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ABSTRACT Knowledge graph completion (KGC) is a hot topic in knowledge graph construction and

related applications, which aims to complete the structure of knowledge graph by predicting the missing

entities or relationships in knowledge graph and mining unknown facts. Starting from the definition and

types of KGC, existing technologies for KGC are analyzed in categories. From the evolving point of

view, the KGC technologies could be divided into traditional and representation learning based methods.

The former mainly includes rule-based reasoning method, probability graph model, such as Markov logic

network, and graph computation based method. The latter further includes translation model based, semantic

matching model based, representation learning based and other neural network model based methods. In this

paper, different KGC technologies are introduced, including their advantages, disadvantages and applicable

fields. Finally the main challenges and problems faced by the KGC are discussed, as well as the potential

research directions.

INDEX TERMS Knowledge graph; knowledge graph completion; entity prediction; relation prediction;

deep learning

I. INTRODUCTION

The concept of knowledge graph was first proposed by

Google in 2012, which is defined as a large-scale knowledge

base composed of a large number of entities and relation-

ships between them. In recent years, knowledge graph, as a

semantic network, has been widely used in natural language

processing, intelligent question answering system, intelligent

recommendation system and so forth. Together with big data

and deep learning, knowledge graph now has become one

of the core driving power for the development of artificial

intelligence [1].

Although commonly used large-scale knowledge graphs

such as Freebase [2], DBpedia [3] and YAGO [4] contain mil-

lions of entities and relationships, there are still many missing

facts, and many implicit relationships between entities have

not been fully excavated, resulting in incomplete structure

and content of knowledge graphs [5]. Therefore, the research

on knowledge graph completion is proposed to complete

the knowledge graph and expand its scale by predicting the

potential relationship between existing entities and discov-

ering new relational facts [6]. For giving a comprehensive

understanding of the task of knowledge graph completion,

this paper conducts a survey from the aspects of problem def-

inition, main methods, evaluation indexes, etc. Meanwhile,

the paper also analyzes the problems and challenges faced by

knowledge graph completion task, and points out the future

research directions of this field. The subsequent sections

are organized as follows: In Section II, the introduction of

knowledge graph completion is given. Section III introduces

the main methods of knowledge graph completion. In this

section, different knowledge graph completion technologies

are reviewed, including their advantages, disadvantages and

applicable fields. In Section IV and V, the main problems

faced by knowledge graph completion and its applications

are discussed. Section VI introduces the potential research

directions of knowledge graph completion.

II. INTRODUCTION TO KNOWLEDGE GRAPH

COMPLETION

A. GENERAL INTRODUCTION TO KNOWLEDGE GRAPH

Knowledge Graphs can be considered as an intelligent sys-

tem integrating knowledge and data on a large scale, which

can be traced back to the expert system developed in the

late 1960s [7]. Under the background of combining knowl-

edge with data, researchers try to construct knowledge-based

system. In the early practice of modern knowledge graph

construction, the knowledge (especially rules) of experts in

a specific field often be coded. The Semantic Web appeared

in the 1980s with the purpose of modeling the relationship

between concepts. Berners-Lee et al. proposed to use the Se-
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mantic Web to form link data and many high-quality knowl-

edge bases have been built [8]. The current study originates

from Google Knowledge Graph [9]. After that, companies

such as Amazon, eBay, Facebook, IBM, LinkedIn and Uber

have built the knowledge graph of their own industries.

The classification of knowledge graphs can be considered

from the following perspectives: according to the modalities

(content forms) of the graphs, they can be divided into

text knowledge graphs, visual knowledge graphs, and multi-

modality knowledge graphs [10]. In terms of domain scope,

it can be divided into general knowledge graph and domain

knowledge graph [7]. According to the timeliness of the con-

tained knowledge, it can be divided into dynamic knowledge

graph and static knowledge graph.

At present, the research on knowledge graph mainly fo-

cuses on three aspects: knowledge representation, knowledge

graph construction, and knowledge graph application, which

integrates cognitive computing, knowledge representation

and reasoning, information retrieval and extraction, natural

language processing, data mining and other technologies

[1]. Knowledge graph completion is a hot topic in the field

of knowledge graph construction and application. And this

paper reviews the development in this field during the last

ten booming years.

B. BASIC CONCEPTION OF KNOWLEDGE GRAPH

COMPLETION

Since most knowledge graphs are constructed manually or

semi-automatically, a large number of implicit entities and

relationships have not been discovered, and therefore the

incompleteness becomes a universal problem in almost all

knowledge graphs. The goal of KGC is to solve the problems

of incompleteness and sparsity caused by missing instances

or links in the knowledge graphs, which is a necessary means

to improve the quality of knowledge graphs. Knowledge

graph completion technology complements the graph struc-

ture by predicting knowledge instances (entities, relation-

ships, attributes, etc.), mining missing entities, relationships,

or discovering new facts. It is an important means of discov-

ering new knowledge and is widely applied in upper-level

tasks of knowledge graphs (see Section IV-B).

For the knowledge graphs represented by Resource De-

scription Framework (RDF), the triples like "head entity-

relationship-tail entity" or "entities-attributes-attribute val-

ues" are used to describe nodes, edges and attributes in a

graph network, in which the node corresponds to the entity in

the real world, and edge represents all kinds of relations be-

tween entities. In this way, the knowledge graph completion

problem can be converted into estimating the missing parts

of the triples by using the methods like semantic similarity.

According to the missing parts in triples, knowledge graph

completion can be divided into three kinds of specific tasks:

1) given the head entities and relationships in a triples,

predict the corresponding tail entities, such as (Beijing, cap-

italOf, ?) ; 2) given the relationship and tail entities, predict

the corresponding head entities, such as (?, capitalOf, China);

3) given the head and tail entities, and predict the relationship

between them, such as (China, ?, country). That is, from

any two given elements in a triple and the third element

can be deduced. For specific application, knowledge graph

completion includes link prediction [11], [12], [13], entity

prediction [14], [15], [16], relation prediction [17], attribute

prediction [18] and other sub-tasks.

C. THE CLASSIFICATION OF KNOWLEDGE GRAPH

COMPLETION

According to different task scenarios, knowledge graph com-

pletion can be divided into closed environment knowledge

graph completion and open environment knowledge graph

completion [19]. Specifically, if the entities and relationships

involved in the completion process belong to the original

knowledge graph, it is called the knowledge graph comple-

tion in the closed environment, also called the static knowl-

edge graph completion; otherwise, it is called the knowledge

graph completion in the open environment, also called dy-

namic knowledge graph completion.

At present, a large number of existing knowledge graph

completion models are based on the closed environment

hypothesis [20]. In such cases, all entities and relationships

are supposed to be existing in the same knowledge graph,

and graph completion can only be achieved by mining the

potential connections between existing entities, instead of

adding new entities and related relationships to the existing

graph. The knowledge graph completion in closed environ-

ment relies heavily on the existing connected structure of the

knowledge graph, which cannot achieve prediction for the

weak connections and new entities and also cannot expand

graph structure well. So the knowledge graph completion

in closed environment is mostly applicable to the domain

knowledge graph with small scale and slow update. And the

KGC under closed environment does not make full use of

external data for missing completion, resulting in insufficient

information and strong limitations in usage.

Based on the assumption of open environment in proba-

bilistic database theory [9], the knowledge graph completion

model in open environment provides a method to predict

external entities and weakly connected entities. Most of the

existing large-scale knowledge graphs are constantly updated

and expanded through linking external entities to adapt to

the explosive growth of information. The knowledge graph

completion in an open environment is relatively difficult to

establish a connection between the local knowledge graph

and the outside world, due to the wide range of alternative

knowledge. But it has more advantages when expanding the

scale of the knowledge graph [21]. Based on the knowledge

graph completion in an open environment, the research in the

field of dynamic updating of the knowledge graph has started.

The existing research results [22], [23], [24] are carried out

from the perspective of dynamic updating based on the data

model layer and the data layer or adopting active learning

strategies, which are beyond the scope of this review, so they

will not be included.
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Since most of the current research focuses on knowledge

graph completion in closed environment, the contents of this

paper are limited to this scope. According to the development

of the research, the traditional knowledge graph completion

methods and the others based on deep representation learning

are introduced in turn. The former mainly includes rule-based

reasoning method, probability graph model method, and the

method based on graph computing. The latter includes trans-

lation model based method, semantic matching model based

method, network representation learning method and neural

network model based method.

D. METHODOLOGY

The current reviews [1], [8], [10], [25], [26], [27], [28], [29],

[30] related to knowledge graphs mainly involve research

on knowledge representation, knowledge graph construction,

knowledge reasoning, etc., lacking of systematic review ar-

ticles of knowledge graph completion. Literature [31] ana-

lyzes the graph completion algorithm based on knowledge

representation, but it lacks comprehensiveness. Starting from

the definition of the knowledge graph completion problem,

this paper classifies the existing methods, and analyzes the

advantages and disadvantages of each class, points out appli-

cable fields of each type of method, introduces the evaluation

indicators of the knowledge graph completion algorithms,

and discusses the main challenges and problems in the field,

as well as its potential research directions. Compared with

the existing reviews, this article is more comprehensive and

in-depth, reflects the latest research status, and can provides

useful references for researchers in this field.

The selected documents are closely related to knowledge

graph completion. These documents are taken from interna-

tional journals in computer science and engineering technol-

ogy indexed by EI/SCI and international conferences related

to natural language processing, knowledge engineering, se-

mantic web, and artificial intelligence, such as EMNLP, ACL,

IJCAI, etc., which covers the content from related theories

and model prototypes proposed in 1960s to the latest research

methods in recent years. There are 120 articles covering

about 80% of the literature in the last decade. These articles

completely describe the development process of knowledge

graph completion theory and related technologies, and de-

picts the research track in this field.

