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Abstract

We study the relation between knowledge and space. That is, we analyze how much
shared memory space is needed in order to learn certain kinds of facts. Such results are
useful tools for reasoning about shared memory systems. In addition we generalize a
known impossibility result, and show that results about how knowledge can be gained
and lost in message passing systems also hold for shared memory systems.
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1 Introduction

The importance of the notion of knowledge for analyzing distributed systems can be demon-
strated by many examples from the literature. It has been used to design, specify, verify
and prove lower bounds for protocols [2, 3, 4, 5, 8, 7, 9, 11, 12, 13, 14, 16, 18, 21, 22, 23,
24, 19, 29, 30]. With the exception of [8], this work has assumed a message passing model.
Knowledge is used in [8] to investigate a particular problem, the wakeup problem, in the
context of shared memory.

In this paper we point out the importance of the notion of knowledge for reasoning
about shared memory systems, where processes communicate by reading and writing from
a shared memory. In proving such results we do not refer to a specific problem but rather
prove general results about the requirements needed to acquire certain kinds of states of
knowledge. Such results are useful tools for reasoning about shared memory systems.

Our primary goal is to explore the relation between knowledge and space. That is, we
analyze how much shared memory space is needed in order to learn certain kinds of facts.
We prove two results which establish such a connection. These two results, described below,
are for an asynchronous model which supports atomic read-modify-write operations.

The first result states that a protocol where two processes may be incorrect and where
all correct processes must eventually know one of two disjoint stable predicates, has to use
at least one non-binary shared register. Using this result we can show, as was first proved
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in [17], that there is no asynchronous 2-resilient consensus protocol that uses only binary
shared registers.

In the second result, we show that if initially there are two processes where neither
knows some predicate and it is always the case that eventually both of them know the
predicate, and furthermore there is a third process which eventually knows that they know
the predicate, then it must be the case that more than a single binary shared register is
used by the protocol. Using this result we can strengthen a result in [8]: a single shared
binary register is insufficient for an even number of identical processes to execute a protocol
in which one process eventually learns that at least three other processes are awake.

In addition, we prove that in shared memory systems which support only atomic read
and atomic write operations and where at least one process may be incorrect, it is impossible
to reach certain states of knowledge. This result generalizes an important impossibility
result due to Fischer, Lynch and Paterson, and to Loui and Abu-Amara, which states that
in asynchronous systems there cannot exist a consensus protocol that tolerates even a single
undetectable crash failure [6, 17].

Finally, we show that Chandy and Misra’s results [2] about how knowledge can be gained
and lost in message passing systems also hold for shared memory systems.

2 Asynchronous Shared Memory Systems

In this section, we characterize asynchronous shared memory systems which support atomic
read and atomic write operations or an atomic read-modify-write operation. We start with
a formal description of the notion of a protocol.

An n-process protocol P = (C, N, R) consists of a nonempty set C of runs, an n-tuple
N = (p1, . . . , pn) of processes and an n-tuple R = (R1, . . . , Rn) of sets of registers. We may
think of Ri as the set of all the registers that process pi can access. A run is a pair (f, S)
where f is a function which assigns initial values to the registers and S is a finite or infinite
sequence of events. When S is finite, we also say that the run is finite.

An event corresponds to atomic step performed by a process. Here we consider only the
following types of events:

• readp(r, v) – process p reads the value v from register r;

• writep(r, v) – process p writes the value v into register r;

• rmwp(r, v, v′) – process p first reads a value v from r and then writes a value v′, which
can depend on v, into r. This event is called read-modify-write.

We use the notation ep to denote an instance of an arbitrary event, which may be an
instance of any of the above types of events, and say that ep involves process p. (The
subscript p is omitted when it is unimportant.)

The value of a register at a finite run is the last value that was written into that register,
or its initial value (determined by f) if no process wrote into the register. We use value(r, x)
to denote the value of register r at a finite run x. A register r is said to be local to process
pi if r ∈ Ri and for any j 6= i, r 6∈ Rj . A register is shared if it is not local to any process.
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Let x = (f, S) and x′ = (f ′, S′) be runs. Run x′ is a prefix of x (and x is an extension of
x′), denoted x′ ≤ x, if S′ is a prefix of S and f = f ′. Let 〈S; S′〉 be the sequence obtained
by concatenating the finite sequence S and the sequence S′. Then 〈x;S′〉 is an abbreviation
for (f, 〈S; S′〉). When x ≥ x′, (x− x′) is the suffix of S obtained by removing S′ from S.

For any sequence S, let Sp be the subsequence of S containing all events in S which
involve p. Run (f, S) includes (f ′, S′) iff f = f ′ and S′p is a prefix of Sp for all p ∈ N . Runs
(f, S) and (f ′, S′) are indistinguishable to the set of processes G, denoted by (f, S)[G](f ′, S′),
iff Sp = S′p for every p ∈ G, and f(r) = f ′(r) for every local register r of every process in G.
Note that the relation [G] is an equivalence relation. When G = {p} we write [p] instead of
[G].

We assume throughout this paper that x is a run of a protocol if and only if all finite
prefixes of x are runs. Notice that, by this assumption, if (f, S) is a run, then also (f,null)
is a run, where null is the empty sequence.

Next, we characterize asynchronous shared memory systems by axioms that any protocol
operating in such systems satisfies. We mention below only the axioms that are needed to
prove the results. The axioms do not give a complete characterization of these systems.

Definition 1 An asynchronous read-write protocol is a protocol with only read and write
events whose runs satisfy axioms RW1 – RW3.

Axioms for read and write

RW1 Let 〈x; writep(r, v)〉 and y be finite runs where x[p]y.
Then 〈y;writep(r, v)〉 is a run.

RW2 Let 〈x; readp(r, v)〉 and y be finite runs where x[p]y.
Then 〈y; readp(r, u)〉 is a run for some value u.

RW3 Let 〈x; readp(r, v)〉 be a run.
Then v = value(r, x).

RW1 means that if a write event which involves p can happen at a run, then the same event
can happen at any run that is indistinguishable to p from it. RW2 means that if a process
is “ready to read” a value from some register, then an event on some other process cannot
prevent it from reading, although it may prevent this process from reading a specific value
which it could read previously. RW3 means that it is possible to read only the last value
that is written into a register.
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Definition 2 An asynchronous read-modify-write protocol is a protocol with only read-
modify-write events whose runs satisfy axioms RMW1 – RMW3.

