ q′), i.e. (q′ ⊃ q) ∧ (q ⊃ q′)

which is equivalent to¬q′ ∨ q under the theory∆({q}) = {q ⊃ q′}. One can further check that
τ?[¬q∨ q] = ¬q

′∧¬q∨ q ≡ ¬q′∨ q (under the theory∆({q})). Thus the formula¬q∨ q is a result
of ?-forgettingp from Π by Theorem 12. �

The following example further shows that∆(A) occurring inForget?({τ [ψ]} ∪∆(A), V ∪V ′)
is necessary for Theorem 12.

Example 8 [Continued from Example 6] Recall thatA = {p, q, r}, ∆(A) = {p ⊃ p′, q ⊃ q′, r ⊃
r′} andΠ consists of

(p ∨ q ∨ r) ∧ (p ∧ q ⊃ r) ∧ (p ∧ r ⊃ q) ∧ (q ∧ r ⊃ p).

We have that,

τHT[Π] ≡ Π ∧ Σ,

∆(A) |= τ?[Π]↔ Π ∧ Σ,

τFLP[Π] ≡ (p ∨ q ∨ r) ∧ (p ∧ q ∧ p′ ∧ q′ ⊃ r) ∧ (p ∧ r ∧ p′ ∧ r′ ⊃ q) ∧ (q ∧ r ∧ q′ ∧ r′ ⊃ p) ∧ Σ

whereΣ = (p′ ∧ q′ ⊃ r′) ∧ (p′ ∧ r′ ⊃ q′) ∧ (q′ ∧ r′ ⊃ p′).
One can check that

Forget(τHT[Π], {q, q
′}) ≡ >,

∆(A) |= Forget(τFLP[Π], {q, q
′})↔ >.

Recall that the formulaϕ1 = (¬r ⊃ p∨¬p)∧ (¬p ⊃ r∨¬r) is a result ofHT-forgettingq from Π;
andϕ2 = (¬r ⊃ p ∨ r ∨ ¬p) ∧ (¬p ⊃ p ∨ r ∨ ¬r) is a result ofFLP-forgettingq from Π. We have
that

τHT[ϕ1] ≡ ϕ
′
1 ∧ (¬r ∧ ¬r′ ⊃ p ∨ ¬p ∧ ¬p′) ∧ (¬p ∧ ¬p′ ⊃ r ∨ ¬r ∧ ¬r′),

τFLP[ϕ2] ≡ ϕ
′
2 ∧ (¬r ∧ ¬r′ ⊃ p ∨ r ∨ ¬p′) ∧ (¬p ∧ ¬p′ ⊃ p ∨ r ∨ ¬r′).

Under the theory∆(A), we have

∆(A) |= τHT[ϕ1]↔ (p′ ⊃ p ∨ r′) ∧ (r′ ⊃ r ∨ p′),

∆(A) |= τHT[ϕ1]↔ (p′ ⊃ p ∨ r′) ∧ (r′ ⊃ r ∨ p′).

One can verify further that the model{p′} of ∆(A) is not a model ofτHT[ϕ1], nor it is a model of
τFLP[ϕ2], i.e.∆(A) 6|= τHT[ϕ1]↔ > and∆(A) 6|= τFLP[ϕ2]↔ >. Actually, we have that,

∆(A) |= Forget({τ?[Π]} ∪∆(A), {q, q′})↔ ((p′ ↔ r′) ∨ (p↔ ¬r) ∧ ¬(p′ ∧ r′)).

One can check further that

∆(A) |= (p′ ⊃ p ∨ r′) ∧ (r′ ⊃ r ∨ p′)↔ ((p′ ↔ r′) ∨ (p↔ ¬r) ∧ ¬(p′ ∧ r′)),

which shows thatϕ1 (resp.ϕ2) is a result ofHT-forgetting (resp.FLP-forgetting)q from Π. �
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The following result states that we can reduce checking whether the?-forgetting results of two
formulas are strongly?-equivalent to checking whether the propositional forgetting results of cor-
responding two formulas are equivalent.

Proposition 16 Letψ andϕ be two formulas ofLA andV a set of atoms. ThenForget?(ψ, V ) ≡?

Forget?(ϕ, V ) iff the following condition holds:

Forget({τ?[ψ]} ∪∆(A), V ∪ V ′) ≡ Forget({τ?[ϕ]} ∪∆(A), V ∪ V ′).

4.4 Computation and Complexity

Theorem 6 and Propositions 4 and 10 imply a naive approach to compute?-forgetting results. For-
mally speaking, given a formulaψ over a signatureA and a setV of atoms,Forget?(ψ, V ) can be
computed as follows:

(Step 1) Evaluating all?-models ofψ, denoted byM.

(Step 2) RestrictM toA \ V , denoted byM|V , i.e.

M|V = {〈H \ V, T \ V 〉|〈H,T 〉 ∈ M}.

(Step 3) Enumerating the following formulas (over the signatureA \ V ) fromM|V :

• λ?(X,Y ) if 〈X,Y 〉 /∈M|V but 〈Y, Y 〉 ∈ M|V ,

• λ(Y, Y ) if 〈Y, Y 〉 /∈ M|V .

(Step 4) Finally, conjunct all the constructed formulas, denoted byϕ.

Corollary 13 Letψ, V andϕ be given as above. Thenϕ ≡? Forget?(ψ, V ).

Alternatively, in terms of Theorem 10, we can computeForget?(ψ, V ) by enumerating the?-
consequences ofψ that are?-irrelevant toV . As there exist sound and complete axiomatic systems
for the HT-logic (Jongh & Hendriks, 2003), checkingHT-consequence relation is axiomatically
doable. Though a sound and complete axiomatic system forFLP-logic is recently unknown, we still
can enumerate all the formulas of form (2) over the signatureA \ V and check if they areFLP-
consequence ofψ. Nevertheless, it is also observed that from a computational viewpoint, like the
propositional forgetting, each of the above two approacheswould be expensive. This appears to be
inevitable in terms of the following complexity results, unless the complexity hierarchy collapses.

Theorem 14 Letψ andϕ be two formulas andV a set of atoms.

(i) The problem of deciding ifψ ≡? Forget?(ψ, V ) is co-NP-complete.

(ii) The problem of deciding ifForget?(ϕ, V ) ≡? Forget?(ψ, V ) isΠP
2 -complete.

(iii) The problem of deciding ifϕ ≡? Forget?(ψ, V ) is ΠP
2 -complete.
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According to our representation theorem (i.e. Theorem 10),the result (i) in Theorem 14 means
that checking ifψ is ?-irrelevant toV , i.e. IR?(ψ, V ), is intractable. The result (ii) of Theorem 14,
on the other hand, presents the complexity of?-forgetting equivalence checking, i.e., if two formulas
are strongly?-equivalent when they are restricted to a common signatures. The last result (iii) of
Theorem 14 states that checking if a formula is a result of?-forgetting is generally difficult.

Proposition 17 Letψ andϕ be two formulas andV a set of atoms.

(i) The problem of deciding whetherψ |=? Forget?(ϕ, V ) isΠP
2 -complete.

(ii) The problem of deciding whetherForget?(ψ, V ) |=? ϕ is co-NP-complete.

Theorem 14 and Proposition 17 tell us that for?-forgetting, in general the complexity of re-
sulting checking and inference problems is located at the same level of the complexity polynomial
hierarchy as the propositional forgetting.

4.5 Conflict Solving Based on Knowledge Forgetting

In the following, we consider the application of the proposed forgetting in conflict solving for logic
program contexts, that represent a knowledge system consisting of knowledge bases of multiple
agents.

Definition 11 A logic program contextis ann-ary tupleΩ = (Π1, . . . ,Πn) whereΠi is a consistent
logic program.Ω is ?-conflict-freeif Π1 ∪ · · · ∪Πn is consistent under?-stable model semantics.

Definition 12 LetΩ = (Π1, . . . ,Πn) be a logic program context. A?-solutionof Ω is a minimal
subsetS of A such that(Forget?(Π1, S), . . . ,Forget?(Πn, S)) is ?-conflict-free, whereA is the
underlying signature.

It is obvious that∅ is a?-solution of?-conflict-free logic program contextΩ.
We consider the following simplified Zhang and Foo’s conflictsolving scenario (cf., see Zhang

& Foo, 2006, Ex. 6).

