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Abstract

Knowledge graphs are useful resources for

numerous AI applications, but they are far

from completeness. Previous work such as

TransE, TransH and TransR/CTransR re-

gard a relation as translation from head en-

tity to tail entity and the CTransR achieves

state-of-the-art performance. In this pa-

per, we propose a more fine-grained model

named TransD, which is an improvement

of TransR/CTransR. In TransD, we use

two vectors to represent a named sym-

bol object (entity and relation). The first

one represents the meaning of a(n) entity

(relation), the other one is used to con-

struct mapping matrix dynamically. Com-

pared with TransR/CTransR, TransD not

only considers the diversity of relations,

but also entities. TransD has less param-

eters and has no matrix-vector multipli-

cation operations, which makes it can be

applied on large scale graphs. In Experi-

ments, we evaluate our model on two typ-

ical tasks including triplets classification

and link prediction. Evaluation results

show that our approach outperforms state-

of-the-art methods.

1 Introduction

Knowledge Graphs such as WordNet (Miller

1995), Freebase (Bollacker et al. 2008) and Yago

(Suchanek et al. 2007) have been playing a piv-

otal role in many AI applications, such as relation

extraction(RE), question answering(Q&A), etc.

They usually contain huge amounts of structured

data as the form of triplets (head entity, relation,

tail entity)(denoted as (h, r, t)), where relation

models the relationship between the two entities.

As most knowledge graphs have been built either

collaboratively or (partly) automatically, they of-

ten suffer from incompleteness. Knowledge graph

completion is to predict relations between entities

based on existing triplets in a knowledge graph. In

the past decade, much work based on symbol and

logic has been done for knowledge graph comple-

tion, but they are neither tractable nor enough con-

vergence for large scale knowledge graphs. Re-

cently, a powerful approach for this task is to en-

code every element (entities and relations) of a

knowledge graph into a low-dimensional embed-

ding vector space. These methods do reasoning

over knowledge graphs through algebraic opera-

tions (see section ”Related Work”).

Among these methods, TransE (Bordes et al.

2013) is simple and effective, and also achieves

state-of-the-art prediction performance. It learns

low-dimensional embeddings for every entity and

relation in knowledge graphs. These vector em-

beddings are denoted by the same letter in bold-

face. The basic idea is that every relation is re-

garded as translation in the embedding space. For

a golden triplet (h, r, t), the embedding h is close

to the embedding t by adding the embedding r,

that is h + r ≈ t. TransE is suitable for 1-to-1

relations, but has flaws when dealing with 1-to-

N, N-to-1 and N-to-N relations. TransH (Wang

et al. 2014) is proposed to solve these issues.

TransH regards a relation as a translating oper-

ation on a relation-specific hyperplane, which is

characterized by a norm vector wr and a trans-

lation vector dr. The embeddings h and t are

first projected to the hyperplane of relation r to

obtain vectors h⊥ = h − w⊤
r hwr and t⊥ =

t − w⊤
r twr, and then h⊥ + dr ≈ t⊥. Both

in TransE and TransH, the embeddings of entities

and relations are in the same space. However, en-

tities and relations are different types of objects,

it is insufficient to model them in the same space.

TransR/CTransR (Lin et al. 2015) set a mapping

matrix Mr and a vector r for every relation r.

In TransR, h and t are projected to the aspects

that relation r focuses on through the matrix Mr
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Figure 1: Simple illustration of TransD. Each

shape represents an entity pair appearing in a

triplet of relation r. Mrh and Mrt are mapping

matrices of h and t, respectively. hip, tip(i =
1, 2, 3), and rp are projection vectors. hi⊥ and

ti⊥(i = 1, 2, 3) are projected vectors of entities.

The projected vectors satisfy hi⊥ + r ≈ ti⊥(i =
1, 2, 3).

and then Mrh + r ≈ Mrt. CTransR is an ex-

tension of TransR by clustering diverse head-tail

entity pairs into groups and learning distinct rela-

tion vectors for each group. TransR/CTransR has

significant improvements compared with previous

state-of-the-art models. However, it also has sev-

eral flaws: (1) For a typical relation r, all enti-

ties share the same mapping matrix Mr. How-

ever, the entities linked by a relation always con-

tain various types and attributes. For example, in

triplet (friedrich burklein, nationality, germany),

friedrich burklein and germany are typical differ-

ent types of entities. These entities should be pro-

jected in different ways; (2) The projection oper-

ation is an interactive process between an entity

and a relation, it is unreasonable that the mapping

matrices are determined only by relations; and (3)

Matrix-vector multiplication brings large amount

of calculation, and when relation number is large,

it also has much more parameters than TransE and

TransH. As the complexity, TransR/CTransR is

difficult to apply on large-scale knowledge graphs.