III. THE MAIN METHODS OF KNOWLEDGE GRAPH

COMPLETION

According to the evolution of the knowledge graph comple-

ment methods, they are divided into two categories, namely

the traditional knowledge graph complement and the meth-

ods based on knowledge representation learning. They are

introduced below.

A. TRADITIONAL KNOWLEDGE GRAPH COMPLETION

METHODS

1) Knowledge graph completion based on rule reasoning

The knowledge graph completion method based on rule

reasoning uses rules or statistical features to deduce new

knowledge to expand the graph structure and complete the

knowledge graph [27]. For example, if there is a set C and its

subset C1, according to the implicit rules, it can be deduced

that the elements in the set C and subset C1 belong to the

same category. That is, the triple (C1, equivalentClass, C)

can be reasoned from the rules by triple (C1, subClassOf,

C). NELL [32] is one of the earliest methods for rule-based

knowledge reasoning. For a knowledge graph that defines

ontology and its instances, NELL uses a first-order rela-

tional learning algorithm to deduce new relational instances

from existing knowledge. Based on the semantic network

inference rule OWL2RL, the knowledge graph completion

model KGRL [33] effectively infers the hidden information

in knowledge graph, and performs well in the prediction of

discontinuous data.

Rule-based single-step reasoning methods rely on a large

number of effective and accurate rules and statistical features.

But effective and widely-covered rules and constraints are

difficult to obtain, resulting in a low recall rate in the rea-

soning, so related research tends to the direction of multi-

hop reasoning. Wang et al. proposed a probabilistic language

model ProPPR [34], [35] which joins triples into clauses,

takes clauses as inference targets and relation (edges) as an

inference step, then associates the weight of the edge with

the feature vector and adds self-loop from the target tail node

to the start node to increase the weight of reasoning with

fewer steps. Literature [36] proposes a reasoning completion

based on an open knowledge graph, and proposes a novel

collaborative policy learning (CPL) framework, which uses

new facts extracted from a text corpus to perform multi-hop

reasoning. The new facts augment the graph dynamically

while performing reasoning.

For other graph-based and translation model-based multi-

hop inference methods, see Section 2.1.3 and Section 2.2.1.

In order to make full use of the rich semantic information

contained in the knowledge graph, Paulheim and Bizer pro-

posed algorithms SDType and SDValidate [37], which use

the statistical distribution of attributes and types to complete

the triple type. Semantic information is valuable feature

information contained in the knowledge graph, which has

been widely used in various methods of knowledge graph

completion, and will be described in detail in the following

sections.

Since rules are automatically generated according to se-

mantics or extracted manually, the advantage of rule-based

reasoning knowledge graph completion method lies in its

strong interpretability. When comprehensive and accurate

rules are obtained, the graph completion accuracy is high.

At the same time, this method also has many defects. First

of all, this method has a strong dependence on rules, and it

is very difficult to obtain complete rules no matter through

manual construction or automatic generation. Therefore, the

expected reasoning accuracy and completion effect cannot
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be achieved in practice. Secondly, the rule-based reasoning

knowledge graph completion method is very inefficient in

computation, especially in the condition that the scale of

knowledge graph is increasing day by day, this traditional

graph completion method can no longer meet the current ap-

plication needs. Therefore, the knowledge graph completion

method based on reasoning began to develop in the direction

of distributed representation based reasoning, neural network

based reasoning, and mixed reasoning.

2) Knowledge Graph Completion Method Based on

Probabilistic Graph Model

Probabilistic graph model is a model that uses graphs to rep-

resent probabilistic relations, which provides the possibility

to effectively reason and learn various types of probabilistic

models [38]. The probabilistic graph model can combine the

expression and computing power of graph with probability

theory, so that it has the advantages of flexible topological

structure, easy to understand and explain, obvious semantics

and effective multi-information fusion in dealing with uncer-

tainty problems [39]. Another reason why the probabilistic

graph model is used in knowledge graph reasoning is its

advantage in relational semantic interpretability. Not only

is the reasoning process of the algorithm explicable, but

also has the function of semantic interpretation [40]. Many

researchers have also attempted to improve the semantic

representation ability of probabilistic graphical models [41].

The knowledge graph completion method based on the

probability graph model mostly uses Markov logic network

[42] and Bayesian network [43]. Markov logic network is

a probability distribution model with Markovian random

variables. Combining first-order logic and probability graph

models, the probability distribution of the knowledge graph

ontology is derived according to the principle of large weight-

s corresponding to strong rules. Then the Markov logic

network is used to maximize its probability distribution, that

is, the reasoning of knowledge is carried out through the prin-

ciple of large weights corresponding to hard constraints [27].

Jiang et al. [44] proposed to extract first-order logic from

ontology as hard constraint and extract weighted confidence

from the instance ternary as soft constraint. And this Markov

logic network combines hard constraint and soft constraint

with probability graph model and can be used as a means to

complete the knowledge graph. This kind of method makes

link prediction using the potential characteristics of knowl-

edge graph defined by logical rules. The bottleneck of its

performance lies in rule learning and parameter estimation.

Bayesian network takes the network structure and node

attribute information into consideration. It is a Directed A-

cyclic Graph (DAG) in form, with a solid theoretical foun-

dation and wide application [45], suitable for expressing and

analyzing uncertain knowledge and effective reasoning. It is

one of the most effective models in the field of knowledge

expression and reasoning [46]. Han [47] et al. proposed a

knowledge graph completion model based on Bayesian net-

work, in which a constructed knowledge graph was used to

describe user interests. Combined with external data sets, as

a representation and reasoning framework Bayesian network

was used to measure the similarity and uncertainty among d-

ifferent commodities. And then, based on the probability rea-

soning mechanism, authenticity of the connection between

commodity node and user node was quantitatively judged.

Literature [39] combines Bayesian inference theory with

latent factor model to realize link prediction, and judges the

reliability of the relationship by calculating the confidence of

the relationship between nodes, and discovers the potential

relationship between entities. The model also considers the

rich semantic information of the knowledge graph, adds

annotation information to the knowledge graph node, and

uses the ontology database to construct inference rules to

complete the prediction. At the same time, it performs well

in terms of improving the prediction accuracy and reducing

time overhead.

Models based on probability graphs use joint probability

distribution reasoning to predict new facts to complete the

graph. Compared with rule-based methods, they improve the

computation efficiency. However, due to the high complexity

of the algorithm, it is difficult to reason and calculate for

large-scale multi-relation knowledge graphs.

3) Knowledge graph completion method based on graph

calculation

In the knowledge graph completion model based on graph

calculation the structure of knowledge graph is abstracted as

graph. Given a knowledge graph G, the graph structure G is

a set of nodes and edges, and G=(V, E) , in which v ∈ V is

the node of graph, e ∈ E ⊆ V × v is the edge of graph, and

ei j is a connection edge between two nodes vi and v j. That is,

the entity is expressed as the node in the graph, and the rela-

tionship of different types acts as the edges in the graph. By

using different statistical characteristics of nodes and edges,

such as the outgoing degree and incoming degree of nodes,

adjacent matrix and so on, new entities and relationships can

be predicted. Path Ranking Algorithm (PRA) [48] is one of

the earlier graph completion methods based on graphs. Its

basic idea is that for a given type of relation r, PRA uses

Random Walk [49] method to acquire the specific path of

knowledge graph, namely the specific relationship between

entities r, and then uses the obtained path characteristic to

train model. For a given set of entities, the trained model can

be used to judge whether there is relationship r between them,

that is, whether it can be connected by edge r, and if it can be,

the triple will be added to the knowledge graph as a missing

fact.

The path ranking algorithm is highly interpretable and

does not require additional logic rules to assist in reasoning

process. On the basis of this, Wang et al. proposed the

Coupled Path Ranking Algorithm (CPRA) [50] model which

use the similarity measure to collectively model the specific

relationships that may have a common path, and divide the re-

lationships into different groups. By this way, it improved the

one-to-one modeling method of PRA for training a separate
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classifier for each relationship. The graph-based knowledge

graph completion method has three problems as follows:

Firstly, the scalability is poor and the memory usage is high,

because for a group of entity pairs, this type of algorithm

requires enumerating paths to determine whether there exists

all possible relationships between the entity pairs. Secondly,

the number of paths is large, and using the path as a model

training feature may cause feature explosion. Finally, like the

completion method based on the probability graph model,

the graph-based model is also facing the problem of high

complexity of large scale data computation.

Traditional knowledge graph completion methods apply

the reasoning rules and the network structure of knowledge

graph. With the expansion of knowledge graph, the defects

of this kind of method are gradually manifest. Firstly, the

expansion of knowledge graph gradually reflects the sparsity

of data, increases the difficulty of extracting rules, and long

tail distribution entities associated knowledge is less. So the

above methods are greatly limited in the aspect of knowledge

graph completion; Secondly, the essence of knowledge graph

data is a kind of semantic network, in which entities and

relationships contain rich semantic information. However, it

is difficult to obtain high-quality knowledge graph because

the traditional knowledge graph representation methods can-

not encode semantic information. Finally, the traditional

knowledge graph completion method has the problem of

computational efficiency, high algorithm complexity, poor

portability and scalability. Based on this, the study of knowl-

edge graph completion has shifted to the stage of knowledge

representation learning.