Example 9 A couple John and Mary are discussing their family investment plan. There are four
different sharesshareA, shareB, shareCand shareD, whereshareAand shareBare of high risk
but also have high return;shareCandshareDare of low risk and may be suitable for a long term
investment. John’s and Mary’s investment preference over these shares are encoded as the following
logic programsΠJ andΠm respectively:

ΠJ :

r1 :sA← not sB,

r2 :sC← not sD,

r3 :sD← not sC,

r4 :← sC, sD,

ΠM :

r′1 :sC←,

r′2 :sD←,

r′3 :sB← not sA, not sC,

r′4 :← sA, sB,
wheres#stands forshare#. The intuitive meaning of these rules can be easily read out. E.g. ruler1
says that John wants to buyshareAif he don’t buyshareB, while rulesr2, r3 andr4 mean that John
wants to buyshareCor shareD, but not both of them.
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As one can see thatΠJ ∪ ΠM has no?-stable model due to the confliction between ruler4 and
r′1, r

′
2, the logic program contextΩ = (ΠJ ,ΠM ) is not?-conflict-free.
ForS = {sD}, we have the following

ForgetHT(ΠJ , S) ≡HT {sA← not sB, sC;not sC←},

ForgetHT(ΠM , S) ≡HT {sC←, sB← not sA, not sC, ← sA, sB}.

One can check thatForgetHT(ΠJ , S) ∪ ForgetHT(ΠM , S) has a uniqueHT-stable model{sA, sC}.
ThusS is an HT-solution ofΩ. It can be said that John and Mary may have an agreement on
their investment plan about sharesshareA, shareBandshareCif they agree to give up the belief
(knowledge) aboutshareD. It results in an investment to sharesshareAand shareC, but not to
shareB.

One can further check that, under theFLP-stable model semantics, if John and Mary can give up
the belief aboutshareDthen it results in the same investment plan to sharesshareAandshareC, but
not to shareshareB. The reason is thatForgetFLP(ΠJ , S)∪ForgetFLP(ΠM , S) has a uniqueFLP-stable
model{sA, sC}.

5. Related Work

In this section we compare the?-forgetting with weak and strong forgetting (Zhang & Foo, 2006),
semantic forgetting (Eiter & Wang, 2008) and the forgettingoperatorsFS andFW (Wong, 2009).

5.1 Weak and Strong Forgetting

LetΠ be a normal logic program andp a propositional atom. Thereductionof Π with respect top,
denoted byRed(Π, {p}), is the normal logic program obtained fromΠ by

(1) for each ruler of Π with p ∈ Head(r), if there is a ruler′ in Π such thatp ∈ Body+(r′), then
replacingr′ with

Head(r′)← Body(r),Body(r′) \ {p}.

(2) if there is such a ruler′ in Π and it has been replaced by a new rule in the previous step, then
removing the ruler from the remaining normal logic program.

Let X be a set of propositional atoms. Then thereductionof Π with respect toX is inductively
defined as follows:

Red(Π, ∅) = Π,

Red(Π,X ∪ {p}) = Red(Red(Π, {p}),X).

Thestrong forgettingp in a normal logic programΠ is the normal logic programSForget(Π, {p})
obtained fromRed(Π, {p}) by removing each ruler if either r is valid 5 or p ∈ Head(r) ∪
Body+(r) ∪ Body−(r). Theweak forgettingp in Π is the normal logic programWForget(Π, {p})
obtained fromRed(Π, {p}) by firstly removing each ruler if either r is valid, orp ∈ Head(r) ∪
Body+(r) and then removing “not p” from the remaining rules.

5. A ruler is valid if Head(r) ∩ Body+(r) 6= ∅ or Body+(r) ∩ Body−(r) 6= ∅.
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LetX be a set of atoms. The strong (and weak) forgettingX in Π is recursively defined as

SForget(Π, ∅) = Π; WForget(Π, ∅) = Π;

SForget(Π,X ∪ {p}) = SForget(SForget(Π, {p}),X);

WForget(Π,X ∪ {p}) = WForget(WForget(Π, {p}),X).

It is known that the two forgetting operators are independent of the ordering of forgotten atoms in
the sense of strongHT-equivalence of logic programs underHT-stable model semantics (cf., see
Zhang & Foo, 2006, Prop. 2).

Example 10 Consider the below two normal logic programs:

Π = {p← q, q ← p, r← not p},

Σ = {p← q, q ← p, r ← not q}.

One can check thatΠ andΣ are strongly equivalent. We have that

SForget(Π, {p}) = ∅, WForget(Π, {p}) = {r ←},

SForget(Σ, {p}) = WForget(Σ, {p}) = {r ← not q}.

The example shows that neither weak forgetting preserves strong equivalence, nor is strong forget-
ting. One can further verify thatΠ |=? ¬q ∧ ¬r ⊃ ⊥ andΠ 6|=? r for ? ∈ {HT, FLP}. Thus
the strong forgetting does not satisfy “positive persistence”, and the weak forgetting does not sat-
isfy “weakening” and “negative persistence”. Actually, for HT- and FLP-forgetting, we have the
following

ForgetHT(Π, p) ≡HT ForgetHT(Σ, p) ≡HT {¬q ∧ ¬r ⊃ ⊥},

ForgetFLP(Π, p) ≡FLP ForgetFLP(Σ, p) ≡FLP {¬q ∧ ¬r ⊃ ⊥}.

HereΠ ≡FLP Σ follows from the fact thatΠ ≡HT Σ and Proposition 2. �

5.2 Semantic Forgetting

Having addressed certain issues of weak and strong forgetting, Eiter and Wang (2008) proposed
a semantic forgetting for consistent disjunctive logic programs. Formally speaking, letΠ be a
consistent disjunctive logic program andp an atom. A setM of atoms is ap-stable modelof Π iff
M is a stable model ofΠ and there is no stable modelM∗ of Π such thatM∗ \ {p} ⊂M \ {p}. A
disjunctive logic programΠ′ represents the result of forgetting aboutp in Π, if

• Π′ does not mention the atomp, and

• a setM ′ of atoms is a stable model ofΠ′ iff Π has ap-stable modelM such thatM ′ ∼p M .

In terms of the above definition, such forgetting results arenot unique under strong equivalence.
This means, their forgetting does not preserve strong equivalence. To compute the result of for-
getting an atom in a consistent disjunctive logic program, they proposed three algorithmsforget1,
forget2 andforget3 (Eiter & Wang, 2008). The example below further demonstrates the difference
between this semantic forgetting and the?-forgetting.
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Example 11 Let Π = {p ← q} be a program over signatureA = {p, q, r}. Although pro-
gramΠ has nothing to do with the atomr, we have thatforgeti(Π, r) = ∅ (i = 1, 2, 3), which
seems not intuitive as it loses some information irrelevantto what we want to forget. However
Forget?(Π, r) ≡? Π. �

This example also shows that the semantic forgetting does not satisfy “positive persistence”
postulate asΠ |=? q ⊃ p, which is lost in the semantic forgetting resultforgeti(Π, r) for i = 1, 2, 3.

5.3 Forgetting OperatorsFS and FW

Wong (2009) developed his forgetting for disjunctive logicprograms. Differently from the work
of Zhang and Foo (2006), and Eiter and Wang (2008), Wong’s forgetting is defined based on the
HT-logic. In this sense, his approach probably shares a commonlogic ground withHT-forgetting.
Wong also defined two forgetting operatorsFS andFW, which correspond to two series of program
transformations. See Appendix D for the detailed definitions.

The interesting feature of Wong’s forgetting is that it preserves strong equivalence. However,
a major issue with this forgetting is that: on one hand, the forgettingFS may cause unnecessary
information loss; on the other hand, the forgettingFW may also introduce extra information that
one does not want, as illustrated by the following example.

Example 12 Let us consider the normal logic programΠ consisting of:

a← x, y ← a, not z, q ← not p, p← not q, ← p, q.

Then we have:

FS(Π, {a, p}) ≡HT {y ← x, not z},

FW(Π, {a, p}) ≡HT {y ← x, not z, ← x, q ←},

ForgetHT(Π, {a, p}) ≡HT {y ← x, not z, q ← not not q},

ForgetFLP(Π, {a, p}) ≡FLP {y ← x, not z, q ← not not q}.

SinceΠ |=HT {q ← not not q}, which is irrelevant to atomsa andp, it seems to us that forgetting
{a, p} from Π should not affect this fact. ButFS(Π, {a, p}) 6|=HT {q ← not not q}. In this sense,
we see thatFS has lost some information that we wish to keep. This shows that the operatorFS does
not satisfy “positive persistence” postulate.

On the other hand, from the fact thatΠ 6|=HT q butFW(Π, {a, p}) |=HT q, it appears thatFW may
introduce unnecessary information, which indeed conflictsour intuition of program weakening via
forgetting, i.e., it does not satisfy the “weakening” postulate. �

As we mentioned in the introduction, the following example confirms that an expected result
can not be obtained from either one of the above three forgetting approaches.

Example 13 [Continued from Example 5] For the normal logic programΠ:

(¬p ⊃ q) ∧ (¬q ⊃ p) ∧ (p ∧ q ⊃ ⊥),
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we have the following:

SForget(Π, {p}) = forget1(Π, {p}) = FS(Π, {p}) = ∅,

WForget(Π, {p}) = FW(Π, {p}) = {q}.