Axioms for read-modify-write

RMW1 Let 〈x; rmwp(r, v, v′)〉 and y be finite runs where x[p]y and value(r, x) = value(r, y).
Then 〈y; rmwp(r, v, v′)〉 is a run.

RMW2 Let 〈x; rmwp(r, v, v′)〉 and y be finite runs where x[p]y.
Then 〈y; rmwp(r, u, u′)〉 is a run for some values u and u′.

RMW3 Let 〈x; rmwp(r, v, v′)〉 be a run.
Then v = value(r, x).

RMW1 means that if a read-modify-write event which involves p can happen at a run, then
the same event can happen at any run that is indistinguishable to p, provided that the
register p accesses in that event has the same value in both runs. RMW2 means that if a
read-modify-write event which involves p can happen at a run, then some read-modify-write
event in which p accesses the same register can happen at any run that is indistinguishable
to p. RMW3 means that it is possible to read only the last value that is written into a
register.

3 The Knowledge Bivalent and Eventually Operators

In this section we define a few modal operators, and demonstrate their usefulness by gen-
eralizing a well known impossibility result.

3.1 Predicates

First we introduce the notion of a predicate. Formally, a predicate is simply a set of runs.
It is convenient to think about a predicate, say “the value of r is 5”, as the set of all runs
in which the value of r is 5. Two predicates are disjoint if their intersection is empty.
When speaking about predicates the connectives ¬(not), ∧(and), ∨(or), and implication
mean complement, intersection, union, and inclusion, respectively, and β at x means x ∈ β.
Crucial to our exposition is the notion of a stable predicate. Informally, a stable predicate
is a predicate that once true remains true thereafter.

Definition 3 A predicate is stable if it is suffix closed. That is, if it holds in some run, it
holds in all extensions of that run.

Examples for stable predicates are: “the system is deadlocked”, “consensus has been
reached” and “more than five messages have been received”.
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3.2 Knowledge

We are now ready to define the notion of knowledge. Intuitively, a group of processes know
a predicate at a given run if this predicate holds at all runs that the processes (together)
cannot distinguish from the given one.

Definition 4 For set of processes G, predicate β and finite run x, we say that G knows β
at x, denoted by KGβ at x, iff for all finite y such that x[G]y, it is the case that β at y.

When G is the singleton {p}, we write Kp instead of KG . Also, the notation EGβ is used
as a shorthand for

∧
p∈G Kpβ (i.e., everybody in the set G knows β). Notice that when β is

a stable predicate, then KGβ is not necessarily a stable predicate.1 We refer the reader
to [2, 10, 12] for a list of properties of the knowledge operator. Two basic facts about KG
that we use repeatedly are:

• If KGβ at x, then β at x;

• If EGβ at x, then KGβ at x.

3.3 Fairness

In order to discuss important properties of asynchronous protocols, we need the concept
of a fair run. We say that process p is enabled at run x if there exists an event ep such
that 〈x; ep〉 is a run. Notice that in asynchronous shared memory systems (i.e., protocols
satisfying either the RW or the RMW axioms) an enabled process cannot become disabled
as a result of an event which involves some other process.

Definition 5 Let G be a set of processes. Run y is G-fair iff for each p ∈ G and each run
x ≤ y, if p is enabled at x, then there exists a run y′ such that x ≤ y′ ≤ y and such that
some event in (y′−x) involves p. Process p is correct in a run if the run is {p}-fair. A run
is `-fair iff at least ` processes are correct in it.

A G-fair run captures the intuition of an execution where all enabled processes which belong
to G make progress. Notice that a G-fair run may be either finite or infinite—if a G-fair run
is finite, then no process in G is enabled at the run, otherwise (when the run is infinite)
each process in G that is enabled at all but finitely many prefixes appears infinitely often
in the run. It easy to see that in asynchronous protocols, any finite run is a prefix of some
G-fair run, for any G.

3.4 Operators

We next define modal operators, bivalent (4) and eventually (3G). These new operators
can also be defined using known temporal operators.

1For example, consider a protocol with the following five runs: (1) the null run, (2) ep, (3) eq, (4) epeq,
(5) eqep. Let the predicate β be the set {ep, epeq}. (That is, β includes all the runs which involve the event
ep, and in which the event ep does not appear after eq.) Let G = {p, q}. While β is stable, KGβ is not, since
KGβ includes the run ep and does not include the run epeq.
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Definition 6 Let β1 and β2 be disjoint predicates. The pair {β1, β2} is bivalent at run x,
denoted 4{β1, β2} at x, iff there exist finite extensions y1 and y2 of x such that β1 at y1

and β2 at y2.

Notice that the predicate 4{β1, β2} includes exactly the runs which have finite extensions
both in β1 and in β2.

Definition 7 For predicate β, set of processes G and finite run x, eventually β at x w.r.t.
G, denoted 3Gβ at x, iff for every G-fair run y ≥ x there is a finite prefix y′, x ≤ y′ ≤ y
such that β at y′.

We use the following abbreviations: 3mβ at x means 3Gβ at x for every G where |G| ≥ m,
and 3 means 3n. (Recall that n is the total number of processes.) We say that a protocol
achieves β in the presence of up to t crash failures if all its runs satisfy 3(n−t)β. Some
simple facts are listed below. All are universally quantified over all runs of an arbitrary
protocol. Let β1, β2, β3 be pairwise disjoint stable predicates.

1. 4{β1, β2} implies ¬(β1 ∨ β2).

2. 4{β1, β2} implies ¬(3β1 ∨3β2).

3. (4{β1, β2} ∧ 4{β2, β3}) implies 4{β1, β3}.
4. (34{β1, β2}) implies 4{β1, β2}.
5. 4{3β1, 3β2} iff 4{β1, β2}.
6. 3β1 implies ¬4{β1, β2}.
7. 3m−1β1 implies 3mβ1. (1 < m ≤ n)

8. ¬4{β1, β2} is a stable predicate.

3.5 An Impossibility Theorem

We prove a theorem which generalizes an important impossibility result due to Fischer,
Lynch and Paterson [6], and Loui and Abu-Amara [17] (see also [26]). For the rest of the
section, let β1 and β2 be disjoint stable predicates. The theorem says that processes cannot
reliably learn of the resolution of bivalent stable predicates in the presence of a single process
fault.

Theorem 1 In any asynchronous read-write protocol, for any run x, if 4{β1, β2} at x,
then for some set of processes G where |G| = n− 1, ¬3G(KGβ1 ∨KGβ2) at x.