B. MAIN METHODS OF KNOWLEDGE GRAPH

COMPLETION BASED ON REPRESENTATION LEARNING

Because the knowledge graph is a multi-relational graph

composed of entities (nodes) and relationships (different

types of edges), it is usually organized in the form of a

network. For example, the knowledge graph stored based on

resource description framework (RDF) [51] is represented in

triples. However, the knowledge graph representation based

on network exists lots of problems in application, mainly

including the following two aspects: First, the calculation

efficiency. In the knowledge representation based on network

graph, entities are expressed as different nodes. When cal-

culating the semantic or reasoning the relationships between

entities, it is necessary for specific application to design spe-

cial graph algorithm to implement this representation. This

method is poor in flexibility and scalability, which is difficult

to meet the demand of the current large-scale knowledge

graph calculation. Second, data sparsity problem. Similar

to other types of large-scale data, large-scale knowledge

graphs also follow long-tail distribution. The entities and

relationships of the long-tail distribution face serious data

sparsity problem [28]. For this problem, extensive attention

has been turned to knowledge representation learning [52],

[53], [54], [55], [56], [57] in recent years. Through machine

learning, knowledge representation learning aims to express

semantic information such as entities and relationships as

dense low-dimensional real value vectors in a continuous

vector space, which not only preserves the inherent graph

structure of knowledge graph, but also simplifies opera-

tions. Typical knowledge representation learning techniques

generally include the following three parts: 1) Represent

relationships and entities in a continuous space; 2) Define

the score function fr(h, t) to judge the probability of the

establishment of triples (h, r, t). The main difference between

models lies in the difference of the score function; 3) Learn

the representation of entities and relationships, and solve the

optimization problem of maximizing the rationality of visible

facts. Through the efficient computation of semantic relations

between entities and relationships in low-dimensional space,

the problem of data sparsity is effectively solved, and the

effect of knowledge graph completion is significantly im-

proved. The following will introduce the knowledge graph

completion methods based on different representation learn-

ing models.

1) Knowledge Graph Completion Method Based on

Translation Model

Translation model is the most representative classical method

in knowledge representation learning. In 2013, Mikolov et

al. proposed Word2Vec [58] algorithm for the first time, and

thus proposed the translation invariant phenomenon of word

vector, such as titanic-leonardodicaprio ≈ 2012-johncusack,

that is, distribution based word representation captures some

kind of same semantic relationship. According to the trans-

lation invariance phenomenon, Bordes et al. proposed the

most representative classical translation model TransE [59],

and led a large number of researchers into the study of

Trans series models, in which the representative improved

models include TransH [60], TransR [6] and TransD [61].

The main idea behind the translation model is to treat the

process of finding valid triples as the translation operation of

entities through relationships, define the corresponding score

function, and then minimize the loss function to learn the

representation of entities and relationships.

Given a training set S consisting of triples (h, r, t), in the

head and tail entity h, t ∈ E, E is entity set, and r ∈ R, R is

relationship set. The main idea of TransE is that, if the triplet

(h, r, t) is true, then the sum of the vector representations of

head entity and relation is close to the vector representations

of the tail entity; otherwise, it is far away, that is, when the

triplet is formed, h+r≈t, as shown in FIGURE 1. From the

above ideas, the score function fr(h, t) =−‖h+ r− t‖ 1
2

[59]

of the TransE model can be obtained, which represents the

Euclidean distance between the head entity and the tail entity

in low-dimensional continuous space.

TransE model is efficient, concise and has good predic-

tion effect, but there are two problems: 1) TransE uses

the Euclidean distance as the distance metric in the score

function, and each feature vector is assigned the same weight

in calculation. And this makes the flexibility of the method

poor, and the accuracy of knowledge representation may be
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FIGURE 1: TransE model. [69]

FIGURE 2: TransH model. [60]

affected by irrelevant dimensions; 2) The TransE model is

relatively simple and has limitations in dealing with complex

relationships such as reflexive, one-to-many, many-to-one,

and many-to-many [6], [60], which cannot well distinguish

entities with the same relationship [62].

Zhen et al. proposed model TransH to improve the above

defects, embeds knowledge into the hyperplane of a specific

relationship [60], as shown in FIGURE 2. TransH learns an

additional mapping vector Wr for each relationship, which

is used to map entities to the hyperplane specific to the rela-

tionship [27]. That is, for a triple (h, r, t), the representation

of the head and tail entities is first mapped to the hyperplane,

and we can get h⊥ = h−w⊤
r hwr, t⊥ = t−w⊤

r twr [60]. If

the triple is true, the relationship vector r on the hyperplane

can be used to connect the head-to-tail vector mapped to

this hyperplane. At this time on the hyperplane fr(h, t) =
−‖h⊥+ r− t⊥‖

2
2 [60]. To some extent, TransH model alle-

viates the problem that TransE model cannot handle complex

relationships well. The TransR model [6] represents entities

and relationships in separate entity and relationship spaces

according to specific relationships, as shown in FIGURE 3.

That is, for a triple (h, r, t), the representation of the head and

tail entities is first mapped to the space corresponding to a

specific relationship, and gets h1 = Mrh, t1 = Mrt [8] . If the

triple is established, the relationship vector is regarded as the

transfer between entity vectors in the corresponding space.

The score function is defined as fr(h, t) = −‖h⊥+ r− t⊥‖
2
2

[8]. Although the TransR model has some improvements

compared to the original translation model, it still has the

following problems: First, head and tail entities connected by

the same relationship may differ greatly in type or attribute,

which will have a certain impact on prediction accuracy. Sec-

FIGURE 3: TransR model. [6]

FIGURE 4: TransD model. [61]

ond, the projection matrix in TransR is formed according to

different relationships, ignoring the impact of different types

of entities. Third, TransR, while introducing the projection

matrix, increases the number of parameters and computation

complexity. The literature [61] proposed the TransD model

to further improve the TransR model by introducing two

projection vectors Mrh and Mrt to represent the mapping

of head entities and tail entities to the relationship space.

As shown in FIGURE 4, the projection vector is defined as

Equation (1).

Mrh = lrplhp + Id×k,

Mrt = lrpltp + Id×k.
(1)

TransD replaces the operation of matrix and vector multi-

plication in the previous model with the operation of vector

multiplication, which improves the calculation efficiency to

some extent and solves the problem of too many parameters

in the TransR model. So TransD is suitable for the com-

pletion of large-scale knowledge graphs. Another improved

version of TransR is TranSparse model proposed by Ji et

al. [63], which replaces dense matrix in the original model

with sparse matrix as mapping matrix, solves the distribution

imbalance of entities and relationships in knowledge graph,

and reduces the number of parameters in the model at the

same time. For the head and tail entities connected by the

same relationship, two different sparse mapping matrices are

introduced, Mr
1

(

θ r
1

)

and Mr
2

(

θ r
2

)

, that is h⊥ = Mr (θr)h,

t⊥ = Mr (θr) t [40], in which θr, θ r
1 , θ r

2 denotes the spar-

sity of the matrix, defined as θ 1
r =

1−(1−θminN1
r )

N1
r

, where N

represents the number of connected entities of relation r at

position l. TranSparse model score function is defined as

fr (h, t) =−‖h⊥+ r− t⊥‖
2
2.
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The knowledge graph completion based on translation

model predicts new entity relationship triples from the ex-

isting knowledge graph through embedding entities and rela-

tionships in the vector space. Most of the existing methods

focus on the structured information of triples and maximize

the possibility of their establishment [64], but they ignore the

semantic information and the prior knowledge indicated by

semantic information contained in most knowledge graphs.

Considering encoding semantic information, literature [64]

proposed a method TransT that integrates structured infor-

mation and entity types describing entity categories. The

relationship type is constructed from the entity type, and

the type-based semantic similarity of related entities and

relationships is used to capture the prior distributions of

entities and relationships. But this method ignores the se-

mantic information contained in most knowledge graphs and

the prior information indicated by the semantic information,

using type-based prior distributions, TransT generates mul-

tiple embedding representations of each entity in different

contexts, and estimates the posterior probability of entity and

relationship predictions. Literature [65] proposed a genera-

tive model TransG to solve the problem of multi-relational

semantics, that is, a relationship may have multiple meanings

for different entity pairs associated in different triples. It is

proposed to use a Gaussian mixture model to describe the

relationship between head and tail entities. Each semantic is

described by a Gaussian distribution. See Equation (2).

r = ∑
i

π i
rµ i

r,µ
i
r ∼ N(µt −µh,(σ

2
h +σ2

t )I). (2)

The score function definition of this model is shown in

Equation (3).

P
{

(h,r, t)
}

∝
Mr

∑
m=1

πr,mP(ur,m|h, t)

=
Mr

∑
m=1

πr,me
−

∥

∥

∥

∥

uh +ur,m −ut

∥

∥

∥

∥

2

2

σ2
h
+σ2

t .

(3)

TransG can discover the underlying semantics of relation-

s and embed triples using the combination of relation-

specific component vectors. This is the first generative model

for knowledge graph embedding, and the issue of multi-

ple relational semantics is formally discussed for the first

time. The literature [66] comprehensively considered the

above-mentioned method to model the relationship, and pro-

posed the RotatE model from the perspective of inferring

the relationship synthesis mode. This method can model

and infer various relationship modes, including: symmet-

ric/antisymmetric, inversion, and composition. The RotatE

model defines each relationship as the rotation from the

source entity to the target entity in the complex vector space.

The proposed RotatE model is not only scalable and linear in

time and memory, so it can be applied to large-scale knowl-

edge graph; and it can also infer and model various relational

models, which is significantly better than the existing models

for link prediction.