In this paper, we propose a novel method named

TransD to model knowledge graphs. Figure 1

shows the basic idea of TransD. In TransD, we de-

fine two vectors for each entity and relation. The

first vector represents the meaning of an entity or

a relation, the other one (called projection vector)

represents the way that how to project a entity em-

bedding into a relation vector space and it will

be used to construct mapping matrices. There-

fore, every entity-relation pair has an unique map-

ping matrix. In addition, TransD has no matrix-

by-vector operations which can be replaced by

vectors operations. We evaluate TransD with the

task of triplets classification and link prediction.

The experimental results show that our method has

significant improvements compared with previous

models.

Our contributions in this paper are: (1)We pro-

pose a novel model TransD, which constructs a

dynamic mapping matrix for each entity-relation

pair by considering the diversity of entities and re-

lations simultaneously. It provides a flexible style

to project entity representations to relation vec-

tor space; (2) Compared with TransR/CTransR,

TransD has fewer parameters and has no matrix-

vector multiplication. It is easy to be applied

on large-scale knowledge graphs like TransE and

TransH; and (3) In experiments, our approach

outperforms previous models including TransE,

TransH and TransR/CTransR in link prediction

and triplets classification tasks.

2 Related Work

Before proceeding, we define our mathematical

notations. We denote a triplet by (h, r, t) and their

column vectors by bold lower case letters h, r, t;

matrices by bold upper case letters, such as M;

tensors by bold upper case letters with a hat, such

as M̂. Score function is represented by fr(h, t).
For a golden triplet (h, r, t) that corresponds to a

true fact in real world, it always get a relatively

higher score, and lower for an negative triplet.

Other notations will be described in the appropri-

ate sections.

2.1 TransE, TransH and TransR/CTransR

As mentioned in Introduction section, TransE

(Bordes et al. 2013) regards the relation r as trans-

lation from h to t for a golden triplet (h, r, t).
Hence, (h+r) is close to (t) and the score function

is

fr(h, t) = −‖h+ r− t‖22. (1)

TransE is only suitable for 1-to-1 relations, there

remain flaws for 1-to-N, N-to-1 and N-to-N rela-

tions.

To solve these problems, TransH (Wang et al.

2014) proposes an improved model named trans-

lation on a hyperplane. On hyperplanes of differ-

ent relations, a given entity has different represen-

tations. Similar to TransE, TransH has the score

function as follows:

fr(h, t) = −‖h⊥ + r− t⊥‖
2
2. (2)



Model #Parameters # Operations (Time complexity)

Unstructured (Bordes et al. 2012; 2014) O(Nem) O(Nt)

SE (Bordes et al. 2011) O(Nem + 2Nrn
2)(m = n) O(2m2

Nt)
SME(linear) (Bordes et al. 2012; 2014) O(Nem + Nrn + 4mk + 4k)(m = n) O(4mkNt)

SME (bilinear) (Bordes et al. 2012; 2014) O(Nem + Nrn + 4mks + 4k)(m = n) O(4mksNt)

LFM (Jenatton et al. 2012; Sutskever et al. 2009) O(Nem + Nrn
2)(m = n) O((m2 + m)Nt)

SLM (Socher et al. 2013) O(Nem + Nr(2k + 2nk))(m = n) O((2mk + k)Nt)

NTN (Socher et al. 2013) O(Nem + Nr(n
2
s + 2ns + 2s))(m = n) O(((m2 + m)s + 2mk + k)Nt)

TransE (Bordes et al. 2013) O(Nem + Nrn)(m = n) O(Nt)
TransH (Wang et al. 2014) O(Nem + 2Nrn)(m = n) O(2mNt)
TransR (Lin et al. 2015) O(Nem + Nr(m + 1)n) O(2mnNt)

CTransR (Lin et al. 2015) O(Nem + Nr(m + d)n) O(2mnNt)
TransD (this paper) O(2Nem + 2Nrn) O(2nNt)

Table 1: Complexity (the number of parameters and the number of multiplication operations in an epoch)

of several embedding models. Ne and Nr represent the number of entities and relations, respectively.