In order to prove the theorem we first prove two lemmas. Without loss of generality, we
consider in this proof only deterministic processes. That is, if 〈x; ep〉 and 〈x; e′p〉 are runs,
then ep = e′p. When p is enabled at x, we denote by ◦px the unique extension of x by a
single event of p. Finally, by Ḡ we denote the set of all processes not in G.

The proof of the theorem relies on two lemmas, the first of which relates disjoint stable
predicates, the eventually operator, the knowledge of a set of processes G, and runs that
are indistinguishable to G.
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Lemma 1 Let x and y be finite runs and G be a set of processes. If 3GKGβ1 at x, x[G]y,
and value(r, x) = value(r, y) for every shared register r, then ¬3β2 at y.

Proof: Assume 3GKGβ1 at x, x[G]y, and value(r, x) = value(r, y) for every shared register
r. From RW1–RW2, x is a prefix of a G-fair run z where x[Ḡ]z, that is, only processes in
G take steps after the end of x. Since 3GKGβ1 at x, there is a finite run x ≤ x′ ≤ z such
that x[Ḡ]x′ and KGβ1 at x′. From RW1–RW3, w = 〈y; (x′ − x)〉 is also a run. Since KGβ1

at x′ and x′[G]w, it has to be that β1 at w. Since β1 is stable and disjoint from β2, it is the
case that ¬3β2 at y.

We use the notation (3K)
n′β at x as an abbreviation for 3GKGβ at x for every set of

processes G where |G| ≥ n′. Notice that it follows from Lemma 1 that for any finite runs
x and y and set of processes G where |G| ≥ n′, if (3K)

n′β1 at x, x[G]y, and value(r, x) =
value(r, y) for every shared register r, then ¬3β2 at y.

The second lemma proves that runs with bivalent stable predicates can always be ex-
tended, preserving bivalence and forcing enabled processes to take steps. The proof of
Theorem 1 concludes by applying this lemma to construct an infinite, G-fair run, in which
the bivalence is never resolved.

Lemma 2 For any finite run x and any process p, if 3G(KGβ1 ∨KGβ2) at x for every set
of processes G where |G| ≥ n− 1, 4{β1, β2} at x, and p is enabled at x, then there exists a
finite y ≥ x such that 4{β1, β2} at y and ¬x[p]y (that is, p has taken a step in (y − x)).

Proof: Assume to the contrary that for some run x and process p, 3G(KGβ1 ∨KGβ2) at x
for every set of processes G where |G| ≥ n− 1, 4{β1, β2} at x, p is enabled at x and there
does not exist a finite y ≥ x such that ¬x[p]y and 4{β1, β2} at y.

Let x′ be an extension of x where ¬(β1 ∨ β2) at x′ and p is enabled at x′. Since β1 and
β2 are stable, neither predicate holds yet in any prefix of x′, and hence 3G(KGβ1 ∨KGβ2)
at x′. Since ¬x[p]◦px

′, from the assumption we have ¬4{β1, β2} at ◦px
′, and it follows

that either (3K)n−1β1 at ◦px
′ or (3K)n−1β2 at ◦px

′. Assume without loss of generality that
(3K)n−1β1 at ◦px.

Since 4{β1, β2} at x and β1 and β2 are disjoint, there must be a first point at which
the choice between β1 and β2 is made: there exists a finite extension z of x (z 6= x) such
that 3β2 at z and for any x ≤ y < z it is the case that 4{β1, β2} at y. It is important to
notice that (3K)n−1β2 at z (and hence also (3K)n−1β2 at ◦pz, if ◦pz exists).

Let z′ be the longest prefix of z such that x[p]z′. (That is, there are no steps by p
between the end of x and the end of z′, which implies that either z = z′ or z = ◦pz

′.) We
notice that either 3β2 at z′ (when z′ = z) or (3K)n−1β2 at ◦pz

′, and in either case, 3β2 at
◦pz

′.
Consider the extensions of x which are also prefixes of z′. (See Figure 1.) Since (3K)n−1β1

at ◦px, by the observations made so far there must exist extensions y and y′ (of x) where
y is a one event extension of y′, such that (3K)n−1β1 at ◦py

′, either 3β2 at y (when y = z)
or (3K)n−1β2 at ◦py, and in either case, 3β2 at ◦py. Let p′ be the process that takes a step
between y′ and y. That is, y = 〈y′; ep′〉 for some event ep′ where p′ 6= p.
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Figure 1: The runs constructed in the proof of Lemma 2.

The proof concludes by examining the event ep′ and the possible next events by p,
considering whether they are read or write events. In each case we use Lemma 1 to derive
a contradiction.

First we show that ep′ is a write event. Assume that ep′ is not a write event. By RW1–
RW3, (◦py

′ − y′) = (◦py − y) and hence ◦py
′[N − {p′}]◦py. Also, the values of all shared

registers are the same in ◦py and ◦py
′, and as already mentioned (3K)n−1β1 at ◦py

′. By
Lemma 1, ¬3β2 at ◦py

′, a contradiction. Therefore, ep′ must be a write event.
We notice that, by RW1 w = 〈◦py

′; ep′〉 is a run. Also, since (3K)n−1β1 at ◦py
′, it must

be the case that for G = N − {p′}, 3GKGβ1 at w.
Next we show that (◦py

′ − y′) is a write event. Assume (◦py
′ − y′) is not a write event.

Then, w[N −{p}]y, and w[N −{p}]◦py. Also, the values of all shared registers are the same
in w, y and ◦py. Because w ≥ ◦py

′, 3β1 at w. Now, recall that either β2 at y or (3K)n−1β2

at ◦py. It follows that, either (3K)n−1β2 at y or (3K)n−1β2 at ◦py. By Lemma 1, in both
cases ¬3β1 at w, a contradiction. Therefore, for registers r1 and r2, and values v1 and v2,
(◦py

′ − y′) = writep(r1, v1), and (y − y′) = writep′(r2, v2).
Assume r1 6= r2. Since the two write events are independent, the values of all shared

registers are the same in w and ◦py. Also, w[N ]◦py and hence w[G]◦py for G = N − {p′}.
As pointed out, 3GKGβ1 at w, and hence by Lemma 1, ¬3β2 at ◦py, a contradiction.

Assume r1 = r2. Clearly, value(r1, ◦py
′) = value(r1, ◦py). Hence, the values of all

shared registers are the same in ◦py
′ and ◦py. Also, ◦py

′[N − {p′}]◦py and as assumed
(3K)n−1β1 at ◦py

′. As before by Lemma 1, ¬3β2 at ◦py, a contradiction.