Here, the expected logic program that represents the same information ofΠ when the auxiliary atom
p is ignored should be¬¬q ⊃ q. �

6. Concluding Remarks

In this paper two semantic knowledge forgetting approaches, calledHT- andFLP-forgetting respec-
tively, were proposed for logic programs under stable modeland FLP-stable model semantics re-
spectively. These knowledge forgetting results can be captured by the corresponding logical conse-
quence of forgotten logic programs that are irrelevant to forgotten atoms. It consequently preserves
strong equivalence of logic programs underHT- andFLP-stable model semantics respectively. This
is a major advantage when compared to other existing forgetting approaches in logic programming.

As a starting point, we investigated the model theoretical characterization of logic programs un-
der HT- andFLP-stable model semantics, and studied their respective strong equivalence problems
using classical propositional logic equivalence. Many properties of forgetting have been explored,
such as existence of forgetting results, a representation theorem, and the complexity of some deci-
sion problems related to these forgettings. We also considered an application of knowledge forget-
ting in conflict solving.

Although we have presented abstract approaches to computing the forgetting results and we
showed the underlying difficulties of the computation, it isvaluable to study practical algorithms
for different subclasses of logic programs. Another challenging future work is to extend the knowl-
edge forgetting to other nonmonotonic systems, and in particular first-order logic programs (Ferraris
et al., 2011). As we have mentioned in the introduction that forgetting can be effectively used to
solve some confliction, e.g. the strong and weak forgetting (Zhang & Foo, 2006) and the propo-
sitional forgetting (Lang & Marquis, 2010), such an application of knowledge forgetting deserves
further studying.

As what we concentrate upon in this paper is knowledge forgetting in logic programs, which is
based on the notion of strong equivalence, an interesting work is to consider forgetting under the
stable model semantics of logic programs along the work (Wang et al., 2013). Last but not least,
logic programs under supported model semantics enjoys somesimilar properties as that of logic
programs underHT- andFLP-stable models semantics (Truszczynski, 2010), we will consider the
knowledge forgetting for logic programs under the supported model semantics in another paper.

Acknowledgments

We thank Mirek Truszczynski for encouraging us to consider knowledge forgetting for logic pro-
grams under theFLP-stable model semantics. We thank the anonymous reviewers for their insight-
ful comments, and Robin Bianchi for his help on formatting the paper. Yisong Wang is partially
supported by the National Natural Science Foundation of China grant 61370161 and Stadholder
Foundation of Guizhou Province under grant (2012)62.

55



WANG, ZHANG, ZHOU, & Z HANG

Appendix A. Proofs for Section 2

Proposition 1 LetA,B,C,D be set of atoms. We have the following

(i)
∧

(A ∪ ¬B) ⊃
∨

(D ∪ ¬C) ≡HT

∧

(A ∪ ¬B ∪ ¬¬C) ⊃
∨

D.

(ii)
∧

(A ∪ ¬B) ⊃
∨

(D ∪ ¬C) |=FLP

∧

(A ∪ ¬B ∪ ¬¬C) ⊃
∨

D.

Proof: (ii) Suppose〈X,Y 〉 is anFLP-model of
∧

(A ∪ ¬B) ⊃
∨

(D ∪ ¬C) but not anFLP-model
of
∧

(A ∪ ¬B ∪ ¬¬C) ⊃
∨

D. It follows that the following conditions hold:

(a) X |=
∧

(A ∪ ¬B ∪ ¬¬C), which impliesX |=
∧

(A ∪ ¬B).

(b) Y |=
∧

(A ∪ ¬B ∪ ¬¬C), which impliesY |=
∧

(A ∪ ¬B) ∧
∧

C, and

(c) 〈X,Y 〉 6|=FLP

∨

D, i.e.X 6|=
∨

D.

The conditions (a) and (b) show that〈X,Y 〉 |=FLP

∨

(D ∪ ¬C), i.e. X |=
∨

D or Y |=
∨

¬C.
Together with the conditions (b) and (c), a contradiction follows. �

Appendix B. Proofs for Section 3

Proposition 4 A collectionM of ?-interpretations is?-expressible iff

〈X,Y 〉 ∈ M implies〈Y, Y 〉 ∈ M. (17)

Actually, ifM satisfy condition (17) then the following logic program

Π? = {λ?(X,Y )|〈X,Y 〉 /∈ M and〈Y, Y 〉 ∈ M} ∪ {λ(Y, Y )|〈Y, Y 〉 /∈ M}

capturesM in the sense thatMod?(Π?) =M.

Proof: The direction from left to right follows from (i) of Proposition 3. We prove the other
direction. LetΠ? be the propositional theory consisting of, for everyX ⊂ Y ⊆ A,

• λ?(X,Y ) if 〈X,Y 〉 /∈ M and〈Y, Y 〉 ∈ M, and

• λ(Y, Y ) if 〈Y, Y 〉 /∈ M.

By Lemma 1,Mod?(Π?) =M. �

Lemma 2 LetA,B be two sets of atoms, andX ⊆ Y ⊆ A. 〈X,Y 〉 |=?

∧

B ⊃
∨

A iff X |=
∧

B ⊃
∨

A andY |=
∧

B ⊃
∨

A.

Proof: According to (iii) of Proposition 3 and Proposition 2, it is sufficient to show that, for the
case? = HT,

X |= (
∧

B ⊃
∨

A)Y iff X |=
∧

B ⊃
∨

A andY |=
∧

B ⊃
∨

A.

(⇒) Note thatY |=
∧

B ⊃
∨

A andX |= (
∧

B)Y impliesX |= (
∨

A)Y . SupposeX 6|=
∧

B ⊃
∨

A, i.e. B ⊆ X andA ∩ X = ∅. It follows thatY |=
∧

B due toB ⊆ Y , and then
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Y |=
∨

A, i.e. A ∩ Y 6= ∅. Thus we haveX |= (
∧

B)Y since(
∧

B)Y =
∧

B. By X |= (
∨

A)Y

i.e.X |=
∨

A, we haveX ∩A 6= ∅, a contradiction.
(⇐) We need only to showX |= (

∧

B)Y ⊃ (
∨

A)Y sinceY |=
∧

B ⊃
∨

A. Suppose
X |= (

∧

B)Y andX 6|= (
∨

A)Y . The former impliesB ⊆ X ⊆ Y , thusX ∩ A 6= ∅ by
X |=

∧

B ⊃
∨

A. The latter impliesX ∩ (A ∩ Y ) = ∅, which meansX ∩A = ∅ sinceX ⊆ Y , a
contradiction. �

Proposition 5 A setM of ?-interpretations ispositively?-expressible, i.e., there is a positive logic
programΠ s.tMod?(Π) =M, iffM satisfies the criteria:

〈X,Y 〉 ∈ M iff X ⊆ Y, 〈X,X〉 ∈ M and〈Y, Y 〉 ∈ M. (18)

Actually, ifM satisfy condition (18) then the following logic program

Π? = {
∧

X ⊃
∨

X|〈X,X〉 /∈ M}

capturesM in the sense thatMod?(Π?) =M.

Proof: It suffices to prove the case? = HT by Proposition 2.
(⇒) Let Π be a positive logic program whoseHT-models are exact the ones inM. For every

HT-interpretation〈X,Y 〉, by Lemma 2,〈X,Y 〉 |=HT Π iff X ⊆ Y , X |= Π i.e. 〈X,X〉 |=HT Π,
and〈Y, Y 〉 |=HT Π i.e. Y |= Π since every rule ofΠ is positive. The condition (18) follows.

(⇐) LetN = {X ⊆ A|〈X,X〉 ∈ M}. We construct the propositional theoryΠ consisting of

∧

X ⊃
∨

X

for everyX ∈ N (= 2A \ N ).
Firstly we showMod(Π) = N . SupposeX |= Π andX 6∈ N . We have thatX ∈ N . It follows

thatX 6|= Π as
∧

X ⊃
∨

X belongs toΠ. On the other hand, supposeX ∈ N andX 6|= Π. It
follows that there existsX ′ ∈ N such thatX 6|=

∧

X ′ ⊃
∨

X ′, i.e.,X ′ ⊆ X andX ∩ X ′ = ∅,
from which we haveX = X ′ thusX ∈ N , a contradiction.