Nt represents the number of triplets in a knowledge graph. m is the dimension of entity embedding

space and n is the dimension of relation embedding space. d denotes the average number of clusters of a

relation. k is the number of hidden nodes of a neural network and s is the number of slice of a tensor.

In order to ensure that h⊥ and t⊥ are on the hy-

perplane of r, TransH restricts ‖wr‖ = 1.

Both TransE and TransH assume that entities

and relations are in the same vector space. But

relations and entities are different types of ob-

jects, they should not be in the same vector space.

TransR/CTransR (Lin et al. 2015) is proposed

based on the idea. TransR set a mapping matrix

Mr for each relation r to map entity embedding

into relation vector space. Its score function is:

fr(h, t) = −‖Mrh+ r−Mrt‖
2
2. (3)

where Mr ∈ R
m×n, h, t ∈ R

n and r ∈ R
m.

CTransR is an extension of TransR. As head-tail

entity pairs present various patterns in different re-

lations, CTransR clusters diverse head-tail entity

pairs into groups and sets a relation vector for each

group.

2.2 Other Models

Unstructured. Unstructured model (Bordes et al.

2012; 2014) ignores relations, only models entities

as embeddings. The score function is

fr(h, t) = −‖h− t‖22. (4)

It’s a simple case of TransE. Obviously, Unstruc-

tured model can not distinguish different relations.

Structured Embedding (SE). SE model (Bordes

et al. 2011) sets two separate matrices Mrh and

Mrt to project head and tail entities for each rela-

tion. Its score function is defined as follows:

fr(h, t) = −‖Mrhh−Mrtt‖1 (5)

Semantic Matching Energy (SME). SME model

(Bordes et al. 2012; 2014) encodes each named

symbolic object (entities and relations) as a vector.

Its score function is a neural network that captures

correlations between entities and relations via ma-

trix operations. Parameters of the neural network

are shared by all relations. SME defines two se-

mantic matching energy functions for optimiza-

tion, a linear form

gη = Mη1eη +Mη2r+ bη (6)

and a bilinear form

gη = (Mη1eη)⊗ (Mη2r) + bη (7)

where η = {left, right}, eleft = h, eright = t

and ⊗ is the Hadamard product. The score func-

tion is

fr(h, t) = gleft
⊤gright (8)

In (Bordes et al.2014), matrices of the bilinear

form are replaced by tensors.

Latent Factor Model (LFM). LFM model (Je-

natton et al. 2012; Sutskever et al. 2009) en-

codes each entity into a vector and sets a ma-

trix for every relation. It defines a score function

fr(h, t) = h⊤Mrt, which incorporates the inter-

action of the two entity vectors in a simple and

effecitve way.

Single Layer Model (SLM). SLM model is de-

signed as a baseline of Neural Tensor Network

(Socher et al. 2013). The model constructs a non-

linear neural network to represent the score func-

tion defined as follows.

fr(h, t) = u⊤
r f(Mr1h+Mr2t+ br) (9)

where Mr1, Mr2 and br are parameters indexed

by relation r, f() is tanh operation.



Neural Tensor Network (NTN). NTN model

(Socher et al. 2013) extends SLM model by con-

sidering the second-order correlations into nonlin-

ear neural networks. The score function is

fr(h, t) = u⊤
r f(h

⊤Ŵrt+Mr

[
h

t

]
+ br) (10)

where Ŵr represents a 3-way tensor, Mr denotes

the weight matrix, br is the bias and f() is tanh

operation. NTN is the most expressive model so

far, but it has so many parameters that it is difficult

to scale up to large knowledge graphs.

Table 1 lists the complexity of all the above

models. The complexity (especially for time) of

TransD is much less than TransR/CTransR and is

similar to TransE and TransH. Therefore, TransD

is effective and train faster than TransR/CTransR.

Beyond these embedding models, there is other re-

lated work of modeling multi-relational data, such

as matrix factorization, recommendations, etc. In

experiments, we refer to the results of RESCAL

presented in (Lin et al. 2015) and compare with it.