Proof of Theorem 1: Assume to the contrary that for some run x where 4{β1, β2} at x,
it is the case that 3G(KGβ1 ∨KGβ2) at x for every set of processes G where |G| = n − 1.
Using Lemma 2 we inductively construct an n-fair run, F , extending the run x and such
that 4{β1, β2} holds at all the finite prefixes of F .
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The construction of F is done in steps. F0 = x.
At each step m ≥ 1 we extend the run Fm−1 constructed at step m− 1 to a run Fm as

follows. If process pm (mod n) is not enabled at Fm−1, then Fm = Fm−1. Otherwise, using
Lemma 2, we extend Fm−1 to a run Fm where ¬Fm−1[pm (mod n)]Fm, 4{β1, β2} at Fm,
and 3G(KGβ1 ∨KGβ2) at Fm for every set of processes G where |G| = n− 1.

If for some m, no process is enabled at Fm, then Fm = F . Otherwise F = limm→∞Fm.
Thus, we get that ¬3N (KNβ1 ∨ KNβ2) at x, and hence ¬3G(KGβ1 ∨ KGβ2) at x for

some set of processes G where |G| = n− 1, a contradiction.

Recall that the the notation EGβ is used as a shorthand for
∧

p∈G Kpβ. That is, every-
body in the set G knows β. Moreover, EGβ implies KGβ.

Corollary 1 In any asynchronous read-write protocol, for any run x, if 4{β1, β2} at x,
then for some set of processes G where |G| = n− 1, ¬3G(EGβ1 ∨ EGβ2) at x.

Application 1: In [6], it is proved that in asynchronous message passing systems there
cannot exist a consensus protocol that tolerates even a single undetectable crash failure. A
similar result is also proved for (shared memory) read-write protocols in [17]. As we show
now, this impossibility result for shared memory systems follows easily from Corollary 1.
Since asynchronous shared memory systems which support atomic read and write operations
can simulate asynchronous message passing systems [17], a corresponding result follows also
for asynchronous message passing systems.

A t-resilient consensus protocol is a protocol for n processes, where each process has a
local read-only input register and a local write-once output register. For any (n − t)-fair
run there exists a finite prefix in which all the correct processes decide on either 0 or 1 (i.e.,
each correct process writes 0 or 1 into its local output register), the values written by all
processes are the same, and the decision value is equal to the input value of some process.

Let βi be the stable predicate “consensus has been reached on the value i” (i ∈ {0, 1}).
That is, βi is the set of all runs in which at least one process writes i into its local output
register. As is proved in [6] (Lemma 2) and [17] (Lemma 5.2), in any 1-resilient consensus
protocol there must exist a run x0 = (f, null) such that 4{β0, β1} at x0. We sketch the
proof here. Let f0 be a function which assigns to all the processes the input 0, and let f1 be
a function which assigns to all the processes the input 0. By definition, 3n−1βi at (fi, null).
Starting from f0, by changing the input of processes from 0 to 1, one at a time, we get
two functions f ′0 and f ′1, which differ only on the input value assigned to a single process.
Since the protocol is 1-resilient it must be the case that 4{β0, β1} at both (f ′0, null) and
(f ′1, null). Let x0 = (f ′0, null).

Clearly, if process p decides on i at run x, then Kpβi at x, and thus in any t-resilient
consensus protocol for any set of processes |G| ≥ n − t, 3G(EGβ0 ∨ EGβ1) at x0. Thus, by
Corollary 1, the impossibility result follows.

Another application of Theorem 1 is to prove a result for the renaming problem which
is defined in [1] as follows. Each of the n processes initially has a distinct name taken from
an unbounded ordered domain, and the goal is to design a protocol that allows each correct
process to choose irreversibly a new name from a space of size NS, such that every two new
names are distinct. It is assumed that apart from their unique initial names the processes
are identical.
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It follows from Theorem 1 that there can not exist a protocol for solving the renaming
problem with NS= n which tolerates a single crash failure. The predicates β1 and β2 may
be taken to be “process p will choose the value 1” and “process p will not choose the value
1”, for some process p. (We assume that 1 belongs to the new name space.)

Similarly, it follows from Theorem 1 that there is no 1-resilient leader election protocol
in such a model. A t-resilient leader election protocol is a protocol for n processes, where
each process has local write-once output register. In any (n− t)-fair run of it, there exists
a finite prefix in which all processes (correct or faulty) commit to some value in {0, 1}, and
exactly one process commits to 1. That process is called the leader. We say that a process
p commits to a value v ∈ {0, 1} in x if p eventually writes v to its output register in any
(n− t)-fair extension of x in which p is correct. (Notice that each correct process eventually
knows whether it is the leader.) The predicates β1 and β2 may be taken to be “process p
will be the leader” and “process p will not be the leader”, for some process p.

The above two results about the renaming and election problems were first proved for
message passing systems in [20], and for shared memory systems in [28]. (See also [1, 25, 27].)

Theorem 1 states that for any asynchronous read/write protocol in which it is possible
to reach either of two disjoint sets β1 and β2, there must be an n − 1 fair run in which
it is never possible to deduce from the local histories of the n − 1 processes that a state
belonging to a specific βi will eventually be reached. It is natural to ask whether Theorem
1 can be strengthened to show that there is an n − 1 fair run in which no state belonging
to β1 ∪ β2 is ever reached. (Is it possible to replace ¬3G(KGβ1 ∨KGβ2) in Theorem 1, by
¬3G(β1 ∨ β2)?)

A simple counter-example demonstrates that the resulting, stronger statement is in-
correct. To get the counter-example we weaken the requirements of the leader election
protocol defined above, and do not require that the elected leader or any of the other pro-
cesses “knows” whether it is the elected leader. The following protocol satisfies the new
specifications: There is a single shared register which each process tries to write into. The
first process that succeeds to write into the register is the elected leader. Let β1 and β2 be
the predicates: “process p is the first to write (i.e., is the leader)” and “process p is not the
first to write (i.e., is not the leader)”, respectively. Then clearly, initially 4{β1, β2}, and
3G(β1 ∨ β2) at x for any run x and any (nonempty) set of processes G.

4 Knowledge and Space

In this section we prove some lower bounds on the shared space needed to gain knowledge
in asynchronous shared memory systems. Throughout this section we assume that n ≥ 3.
The following theorem states that a protocol where at least two processes may be incorrect
and where all correct processes must eventually know one of two disjoint stable predicates
that are possible initially, has to use at least one non-binary shared register. The theorem
and its proof are inspired by Theorem 5.2 in [17]. As before, let β1 and β2 be disjoint stable
predicates.
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Theorem 2 In any asynchronous read-modify-write protocol, for any run x where4{β1, β2}
at x, if 3G(KGβ1 ∨ KGβ2) at x for every set of processes G where |G| ≥ n − 2, then the
protocol uses at least one non-binary shared register.