Secondly we showModHT(Π) =M. On the one hand, let〈X,Y 〉 |=HT Π. We have thatX |= Π
andY |= Π by Lemma 2. It followsX,Y ∈ N , which implies〈X,X〉 ∈ M and〈Y, Y 〉 ∈ M.
Thus 〈X,Y 〉 ∈ M by (18). On the other hand, let〈X,Y 〉 ∈ M. In terms of (18), we have
〈X,X〉 ∈ M and 〈Y, Y 〉 ∈ M. ThusX ∈ N andY ∈ N , i.e. X |= Π andY |= Π. Thus
〈X,Y 〉 |=HT Π by Lemma 2. �

Proposition 6 A collectionM of ?-interpretations isHorn?-expressible, i.e., there is a Horn logic
programΠ such thatMod?(Π) =M, iffM satisfies, in addition to (10), the following criteria:

〈X,Y 〉 ∈ M and〈H,T 〉 ∈ M⇒ 〈X ∩H,Y ∩ T 〉 ∈ M. (19)

Proof: It suffices to prove the case? = HT by Proposition 2.
(⇒) SupposeΠ is a Horn logic program such thatModHT(Π) = M. By Proposition 5,

ModHT(Π) satisfies (18). Suppose〈X,Y 〉 and 〈H,T 〉 are twoHT-models ofΠ. It follows that
X,Y,H andT are models ofΠ by Lemma 2. ThusX ∩ H |= Π andY ∩ T |= Π, by which
〈X ∩H,Y ∩ T 〉 |= Π due toX ∩H ⊆ Y ∩ T .
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(⇐) LetN andΠ be the ones defined in the proof of Proposition 5. IfX,Y ∈ N thenX ∩Y ∈
N according to (19). It follows that there exists a Horn logic program (a set of Horn clauses) whose
models are exactly the ones inN . As a matter of fact, the Horn programΠ′ can be constructed from
Π by replacing each

∧

X ⊃
∨

Y with

∧

X ⊃ p1, . . . ,
∧

X ⊃ pk (20)

whereX ∩ Y = ∅ and
⋂

{Y ′ \X|X ⊆ Y ′ andY ′ ∈ N} = {p1, . . . , pk}.
We firstly showΠ ≡ Π′ by proving

Π |=
(

∧

X ⊃
∨

Y
)

≡





∧

X ⊃
∧

1≤i≤k

pi





wherepi (1 ≤ i ≤ k) are defined in (20). The direction from right to left is trivial as
∧

X ⊃
∨

Y
belongs toΠ. Let us consider the other direction. SupposeH |= Π, H is a model of

∧

X ⊃
∨

Y
andH 6|=

∧

X ⊃ pi for somei (1 ≤ i ≤ k). We have thatX ⊆ H andH ∩ Y 6= ∅. It follows
thatH is some element of{Y ′ \ X|X ⊆ Y ′ andY ′ ∈ N} and then{p1, . . . , pk} ⊆ H. It is a
contradiction.

Finally ModHT(Π
′) =M follows fromModHT(Π) =M and Proposition 5. �

Proposition 7 Letϕ =
∧

(B ∪ ¬C) ⊃
∨

(A ∪ ¬D), whereA,B,C,D are subsets ofA. Then we
have∆(A) |= τFLP[ϕ]↔ τHT[ϕ].

Proof: Note thatτHT[¬p] = ¬p ∧ ¬p
′ andτFLP[¬p] = ¬p

′. We have

τHT[ϕ] = ϕ′ ∧

(

∧

B ∧
∧

c∈C

(¬c ∧ ¬c′) ⊃
∨

A ∨
∨

d∈D

(¬d ∧ ¬d′)

)

,

τFLP[ϕ] = ϕ′ ∧
(

∧

(B ∪ ¬C ∪B′ ∪ ¬C ′) ⊃
∨

(A ∪ ¬D′)
)

.

Since∆(A) |= ¬p ∧ ¬p′ ↔ ¬p′, we have that

∆(A) |= τHT[ϕ]↔ ϕ′ ∧

(

∧

(B ∪ ¬C ′) ⊃
∨

A ∨
∨

d∈D

¬d′

)

,

∆(A) |= τFLP[ϕ]↔ ϕ′ ∧
(

∧

(B ∪ ¬C ′) ⊃
∨

(A ∪ ¬D′)
)

.

It completes the proof. �

Proposition 8 Letϕ be a formula ofLA andX ⊆ Y ⊆ A. 〈X,Y 〉 is a?-model ofϕ iff X ∪ Y ′ is
a model of∆(A) ∪ {τ?[ϕ]}.

Proof: We prove the case? = FLP by induction on the structures ofϕ. LetX ⊆ Y ⊆ A.

• ϕ = p or ϕ = ⊥. It is trivial for ϕ = ⊥. On the other hand,〈X,Y 〉 |=FLP p iff X |= p iff
X ∪ Y ′ |= p.
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• ϕ = ϕ1 ◦ ϕ2 where◦ ∈ {∧,∨}. It follows from the inductive assumption.

• ϕ = ϕ1 ⊃ ϕ2. We haveτFLP[ϕ1 ⊃ ϕ2] = (ϕ′
1 ⊃ ϕ′

2) ∧ (ϕ1 ∧ ϕ
′
1 ⊃ τFLP[ϕ2]). Recall that

〈X,Y 〉 |=FLP ϕ1 ⊃ ϕ2 iff

– Y |= (ϕ1 ⊃ ϕ2) and,

– either (a)X 6|= ϕ1, or (b)Y 6|= ϕ1, or (c) 〈X,Y 〉 |=FLP ϕ2.

Note that

– Y |= (ϕ1 ⊃ ϕ2) iff Y ′ |= ϕ′
1 ⊃ ϕ

′
2 iff X ∪ Y ′ |= ϕ′

1 ⊃ ϕ
′
2, and

– (a)X 6|= ϕ1 iff X ∪ Y ′ 6|= ϕ1, (b) Y 6|= ϕ1 iff Y ′ 6|= ϕ′
1 iff X ∪ Y ′ 6|= ϕ′

1, and (c)
〈X,Y 〉 |=FLP ϕ2 iff X ∪ Y ′ |= τFLP[ϕ2] by the inductive assumption.

It follows that〈X,Y 〉 |=FLP ϕ1 ⊃ ϕ2 iff X ∪ Y ′ |= τFLP[ϕ1 ⊃ ϕ2].

This completes the proof. �

Theorem 4 Two formulasϕ and ψ have the same?-models (overLA) iff ∆(A) ∪ {τ?[ϕ]} and
∆(A) ∪ {τ?[ψ]} have the same models (overLA∪A′ ).

Proof: We prove the case? = FLP.
(⇒) M |= ∆(A) ∪ {τFLP[ϕ]}
iff MA ∪MA′ |= ∆(A) ∪ {τFLP[ϕ]}
iff 〈MA,M

∗
A′〉 |=FLP ϕ by Proposition 8, hereM∗

A′ = {p|p′ ∈MA′}
iff 〈MA,M

∗
A′〉 |=FLP ψ sinceϕ ≡FLP ψ

iff MA ∪MA′ |= ∆(A) ∪ {τFLP[ψ]} by Proposition 8
iff M |= ∆(A) ∪ {τFLP[ψ]}.

(⇐) 〈X,Y 〉 |=FLP ϕ
iff X ∪ Y ′ |= ∆(A) ∪ {τFLP[ϕ]} by Proposition 8, hereY ′ = {p′|p ∈ Y }
iff X ∪ Y ′ |= ∆(A) ∪ {τFLP[ψ]} since∆(A) ∪ {τFLP[ψ]} ≡ ∆(A) ∪ {τFLP[ϕ]}
iff 〈X,Y 〉 |=FLP ψ by Proposition 8. �

Proposition 9 (i) The problem of deciding if a formula is?-satisfiable isNP-complete.
(ii) The problem of deciding if two formulas are?-equivalent isco-NP-complete.

Proof: (i) Membership. If a formulaϕ is FLP-satisfiable then there exists anFLP-interpretation
〈H,T 〉 such that〈H,T 〉 |=FLP ϕ. It is feasible to guess such anFLP-interpretation and check the
condition〈H,T 〉 |=FLP ϕ. Thus the problem is in NP.

Hardness. It follows from the fact that¬ϕ is FLP-satisfiable iff¬ϕ is satisfiable, which is NP-
hard, by (ii) of Proposition 3. This shows that the problem isNP-hard.

(ii) Membership. Ifϕ 6≡FLP ψ then there exists〈H,T 〉 such that, either

(a) 〈H,T 〉 |=FLP ϕ and〈H,T 〉 6|=FLP ψ, or

(b) 〈H,T 〉 6|=FLP ϕ and〈H,T 〉 |=FLP ψ.
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To guess such anFLP-interpretation〈H,T 〉 and to check the conditions (a) and (b) are feasible in
polynomial time in the size ofϕ andψ. Thus the problem in co-NP.