Table 1 summarizes the characteristics of Trans series

models.

The knowledge graph completion method based on the

translation model focuses on the use of the relationship

between entities, the semantics contained in the entity and

relationship, and the structured information of the knowledge

graph to realize the modeling of entities and relationship-

s, which makes up for the complex training and difficult

extension of traditional methods. For modeling entities and

relationships, the methods are very simple and clear with

strong interpretability [59].

2) Knowledge Graph Completion Method Based on

Semantic Matching Model

i)RESCAL and its extension

The semantic matching model uses the score function

based on semantic similarity to mine the potential semantic

association between entities and relationships, and by em-

bedding the representation of entities and relationships in the

vector space, it can obtain the possibility of new facts, so as

to predict the new knowledge and complete the knowledge

graph. The following are some classical representation meth-

ods based on semantic matching:

For the representation method based on bilinear model

[70], relations after bilinear transformation is used to describe

the semantic connection between entity and relation, and to

capture various interactions between data. The most classical

representative method is the RESCAL model [52]. As a

kind of relational data, knowledge graph is characterized

by the correlation between multiple interconnected nodes,

such as entity attribute categories and other hidden semantic

information. RESCAL is a relational learning method based

on three-way tensor factorization, in which each entity is

associated with a vector to capture its implied semantics. The

relationship matrix is used to modeling interactions between

latent factors. The RESCAL model is shown in FIGURE 5.

The score of triples (h, r, t) is defined by the bilinear function

as Equation (4):

fr (h, t) = h⊤Mrt =
d−1

∑
i=0

d−1

∑
i=0

[Mr]i j · [h]i · [t] j , (4)

where h and t are the vector representations of the entities

and Mr is the relation matrix. The score function captures all

interactions between pairs of head and tail entities.

Ji et al. proposed the DistMult model [70] shown in FIG-

URE 6, which is a simplification of the RESCAL model, and

decomposes the relation matrix Mr into a diagonal matrix.

For each relation r in the vector space, make Mr = diag(r)
[70]. Then its score function becomes Equation (5):

fr (h, t) = h⊤diag(r) t =
d−1

∑
i=0

[r]i · [h]i · [t]i . (5)

The score function captures the underlying relationships

between pairs of head-tail entities that are only in the same
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TABLE 1: The Characteristics of Trans Series Models

Method Score function Constrains/Regularization Characteristics

TransE [59] fr(h, t) =−‖h+ r− t‖ 1
2

∥

∥h
∥

∥

2
= 1,

∥

∥t
∥

∥

2
= 1 The embedding of multiple relationships

TransH [27] −
∥

∥(h−w⊤
r hwr)+ r− (t−w⊤

r twr)
∥

∥

2

2

∥

∥h
∥

∥

2
6 1,

∥

∥t
∥

∥

2
6 1

Mapping entities to hyperplanes

corresponding to specific relationships

TransR [6] fr(h, t) =−
∥

∥h⊥+ r− t⊥
∥

∥

2

2

∣

∣w⊤
r

∣

∣/
∥

∥r
∥

∥

2
6 ε,

∥

∥wr

∥

∥

2
= 1

∥

∥h
∥

∥

2
6 1,

∥

∥t
∥

∥

2
6 1

∥

∥r
∥

∥

2
6 1

Mapping different relationships to

different semantic spaces

TransA [67] −(
∣

∣h+ r− t
∣

∣)⊤Mr(
∣

∣h+ r− t
∣

∣)
∥

∥h
∥

∥

2
6 1,

∥

∥t
∥

∥

2
6 1

∥

∥r
∥

∥

2
6 1

Solving the problem of

over-simplification of loss measurement

in translation-based knowledge

representation methods and lack of

competitiveness to measure the diversity

and complexity of entities/relationships

in the knowledge base

TransD [61] −
∥

∥(wrw⊤
h + I)h+ r− (wrw⊤

t + I)t
∥

∥

2

2

∥

∥Mrh
∥

∥

2
≤ 1,

∥

∥Mrt
∥

∥

2
≤ 1

∥

∥h
∥

∥

2
6 1,

∥

∥t
∥

∥

2
6 1

∥

∥r
∥

∥

2
6 1

∥

∥(wrw⊤
h + I)h

∥

∥

2
≤ 1

∥

∥(wrw⊤
t + I)t

∥

∥

2
≤ 1

Using different vectors for

head and tail entities to represent

their projections in the vector space

TranSparse [63]
−
∥

∥Mr(θr)h+ r−Mr(θr)t
∥

∥

2

1/2

−
∥

∥M1
r(θ

1
r )h+ r−M2

r(θ
2
r )t
∥

∥

2

1/2

∥

∥h
∥

∥

2
6 1,

∥

∥t
∥

∥

2
6 1

∥

∥Mr(θr)h
∥

∥

2
6 1

∥

∥Mr(θr)t
∥

∥

2
6 1

∥

∥M1
r(θ

1
r )h
∥

∥

2
6 1

∥

∥M2
r(θ

2
r )t
∥

∥

2
6 1

For the relationship between

entities of different difficulties,

using matrices with different degrees

of sparseness to represent, to prevent

under-fitting complex relationships or

over-fitting simple relationships

TransT [64]
∑(h,r,t)∈∆ ∑(h′,r′,t ′)∈∆

′
(h,r,t)

max
{

0,γ + l(h,r, t,h′,r′, t ′)
}

=

l(h,r, t,h′,r′, t ′) =
−lnp(h|r, t, true)+

lnp(h′|r, t, true),h′ 6= h

−lnp(t|h,r, true)+
lnp(t ′|h,r, true), t ′ 6= t

−lnp(r|h, t, true)+
lnp(r′|h, t, true),r′ 6= r

Predicting entities and relationships

based on semantic information

embedding of structured information

and entity type information

TransG [68] ∑i π i
rexp(−

∥

∥

∥µh +µ i
r −µt

∥

∥

∥

2

2

σ2
h
+σ2

t
)

∥

∥µh

∥

∥

2
6 1,

∥

∥µt

∥

∥

2
6 1

∥

∥µ i
r

∥

∥

2
6 1

Forming multiple Gaussian distributions

based on the different semantics of a

relationship to distinguish correct

and incorrect entities

TransM [69] −θr

∥

∥h+ r− t
∥

∥

1/2

∥

∥h
∥

∥

2
= 1,

∥

∥t
∥

∥

2
= 1

Using different weights to

update parameters for different

relationship types

RotatE [66] −
∥

∥h◦ r− t
∥

∥

2
h,r, t ∈Ck, |ri|= 1

Defining each relationship as a

rotation from the source entity

to the target entity in the

complex vector space

FIGURE 5: RESCAL model. [52]

dimension. Compared with RESCAL model, DistMult model

reduces the number of parameters and the complexity of the

model, and significantly improves the mining effects of the

potential information in knowledge graph.

ComplEx [71] model is an extension of the DistMult

model. The previous models for knowledge graph completion

use three-dimensional bivariate tensor completion for link

prediction. Each slice of tensor denotes the adjacency matrix

of a certain relationship in the knowledge graph. The low-

rank decomposition is carried out for the tensor, and each

row of the decomposed matrix is used to represent an entity

8 VOLUME 4, 2016
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FIGURE 6: DistMult model. [70]

or a relationship of the knowledge graph. Finally, for a given

triplet (h, r, t), the score is calculated by the multi-linear

product among the vector representations, and then decide

whether the triplet can be linked to the graph structure. Such

a method is not so suitable for the prediction of asymmetric

relations, so ComplEx model is proposed to model asym-

metric relations, that is, entities and relations are embedded

into ComplEx Spaces, and the score function is defined as

Equation (6):

fr (h, t) = Re
(

h⊤diag(r) t̄
)

= Re

(

d−1

∑
i=0

[r]i · [h]i ·
[

t̄
]

i

)

. (6)

This model can obtain good accuracy when predicting sym-

metric relationships, can well excavate potential semantic as-

sociations, and can achieve better results than the benchmark

methods in semantic mining and prediction for asymmetric

relationships.

In addition, there is HolE [72], another semantic matching

model for knowledge graphs embedding, which combines

RESCAL’s expressive ability and DistMult’s [25] efficiency

and simplicity to learn the component vector space rep-

resentation of the whole knowledge graph. The proposed

method is related to the holographic model of associative

memory because it employs cyclic correlation to create a

representation of the composition. By using correlation as a

composite operator, HolE can capture rich interactions, but

still compute efficiently, train easily, and scale to very large

data sets. In this paper [73], another extended ANALOGY

model of RESCAL was put forward to further simulate the

analogy properties of the entity and relationship, optimize

their potential representation, and fill in the gap of predicting

the new triples from the perspective of analogy reasoning.

The model QuatE [65] uses two rotating planes in the

complex space to preserve the symmetry/antisymmetric, flip,

and combination relations, and models the relations as rota-

tions in a hyper-complex space, thus unifying ComplEx and

RotatE. Compared with RotatE, QuatE requires 80% less free

parameters for training on FB15k-237.