In order to prove the theorem we first prove two lemmas. In proving these lemmas
we assume that all shared registers are binary registers. As in Theorem 1, without loss
of generality, we consider in this proof only deterministic processes, and denote by ◦px
the unique extension of x by a single event on p. We point out that Lemma 1, and the
observation following it, although proved for read-write protocols, hold also for read-modify-
write protocols with essentially the same proof.

When only binary registers are available, the relative order in which two enabled pro-
cesses takes read-modify-write steps can play only a limited role in what the other processes
can learn. The first lemma states such a limitation.

Lemma 3 Let x be a run, p and p′ be two processes which are enabled at x, and G =
N − {p, p′}. If 3GKGβ1 at ◦px, then ¬3β2 at ◦p′x.

Proof: Assume 3GKGβ1 at ◦px, and let the last step in ◦px be rmwp(r1, v
′
1, v1) (that is,

(◦px−x) = rmwp(r1, v
′
1, v1)) and similarly let the last step in ◦p′x be rmwp′(r2, v

′
2, v2) (that

is, (◦p′x − x) = rmwp′(r2, v
′
2, v2)), for registers r1 and r2 and values v′1, v1, v

′
2, v2 ∈ {0, 1}.

Let y = ◦p′◦px and y′ = ◦p◦p′x. Note that, since y ≥ ◦px and y[G]◦px, 3GKGβ1 at y.
Assume r1 6= r2. Since the two events are independent, the values of all shared registers

are the same in y and y′, and y[N ]y′. By the note above, also 3GKGβ1 at y. Thus, by
Lemma 1, ¬3β2 at y′, and hence ¬3β2 at ◦p′x.

Assume r1 = r2. Then v′1 = v′2. Since all registers are binary, there are three possible
cases. (1) v1 = v2. Since 3GKGβ1 at ◦px, ◦px[G]◦p′x, and value(r, ◦px) = value(r, ◦p′x)
for every shared register r, by Lemma 1 ¬3β2 at ◦p′x. (2) v′1 = v1. By RMW1, y =
〈◦px; rmwp′(r2, v

′
2, v2)〉 is a run. Again by the note above, 3GKGβ1 at y, y[G]◦p′x, and

value(r, y) = value(r, ◦p′x) for every shared register r, by Lemma 1, ¬3β2 at ◦p′x. (3)
v′2 = v2. The values of all shared registers are the same in ◦px and y′, ◦px[G]y′, and also
3GKGβ1 at ◦px. Thus, by Lemma 1, ¬3β2 at y′, and hence ¬3β2 at ◦p′x.

The proof of the next lemma uses the notation (3K)
n′β from the previous section. The

lemma is similar to Lemma 2, showing that runs with bivalent stable predicates can always
be extended, preserving bivalence and forcing enabled processes to take steps. As in the
proof of Theorem 1, the proof of Theorem 2 concludes by applying this lemma to construct
an infinite, G-fair run, in which the bivalence is never resolved.

Lemma 4 For any run x and any two processes p and p′ which are enabled at x,
if 3G(KGβ1 ∨KGβ2) at x for every set of processes G where |G| ≥ n − 2 and 4{β1, β2} at
x, then there exists a finite y ≥ x such that ¬x[{p, p′}]y and 4{β1, β2} at y.

Proof: Assume to the contrary that for some run x and two processes p and p′ which are
enabled at x, 3G(KGβ1∨KGβ2) at x for every set of processes G where |G| ≥ n−2, 4{β1, β2}
at x, and there does not exist y ≥ x such that ¬x[{p, p′}]y and 4{β1, β2} at y.
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Figure 2: The runs constructed in the proof of Lemma 4.

Let x′ be an extension of x where ¬(β1 ∨ β2) at x′ and both p and p′ are enabled at
x′. Since β1 and β2 are stable, neither predicate holds yet in any prefix of x′, and hence
3G(KGβ1 ∨ KGβ2) at x′. Since ¬x[{p, p′}]◦px

′, from the assumption we have ¬4{β1, β2}
at ◦px

′, and it follows that either (3K)n−2β1 at ◦px
′ or (3K)n−2β2 at ◦px

′. Similarly, either
(3K)n−2β1 at ◦p′x

′ or (3K)n−2β2 at ◦p′x
′. Since ¬(β1 ∨ β2) at x, assume without loss of

generality that (3K)n−2β1 at ◦px. By Lemma 3, also (3K)n−2β1 at ◦p′x.
Since 4{β1, β2} at x and β1 and β2 are disjoint, there must be a first point at which

the choice between β1 and β2 is made: there exists an extension z of x (z 6= x) such that
3β2 at z and for any x ≤ y < z, it is the case that 4{β1, β2} at y. It is important to notice
that (3K)n−2β2 at z. Furthermore, either β2 at z or both (3K)n−2β2 at ◦pz (if ◦pz exists) and
(3K)n−2β2 at ◦p′z (if ◦p′z exists).

Let z′ be the longest prefix of z such that x[{p, p′}]z′. We notice that, by RMW2, for
any y such that x ≤ y ≤ z′, both p and p′ are enabled at y. (See Figure 2.) Since z′ ≤ z,
it follows from the first assumption and Lemma 3 that either β2 at z′ (when z′ = z) or
(3K)n−2β2 at ◦pz

′ and (3K)n−2β2 at ◦p′z
′. In any case, 3β2 at both ◦pz

′ and ◦p′z
′.

Consider the extensions of x which are also prefixes of z′. Since (3K)n−2β1 at ◦px there
must exist extensions y and y′ (of x) where y is a one event extension of y′, such that
(3K)n−2β1 at both ◦py

′ and ◦p′y
′, and either β2 at y (when y = z) or (3K)n−2β2 at both ◦py

and ◦p′y, and in either case, 3β2 at both ◦py and ◦p′y. Let p′′ be the process that takes a
step between y′ and y. That is, y = 〈y′; ep′′〉 for some event ep′′ where p′′ 6∈ {p, p′}.

For some registers r1 and r2, and values v′1, v1, v
′
2, v2 ∈ {0, 1}, (◦py

′−y′) = rmwp(r1, v
′
1, v1),

and (y − y′) = rmwp′′(r2, v
′
2, v2).