3 Our Method

We first define notations. Triplets are represented

as (hi, ri, ti)(i = 1, 2, . . . , nt), where hi denotes

a head entity, ti denotes a tail entity and ri de-

notes a relation. Their embeddings are denoted by

hi, ri, ti(i = 1, 2, . . . , nt). We use ∆ to represent

golden triplets set, and use ∆
′

to denote negative

triplets set. Entities set and relations set are de-

noted by E and R, respectively. We use Im×n to

denote the identity matrix of size m× n.

3.1 Multiple Types of Entities and Relations

Considering the diversity of relations, CTransR

segments triplets of a specific relation r into

several groups and learns a vector representa-

tion for each group. However, entities also

have various types. Figure 2 shows several

kinds of head and tail entities of relation loca-

tion.location.partially containedby in FB15k. In

both TransH and TransR/CTransR, all types of en-

tities share the same mapping vectors/matrices.

However, different types of entities have differ-

ent attributes and functions, it is insufficient to let

them share the same transform parameters of a re-

lation. And for a given relation, similar entities

should have similar mapping matrices and other-

wise for dissimilar entities. Furthermore, the map-

ping process is a transaction between entities and

relations that both have various types. Therefore,

we propose a more fine-grained model TransD,

which considers different types of both entities

and relations, to encode knowledge graphs into

embedding vectors via dynamic mapping matrices

produced by projection vectors.

Figure 2: Multiple types of entities of relation lo-

cation.location.partially containedby.

3.2 TransD

Model In TransD, each named symbol object (en-

tities and relations) is represented by two vectors.

The first one captures the meaning of entity (rela-

tion), the other one is used to construct mapping

matrices. For example, given a triplet (h, r, t),
its vectors are h,hp, r, rp, t, tp, where subscript

p marks the projection vectors, h,hp, t, tp ∈ R
n

and r, rp ∈ R
m. For each triplet (h, r, t), we

set two mapping matrices Mrh,Mrt ∈ R
m×n to

project entities from entity space to relation space.

They are defined as follows:

Mrh = rph
⊤
p + Im×n (11)

Mrt = rpt
⊤
p + Im×n (12)

Therefore, the mapping matrices are determined

by both entities and relations, and this kind of

operation makes the two projection vectors inter-

act sufficiently because each element of them can

meet every entry comes from another vector. As

we initialize each mapping matrix with an identity

matrix, we add the Im×n to Mrh and Mrh. With

the mapping matrices, we define the projected vec-

tors as follows:

h⊥ = Mrhh, t⊥ = Mrtt (13)



Then the score function is

fr(h, t) = −‖h⊥ + r− t⊥‖
2
2 (14)

In experiments, we enforce constrains as ‖h‖2 ≤
1, ‖t‖2 ≤ 1, ‖r‖2 ≤ 1, ‖h⊥‖2 ≤ 1 and ‖t⊥‖2 ≤
1.

Training Objective We assume that there are

nt triplets in training set and denote the ith triplet

by (hi, ri, ti)(i = 1, 2, . . . , nt). Each triplet has a

label yi to indicate the triplet is positive (yi = 1)

or negative (yi = 0). Then the golden and neg-

ative triplets are denoted by ∆ = {(hj , rj , tj) |
yj = 1} and ∆

′

= {(hj , rj , tj) | yj = 0}, respec-

tively. Before training, one important trouble is

that knowledge graphs only encode positive train-

ing triplets, they do not contain negative examples.

Therefore, we obtain ∆ from knowledge graphs

and generate ∆
′

as follows: ∆
′

= {(hl, rk, tk) |
hl 6= hk ∧ yk = 1}∪ {(hk, rk, tl) | tl 6= tk ∧ yk =
1}. We also use two strategies “unif” and “bern”

described in (Wang et al. 2014) to replace the head

or tail entity.

Let us use ξ and ξ
′

to denote a golden triplet

and a corresponding negative triplet, respectively.

Then we define the following margin-based rank-

ing loss as the objective for training:

L =
∑

ξ∈∆

∑

ξ
′
∈∆

′

[γ + fr(ξ
′

)− fr(ξ)]+ (15)

where [x]+ , max (0, x), and γ is the margin sep-

arating golden triplets and negative triplets. The

process of minimizing the above objective is car-

ried out with stochastic gradient descent (SGD).

In order to speed up the convergence and avoid

overfitting, we initiate the entity and relation em-

beddings with the results of TransE and initiate all

the transfer matrices with identity matrices.