The knowledge graph completion methods based on se-

mantic matching model and its characteristics are summa-

rized in Table 2.

ii)Matching with Neural Networks

The above methods are mostly expressed in distributed

FIGURE 7: Semantic matching energy model. [80]

forms of entity and relationship types, which have been

shown to help improve the performance of standard natural

language processing tasks (NLP) [76]. For multi-relational

data, linear relation embedding [77], [78] imposes con-

straints, that is, through linear operations to model the re-

lationship in this feature space, thereby learning the map-

ping from the entity to the feature space. This idea is fur-

ther improved in the structured embedding (SE) framework

proposed by Bordes et al. [79]. Semantic matching energy

model (SME) [74] uses neural network structure to achieve

semantic matching, mining semantic relationships between

entities and relationships. The semantic matching energy

model is proposed to learn the distributed representation

of multi-relational data, which has the same trend as the

above research. The relationship type is not modeled by

matrix, but represented by vector, so the state and number

of parameters of entities can be shared, which is suitable for

the situation with a large number of relationship types. The

semantic matching energy model (SME) can be divided into

linear form and bilinear form. The linear form is defined in

Equation (7).

Gu(h,r) = M1
uh+M2

ur+bu,

Gv(t,r) = M1
vt+M2

vr+bv.
(7)

The bilinear form is defined in Equation (8):

Gu (h,r) = (Mu
1h)◦ (Mu

2h)+bu,

Gv (t,r) = (Mv
1t)◦ (Mv

2r)+bv,
(8)

in which Mu
1 , Mu

2 , Mv
1, Mv

2 are weight matrix. The semantic

matching energy model is shown in FIGURE 7.

Among the above two forms, the linear model uses simple

linear layer and the bilinear model uses 3-modes tensors

as core weights. The linear model represents a triplet as a

combination of bigrams, while the bilinear model registers a

triplet as a trigram. The bilinear SME model performs better

than the linear model on the linked prediction task, but the

former requires d times more parameters to learn than the

latter [56] [80].

The neural tensor network (NTN) model [81] is one of

the representative models. The basic idea is to replace the

linear transformation layer in the traditional neural network

VOLUME 4, 2016 9
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TABLE 2: Characteristics Based on Semantic Matching Model

Method Score function Constrains/Regularization Characteristics

RESCAL [52] h⊤Mrt

‖h‖2 6 1,‖t‖2 6 1,
‖Mr‖F 6 1

Mr = ∑i π i
ruiv

⊤
i

Associate each entity with a

vector to capture its latent

semantics.

DistMult [25] h⊤diag(r)t ‖h‖2 = 1,‖t‖2 = 1,‖r‖2 6 1
Mining logical rules with learned

relational embedding

HolE [72] r⊤(h∗ t) ‖h‖2 6 1,‖t‖2 6 1,‖r‖2 6 1

Using holographic embedding to

learn the component vector space

representation of the entire

knowledge graph

ComplEx [71] Re(h⊤diag(r)t) ‖h‖2 6 1,‖t‖2 6 1,‖r‖2 6 1

Using the composition of complex

valued embedding to handle a

large variety of binary relations

ANALOGY [73] h⊤Mrt

‖h‖2 6 1,‖t‖2 6 1,
‖Mr‖F 6 1

MrM⊤
r = M⊤

r Mr

MrMr′ = Mr′Mr

Optimizing their potential

representation with the analog

attributes of embedded entities

and relationships

SME [74]

(M1
uh+M2

ur+bu)
⊤

(M1
vt+M2

vr+bv)
((M1

uh)◦ (M2
ur)+bu)

⊤

((M1
vt)◦ (M2

vr)+bv))

‖h‖2 = 1,‖t‖2 = 1

Encoding multiple relationship data

into entities and relationships to learn

the semantics of multiple relationships

QuatE [65] fr(h, t) = h⊗ r⊲ · t

L(Q,W ) = ∑r(h,t)Ω∪Ω−

log(1+ exp(−Yhrtφ(h,r, t)))

λ1 ‖Q‖2
2 +λ2 ‖W‖2

2

Providing a better spatial explanation,

the extension of ComplEx in

hypercomplex space

NTN [72] r⊤tanh(h⊤Mrt+M1
rh+M2

rt+br)

‖h‖2 6 1,‖t‖2 ≤ 1,‖r‖2 6 1

‖br‖2 6 1,
∥

∥

∥
M

[:,:,i]
r

∥

∥

∥

F
≤ 1

∥

∥M1
r

∥

∥

F
6 1,

∥

∥M2
r

∥

∥

F
≤ 1

High-precision prediction of

hidden relationships between entities

FIGURE 8: Neural tensor network model. [81]

with a bilinear tensor, and connect the head and tail entity

vectors in different dimensions, as shown in FIGURE 8. Each

relational triple is described by a neural network and a pair

of entities as the input of the relational model. If entity pairs

can be connected by this relationship, the model will return

a high score. The score function reflects the possibility of a

relationship between the two entities. The score function of

the neural tensor network model is shown in Equation (9):

fr (h, t) = ut
Tg(lhMrlt +Mr1lh +Mr2lt +br) , (9)

where g() is the activation function, ut
T is the linear layer

related to the relationship, and Mr is the relation projection

matrix. NTN can achieve high-precision prediction of hidden

relationships between entities. The introduction of tensor

can accurately describe the complex semantic relationship

between entities and relationships. At the same time, there

are problems with many model parameters and high compu-

tational complexity, which cannot be adapted to large-scale

knowledge graphs completion.

Knowledge graph is multi-relational data and knowledge

graph completion is a learning task for multi-relational data.

Because the superposition of independent learning models

specific to each relationship is extremely inefficient, especial-

ly because the relationships observed for each relationship

are very sparse, there may be redundancy between entities.

As an important multi-relationship learning algorithm, se-

mantic matching model can capture the correlation between

entities or relationships through their attributes, relationships

or categories. The essence of knowledge graph completion

task is how to apply observed triples in incomplete graph

to predict whether the unobserved triples in graphs are es-

tablished or not. This is a serious challenge for machine

learning research. The above bilinear embedding model takes

into consideration the latent semantic information of entities

and relationships, and can obtain entities and relationships

of deep mutual information, in order to better complete the

knowledge graph task completion.

10 VOLUME 4, 2016
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3) Knowledge graph completion method based on network

representation learning

As a kind of graph data, the valuable characteristics of

knowledge graph not only include node (entity) and side

(relationship), but also the attribute of nodes and edges and

the characteristics of graph network structure. The study

of these characteristics can help us exploit the potential

characteristics in the knowledge graph and achieve higher

accuracy of knowledge graph completion. The method based

on network representation learning aims at fusing the infor-

mation extracted from the network topology structure and

the content information of nodes and edges, transforming

the network vertices into the embedding representations in

low-dimensional continuous vector space, and implementing

the task of knowledge graph completion with the help of

machine learning. This type of model was first proposed

based on the DeepWalk model [82]. The purpose is to obtain

the embedding representation of network nodes in a low-

dimensional continuous vector space. For nodes that belong

to the same adjacency structure or have similar functions

(such as nodes with the same connection structure) can get

similar embedding through learning.

The basic idea of the DeepWalk algorithm draws on the

text generation process to construct a random walk path on

the network [49], which is equivalent to a natural sentence,

expressed as a sequence of nodes. Specifically, the algorithm

uses the language model Skip-gram to maximize the co-

occurrence probability of vertices appearing in a local struc-

ture, models the network representation by maximizing the

co-occurrence probability of vertices in the same window

[83], and finally uses stochastic gradient descent to learn

the parameters. The advantage of the DeepWalk model is

that multiple random walks can be performed at the same

time to generate node sequence information, and the se-

quence generation relying only on local network information

saves calculation time and storage space, and can avoid

the uncertainty of adjacency matrix modeling. When graph

structure changes, there is no need to recalculate the overall

situation. Graphs can be updated iteratively. So the model

can be applied to large-scale sparse graph data calculation.

Its disadvantage is that the walk between nodes is random,

ignoring the transition probability between nodes, which

does not conform to the actual application scenario.

By changing the way of random walk sequence genera-

tion, Node2vec [84] further extends DeepWalk algorithm.

Node2vec is a node vectorization model, and proposes a

learning algorithm for vertices in the network structure,

in order to get the embedding representation in the low-

dimensional continuous vector space. In this way, similar

embedding can be learned for nodes with the same adjacent

structure and nodes with similar functions (such as nodes

with the same connection structure).

In response to the shortcomings of the DeepWalk model

mentioned above, Tang et al. proposed an improved model

LINE [85]. LINE is suitable for undirected or directed graphs

and can assign weight to different nodes and edges. The local

FIGURE 9: Network structure diagram. [85]

and global information of the network structure is preserved

by first-order and second-order similarity of network nodes.

First-order similarity refers to a pair of vertices that can be

directly connected by edges. It represents the probability of

one vertex pointing to another vertex. (First-order similarity

is used in undirected graphs where two vertices point to each

other with the same probability). If the two vertices cannot

be directly connected, the first-order similarity between them

is 0. Then weight is assigned based on the closeness of the

relationship between the two vertices. The larger the weight,

the higher the first-order similarity. Second-order similarity

is used to describe the probability that there is an association

between vertices with the same adjacency structure. If there

are no identical neighbor vertices between two vertices, the

second-order similarity is 0. As shown in FIGURE 9, vertices

6 and 7 are directly connected, and the similarity between

them can be described by first-order similarity. Vertices 5 and

6 have the same adjacency network structure, and the simi-

larity between them corresponds to second-order similarity.

The LINE algorithm selects KL(Kullback-Leibler) diver-

gence as the distance function, and minimizes it to obtain the

embedding representation of the vertex in the d-dimensional

vector space, while retaining the first-order and second-order

adjacency structure information of the vertex. Applying this

method based on network representation to knowledge graph

completion task can better extract the hidden features in the

structure of the knowledge graph, which is beneficial to the

training of the prediction model.