The proof concludes by examining the events rmwp(r1, v
′
1, v1) and rmwp′′(r2, v

′
2, v2),

depending on whether r1 = r2 and the values read and written. In each case we use Lemma
1 to derive a contradiction.
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Assume r1 6= r2. By RMW1, w = 〈y′; rmwp(r1, v
′
1, v1); rmwp′′(r2, v

′
2, v2)〉 is a run. The

values of all shared registers are the same in w and ◦py, and w[N ]◦py. Let G = {N − p′′},
because w > ◦py

′ and w[G]◦py
′, 3GKGβ1 at w. By Lemma 1, ¬3β2 at ◦py, a contradiction.

Assume r1 = r2. Then v′1 = v′2. Since all registers are binary, there are three possible
cases.

(1) v′2 = v2. Since (3K)n−2β1 at ◦py
′, ◦py

′[N − {p′′}]◦py, and the values of all shared
registers are the same in ◦py

′ and ◦py, by Lemma 1, ¬3β2 at ◦py, a contradiction.
(2) v′1 = v1. Let H = N − {p, p′}. Recall that either β2 at y or (3K)n−2β2 at ◦p′y. It

follows that, either (3K)n−2β2 at y or (3K)n−2β2 at ◦p′y, and in either case 3HKHβ2 at ◦p′y.
Let s = ◦p′◦p′′◦py

′. Because s > ◦py
′, 3β1 at s. Since ◦p′y[H]s, and the values of all shared

registers are the same in ◦p′y and s, by Lemma 1, ¬3β1 at s, a contradiction.
(3) v1 = v2. Recall that either β2 at y or (3K)n−2β2 at ◦p′y. It follows that, either

(3K)n−2β2 at y or (3K)n−2β2 at ◦p′y. Assume (3K)n−2β2 at y. Since y[N − {p, p′′}]◦py
′, and

the values of all shared registers are the same in y and ◦py
′, by Lemma 1, ¬3β1 at ◦py

′, a
contradiction. Assume (3K)n−2β2 at ◦p′y. Let s′ = ◦p′◦py

′. Because s′ > ◦py
′, 3β1 at s′.

Since ◦p′y[N − {p, p′′}]s′, and the values of all shared registers are the same in ◦p′y and s′,
by Lemma 1, ¬3β1 at s′, a contradiction.

Proof of Theorem 2: Assume to the contrary that for some run x where 4{β1, β2} at x,
it is the case that 3G(KGβ1 ∨KGβ2) at x for every set of processes G where |G| = n − 2.
We notice that since 4{β1, β2} at x, there are at least two enabled processes in x. Using
Lemma 4 we can inductively construct an (n−1)-fair run extending x, such that 4{β1, β2}
holds at all the finite prefixes of that run. (The inductive construction is similar to that in
Theorem 1.) Thus, ¬3G(KGβ1 ∨KGβ2) at x for some set of processes G where |G| = n− 2,
a contradiction.

Corollary 2 In any asynchronous read-modify-write protocol, for any run x where4{β1, β2}
at x, if 3G(EGβ1∨EGβ2) at x for every set of processes G where |G| ≥ n−2, then the protocol
uses at least one non-binary shared register.

Application 2: Recall the definition of a t-resilient consensus protocol from the first
Application section, and as before, let βi be the stable predicate “consensus has been reached
on the value i”. That section also sketched a proof that there must exist a run x = (f, null)
such that 4{β0, β1} at x (see also [6], Lemma 2). Clearly, if process p decides on i at run
x, then Kpβi at x, and thus in any 2-resilient consensus protocol 3G(EGβ0 ∨EGβ1) at x for
every set of processes |G| ≥ n− 2.

Since every 2-resilient consensus protocol satisfies all the premises of Corollary 2, we can
conclude that: there is no asynchronous 2-resilient consensus read-modify-write protocol that
uses only binary shared registers. This result was first proved by Loui and Abu-Amara [17]
(Theorem 5.2).

Corollary 2 can also be used to argue that any 2-resilient leader election protocol using
read-modify-write must use at least one non-binary shared register. However, in this case we
must require that every correct process will eventually know the leader’s identity. Without
this requirement the problem can be solved using one bit. Each process tries to write this
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bit, and the first to succeed is the leader. Since the operation on the bit is read-modify-
write, each process learns whether or not it is the first to write, and hence knows whether
or not it is the leader. But those who are not leaders do not know the leader’s identity.

This example serves also as a demonstration that, as in Theorem 1, Theorem 2 cannot be
strengthened by replacing ¬3G(KGβ1 ∨KGβ2) with ¬3G(β1 ∨ β2). Moreover, an extension
of this example illustrates why the theorem refers to runs in which as many as two processes
may be faulty—if only one process might be faulty, then either the leader can reveal its
identity, or the leader fails, and the other processes can identify the leader by all revealing
that they are not the leader. (This can be done with binary registers.) If two processes fail,
one of which is the leader, the other processes can be left with unresolvable ambiguity as
to which of the failed processes is the leader.

In the next theorem, we show that if initially there are two processes where each does
not know some predicate and it is always the case that eventually each one of the two does
know the predicate and furthermore there is a third process which eventually knows that
they do know the predicate, then it must be the case that more than a single binary shared
register is used in the protocol. We assume in the following theorem a model of computation
which consists of n ≥ 3 identical processes. We use the notation Sm

G β to mean that there
exist at least m distinct processes which belong to G that each know β. Recall that N is
the set of all the processes.

Theorem 3 In any asynchronous read-modify-write protocol,

1. for an even number of identical processes, if there exists a run x = (f, null) and a
predicate β such that (¬S1

Nβ∧3
∨

p∈N KpS
2
N−{p}β) at x, then either the protocol uses

a non-binary shared register or it uses more than one binary shared register.

2. for any number of identical processes, if there exists a run x = (f, null) and a predicate
β such that (¬S1

Nβ ∧ 3
∨

p∈N KpS
3
N−{p}β) at x, then either the protocol uses a non-

binary shared register or it uses more than one binary shared register.

Proof: We prove only the first part of the theorem. The proof of the second part of the
theorem has the same flavor as that of the first part. We assume to the contrary that there
exists a run x = (f, null) and a predicate β such that (¬S1

Nβ ∧ 3
∨

p∈N KpS
2
N−{p}β) at

x and the protocol uses a single binary shared register r, and without loss of generality,
assume that f(r) = 0.