3.3 Connections with TransE, TransH and

TransR/CTransR

TransE is a special case of TransD when the di-

mension of vectors satisfies m = n and all projec-

tion vectors are set zero.

TransH is related to TransD when we set m =
n. Under the setting, projected vectors of entities

can be rewritten as follows:

h⊥ = Mrhh = h+ h⊤
p hrp (16)

t⊥ = Mrtt = t+ t⊤p trp (17)

Hence, when m = n, the difference between

TransD and TransH is that projection vectors are

determinded only by relations in TransH, but

TransD’s projection vectors are determinded by

both entities and relations.

As to TransR/CTransR, TransD is an improve-

ment of it. TransR/CTransR directly defines a

mapping matrix for each relation, TransD con-

sturcts two mapping matrices dynamically for

each triplet by setting a projection vector for each

entity and relation. In addition, TransD has no

matrix-vector multiplication operation which can

be replaced by vector operations. Without loss of

generality, we assume m ≥ n, the projected vec-

tors can be computed as follows:

h⊥ = Mrhh = h⊤
p hrp +

[
h⊤,0⊤

]⊤
(18)

t⊥ = Mrtt = t⊤p trp +
[
t⊤,0⊤

]⊤
(19)

Therefore, TransD has less calculation than

TransR/CTransR, which makes it train faster and

can be applied on large-scale knowledge graphs.

4 Experiments and Results Analysis

We evaluate our apporach on two tasks: triplets

classification and link prediction. Then we show

the experiments results and some analysis of them.

4.1 Data Sets

Triplets classification and link prediction are im-

plemented on two popular knowledge graphs:

WordNet (Miller 1995) and Freebase (Bollacker

et al. 2008). WordNet is a large lexical knowledge

graph. Entities in WordNet are synonyms which

express distinct concepts. Relations in WordNet

are conceptual-semantic and lexical relations. In

this paper, we use two subsets of WordNet: WN11

(Socher et al. 2013) and WN18 (Bordes et al.

2014). Freebase is a large collaborative knowl-

edge base consists of a large number of the world

facts, such as triplets (anthony asquith, location,

london) and (nobuko otowa, profession, actor).

We also use two subsets of Freebase: FB15k (Bor-

des et al. 2014) and FB13 (Socher et al. 2013).

Table 2 lists statistics of the 4 datasets.

Dataset #Rel #Ent #Train #Valid #Test

WN11 11 38,696 112,581 2,609 10,544
WN18 18 40,943 141,442 5,000 5,000
FB13 13 75,043 316,232 5908 23,733
FB15k 1,345 14,951 483,142 50,000 59,071

Table 2: Datesets used in the experiments.



4.2 Triplets Classification

Triplets classification aims to judge whether a

given triplet (h, r, t) is correct or not, which is a

binary classification task. Previous work (Socher

et al. 2013; Wang et al. 2014; Lin et al. 2015)

had explored this task. In this paper ,we use three

datasets WN11, FB13 and FB15k to evaluate our

approach. The test sets of WN11 and FB13 pro-

vided by (Socher et al. 2013) contain golden and

negative triplets. As to FB15k, its test set only

contains correct triplets, which requires us to con-

struct negative triplets. In this parper, we construct

negative triplets following the same setting used

for FB13 (Socher et al. 2013).

For triplets classification, we set a threshold δr
for each relation r. δr is obtained by maximizing

the classification accuracies on the valid set. For a

given triplet (h, r, t), if its score is larger than δr,

it will be classified as positive, otherwise negative.

We compare our model with several previous

embedding models presented in Related Work sec-

tion. As we construct negative triplets for FB15k

by ourselves, we use the codes of TransE, TransH

and TransR/CTransR provied by (Lin et al. 2015)

to evaluate the datasets instead of reporting the re-

sults of (Wang et al.2014; Lin et al. 2015) directly.

In this experiment, we optimize the objective

with ADADELTA SGD (Zeiler 2012). We select

the margin γ among {1, 2, 5, 10}, the dimen-

sion of entity vectors m and the dimension of re-

lation vectors n among {20, 50, 80, 100}, and

the mini-batch size B among {100, 200, 1000,

4800}. The best configuration obtained by valid

set are:γ = 1,m, n = 100, B = 1000 and tak-

ing L2 as dissimilarity on WN11; γ = 1,m, n =
100, B = 200 and taking L2 as dissimilarity on

FB13; γ = 2,m, n = 100, B = 4800 and tak-

ing L1 as dissimilarity on FB15k. For all the

three datasets, We traverse to training for 1000

rounds. As described in Related Work section,

TransD trains much faster than TransR (On our

PC, TransR needs 70 seconds and TransD merely

spends 24 seconds a round on FB15k).