The above-mentioned networks are all shallow networks,

and it is difficult to deal with highly nonlinear and sparse

network structures. In response to this problem, SDNE [86]

constructed a deep network composed of multiple nonlinear

mapping layers, which can capture highly nonlinear network

structure. SDNE consists of two parts, one is the module

for modeling the first-level similarity supervised by the

Laplace matrix, and the second is the module for modeling

the second-level similarity relationship by the unsupervised

deep autoencoder. In the end, the SDNE algorithm takes the

middle layer of the deep autoencoder as the network repre-

sentation of the nodes, and combines supervised and semi-

supervised learning to obtain network expressions suitable

for multiple tasks. The obtained expressions can simultane-

ously reflect the local and global structural information of the
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network.

It is theoretically proved that the essence of DeepWalk,

LINE and node2vec models [82] can be explained by im-

plicit matrix factorization, and is inherently related to graph

Laplace. Based on this understanding, NetMF [87] gave a

general framework for decomposing closed matrices, which

can achieve consistent performance improvement compared

with models such as DeepWalk and LINE.

However, NetMF [87] has problems with computational

efficiency when facing large-scale networks. For example,

for a network with its node size of more than a dozen millions

and a number of edges in a few hundred million, the re-

quirements for computing resources are tens of times higher

than other algorithms. The practicality is greatly restricted. In

order to retain the performance of the NetMF algorithm and

reduce the requirements for computing resources, NetSMF

proposes to sparse the NetMF matrix [88], and keep the

spectrum of the sparse matrix close to the original matrix,

and then decompose the sparse matrix. Experiments show

that this method can effectively improve the computational

efficiency of the algorithm while retaining the spectrum

information of the network. ProNE [89] further uses spectral

propagation to enhance network embedding on the basis of

sparse matrix decomposition, so that the learned embedding

can not only capture the local structure information of the

network, but also obtain the global network characteristics.

Asymmetric transitivity is an important attribute of direct-

ed graphs, from which the graph structure can be captured

and graphs can be restored from partial observation graphs.

Most of the existing graph representation learning methods

are suitable for undirected graphs, and the graph structure

and intrinsic properties can be learned by learning. However,

for directed graphs, it is difficult to maintain the asymmetric

transitivity of directed graphs. HOPE [90] assigns similar or

different values to the source node vector (source vector) and

target node vector (target vector) of the two nodes to maintain

the relationship according to the directed link between the

two nodes The asymmetry of [30], and the use of high-

order approximate metric in embedding learning to obtain

this result.

The above network representation learning algorithm is

used for the link prediction task, and Area Under the Receiver

Operating Characteristic Curve (ROC AUC) is used as the

evaluation indicator. The performance evaluation results on

the two real world networks PPI and Wikipedia are shown in

Table 31.

4) Other knowledge graph completion methods based on

neural network models

The knowledge graph completion method based on neural

network applies strong learning and expression ability of

neural network to model the knowledge graph, which can

obtain good reasoning ability [27]. In recent years, the study

of graph data analysis based on machine learning algorithms

1https://github.com /THUDM/cogdl

TABLE 3: Performance comparison of network representa-
tion learning methods in link prediction tasks

Rank Method PPI Wikipedia

1 DeepWalk [82] 69.65 65.93

2 LINE [85] 73.75 66.51

3 Node2vec [84] 70.19 66.60

4 SDNE [86] 54.87 60.72

5 Hope [90] 80.21 68.89

6 NetMF [87] 79.04 73.24

7 NetSMF [88] 68.64 67.52

8 ProNE [89] 79.93 82.74

has attracted wide attention. As an efficient machine learning

algorithm for non-Euclidean structural graph data, graph neu-

ral network model has achieved good results in node classi-

fication, link prediction, clustering and other applications. In

the following part, the representative researches on the neural

network based graph completion model are summarized.

i) Knowledge graph completion based on convolutional

neural network

Deep neural network and representation learning provide

new methods to solve the problem of data sparsity. Re-

searchers have proposed a number of neural network models

for learning word representations. Due to its efficient ex-

pression and efficiency, convolutional neural network is in-

troduced into natural language processing tasks to complete

traditional natural language processing tasks [91], sentence

classification modeling [92] [93] and other tasks.

In literature [94], the convolutional neural network mod-

el ConvE was proposed to complete link prediction and

knowledge graph completion. In the completion of a large

knowledge graph, some shallow models are often used for

link prediction task. But these kinds of model lack the ability

to extract underlying deeper features, producing poor predic-

tion effects. To enhance the ability of the models to extract

features, the complexity and the number of parameters of the

models is usually increase, the number of parameters is pro-

portional to the number of entities and relationships. These

methods cannot be used for large-scale knowledge graph,

and the method of increasing neural network layer is likely

to cause a problem such as overfitting [29]. In order to solve

the contradiction between data scale and overfitting, literature

[94] proposed ConvE, a 2D convolutional neural network

model with high parameter efficiency and extendibility, to

implement the representation learning of knowledge graph,

and to predict new knowledge in knowledge graph by using

2D convolutional model based on representation. The model

structure is shown in FIGURE 10. First the representation of

entities and relationships will be refactored and connected,

and then input the obtained matrix to convolution layer. The

obtained characteristics mapping matrix will be projected

into k-dimensional space for vectorization, and be matched

with the vector representation of all candidate entities. Con-

volution neural network has the ability of extracting multi-

scale local space feature and combining them to build effi-
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FIGURE 10: ConvE model. [94]

FIGURE 11: SCAN model. [98]

cient representation. But it can only manipulate the regular

Euclidean data such as images (two-dimensional grid), texts

(one-dimensional sequence). Graph neural network has such

features as local connection, shared weights and multilayer

structure [95]. These features are suitable for solving the

problem of graph data. First of all, the graph is the most rep-

resentative of local connection structure. Second, compared

with the traditional spectrum diagram theory [96], shared

weight reduces the computational cost. Finally, multilayer

structure is the key to dealing with hierarchical models. It can

capture different characteristics. Based on this, the convolu-

tional neural network is extended to non-Euclidean graphs

to start the research on graph neural network. Among them,

graph convolutional networks (GCN) [97] are used in knowl-

edge graph completion task much more. Another method

of learning graph node embedding is obtained through the

connected structure of graphs. Shang et al. combined the

characteristics of GCN and ConvE model and proposed an

end-to-end Structure-Aware Convolutional Network (SACN)

[98] to complete the knowledge graph. SACN includes a

weighted graph convolution network as a coder, aggregating

relationship types of knowledge graph node structure, node

attributes and edges, with learnable weights which adapts

to information from adjacent structures used in local aggre-

gation. The nodes properties in the graph are represented

as additional nodes in encoder, so that they can represent

graph nodes more accurately. SCAN is an improvement on

the model ConvE proposed in literature [94], and it improves

the performance of ConvE. In addition, ConvE does not

merge the connectivity structure in the knowledge graph into

representation space. The graph convolution network (GCN)

used in the SCAN model is an effective tool to create the

embedding representation of nodes, which can aggregate

local information in its graph neighborhood for each node

[99], [100], [101]. The structure of the SCAN model is shown

in FIGURE 11. Graph Convolutional Network (GCN) has

been widely used in the field of knowledge graph completion

based on representation learning in recent years. GCN is a

natural extension of convolutional neural networks to graph

data. It can simultaneously perform end-to-end learning for

node feature information and structure information, which is

currently the best choice for graph data learning tasks [95].

Researchers have proposed a variety of improved models

based on GCN, which combined the potential information

of various knowledge graphs and improved the graph com-

pletion effect. In literature [102], a graph neural network-

Graph convolutional network(R-GCN) for data modeling

with highly multi-relational characteristics is proposed and

applied to the task of completing the standard knowledge

graph: link prediction, that is, completing the knowledge
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FIGURE 12: R-GCN model. [102]

graph by recovering the missing facts. The proposal of this

model is to make it as an extension of GCN from local

graph neighborhood to large-scale relational data. The graph

completion model in this paper also adopts an automatic

encoder structure, including an encoder and a decoder. The

encoder uses R-GCN to complete the representation learning

of the potential features for entities. And the decoder uses

the tensor decomposition model DistMult [25] to predict the

labeled edge according to the learned representation. The

model structure is shown in FIGURE 12.

For a labeled directed graph G = (V,E,R) , where V , E,

and R are sets of nodes, edges, and relationships respectively.

The R-GCN model applies a non-linear multi-layer convolu-

tion model to graph G. Its single-layer neural network has the

following Equation (10):

hl+1
(i) = σ

(

∑
r∈R

∑
j∈Nr

i

1

ci,r
W

(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)

. (10)

This function defines an information transfer model to cal-

culate the forward update of a single node in the relation-

ship graph. It improves that all edges in the ordinary GCN

model share the same weight W . Different types of edges

(relationships) use different weights Wr and only the same

edge (relationship) will use the same weight. The weights are

defined as Equation (11) :

W
(l)
r =

B

∑
b=1

a
(l)
rb V

(l)
b . (11)

Literature [103] further optimized the R-GCN model. If

a subset of the entity set can be directly connected to the

central entity, all entities in this subset have some of the

same attributes, and the relationship between these entities

and the central entity may be similar. These similar attributes

and relationships can be abstractly aggregated into virtual

entities and virtual relationships to better extract topological

relationship features.