To prove the theorem we construct an n-fair extension of x which is used to demonstrate
a contradiction. For simplicity, we assume that a process can always take a step whenever it
is scheduled. We say that a process p writes the value a∞ (a ∈ {0, 1}) in a run x if p writes
a from x (the last step in ◦px writes a), and in the infinite extension in which this process
is the only one that is activated, a appears infinitely many times. Since in any infinite run
either 0 or 1 (or both) appears infinitely many times, any process that is activated alone
will eventually write either 0∞ or 1∞ (because with read-modify-write, the process must
write a value every time it takes a step).

Pick an arbitrary process (recall they are identical and deterministic), and consider the
following scenario. Starting with the value b (b ∈ {0, 1}) in the single binary register, we
start the process running alone until it first writes a∞, for a 6= b. (This may never happen.)
At that point we interfere and flip the shared bit so that its value is again b. Afterwards
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we let the process continue until it writes a∞ again and then we flip the bit and so on. Let
flip(b to a) be the number of times the process writes a∞ in such an infinite run.

We consider the following four cases:
1. flip(0 to 1) = 0. We construct an n-fair extension z of x by activating the processes

in a round robin fashion infinitely many times (starting with 0 as the initial value). Each
time a process is scheduled, we let it run until it writes 0∞ (which it must, since it does not
write 1∞. Each process cannot distinguish z from the run in which it is the only process
that is activated.

2. Both flip(0 to 1) and flip(1 to 0) are infinite. Starting with 0 as the initial value we
alternately activate the n processes in a round robin fashion infinitely many times. Each
time a process is scheduled, if the value of the shared bit is 0 (1) we let it run until it writes
1∞ (0∞). No process can distinguish z from the run, constructed similarly, in which only
two processes participate. (This and similar arguments below depend on there being an
even number of identical processes.)

3. flip(0 to 1) ≤ flip(1 to 0), and flip(0 to 1) = k for some positive number k. We first
alternately activate the processes in a round robin fashion for k rounds. Each time a process
is scheduled, if the value of the shared bit is 0 (1) we let it run until it writes 1∞ (0∞).
After k rounds the value of the shared bit is 0. Furthermore, if activated alone from this
point, each of the n processes will eventually write 0∞. We extend this run to an n-fair
run by continuing to activate the processes in a round robin fashion, letting each process
make one or more steps whenever it is scheduled until it writes 0∞. As in the previous case,
no process can distinguish this run from the run, constructed similarly, in which only two
processes participate.

4. flip(1 to 0) < flip(0 to 1), and flip(1 to 0) = k for some positive number k. As
in the previous case, we first alternately activate the processes in a round robin fashion for
k rounds. Each time a process is scheduled, if the value of the shared bit is 0 (1) we let
it run until it writes 1∞ (0∞). After k rounds the value of the shared bit is 0. Then we
schedule the first process that was activated and let it run until it writes 1∞ . Furthermore,
if activated alone from this point, each of the n processes will eventually write 1∞. We
extend this run to an n-fair run by continuing to activate the processes in a round robin
fashion letting each process make one or more steps whenever it is scheduled until it writes
1∞. As in the previous case, no process can distinguish this run from the run, constructed
similarly, in which only two processes participate.

In each of the four cases above (which are exhaustive), we constructed an n-fair extension
of x, called z, such that each process say p cannot distinguish z from the run in which only
p and at most one other process, p′, is activated. Since in this latter run only p and p′

participate, p can not know in z something that it did not know at x about the knowledge
of processes other than p or p′. That is, for any process p and predicate β, if ¬S1

Nβ at x, then
for any prefix y of z it is not the case that KpS

2
N−{p}β at y, and thus ¬3

∨
p∈N KpS

2
N−{p}β

at x, a contradiction.

The assumption that the number of processes n is even can be replaced with an as-
sumption that the shared register is initially in an arbitrary unknown state, obtaining an
impossibility result valid for any n. This result is a generalization of Theorem 3.3 of [8].
One of these assumptions is necessary: if there are an odd number of processes, and no
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uncertainty in the initial value in the register, then the first part of the theorem is not true.

Application 3: The (fault-free) wakeup problem is a deceptively simple problem. The
goal is to design a protocol for n asynchronous identical processes in a shared memory
environment such that at least one process eventually learns that at least τ processes have
awakened and begun participating in the protocol [8].

We say that a process p is awake in a run if the run contains an event that involves p. The
predicate “at least τ processes are awake in run x” is the set of all runs for which there exist
τ different processes which are awake in the run. Let β be the predicate “at least one process
is awake” and let x be some run in which no process has taken a step (i.e., x = (f, null) for
some f). Then, for any wakeup protocol where τ ≥ i, eventually some process learns that
i− 1 other processes have awakened. That is, (¬S1

Nβ ∧3
∨

p∈N KpS
i−1
N−{p}β) at x.

Hence, since any wakeup protocol satisfies all the premises of Theorem 3, we can conclude
that: There does not exist an asynchronous read-modify-write protocol which uses only a
single binary shared register that solves the wakeup problem for: (1) an even number of
processes when τ ≥ 3; (2) any number of processes when τ ≥ 4. For even n, this lower
bound is stronger than that in [8] (Theorem 3.3), since it does not assume that the shared
register is initially in an arbitrary unknown state.

5 How Knowledge is Gained and Lost

In this section we show that some results of Chandy and Misra for message passing systems
([2]) hold also for shared memory systems. All the results in this section are for both read-
write protocols and read-modify-write protocols. We first define the notion of causality
between events along the lines suggested by Lamport for message passing systems [15]. The
causality relation captures the intuition that one event may have caused by some other
event. We say that e′ is a corresponding event of e in a given run, if in e′ a process reads
the value of register r and e was the most recent write to r preceding e′. Notice that both e
and e′ may be read-modify-write events, and that several reads may correspond to a single
write.

Definition 8 Event e may have caused event e′ in run x, denoted e
x→ e′, if both events

appear in x and either,
1. e′ is a corresponding event of e, or
2. e = e′ or both events involve the same process and e appears before e′ in x, or
3. there exists an event e′′ such that e

x→ e′′ and e′′ x→ e′.

We use the event chain ep1

x→ ...
x→ epm as an abbreviation for epi

x→ epi+1 for 1 ≤ i < m.
(Recall from the definition that ep is an event which involves process p.)

Definition 9 A run x has a process chain 〈p1, ..., pm〉 if there exist events ep1 , ..., epm in x

such that ep1

x→ ...
x→ epm.

For x = (f, S) and y = (f ′, S′), the notation x ∝ y means that f = f ′, S is a subsequence
of S′, and for every e′ in S, e

y→ e′ implies that e
x→ e′.
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Lemma 5 If y is a run, then every x ∝ y is a run.