Table 3 shows the evaluation results of triplets

classification. On WN11, we found that there are

570 entities appearing in valid and test sets but

not appearing in train set, we call them ”NULL

Entity”. In valid and test sets, there are 1680

(6.4%) triplets containing ”NULL Entity”. In

NTN(+E), these entity embeddings can be ob-

tained by word embedding. In TransD, how-

Data sets WN11 FB13 FB15K

SE 53.0 75.2 -
SME(bilinear) 70.0 63.7 -

SLM 69.9 85.3 -
LFM 73.8 84.3 -
NTN 70.4 87.1 68.2

NTN(+E) 86.2 90.0 -
TransE(unif) 75.9 70.9 77.3
TransE(bern) 75.9 81.5 79.8
TransH(unif) 77.7 76.5 74.2
TransH(bern) 78.8 83.3 79.9
TransR(unif) 85.5 74.7 81.1
TransR(bern) 85.9 82.5 82.1

CTransR(bern) 85.7 - 84.3

TransD(unif) 85.6 85.9 86.4
TransD(bern) 86.4 89.1 88.0

Table 3: Experimental results of Triplets Classifi-

cation(%). “+E” means that the results are com-

bined with word embedding.

ever, they are only initialized randomly. There-

fore, it is not fair for TransD, but we also achieve

the accuracy 86.4% which is higher than that of

NTN(+E) (86.2%). From Table 3, we can con-

clude that: (1) On WN11, TransD outperforms any

other previous models including TransE, TransH

and TransR/CTransR, especially NTN(+E); (2)

On FB13, the classification accuracy of TransD

achieves 89.1%, which is significantly higher than

that of TransE, TransH and TransR/CTransR and

is near to the performance of NTN(+E) (90.0%);

and (3) Under most circumstances, the ”bern”

sampling method works better than ”unif”.

Figure 3 shows the prediction accuracy of dif-

ferent relations. On the three datasets, different

relations have different prediction accuracy: some

are higher and the others are lower. Here we fo-

cus on the relations which have lower accuracy.

On WN11, the relation similar to obtains accuracy

51%, which is near to random prediction accuracy.

In the view of intuition, similar to can be inferred

from other information. However, the number of

entity pairs linked by relation similar to is only

1672, which accounts for 1.5% in all train data,

and prediction of the relation needs much infor-

mation about entities. Therefore, the insufficient

of train data is the main cause. On FB13, the

accuracies of relations cuase of death and gender

are lower than that of other relations because they

are difficult to infer from other imformation, espe-

cially cuase of death. Relation gender may be in-

ferred from a person’s name (Socher et al. 2013),

but we learn a vector for each name, not for the

words included in the names, which makes the



50 60 70 80 90 100

has_instance

similar_to

member_meronym

domain_region

subordinate_instance_of

domain_topic

member_holonym

synset_domain_topic

has_part

part_of

type_of

Accuracy(%)

WN11

 

 
unif
bern

50 60 70 80 90 100

cause_of_death

gender

profession

religion

nationality

institution

ethnicity

Accuracy(%)

FB13

 

 
unif
bern

50 60 70 80 90 100
45

50

55

60

65

70

75

80

85

90

95

100

Accuracy(%) of "bern"

A
cc

ur
ac

y(
%

) 
of

 "
un

if"

FB15K

Figure 3: Classification accuracies of different relations on the three datasets. For FB15k, each triangle

represent a relation, in which the red triangles represent the relations whose accuracies of “bern” or

“unif” are lower than 50% and the blacks are higher than 50%. The red line represents the function

y = x. We can see that the most relations are in the lower part of the red line.

names information useless for gender. On FB15k,

accuracies of some relations are lower than 50%,

for which some are lack of train data and some are

difficult to infer. Hence, the ability of reasoning

new facts based on knowledge graphs is under a

certain limitation, and a complementary approach

is to extract facts from plain texts.