Hardness. We have that¬ϕ ≡FLP ⊥
iff ¬ϕ has noFLP-model
iff ¬ϕ has no model by (ii) of Proposition 3
iff ϕ is valid, which is co-NP-hard. Thus the problem is co-NP-hard. �

Appendix C. Proofs for Section 4

Lemma 3 Letϕ be a formula andV ⊆ A. A formulaψ is a result of?-forgettingV from ϕ, iff the
following condition holds:

Mod?(ψ) = Mod?(ϕ)†V .

Proof: ψ is a result of?-knowledge forgettingV from ϕ
iff, for every ?-interpretationM ,M |=? ψ iff there existsM ′ |=? ϕ s.t.M ∼V M ′

iff Mod?(ψ) = {M is an?-interpretation| ∃M ′ |=? ϕ andM ∼V M ′}
iff Mod?(ψ) = Mod(ϕ)†V . �

Lemma 4 LetX,Y,H, T andV be subsets ofA.

(i) If X ∼V H andY ∼V T thenX ∩ Y ∼V H ∩ T andX ∪ Y ∼V H ∪ T .

(ii) If X ∼V H andY ′ ∼V ′ T ′ thenH ∪ T ′ ∼V ∪V ′ X ∪ Y ′.

Proof: (i) Note that(X ∩ Y ) \ V
=(X \ V ) ∩ (Y \ V )
=(H \ V ) ∩ (T \ V ) due toX ∼V H andY ∼V T
=(H ∩ T ) \ V .

ThusX ∩ Y ∼V T ∩ T . We can similarly proveX ∪ Y ∼V H ∪ T .
(ii) Please note thatY ′ = {p′|p ∈ Y }, V ′ = {p′|p ∈ V } andT ′ = {p′|p ∈ V }. We have that

(H ∪ T ′) \ (V ∪ V ′).
= (H \ (V ∪ V ′)) ∪ (T ′ \ (V ∪ V ′))
= (H \ V ) ∪ (T ′ \ V ′) sinceH ∩ V ′ = ∅ andT ′ ∩ V = ∅
= (X \ V ) ∪ (Y ′ \ V ′) sinceH ∼V H andT ′ ∼V ′ Y ′

= (X \ (V ∪ V ′)) ∪ (Y ′ \ (V ∪ V ′)) sinceX ∩ V ′ = ∅ andY ′ ∩ V = ∅
= (X ∪ Y ′) \ (V ∪ V ′).
It follows thatH ∪ T ′ ∼V ∪V ′ X ∪ Y ′. �

Theorem 6 (Expressibility theorem) Let ϕ be a formula andV a set of atoms. There exists a
formulaψ such thatMod?(ψ) = Mod?(ϕ)†V .

Proof: For every〈X,Y 〉 ∈ Mod?(ϕ)†V , there exists〈H,T 〉 |=? ϕ such that〈H,T 〉 ∼V 〈X,Y 〉,
i.e. X ∼V H andY ∼V T . By (i) of Proposition 3,〈T, T 〉 |=? ϕ. Thus〈Y, Y 〉 ∈ Mod?(ϕ)†V
due to〈Y, Y 〉 ∼V 〈T, T 〉. It follows that the collectionMod?(ϕ)†V satisfies the condition (8), then
there is a formulaψ such thatMod?(ψ) = Mod?(ϕ)†V by Proposition 4. �

Lemma 5 A formulaϕ is ?-irrelevant to a setV of atoms iff〈H,T 〉 |=? ϕ implies〈X,Y 〉 |=? ϕ
for every two?-interpretations〈X,Y 〉 and〈H,T 〉 with 〈X,Y 〉 ∼V 〈H,T 〉
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Proof: ϕ is ?-irrelevant toV
iff there exists a formulaψ mentioning no atoms inV such thatϕ ≡? ψ
iff there exists a formulaψ mentioning no atoms inV s.tMod?(ϕ) = Mod?(ψ)
iff Mod?(ϕ) = {〈X,Y 〉|X ⊆ Y and∃〈H,T 〉 ∼V 〈X,Y 〉 s.t〈H,T 〉 |=? ϕ}
iff 〈H,T 〉 |=? ϕ implies〈X,Y 〉 |=? ϕ for every two?-interpretations〈X,Y 〉 and〈H,T 〉 such that
〈X,Y 〉 ∼V 〈H,T 〉. �

Proposition 10 Letψ andϕ be two formulas andV a set of atoms.

(i) IR?(Forget?(ψ, V ), V ).

(ii) ψ has a?-model iffForget?(ψ, V ) has.

(iii) ψ |=? Forget?(ψ, V ).

(iv) If ψ |=? ϕ thenForget?(ψ, V ) |=? Forget?(ϕ, V ).

(v) Forget?(ψ ∨ ϕ, V ) ≡? Forget?(ψ, V ) ∨ Forget?(ϕ, V ).

(vi) Forget?(ψ ∧ ϕ, V ) |=? Forget?(ψ, V ) ∧ Forget?(ϕ, V ).

(vii) Forget?(ψ ∧ ϕ, V ) ≡? Forget?(ψ, V ) ∧ ϕ if IR?(ϕ, V ).

Proof: (i) It immediately follows from Lemma 5.
(ii) It is evident thatMod?(ψ) 6= ∅ iff Mod?(ψ)†V 6= ∅ by Definition 8.
(iii) It is easy to see thatMod?(ψ) ⊆ Mod?(ψ)†V by Definition 8.
(iv) Let ψ |=? ϕ, and 〈H,T 〉 |=? Forget?(ψ, V ), i.e. 〈H,T 〉 ∈ Mod?(ψ)†V . In terms of

Definition 8, there exists〈H ′, T ′〉 |=? ψ such that〈H,T 〉 ∼V 〈H
′, T ′〉. It implies that〈H ′, T ′〉 |=?

ϕ sinceψ |=? ϕ. Thus〈H,T 〉 ∈ Mod?(ϕ)†V , i.e. 〈H,T 〉 |=? Forget?(ϕ, V ).
(v) 〈H,T 〉 |=? Forget?(ψ ∨ ϕ, V )

iff 〈H,T 〉 ∈ Mod?(ψ ∨ ϕ)†V
iff ∃〈H ′, T ′〉 |=? ψ ∨ ϕ such that〈H,T 〉 ∼V 〈H

′, T ′〉
iff ∃〈H ′, T ′〉 such that〈H,T 〉 ∼V 〈H

′, T ′〉 and, either〈H ′, T ′〉 |=? ψ or 〈H ′, T ′〉 |=? ϕ
iff 〈H,T 〉 ∈ Mod?(ψ)†V or 〈H,T 〉 ∈ Mod?(ϕ)†V
iff 〈H,T 〉 |=? Forget?(ψ, V ) or 〈H,T 〉 |=? Forget?(ψ, V )
iff 〈H,T 〉 |=? Forget?(ψ, V ) ∨ Forget?(ψ, V ).

(vi) 〈H,T 〉 |=? Forget?(ψ ∧ ϕ, V )
⇒ 〈H,T 〉 ∈ Mod?(ψ ∧ ϕ)†V
⇒ ∃〈H ′, T ′〉 |=? ψ ∧ ϕ such that〈H,T 〉 ∼V 〈H

′, T ′〉
⇒ ∃〈H ′, T ′〉 such that.〈H,T 〉 ∼V 〈H

′, T ′〉, 〈H ′, T ′〉 |=? ψ and〈H ′, T ′〉 |=? ϕ
⇒ 〈H,T 〉 ∈ Mod?(ψ)†V and〈H,T 〉 ∈ Mod?(ϕ)†V
⇒ 〈H,T 〉 |=? Forget?(ψ, V ) and〈H,T 〉 |=? Forget?(ϕ, V )
⇒ 〈H,T 〉 |=? Forget?(ψ, V ) ∧ Forget?(ϕ, V ).

(vii) The direction from left to right follows from (vi) and the factIR(ϕ, V ), i.e.Forget?(ϕ, V ) ≡?

ϕ. Let us consider the other direction.
〈H,T 〉 |=? Forget?(ψ, V ) ∧ ϕ

⇒ 〈H,T 〉 |=? Forget?(ψ, V ) and〈H,T 〉 |=? ϕ
⇒ ∃〈H ′, T ′〉 |=? ψ such that〈H,T 〉 ∼V 〈H

′, T ′〉, and〈H,T 〉 |=? ϕ
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⇒ ∃〈H,T 〉 ∼V 〈H
′, T ′〉 such that〈H ′, T ′〉 |=? ψ ∧ ϕ by IR(ϕ, V ) and Lemma 5

⇒ 〈H,T 〉 ∈ Mod?(ψ ∧ ϕ)†V
⇒ 〈H,T 〉 |=? Forget?(ψ ∧ ϕ, V ). �

Theorem 8 (Horn expressibility) LetΠ be a Horn logic program andV ⊆ A. There is a Horn
logic programΠ′ such thatForget?(Π, V ) ≡? Π

′.