The summary of the knowledge graph completion method

based on convolutional neural network is shown in Table 4.

ii)Knowledge graph completion based on sequence learn-

ing

Recurrent Neural Network (RNN) and its improved model

Long Short Term Memory (LSTM) are the main models

used in knowledge graph completion based on sequence

FIGURE 13: Two-layer DSKG model. [106]

learning. In the traditional neural network model, data is

transmitted from the input layer to the hidden layer and

then to the output layer. Since each layer is fully connect-

ed, nodes are disconnected between different layers. The

purpose of this kind of neural network model is used to

process sequence data. The triples in knowledge graph can

be approximately regarded as a length of 3 simple sentences,

such as triples (Beijing, capitalOf, China) can be converted

into sentences that Beijing is the capital of China, so this

kind of neural network can be used for the modeling of

knowledge graph. RNN has performed well in many natural

language processing (NLP) tasks, such as language modeling

and machine translation [65], [66]. Literature [106] based

on RNN model puts forward Deep Sequential Model for

Knowledge Graph Completion (DSKG) for the knowledge

graph completion, and applies a specific sampling method

for model training, solving the problems that RNN will

meet in the application of knowledge graph data: i) Triple

group is not a natural language. Short sequences converted

from triples may not provide enough contextual information

for prediction. And because the number of paths in large-

scale knowledge graph is huge, the cost and difficulty to

build valuable long sequence is great [106]; ii) in triples,

relationships and entities are two different types of elements

that appear in a fixed order. Treating them as elements of the

same type in a sequence will lose some characteristics. To

solve these problems, DSKG uses different RNN units for the

entity layer and the relationship layer. As shown in FIGURE

13, it is a double-layer DSKG model structure, in which

c1, c2 and c3 and c4 are different RNN units. Entities and

relationships are fed into RNN cells as sequence elements of

different types and then looped over them. For an RNN unit,

the previous hidden state h and sequence elements (entities

and relationships, i.e. s and r) are used as inputs to predict

the next hidden state h. Through experiments on knowledge

graph benchmark data sets FB15K [107], WN18 [108] and

FB15K [109], DSKG is better than a variety of previous

models in many evaluation indicators.

The LSTM model is an improved method for RNN models

encountering the problem of gradients disappearance in pro-

cessing long sequence data. At each sequence index position,

three gated structures are introduced: forget gate, input gate

and output gate, to add or delete information. Literature [109]
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TABLE 4: Methods based on convolutional neural network

Model Defect/Improvement

convE [94]
The connectivity structure in the knowledge graph is not merged into the representation, and the contradiction

between data size and overfitting cannot be achieved

SACN [98]

Remove the steps of reconstructing for the representation of entities and relationships in ConvE, and perform

convolution filtering when the entity dimensions and relationship dimensions are the same, improve the

performance of ConvE

GCN [97] Extend the convolutional neural network to non-Euclidean graph

R-GCN [102]
Modeling for multi-relational data, as an extension of GCN from local graph neighborhoods to large-scale

relational data

FIGURE 14: TransP model. [109]

proposed a knowledge graph completion method based on

long short-term memory network LSTM. The previously pro-

posed translation model does not fully consider the indirect

relationship between entities, which affects the accuracy of

knowledge representation learning. Therefore, based on long

short-term memory neural networks and existing translation

models, the literature [70] proposed a multi-module hybrid

neural network model TransP. The translation models rep-

resented by the Trans series are used to represent entities

and relationships as embedded vectors in a low-dimensional

continuous vector space, constructing an entity relationship

path to describe the direct relationship between entities. LST-

M is used to mine the indirect relationship between entities,

which applies the optimization goal proposed in ProjE [110]

to reduce the collective ranking loss, and uses level-by-level-

training mechanism to optimize network parameters, so as

to effectively mine the rich relationship information between

entities and improve graph completion effect, as shown in

FIGURE 14, e and r are the vector representations of entities

and relationships, which are constantly adjusted during the

training process. E and r in the indirect relationship module

represent the entities and relationships included in the path

constructed by the path building module; Wr and We are the

weight matrix of relationship and entity, and eci represents

all candidate entities in the direct relationship module. The

probability of their establishment is respectively determined

by calculation of score functions for entities and relationship-

s.

FIGURE 15: GAT layer. [112]

Attention mechanisms are often used in sequence-based

presentation learning methods [111]. One of the benefits of

using attentional mechanisms is that variable-size inputs are

allowed to be processed and then decisions are made based

on the most relevant part of the input. When attentional

mechanisms are used to compute the representation of a

single sequence, they are often referred to as self-attentional

mechanisms. The study of Vaswani, et al. [112] proved that

the introduction of attention mechanism can effectively im-

prove the method based on RNN. Based on this conclusion,

the literature [112] put forward a kind of representation learn-

ing method based on attention mechanism, Graph Attention

Network (GAT) as shown in FIGURE 15, whose main idea is

to make neighborhood nodes involved in the implicit expres-

sion of the calculation of each center node through attention

mechanism. The graph attention network has achieved good

results compared with other benchmark methods on graph

analysis tasks, indicating that the reference of the attention

mechanism can effectively improve the expression ability of

the model.

Lei et al. proposed a path reasoning method for knowledge

graph completion task that integrates attention mechanism

and LSTM model [113], combining the implicit semantic

information representation of entities and relationships for

knowledge reasoning to complete knowledge graph.

The summary of the sequence-based knowledge graph

completion model is shown in Table 5.
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TABLE 5: Methods based on sequence model

Model Characteristics

Original

Models

RNN [104] Used to process data with sequence characteristics

LSTM

[109]

An improved method for the problem of gradient disappearance encountered by

the RNN model in processing long sequence data

Attention

Mechanism

[111]

The attention mechanism allows the processing of variable-sized inputs and makes decisions

based on the most relevant part of the input.When the mechanism is used to calculate the

presentation of a single sequence, it is usually called the self-attention mechanism

Improved

Models

DSKG [106] DSKG uses different RNN units for the entity layer and the relationship layer

TransP

[109]

Consider the indirect relationship between entities and improve the accuracy of knowledge

representation learning

GAT

[112]

Through the self-attention mechanism,the neighbor nodes are involved in the calculation of

the implicit expression of each central node

5) Application of Semantic Information in the Knowledge

Graph Completion Based on Representation Learning

Semantic information can be used as additional information

to assist model feature extraction to improve performance.

Literature [114] considers the effect of semantic layering

phenomenon in link prediction methods, that is, entities at

the highest semantic level correspond to the root node of

the tree, entities with lower semantic levels are closer to

leaf nodes, the distance between the root node and entities

at the same semantic level is equal. According to this phe-

nomenon, the entity relationship of the knowledge graph is

modeled, and the modulus and angles between the entity

nodes are integrated for link prediction. Literature [115]

proposed the Community-enhanced NRL (CNRL) model,

the hidden community (topic) information in the knowl-

edge graph network is embedded in the node representation,

learning the community distribution of each node through

Linear Discriminant Analysis (LDA) [116], and assigning

the corresponding community to the nodes in the sequence

label. Then on the basis of the Skip-gram model, the node

representation of the central node and the corresponding

community representation are used to simultaneously predict

the neighboring nodes in the random walk sequence. Yang et

al. proposed the Text-associated Deep Walk (TADW) model

in [117]. Under the matrix factorization framework, the text

features of nodes are introduced into network representa-

tion learning. The Context-aware Embedding (CANE) model

[118] uses the text information of network nodes to interpret

the relationship between nodes, and learns context-related

network representations for network nodes according to dif-

ferent neighbors. Literature [119] uses ontology information

to improve the effect of link classification and link prediction.

C. EVALUATION INDICATORS OF KNOWLEDGE GRAPH

COMPLETION ALGORITHM

Commonly used knowledge graph completion task evalu-

ation indicators include Hits@k, Mean Rank (MR), and

Mean Reciprocal Rank (MRR). Hits@k (k is generally 10)

indicates the probability of correct prediction in the top k

candidate triples calculated by the algorithm. The calculation

formula is shown in Equation (12):

H@k =

∣

∣{q ∈ Q : q < k}
∣

∣

∣

∣Q
∣

∣

, (12)

in which, q represents the prediction/recommendation item,

and Q represents all the prediction/recommendation items

given by the algorithm. The value of Hits@k is between 0

and 1. The larger the value, the better the algorithm works.

Mean Rank is the average value of the ranking of pre-

dictions/recommendations among all candidates. The smaller

the value of MR, the better the prediction effect of the model.

The calculation formula is shown in Equation (13).

MR =
1

|Q| ∑
q∈Q

q. (13)

Mean Reciprocal Rank scores the predicted triples based on

whether they are true or not. If the first predicted triple is

true, its score is 1, and the second true score is 1
2
, and so on.

When the n-th triplet is established, it is scored 1
n
, and the

final MRR value is the sum of all the scores. The calculation

formula is shown in Equation (14).

MRR =
1

|Q| ∑
q∈Q

1

q
. (14)

The larger the MRR value, the better the model effect [120].

Hits@k represents the ability of the algorithm to correctly

predict the relationship between triples, that is, the evaluation

of the ability of the knowledge graph completion algorithm

to predict the correct triples, and it is an indispensable eval-

uation index for the knowledge graph completion algorithm.

The MR index can reflect the ranking of the correct triples

in the probability of establishing the test triples, and is a

measure of the accuracy of the knowledge graph completion

algorithm. MRR is a commonly used index to measure the

effect of search algorithms. If only the Top1 result of the

knowledge graph is returned, the accuracy or recall will be

poor, so multiple results are returned first to avoid large

errors in the prediction results. The above three indicators

evaluate the performance of the knowledge graph completion

algorithm from different aspects. They are generally used in

the evaluation of the knowledge graph completion method to
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comprehensively consider the performance of the algorithm,

and the algorithm of the above indicators is not complex, so it

is very efficient for evaluating knowledge graph completion

algorithm in different scale.