Proof: Assume x = (f, S) is finite, y = (f, S′), and x ∝ y. The proof is by induction on |S|,
the length of S. When |S| = 0, x is a prefix of y, and hence x is a run. We assume that the
theorem holds for |S| = m− 1 and prove it for |S| = m.

Let ep be the last event in the sequence S. There must exist x′ = (f, T ) and y′ = (f, T ′),
such that 〈x′; ep〉 = x and 〈y′; ep〉 ≤ y. It follows from the fact that x ∝ y, and the way x′

and y′ are constructed that x′ ∝ y′. Since 〈y′; ep〉 ≤ y, both y′ and 〈y′; ep〉 are runs. Thus,
by the induction hypothesis, x′ is a run.

Next we show that x′[p]y′. Since x ∝ y, Sp ≤ S′p and hence also Tp ≤ T ′p. (Recall that
Sp is the subsequence of S containing all events in S which involve p.) For every event e′p
in y′, by Definition 8, e′p

y→ ep, and (since x ∝ y) e′p appears also in x′, which implies that
T ′p ≤ Tp. Thus Sp = S′p, which means that x′[p]y′.

If ep is a write event, then by RW1 〈x′; ep〉 = x is a run.
If ep is a read event from register r, then it follows from RW2 that 〈x′; readp(r, value(r, x′))〉

is a run.
If no process writes to r in y′, then value(r, x′) = value(r, y′) and hence by RW3

〈x′; readp(r, value(r, x′))〉 = 〈x′; ep〉 = x.

Assume e is the last event that affects register r in y′. Hence e
y→ ep, and hence (since

x ∝ y) e is also the last event that affects register r in x′. This implies that value(r, x′) =
value(r, y′) and hence again by RW3 〈x′; readp(r, value(r, x′))〉 = 〈x′; ep〉 = x.

Similarly, we show that x is run when ep is a read-modify-write event using RMW1.
Finally, since all finite prefixes of x are runs, x is a run also when x is infinite.

In the following the notion of the indistinguishability relation [p] is generalized.

Definition 10 For any runs x and z and processes p1, ..., pm, x[p1, ..., pm]z iff there exists
a run y such that x[p1, ..., pm−1]y and y[pm]z.

The definition is perhaps best understood by considering a labeled undirected graph, where
the nodes are the runs and there is an edge between x and z labeled by p iff x[p]z holds.
In that context x[p1, ..., pm]z means that there is a path from x to z by a sequence of
edges labeled p1, ..., pm. The following theorem relates the notions of process chains and
indistinguishability.

Theorem 4 For any runs x and z where x ≤ z and processes p1, ..., pm, either x[p1, ..., pm]z
or there is a process chain 〈p1, ..., pm〉 in (z − x).

Proof: The proof is adapted with minor changes from [2]. The theorem clearly holds when
x = z, so assume x is finite. The proof is by induction on m. For m = 1 the absence of
process chain 〈p1〉 implies that there is no event which involves p1 in (z − x) and hence
x[p1]z. We assume that the theorem holds for m− 1 processes and prove it for m.

Let E be the subsequence of events in (z − x) consisting of all events that may be the
cause of some event which involves pm. In particular, since the “may have caused” relation
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(Definition 8) is reflexive, and for every event e′ in z which involves pm, e′ y→ e′, it is the
case E contains all events in (z − x) which involve pm. (E is empty iff y[pm]z.)

Let y = 〈x; E〉. Since y ∝ z, by Lemma 5 y is a run. Since the subsequence of all events
which involve pm in y and z are the same, it is the case that y[pm]z.

If x[p1, ..., pm−1]y, then since y[pm]z, by definition x[p1, ..., pm]z and we are done. Oth-
erwise, by the induction hypothesis, there is a process chain 〈p1, ..., pm−1〉 in (y − x). Let
e be the last event in the event chain implied by the existence of such a process chain.
According to the construction e

z→ e′ for some event e′ which involves pm. Hence there is a
process chain 〈p1, ..., pm〉 in (z − x).

The next theorem is about how knowledge can be gained and lost in (either message
passing or) shared memory asynchronous systems. For process pi, the notation Kiβ is used
for Kpiβ. We first prove a technical lemma.

Lemma 6 Let x and z be runs and let p1, ..., pm be processes. If K1 . . . Kmβ at x and
x[p1, ..., pm]z, then Kmβ at z.

Proof: The proof is adapted with minor changes from [2]. The proof is by induction on m.
For m = 1, K1β at x and x[p1]z immediately implies that K1β at z.

We assume that the lemma holds for m− 1 processes and prove it for m. From Defini-
tion 10 it follows that there is a run y such that x[p1, ..., pm−1]y and y[pm]z.

From x[p1, ..., pm−1]y and K1 . . . Km−1(Kmβ) at x, using the induction hypothesis, it
follows that Km−1Kmβ at y, and hence also Kmβ at y. Finally, since Kmβ at y and y[pm]z,
it follows that Kmβ at z.

Theorem 5 Let x and y be runs where x ≤ y, and let p1, ..., pm be processes.
1. If ¬Kmβ at x and K1 . . . Kmβ at y, then there is a process chain 〈pm, ..., p1〉 in (y − x).
2. If K1 . . . Kmβ at x and ¬Kmβ at y, then there is a process chain 〈p1, ..., pm〉 in (y − x).

Proof: 1. Since K1 . . . Kmβ at y and ¬Kmβ at x by Lemma 6 it must be the case that not
x[pm, ..., p1]y. Thus, by Theorem 4 there is a process chain 〈pm, ..., p1〉 in (y − x).
2. Since K1 . . . Kmβ at x and ¬Kmβ at y by Lemma 6 it must be the case that not
x[p1, ..., pm]y. Thus, by Theorem 4 there is a process chain 〈p1, ..., pm〉 in (y − x).

As in [2], the two theorems still hold when speaking about sets of processes rather than
single processes.

6 Discussion

We have tried to point out the importance of the notion of knowledge for reasoning about
shared memory systems. We consider our results a first step in better understanding the
relation between knowledge and space in shared memory systems.

We introduced two results which explicitly relate knowledge and space and showed how
to derive from them known and new results about consensus, leader election, and wakeup
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problems. In addition we generalized known impossibility results, and showed that results
about how knowledge can be gained and lost in message passing systems also hold for shared
memory systems.

There is still much work to be done in exploring how much shared space is required to
reach different kinds of states of knowledge. Such results will hopefully unify and generalize
known results for specific problems and be useful tools for reasoning about shared memory
systems.
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