4.3 Link Prediction

Link prediction is to predict the missing h or t for

a golden triplet (h, r, t). In this task, we remove

the head or tail entity and then replace it with all

the entities in dictionary in turn for each triplet in

test set. We first compute scores of those corrupted

triplets and then rank them by descending order;

the rank of the correct entity is finally stored. The

task emphasizes the rank of the correct entity in-

stead of only finding the best one entity. Simi-

lar to (Bordes et al. 2013), we report two mea-

sures as our evaluation metrics: the average rank

of all correct entites (Mean Rank) and the propor-

tion of correct entities ranked in top 10 (Hits@10).

A lower Mean Rank and a higher Hits@10 should

be achieved by a good embedding model. We call

the evaluation setting ”Raw’. Noting the fact that

a corrupted triplet may also exist in knowledge

graphs, the corrupted triplet should be regard as

a correct triplet. Hence, we should remove the

corrupted triplets included in train, valid and test

sets before ranking. We call this evaluation setting

”Filter”. In this paper, we will report evaluation

results of the two settings .

In this task, we use two datasets: WN18 and

FB15k. As all the data sets are the same, we

refer to their experimental results in this paper.

On WN18, we also use ADADELTA SGD (Zeiler

2012) for optimization. We select the margin γ

among {0.1, 0.5, 1, 2}, the dimension of entity

vectors m and the dimension of relation vectors n

among {20, 50, 80, 100}, and the mini-batch size

B among {100, 200, 1000, 1400}. The best con-

figuration obtained by valid set are:γ = 1,m, n =
50, B = 200 and taking L2 as dissimilarity. For

both the two datasets, We traverse to training for

1000 rounds.

Experimental results on both WN18 and FB15k

are shown in Table 4. From Table 4, we can

conclude that: (1) TransD outperforms other

baseline embedding models (TransE, TransH and

TransR/CTransR), especially on sparse dataset,

i.e., FB15k; (2) Compared with CTransR, TransD

is a more fine-grained model which considers the

multiple types of entities and relations simultane-

ously, and it achieves a better performance. It in-

dicates that TransD handles complicated internal

correlations of entities and relations in knowledge

graphs better than CTransR; (3) The “bern” sam-

pling trick can reduce false negative labels than

“unif”.

For the comparison of Hits@10 of different

kinds of relations, Table 5 shows the detailed

results by mapping properties of relations1 on

FB15k. From Table 5, we can see that TransD

outperforms TransE, TransH and TransR/CTransR

significantly in both “unif” and “bern” settings.

TransD achieves better performance than CTransR

in all types of relations (1-to-1, 1-to-N, N-to-1 and

N-to-N). For N-to-N relations in predicting both

head and tail, our approach improves the Hits@10

by almost 7.4% than CTransR. In particular, for

1Mapping properties of relations follows the same rules in
(Bordes et al. 2013)



Data sets WN18 FB15K

Metric
Mean Rank Hits@10 Mean Rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

Unstructured (Bordes et al. 2012) 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL (Nickle, Tresp, and Kriegel 2011) 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE (Bordes et al. 2011) 1,011 985 68.5 80.5 273 162 28.8 39.8
SME (linear) (Bordes et al.2012) 545 533 65.1 74.1 274 154 30.7 40.8

SME (Bilinear) (Bordes et al. 2012) 526 509 54.7 61.3 284 158 31.3 41.3
LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1
TransE (Bordes et al. 2013) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif) (Wang et al. 2014) 318 303 75.4 86.7 211 84 42.5 58.5
TransH (bern) (Wang et al. 2014) 401 388 73.0 82.3 212 87 45.7 64.4

TransR (unif) (Lin et al. 2015) 232 219 78.3 91.7 226 78 43.8 65.5
TransR (bern) (Lin et al. 2015) 238 225 79.8 92.0 198 77 48.2 68.7

CTransR (unif) (Lin et al. 2015) 243 230 78.9 92.3 233 82 44.0 66.3
CTransR (bern) (Lin et al. 2015) 231 218 79.4 92.3 199 75 48.4 70.2

TransD (unif) 242 229 79.2 92.5 211 67 49.4 74.2
TransD (bern) 224 212 79.6 92.2 194 91 53.4 77.3

Table 4: Experimental results on link prediction.

Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)

Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

Unstructured (Bordes et al. 2012) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE (Bordes et al. 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) (Bordes et al.2012) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME (Bilinear) (Bordes et al. 2012) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE (Bordes et al. 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif) (Wang et al. 2014) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH (bern) (Wang et al. 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR (unif) (Lin et al. 2015) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1
TransR (bern) (Lin et al. 2015) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

CTransR (unif) (Lin et al. 2015) 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3
CTransR (bern) (Lin et al. 2015) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

TransD (unif) 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9
TransD (bern) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

Table 5: Experimental results on FB15K by mapping properities of relations (%).

N-to-1 relations (predicting head) and 1-to-N rela-

tions (predicting tail), TransD improves the accu-

racy by 9.0% and 14.7% compared with previous

state-of-the-art results, respectively. Therefore,

the diversity of entities and relations in knowl-

edge grahps is an important factor and the dynamic

mapping matrix is suitable for modeling knowl-

edge graphs.

5 Properties of Projection Vectors

As mentioned in Section ”Introduction”, TransD

is based on the motivation that each mapping ma-

trix is determined by entity-relation pair dynam-

ically. These mapping matrices are constructed

with projection vectors of entities and relations.

Here, we analysis the properties of projection vec-

tors. We seek the similar objects (entities and rela-

tions) for a given object (entities and relations) by

projection vectors. As WN18 has the most enti-

ties (40,943 entities which contains various types

of words. FB13 also has many entities, but the

most are person’s names) and FB15k has the most

relations (1,345 relations), we show the similarity

of projection vectors on them. Table 6 and 7 show

that the same category objects have similar projec-

tion vectors. The similarity of projection vectors

of different types of entities and relations indicates

the rationality of our method.

6 Conclusions and Future Work

We introduced a model TransD that embed knowl-

edge graphs into continues vector space for their

completion. TransD has less complexity and more

flexibility than TransR/CTransR. When learning

embeddings of named symbol objects (entities or

relations), TransD considers the diversity of them

both. Extensive experiments show that TransD

outperforms TrasnE, TransH and TransR/CTransR

on two tasks including triplets classification and

link prediction.

As shown in Triplets Classification section, not

all new facts can be deduced from the exist-



Datesets WN18

Entities and Definitions upset VB 4 cause to overturn from an upright or

normal position

srbija NN 1 a historical region in central and

northern Yugoslavia

Similar Entities and

Definitions

sway VB 4 cause to move back and forth montenegro NN 1 a former country bordering on the

Adriatic Sea

shift VB 2 change place or direction constantina NN 1 a Romanian resort city on the Black

Sea

flap VB 3 move with a thrashing motion lappland NN 1 a region in northmost Europe inhab-

ited by Lapps

fluctuate VB 1 cause to fluctuate or move in a wave-

like pattern

plattensee NN 1 a large shallow lake in western Hun-

gary

leaner NN 1 (horseshoes) the throw of a horse-

shoe so as to lean against (but not en-

circle) the stake

brasov NN 1 a city in central Romania in the

foothills of the Transylvanian Alps

Table 6: Entity projection vectors similarity (in descending order) computed on WN18. The similarity

scores are computed with cosine function.

Datesets FB15k

Relation /location/statistical region/rent50 2./measurement unit/dated money value/currency

Similar relations

/location/statistical region/rent50 3./measurement unit/dated money value/currency

/location/statistical region/rent50 1./measurement unit/dated money value/currency

/location/statistical region/rent50 4./measurement unit/dated money value/currency

/location/statistical region/rent50 0./measurement unit/dated money value/currency

/location/statistical region/gdp nominal./measurement unit/dated money value/currency

Relation /sports/sports team/roster./soccer/football roster position/player

Similar relations

/soccer/football team/current roster./sports/sports team roster/player

/soccer/football team/current roster./soccer/football roster position/player

/sports/sports team/roster./sports/sports team roster/player

/basketball/basketball team/historical roster./sports/sports team roster/player

/sports/sports team/roster./basketball/basketball historical roster position/player

Table 7: Relation projection vectors similarity computed on FB15k. The similarity scores are computed

with cosine function.

ing triplets in knowledge graphs, such as rela-

tions gender, place of place, parents and chil-

dren. These relations are difficult to infer from all

other information, but they are also useful resource

for practical applications and incomplete, i.e. the

place of birth attribute is missing for 71% of all

people included in FreeBase (Nickel et al. 2015).

One possible way to obtain these new triplets is

to extract facts from plain texts. We will seek

methods to complete knowledge graphs with new

triplets whose entities and relations come from

plain texts.
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