Proof: In terms of Proposition 2, it suffices to prove for? = HT. LetM = ModHT(Π)†V . By
Proposition 6, it is sufficient to show thatM satisfies conditions (5) and (12).

We first prove thatM satisfies (5). For eachHT-interpretation〈X,Y 〉 ∈ M, we have that
X ⊆ Y , and there exists〈H,T 〉 ∈ ModHT(Π) such that〈X,Y 〉 ∼V 〈H,T 〉. Note thatΠ is positive,
which shows that〈H,H〉 and〈T, T 〉 areHT-models ofΠ by Lemma 2. Thus〈X,X〉 ∈ M and
〈Y, Y 〉 ∈ M due toX ∼V H andT ∼V Y . On the other hand, suppose〈X,X〉 ∈ M, 〈Y, Y 〉 ∈ M
andX ⊆ Y . There exist twoHT-models〈H ′, T ′〉 and〈H ′′, T ′′〉 of Π such that〈H ′, T ′〉 ∼V 〈X,X〉
and〈H ′′, T ′′〉 ∼V 〈Y, Y 〉. By Lemma 2, we haveH ′ |= Π, T ′ |= Π, H ′′ |= Π andT ′′ |= Π. Since
models of Horn theories are closed under set intersection (Alfred, 1951),H ′ ∩ H ′′ |= Π. By
Lemma 2 again, we have〈H ′ ∩H ′′, T ′′〉 |=HT Π. By Lemma 4,H ′ ∩H ′′ ∼V X ∩ Y (= X). Thus
〈H ′ ∩H ′′, T ′′〉 ∼V 〈X,Y 〉. It follows 〈X,Y 〉 ∈ M.

Now we show thatM satisfies (12). Suppose〈X,Y 〉 and 〈H,T 〉 are twoHT-interpretations
inM. It follows that there are twoHT-models〈X ′, Y ′〉 and〈H ′, T ′〉 of Π such that〈X ′, Y ′〉 ∼V

〈X,Y 〉 and〈H ′, T ′〉 ∼V 〈H,T 〉. SinceΠ is Horn, we have that〈H ′ ∩X ′, T ′ ∩ Y ′〉 |=HT Π by
Proposition 6. By Lemma 4, we haveH ′ ∩ X ′ ∼V H ∩ X andY ′ ∩ T ′ ∼V Y ∩ T . It implies
〈H ′ ∩X ′, T ′ ∩ Y ′〉 ∼V 〈X ∩H,Y ∩ T 〉, thus〈X ∩H,Y ∩ T 〉 ∈ M. �

Proposition 11 Let Π be a disjunctive logic program,V ⊆ A. We have thatForget?(Π, V ) is
expressible in disjunctive logic programs if and only if,

〈H1, T1〉 |=? Π, 〈T2, T2〉 |=? Π andT1 ⊆ T2 ⇒ ∃〈H3, T3〉 |=? Π such that〈H3, T3〉 ∼V 〈H1, T2〉.

Proof: By Proposition 2, it suffices to prove? = HT. Let Π′ ≡HT ForgetHT(Π, V ). The direction
from left to right is obvious. We show the other direction.

Suppose thatΠ′ is not expressible in disjunctive logic programs. There exists〈X,Y 〉 |=HT Π′,
Y ⊆ Y ′ and〈Y ′, Y ′〉 |=HT Π′ such that〈X,Y ′〉 6|=HT Π′. It follows that, for each〈H1, T1〉 |=HT Π
and 〈T2, T2〉 |=HT Π such that〈H1, T1〉 ∼V 〈X,Y 〉, T2 ∼V Y ′ andT1 ⊆ T2, there exists no
〈H3, T3〉 |=HT Π such that〈H3, T3〉 ∼V 〈H1, T2〉, viz. 〈H3, T3〉 ∼V 〈X,Y

′〉 by 〈X,Y ′〉 ∼V

〈H1, T2〉, a contradiction. �

Proposition 12 LetΠ be a normal logic program,V ⊆ A. ThenForget?(Π, V ) is expressible in
normal logic programs if and only if, in addition to condition (21), the following condition holds,

〈H1, T1〉 |=? Π, 〈H2, T2〉 |=? Π andT1 ∼V T2

⇒ ∃〈H3, T3〉 |=? Π such thatH3 ∼V H1 ∩H2 and(T3 ∼V T1 or T3 ∼V T2). (21)

Proof: By Proposition 2, it suffices to prove? = HT. Let Π′ ≡HT ForgetHT(Π, V ). The direction
from left to right is easy. We consider the other direction inwhat follows.

In terms of Proposition 11 and Corollary 3, it is sufficient toshow that, for each〈X,Y 〉 |=HT Π′

and 〈X ′, Y 〉 |=HT Π′, 〈X ∩X ′, Y 〉 |=HT Π′ according to Corollary 3. Suppose that〈X,Y 〉 and
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〈X ′, Y 〉 are twoHT-models ofΠ′. There are twoHT-models〈H1, T1〉 and 〈H2, T2〉 of Π such
that 〈X,Y 〉 ∼V 〈H1, T1〉 and 〈X ′, Y 〉 ∼V 〈H2, T2〉. It follows thatT1 ∼V T2 and, by condi-
tion (21), there exists anHT-model〈H3, T3〉 of Π satisfying either〈H3, T3〉 ∼V 〈H1 ∩H2, T1〉 or
〈H3, T3〉 ∼V 〈H1 ∩H2, T2〉, which shows〈H3, T3〉 ∼V 〈X ∩X

′, Y 〉, hence〈X ∩X ′, Y 〉 |=HT

Π′. �

Theorem 10 (Representation theorem)Letψ andϕ be two formulas andV a set of atoms. Then
the following statements are equivalent:

(i) ϕ ≡? Forget?(ψ, V ).

(ii) ϕ ≡? {ϕ
′ | ψ |=? ϕ

′ and IR?(ϕ
′, V )}.

(iii) Postulates (W), (PP), (NP) and (IR) hold.

Proof: LetΣ? = {ξ | ψ |=? ξ andIR?(ξ, V )}. It is evident thatIR?(Σ?, V ).
The equivalence between (i) and (ii) follows from Corollary9. (ii) obviously implies (iii). It

suffices to show (iii)⇒ (ii).
By Positive Persistence, we haveϕ |=? ξ for eachξ ∈ Σ?, from which followsMod?(ϕ) ⊆

Mod?(Σ?). On the other hand, by (W) ψ |=? ϕ and (IR) IR?(ϕ, V ), it follows ϕ ∈ Σ?. Thus
Mod?(Σ?) ⊆ Mod?(ϕ). Thusϕ ≡? Σ?. �

Proposition 13 Let ϕ,ϕ′, ψ be formulas andV ⊆ A such thatϕ ≡? Forget?(ψ, V ) and ϕ′ ≡
Forget(ψ, V ). Then

(i) ϕ ≡ ϕ′.

(ii) ϕ′ |=? ϕ.

Proof: (i) T |= ϕ
iff 〈T, T 〉 |=? ϕ by (i) of Proposition 3
iff 〈T, T 〉 |=? Forget?(ψ, V ) sinceϕ ≡? Forget?(ψ, V )
iff ∃〈Y, Y 〉 |=? ψ such that〈T, T 〉 ∼V 〈Y, Y 〉 by Definition 8
iff ∃Y |= ψ such thatT ∼V Y by (i) of Proposition 3
iff T |= Forget(ψ, V ) by Corollary 5
iff T |= ϕ′ sinceϕ′ ≡ Forget(ψ, V ).