IV. PROBLEMS OF KNOWLEDGE GRAPH COMPLETION

Knowledge graph is essentially a semantic network, which

is a formal description of things in the real world and their

relationships [3]. For general knowledge graphs, there exist a

large number of entities and concepts in the real world, which

forms complex and diverse relationships between them. Cor-

respondingly, large-scale knowledge graphs generally in-

clude tens of millions of entities and hundreds of millions of

relationships. So it is an important goal of general knowledge

graphs to integrate more entity relationship information as

comprehensively as possible. As one of the basic technolo-

gies in the field of knowledge graphs, an important challenge

facing the knowledge graph completion model is how to

perform inference and calculation on large-scale knowledge

graph data, that is, whether the model has the ability to handle

large-scale complex relational data, including the model’s

ability to resolve computational efficiency and complexity

conflicts and the model’s completion accuracy.

Another problem faced by the knowledge graph comple-

tion task is how to design an algorithm to adapt to a dynam-

ically changing knowledge graph . Since the real world is

in constant change, so the knowledge graph should be itera-

tively updated, that is the new knowledge need constantly to

be added into knowledge graph to extend its structure and to

correctly map and describe the real world. A key challenge of

it is the fusion of multi-source information, like in the more

commonly used in the field of multi-language knowledge

base DBpedia, YAGO, etc., a main problem is how to link and

fuse information of different languages and the information

in the knowledge graph correctly. The important principle

of multi-source information fusion is to transform the infor-

mation into a form consistent with the existing structured

information of the knowledge graph during the completion

process, which increases the difficulty of the knowledge

graph completion. Especially for the completion based on

large-scale general knowledge graph, while focusing on the

quality of completion, the efficiency of the algorithm should

be also considered.

As for the industry knowledge graph for a specific field,

although the scope of the industry data it faces is small,

the construction standard of the industry knowledge graph

is different from the requirement of the breadth of income

knowledge information in the open domain knowledge graph,

and the industry knowledge graph is more focused on the

depth of knowledge field. At the same time, there are high-

er requirements for the accuracy of the constructed map.

Compared with better academic value of general knowledge

graph, the industry knowledge graph is used much more in

engineering applications and production fields, with more

complicated data structure, focusing on mining limited data

types, attributes and other information to complete the graph.

In terms of model design, it is necessary to consider how to

obtain more patterns and type information from less data to

assist in the mining of graph completion knowledge. At the

same time, it is also important to ensure the efficiency of the

algorithm, a very important consideration in the engineering

field.

V. APPLICATIONS OF KNOWLEDGE GRAPH

COMPLETION

Knowledge graph completion technology has the following

typical applications: 1) Knowledge graph completion is an

important part of knowledge graph construction. Knowledge

graph usually adopt top-down or bottom-up ways for build-

ing. For top-down building knowledge graph, the builder will

determine the pattern structure and ontology at the beginning

of the building, namely the conceptual form. Then knowledge

instances (including entity instance example, relationship

and attribute instance) are filled into constructed knowledge

graph framework. At this time the applied knowledge in-

stances mining and link is knowledge graph completion tech-

nology. At present, knowledge graph is usually constructed

by combining bottom-up and top-down approaches. Ontol-

ogy is constructed from bottom-up by obtaining relevant

entities from massive Internet data, and then more knowledge

graph instances are mined from top-down to complete the

graph. The construction of knowledge graph is a dynamic

process, which needs to constantly supplement the missing

entities and relationships to improve the graph structure.

With the help of knowledge graph completion technology, the

constructed knowledge graph can be updated and extended

iteratively to assist the construction of knowledge graph.

2) As knowledge graph completion is a prediction of

entities, relationships, attributes and other information, and

it is an important means to discover new knowledge, knowl-

edge graph completion technology has been widely used

in many upper-level tasks of knowledge graphs, such as

assisting the question-answering system to achieve fast and

accurate information retrieval and acquisition. Assuming that

the information contained in a user’s search statement or

keyword is a knowledge instance with a certain correlation,

we can analyze user’s query sentence or keywords, extract the

corresponding knowledge instance like entity, relationship,

attribute, etc., to complete the missing part of existing knowl-

edge graphs, such as supplementing missing entities and ad-

ditional information in existing maps, or mining information

about potential relationships between entities to improve the

knowledge graph through continuous iterations and improve

search engine accuracy.

Knowledge graph completion technology shows great val-

ue increasingly in the financial field, such as to forecast

the financial market situation. Since financial market has

strong real-time performance, namely in financial market,

market information dynamically changes over time in the

scene, we can implement dynamic prediction of financial

market by financial knowledge graph completion based on

financial events and factors [115]. The time series neural
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network structures such as long and short term memory

neural network will be fused with the attention mechanism

to construct the prediction model. The model integrates the

overall macro dynamic sequence of market and the dynamic

sequence of each sub-market. The development prediction

applied in financial events is used to realize the dynamic

completion of financial knowledge graph. And the introduc-

tion of attention mechanism can more effectively filter out

more valuable information for the current market situation.

For financial market prediction scenario, the model needs

to model the event dependencies of the features and the

common impact of the multi-sequence inputs.

Because of the ability to organize and mine information,

knowledge graph has also shown great application potential

in medical diagnosis. Many researchers have devoted to the

research of medical knowledge graph. At present, most med-

ical institutions have constructed electronic medical records

based on the medical records of patients, and summarized

a large amount of electronic medical record information,

including basic patient information, medical history, symp-

toms, etiology and corresponding treatment methods, and

drug information, extracting entities and relationships and

attributes to build medical knowledge graph. When using

the constructed medical knowledge graph to assist intelligent

diagnosis of diseases, the basic information of the patient

can be linked with the existing medical map, and then the

knowledge graph completion technology is applied to mine

the disease entity information related to the patient entity

to link together, so as to effectively provide more accurate

reference information for the patient’s disease diagnosis.

3) From general aspect, knowledge graph is a kind of

graph data, and knowledge graph completion is to mine the

implicit relationship between vertices in the graph or predict

new vertices and edges that have a potential relationship with

the existing graph structure through the graph structure of

existing data (including points and edges). From the perspec-

tive, knowledge graph completion model and algorithm can

also be applied to all kinds of graph structure prediction task

scenarios based on graph data, such as all kinds of application

scenarios like social and financial risk control graph database,

etc.

VI. SUMMARY AND PROSPECTS

This article analyzes and summarizes the existing main-

stream methods of knowledge graph completion, and divides

them into traditional knowledge graph completion methods

and deep learning-based knowledge graph completion meth-

ods from the perspective of evolution. The former is mainly

related to knowledge inferences based on rules or graphs.

Although it can achieve good graph completion effects, it

is difficult to use on large-scale knowledge graphs due to

the high computational complexity. In recent years, represen-

tation learning methods represented by deep learning have

received widespread attention. By efficiently calculating the

semantic connections between entities and relationships in

low-dimensional spaces, they effectively solve the problem

of data sparseness and make the overall accuracy and effi-

ciency significantly improved.

Based on the analysis of existing research methods, the

study is expected to continue in the following directions.

1) Knowledge graph completion of multi-class informa-

tion fusion. The most important difference between knowl-

edge graph and other graph data is that knowledge graph is

a kind of semantic network. If reasoning is only based on its

graph network structure, a lot of useful information will be

lost and the expected completion effect cannot be achieved.

Considering the semantic information hidden in the semantic

network, including the types and attributes of entities and

relationships, semantic connections between entities, domain

rule information and other multi-source information, more

comprehensive feature could be extracted to improve the

learning ability of the KGC model, and thus achieve more

accurate prediction and completion.

2) Knowledge Graph Completion based on graph neural

network model. Knowledge graph completion based on graph

neural networks applies powerful learning and expression

ability to model knowledge graphs, which can acquire good

reasoning ability [27]. Firstly, in the aspect of knowledge

representation, more features such as semantic information

can be considered to build the graph vector representation

for boosting the machine learning. Secondly, a key point is to

construct a suitable graph neural network model, and use its

powerful expression and reasoning capabilities to achieve a

more accurate and comprehensive knowledge graph comple-

tion.

3) Expansion of knowledge graph completion in upper

application fields. Knowledge graph completion technolo-

gy has direct applications in Internet related fields such as

intelligent question answering and search engine. In recent

years, knowledge graph completion has also been widely

applied as an auxiliary development technology in the fields

of finance and medical treatment. At present, one of the

development directions of knowledge graph completion is

how to expand the breakthrough of this technology in more

application scenarios to help high efficiency output in engi-

neering application and production field.

4) How to improve the knowledge graph completion tech-

nology to assist the realization of dynamic knowledge graph.

Although the construction of knowledge graphs is in an

iterative updating process, the existing knowledge graphs

are still relatively static. Such knowledge graphs can no

longer meet the real-time requirements of people for dynamic

information, and most application fields rely on the timeli-

ness of information. Dynamic knowledge graph has been a

major trend in the current development, and its realization is

inseparable from the graph inference completion technology.

5) The ability of knowledge graph completion to mine

new knowledge plays an important role in the developmen-

t process of turning knowledge graph to cognitive graph.

Cognitive graph can be understood as a dynamic system

integrating knowledge reasoning ability. Although there is

still controversy about whether the knowledge graph will
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eventually move towards the cognitive graph, from the per-

spective of the human cognitive process, the static knowledge

graph containing inherent knowledge will never be the end of

development. If the dynamic knowledge graph is used as the

basis to combine with the cognitive ability of human beings,

the real artificial intelligence can be expected.
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