(ii) 〈H,T 〉 |=? ϕ
′

⇒ T |= ϕ′ by (i) of Proposition 3
⇒ T |= Forget(¬ψ, V ) sinceϕ′ ≡ Forget(¬ψ, V )
⇒ ∃Y |= ¬ψ such thatY ∼V T by Corollary 5
⇒ ∃〈H \ V, Y 〉 |=? ¬ψ such thatY ∼V T by (ii) of Proposition 3
⇒ 〈H,T 〉 |=? Forget?(¬ψ, V ) due to〈H \ V, Y 〉 ∼V 〈H,T 〉 and Definition 8
⇒ 〈H,T 〉 |=? ϕ due toForget?(¬ψ, V ) ≡? ϕ. �

Proposition 14 LetΠ andΠ′ be two Horn logic programs, andV a set of atoms such thatΠ′ ≡
Forget(Π, V ). ThenΠ′ ≡? Forget?(Π, V ).
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Proof: By Proposition 2, it suffices to show? = HT.
(⇒) 〈H ′, T ′〉 |=HT Π′

⇒ H ′ |= Π′ andT ′ |= Π′ by Lemma 2
⇒ ∃H,T such thatH |= Π, T |= Π,H ∼V H ′ andT ∼V T ′ byΠ′ ≡ Forget(Π, V )
⇒ ∃H,T such thatH ∩ T |= Π, T |= Π,H ∩ T ∼V H ′ andT ∼V T ′

⇒ ∃H,T such that〈H ∩ T, T 〉 |=HT Π and〈H ∩ T, T 〉 ∼V 〈H
′, T ′〉

⇒ 〈H ′, T ′〉 |=HT ForgetHT(Π, V ).
(⇐) 〈H ′, T ′〉 |=HT ForgetHT(Π, V )

⇒ ∃〈H,T 〉 |=HT Π such that〈H ′, T ′〉 ∼V 〈H,T 〉
⇒ ∃H ⊆ T such thatH |= Π, T |= Π and〈H ′, T ′〉 ∼V 〈H,T 〉 by Lemma 2
⇒ H ′ |= Forget(Π, V ) andT ′ |= Forget(Π, V )
⇒ H ′ |= Π′ andT ′ |= Π′ due toΠ′ ≡ Forget(Π, V )
⇒ 〈H ′, T ′〉 |=HT Π′. �

Proposition 15 Letψ andϕ be two formulas andV a set of atoms.

(i) ϕ ≡ Forget(ψ, V ) iff ¬¬ϕ ≡? Forget?(¬¬ψ, V ).

(ii) Forget(ϕ, V ) ≡ Forget(ψ, V ) iff Forget?(¬¬ϕ, V ) ≡? Forget?(¬¬ψ, V ).

Proof: (i) (⇒) 〈H,T 〉 |=? ¬¬ϕ
iff T |= ¬¬ϕ, i.e. T |= ϕ by (ii) of Proposition 3
iff T |= Forget(ψ, V ) sinceϕ ≡ Forget(ψ, V )
iff ∃Y |= ψ i.e. Y |= ¬¬ψ such thatY ∼V T by Corollary 5
iff 〈H \ V, Y 〉 |=? ¬¬ψ (H \ V ⊆ T \ V = Y \ V ) by (ii) of Proposition 3
iff 〈H,T 〉 |=? Forget?(¬¬ψ, V ) by Definition 8.

(⇐) T |= ϕ i.e. T |= ¬¬ϕ
iff 〈H,T 〉 |=? ¬¬ϕ by (ii) of Proposition 3
iff 〈H,T 〉 |=? Forget?(¬¬ψ, V ) for H ⊆ T since¬¬ϕ ≡? Forget?(¬¬ψ, V )
iff ∃〈X,Y 〉 |=? ¬¬ψ such that〈H,T 〉 ∼V 〈X,Y 〉 by Definition 8
iff ∃Y |= ¬¬ψ such thatY ∼V T by (ii) or Proposition 3
iff T |= Forget(¬¬ψ, V ) by Corollary 5.

(ii) (⇒) 〈H,T 〉 |=? Forget?(¬¬ϕ, V )
iff ∃〈X,Y 〉 |=? ¬¬ϕ such that〈X,Y 〉 ∼V 〈H,T 〉 by Definition 8
iff ∃Y |= ¬¬ϕ i.e. Y |= ϕ such thatY ∼V T by (ii) of Proposition 3
iff T |= Forget(ϕ, V ) by Corollary 5
iff T |= Forget(ψ, V ) sinceForget(ϕ, V ) ≡ Forget(ψ, V )
iff ∃Y ′ |= ψ i.e. Y ′ |= ¬¬ψ such thatY ′ ∼V T by Definition 8
iff ∃〈X \ V, Y ′〉 |=? ¬¬ψ by (ii) of Proposition 3 (X \ V ⊆ Y \ V = Y ′ \ V )
iff 〈H,T 〉 |=? Forget?(¬¬ψ, V ) by 〈H,T 〉 ∼V 〈X \ V, Y

′〉 and Definition 8.
(⇐) T |= Forget(ϕ, V )

iff ∃Y |= ϕ i.e. Y |= ¬¬ϕ such thatY ∼V T by Corollary 5
iff ∃〈X,Y 〉 |=? ¬¬ϕ such thatY ∼V T by (ii) of Proposition 3
iff 〈X \ V, T 〉 |=? Forget?(¬¬ϕ, V ) 〈X \ V, T 〉 ∼V 〈X,Y 〉 and by Definition 8
iff 〈X \ V, T 〉 |=? Forget?(¬¬ψ, V ) sinceForget?(¬¬ϕ, V ) ≡? Forget?(¬¬ψ, V )
iff ∃〈X ′, Y ′〉 |=? ¬¬ψ such that〈X \ V, T 〉 ∼V 〈X

′, Y ′〉 by Definition 8
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iff ∃Y ′ |= ¬¬ψ i.e. Y ′ |= ψ such thatT ∼V Y ′ by (ii) of Proposition 3
iff T |= Forget(ψ, V ) by Corollary 5. �

Theorem 12 (?-forgetting vs propositional forgetting) Let ψ andϕ be two formulas ofLA and
V ⊆ A. Then

ϕ ≡? Forget?(ψ, V ) iff ∆(A) |= τ?[ϕ]↔ Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V
′).

Proof: (⇒) LetM =MA ∪M
∗
A′ be a model of∆(A).

M |= ∆(A) ∪ {τ?[ϕ]}
iff 〈MA,M

∗
A′〉 |=? ϕ by Proposition 8

iff 〈MA,M
∗
A′〉 |=? Forget?(ψ, V ) sinceϕ ≡? Forget?(ψ, V )

iff ∃〈H,T 〉 |=? ψ such that〈H,T 〉 ∼V 〈MA,M
∗
A′〉 by Definition 8

iff ∃〈H,T 〉 |=? ψ such thatH ∼V MA andT ∼V M∗
A′

iff ∃H ∪ T ′ |= ∆(A) ∪ {τ?[ψ]} andH ∼V MA andT ′ ∼V ′ MA′ by Proposition 8
iff ∃H ∪ T ′ |= ∆(A) ∪ {τ?[ψ]} andH ∪ T ′ ∼V ∪V ′ MA ∪MA′ by Lemma 4
iff MA ∪MA′ |= Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V

′) by Definition 8
iff M |= Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V

′).
(⇐) 〈X,Y 〉 |=? ϕ

iff X ∪ Y ′ |= ∆(A) ∪ {τ?[ϕ]} by Proposition 8
iff X ∪ Y ′ |= ∆(A) ∪ Forget(∆(A) ∪ {τ?[ψ]}, V ∪ V

′)
iff ∃M |= ∆(A) ∪ {τ?[ψ]} such thatM ∼V ∪V ′ X ∪ Y ′

iff ∃〈MA,M
∗
A′〉 |=? ψ such thatMA ∪M

∗
A′ ∼V X ∪ Y by Proposition 8

iff 〈X,Y 〉 |=? Forget?(ψ, V ) due to〈X,Y 〉 ∼V 〈MA,M
∗
A′〉 by Definition 8. �

Proposition 16 Letψ andϕ be two formulas ofLA andV a set of atoms. ThenForget?(ψ, V ) ≡?

Forget?(ϕ, V ) iff the following condition holds:

Forget({τ?[ψ]} ∪∆(A), V ∪ V ′) ≡ Forget({τ?[ϕ]} ∪∆(A), V ∪ V ′).

Proof: (⇒) We showForget({τ?[ψ] ∪ ∆(A), V ∪ V ′) |= Forget({τ?[ϕ] ∪ ∆(A), V ∪ V ′). The
other side can be similarly proved.

M |= Forget({τ?[ψ]} ∪∆(A), V ∪ V ′)
⇒ ∃N ⊆ A ∪A′ such thatN ∼V ∪V ′ M andN |= {τ?[ψ]} ∪∆(A)
⇒ ∃〈X,Y 〉 |=? ψ with N = X ∪ Y ′ by Proposition 8
⇒ 〈X,Y 〉 |=? Forget?(ψ, V ) by (iii) of Proposition 10
⇒ 〈X,Y 〉 |=? Forget?(ϕ, V ) asForget?(ψ, V ) ≡? Forget?(ϕ, V )
⇒ ∃〈H,T 〉 |=? ϕ such that〈H,T 〉 ∼V 〈X,Y 〉 by Definition 8
⇒ H ∪ T ′ |= τ?[ϕ] ∪∆(A) by Proposition 8
⇒ X ∪ Y ′ |= Forget({τ?[ϕ]} ∪∆(A), V ∪ V ′) asH ∪ T ′ ∼V ∪V ′ X ∪ Y ′

⇒M |= Forget({τ?[ϕ]} ∪∆(A), V ∪ V ′) byM ∼V ∪V ′ X ∪ Y ′(= N).
(⇐) We showForget?(ψ, V ) |=? Forget?(ϕ, V ). The other side is similar.
〈H,T 〉 |=? Forget?(ψ, V )

⇒ ∃〈X,Y 〉 |=? ψ such that〈H,T 〉 ∼V 〈X,Y 〉) by Definition 8
⇒ X ∪ Y ′ |= {τ?[ψ]} ∪∆(A) by Proposition 8
⇒ X ∪ Y ′ |= Forget({τ?[ψ]} ∪∆(A), V ∪ V ′)
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⇒ X ∪ Y ′ |= Forget({τ?[ϕ]} ∪∆(A), V ∪ V ′)
⇒ ∃H1 ∪ T

′
1 |= {τ?[ϕ]} ∪∆(A) such thatH1 ∪ T

′
1 ∼V ∪V ′ X ∪ Y ′

⇒ 〈H1, T1〉 |=? ϕ by Proposition 8
⇒ 〈X,Y 〉 |=? Forget?(ϕ, V ) as〈X,Y 〉 ∼V 〈H1, T1〉 by Definition 8
⇒ 〈H,T 〉 |=? Forget?(ϕ, V ) as〈X,Y 〉 ∼V 〈H,T 〉. �

Theorem 14 Letψ andϕ be two formulas andV a set of atoms.

(i) The problem of deciding ifψ ≡? Forget?(ψ, V ) is co-NP-complete.

(ii) The problem of deciding ifForget?(ϕ, V ) ≡? Forget?(ψ, V ) isΠP
2 -complete.

(iii) The problem of deciding ifϕ ≡? Forget?(ψ, V ) is ΠP
2 -complete.

Proof: (i) Membership. Recall thatψ |=? Forget?(ψ, V ) by (iii) of Proposition 10. We have
ψ 6≡? Forget?(ψ, V )
iff Forget?(ψ, V ) 6|=? ψ
iff ∃〈X,Y 〉 |=? Forget?(ψ, V ) and〈X,Y 〉 6|=? ψ
iff ∃〈H,T 〉 |=? ψ such that〈H,T 〉 ∼V 〈X,Y 〉 and〈X,Y 〉 6|=? ψ.

Since both guessing〈H,T 〉, 〈X,Y 〉 and checking the?-satisfiability can be done in polynomial
time in the size ofψ andV . Thus the complement ofψ 6≡? Forget?(ψ, V ), i.e.ψ ≡? Forget?(ψ, V ),
is in co-NP.

The hardness follows from the fact that, by (i) of Proposition 15,¬¬ψ ≡? Forget?(¬¬ψ, V ) iff
ψ ≡ Forget(ψ, V ), which is co-NP-complete (cf., see Lang et al., 2003, Prop. 10).

(ii) Membership. IfForget?(ϕ, V ) 6≡? Forget?(ψ, V ) then there exists a?-interpretation〈H,T 〉
such that either

(a) 〈H,T 〉 |=? Forget?(ϕ, V ) and〈H,T 〉 6|=? Forget?(ψ, V ), or

(b) 〈H,T 〉 6|=? Forget?(ϕ, V ) and〈H,T 〉 |=? Forget?(ψ, V ).

On the one hand, to guess a?-interpretation〈H,T 〉 is feasible by a nondeterministic Turing ma-
chine. On the other hand, checking if〈H,T 〉 |=? ϕ is feasible by a deterministic Turing machine;
and〈H,T 〉 |=? Forget?(ϕ, V ) iff there exists〈X,Y 〉 |=? ϕ such that〈X,Y 〉 ∼V 〈H,T 〉. Thus
checking the conditions (a) and (b) can be done in polynomialtime in the size ofψ andϕ by calling
a nondeterministic Turing machine. Thus the problem is inΠP

2 .
Note that, by (ii) of Proposition 15,Forget?(¬¬ϕ, V ) ≡? Forget?(¬¬ψ, V ) iff Forget(ϕ, V ) ≡

Forget(ψ, V ), which is ΠP
2 -complete (cf., see Lang et al., 2003, Prop. 24). Thus the hardness

follows.
(iii) Membership. Note thatϕ 6≡? Forget?(ψ, V ) iff there is a?-interpretation〈H,T 〉 such that

• 〈H,T 〉 |=? ϕ and〈H,T 〉 6|=? Forget?(ψ, V ), or

• 〈H,T 〉 6|=? ϕ and〈H,T 〉 |=? Forget?(ψ, V ).

Similar to the case of (ii), the guessing and checking are in polynomial time in the size ofϕ,ψ and
V by calling a nondeterministic Turing machine. Thus the problem is inΠP

2 .
Note thatϕ ≡? Forget?(ψ, V ) iff ϕ ≡? Forget?(ϕ, V ) andForget?(ϕ, V ) ≡? Forget?(ψ, V ),

the latter isΠP
2 -hard by (ii). Then the hardness follows. �
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Proposition 17 Letψ andϕ be two formulas andV a set of atoms.

(i) The problem of deciding whetherψ |=? Forget?(ϕ, V ) isΠP
2 -complete.

(ii) The problem of deciding whetherForget?(ψ, V ) |=? ϕ is co-NP-complete.

Proof: (i) Membership. Recall thatψ 6|=? Forget?(ϕ, V ) iff there exists a?-model 〈H,T 〉 of ψ
such that〈H,T 〉 6|= Forget?(ϕ, V ). As 〈H,T 〉 6|= Forget?(ϕ, V ) iff 〈X,Y 〉 6|= ϕ for every?-
interpretation〈X,Y 〉 such that〈X,Y 〉 ∼V 〈H,T 〉. Such〈H,T 〉 can be guessed in polynomial
time in the size ofϕ,ψ andV . Checking〈H,T 〉 6|= Forget?(ϕ, V ) is possible in polynomial time
in the size ofϕ,ψ andV by calling a nondeterministic Turing machine. Thus the original problem
is in Πp

2
.

Hardness. It follows from the following fact:
> |=? Forget?(¬¬ϕ, V )
iff > ≡? Forget?(¬¬ϕ, V )
iff > ≡ Forget(ϕ, V ) by (i) of Proposition 15 (¬¬> ≡? >)
iff the QBF∀V ∃V ϕ is valid, which isΠP

2 -complete (Papadimitriou, 1994).
(ii) Membership. Note that

Forget?(ψ, V ) 6|=? ϕ
iff ∃〈H,T 〉 |=? Forget?(ψ, V ) such that〈H,T 〉 6|= ϕ
iff ∃〈X,Y 〉 |=? ψ such that〈X,Y 〉 ∼V 〈H,T 〉 and〈H,T 〉 6|= ϕ.
Since the guessing and checking are both polynomial in the size ofψ,ϕ andV , the original problem
is in co-NP.

Hardness follows from the fact that
Forget?(ψ, V ) |=? ⊥
iff ψ |=? ⊥ by (ii) of Proposition 10
iff ψ has no?-model, which is co-NP-complete by Proposition 9. �

Appendix D. Forgetting OperatorsFW and FS

Wong proposed six postulates and argued that the postulatesshould to respected by all forgetting
operators in disjunctive logic programs under strong equivalence:

(F-1) If Π |=HT Σ thenF (Π, a) |=HT F (Σ, a);

(F-2) If a does not appear in∆, thenF ({r} ∪∆, a) ≡HT F ({r}, a) ∪∆;

(F-3) F (Π, a) does not contain any atoms not inΠ;

(F-4) If F (Π, a) |=HT r thenF ({s}, a) |=HT r for somes ∈ Cn(Π);

(F-5) If F (Π, a) |=HT (A← B,notC), thenΠ |=HT (A← B,notC, not a);

(F-6) F (F (Π, a), b) ≡HT F (F (Π, b), a)

whereF is a forgetting operator,Π,Σ and∆ are disjunctive logic programs,a andb are atoms,r is
a disjunctive rule, and

Cn(Π) ={r| r is a disjunctive rule such thatΠ |=HT r andvar(r) ⊆ var(Π)}.
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wherevar(α) is the set of atoms occurring inα.
Accordingly, he proposed two forgetting operatorsFS andFW: the result of forgetting an atom

a from a disjunctive logic programΠ is defined by the below procedure:

(1) LetΠ1 = Cn(Π).

(2) FormΠ1, remove rules of the form(A ← B, a, notC), replace each rule of the form(A ∪
{a} ← B,notC, not a) with (A← B,notC, not a). Let the resulting logic program beΠ2.

(3) Replace or remove each rule inΠ2, of the form (A ← B,notC, not a) or (A ∪ {a} ←
B,notC) according to the following table:

A← B,notC, not a A ∪ {a} ← B,notC

S (remove) (remove)
W A← B,notC A← B,notC

LetΠ3 be the resulting logic program.

The logic programΠ3 is the result of forgettingp from Π.
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