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Abstract: 

 

We examine the role of sentry and guard activities in outsourced software development. Sentry 

activities are designed to regulate the inflow of external information to the project teams and 

guard activities are designed to manage the outflow of teams’ information and resources to 

external sources. The use of sentry and guard activities has been examined in teams in other 

contexts such as new product development, but their role and relationship to performance in 

software development teams is not well understood. We hypothesize and test curvilinear 

relationships between these activities and knowledge integration in vendor development teams. 

We also examine how these effects vary under conditions of greater project uncertainty. We 

tested the hypotheses using data from 139 vendor development teams drawn from sixteen Indian 

software companies. Results highlight complex curvilinear associations among sentry and guard 

activities, and knowledge integration, which are further impacted by the level of uncertainty that 

the project team faces. We recommend that carefully calibrating sentry and guard processes will 

help vendor development teams enhance project outcomes. 
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Article: 

 

The past decade has witnessed a sharp rise in the outsourcing of software development. During 

this time, the accompanying academic literature on information systems (IS) has examined the 

reasons, goals, problems, and success factors associated with outsourced software development 

projects [26, 48]. Much less attention, however, has been focused on team-level processes, such 

as coordination and knowledge integration processes associated with outsourced software 

development [70]. Software development, whether carried out internally within the firm, or 

outsourced to an external vendor, is widely recognized as a knowledge-intensive activity 
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requiring the integration of knowledge from diverse sources [cf. 31, 39, 47, 58, 67]. In an 

outsourced setting, a team comprising of vendor personnel, who fulfill a range of roles (e.g., 

domain expert, technical lead, programmer, analyst, system tester, database administrator, etc.) is 

assembled for a system development project to be executed on behalf of a client firm [17]. The 

team relies on the collective skills and knowledge of its members because the scope of the effort 

required and the inherent complexity of the task usually exceed the ability of any single 

individual [22]. Effective team members’ knowledge integration, which refers to actively 

combining the individually held expertise, know-how, and ideas of team members to jointly 

achieve project outcomes, is therefore seen as key to successful project completion. 

 

Software development is a mix of formal coordination processes (e.g., coordination by formal 

plans, standards, and periodic reports) and informal coordination mechanisms [70, 71]. Informal 

processes include various intra- and interteam activities, such as interactions among team 

members, discussions about how relevant information will be gathered, sharing of information, 

and resolution of conflicts that arise in the course of working together [42, 50]. These processes 

are therefore seen as critical to the team’s knowledge integration efforts [62]. 

 

The broader literature on teams, especially in the context of new product 

development,1 discusses the importance of boundary-spanning processes in managing the 

informal interactions across team boundaries [2, 3, 8, 29]. Boundary-spanning activities refer to 

the actions that members of the team make to connect to external stakeholders or people who are 

outside of the team, such as sponsors, customers, and specialists [56]. Five boundary-spanning 

processes, namely, scout, ambassador, sentry, guard, and coordinator, are identified in new 

product development teams as representing external activities that members of the team perform. 

Among these, guard and sentry activities are designed to “protect” the team by buffering the 

boundary, thereby allowing the team members to work with minimal distraction [71, 82]. Sentry 

processes are aimed at actively monitoring and controlling the inflow of information from 

external entities, and deciding what type of information or resources to acquire from external 

sources [71]. Guard activities on the other hand, are intended to actively control the outflow of 

internal information and resources by preventing their unauthorized or unwarranted access by 

external entities [35, 64]. Thus, guard and sentry activities help teams “filter” the inputs to and 

from the team’s members [71]. In this study, we focus on vendor teams as our unit of analysis to 

examine how sentry and guard activities performed by them influence their efforts to integrate 

knowledge within the team. 

 

Sentry and guard processes may be especially complex in outsourced software development 

projects as project stakeholders may be dispersed across multiple locations. Software 

development work may be split into multiple phases and carried out at different global centers 

for both cost and time leverage [13, 19]. A typical arrangement for an outsourced project is to 

have both onsite and offshore team members [31]. System design, software coding, and pilot 

testing are typically done at the offshore development centers, whereas transition planning, user 

training, and deployment activities are often carried out at the client’s site. This arrangement 

requires significant amounts of information flow and coordination across the onsite and offshore 

project team members. The onsite members would work with the client during the day to capture 

the design of the process object, and at night, the offshore members would convert the design 

templates into a software configuration. The next day, the onsite team would test the software 



configuration with the client and undergo a second iteration of the design, while the offshore 

team would develop the second iteration, and so on. 

 

The intricacies of sentry and guard processes are also specific to outsourced software projects, 

insofar as there are typically three important boundaries for interactions between the core vendor 

team and various external entities [21, 31].2 The most crucial boundary lies between the core 

vendor team and the client firm [40]. Vendor teams typically negotiate this boundary via a 

project manager who, as a member of the management, works closely with the client to build 

initial trust, understand project requirements, and carefully manage client expectations about the 

performance of the final product. The second boundary is between the vendor team and other 

vendor teams and technical specialists. For example, vendor teams may receive critical inputs 

about new and emerging technologies, or industry best practices from the external specialists 

[52]. Vendor teams might also be asked by other teams to share their specialists, such as their 

expert coders, with other project teams. The third boundary in outsourced projects lies between 

the vendor team and the senior management [31] with whom the team is expected to share 

information about project status and progress and also receive crucial inputs about project 

structure and staffing. Thus, vendor teams have to manage information flows across all these 

boundaries, requiring careful consideration of what information to bring in and what to share 

with external entities. The primary purpose of this study is to examine whether and how the 

boundary-spanning sentry and guard activities performed by the vendor team impact the team’s 

ability to integrate knowledge effectively. 

 

We also examine whether the effects of sentry and guard activities on team members’ knowledge 

integration is impacted by the level of project uncertainty. Characterized typically by the 

inadequacy of critical knowledge about the project, uncertainty has been found to adversely 

impact various measures of software development performance such as software productivity, 

software quality, and cost and schedule performance [7, 59, 84]. Knowledge requirements of an 

uncertain project tend to be more fluid and dynamic, requiring more active collaboration among 

the team members [25]. We show that project uncertainty plays a particularly significant role in 

moderating the relationships between sentry and guard activities and a team’s knowledge 

integration. 

 

This paper makes two important contributions. First, we show that the manner and extent to 

which vendor development teams employ sentry and guard processes impacts their knowledge 

integration capabilities. Specifically, we highlight that sentry and guard processes exhibit 

complex curvilinear relationships with team members’ knowledge integration, and that project 

teams cannot adopt simplistic rules for maximizing or minimizing information flows to achieve 

project success. Critical attention to issues such as “what type of information to acquire,” “where 

to acquire it from,” “what type of information can be shared, and with which external entities,” 

will significantly impact the teams’ ability to integrate knowledge, which is a critical precursor 

to project success [53]. The second contribution of this paper is its explication of the role of 

project uncertainty in shaping the influence of sentry and guard processes on team members’ 

knowledge integration. We demonstrate that requirements uncertainty plays a moderating role by 

interacting with sentry and guard processes, such that the influence of these critical processes 

becomes even more salient in projects marked by greater uncertainty. 

 



Team Members’ Knowledge Integration in Vendor Development Teams: Theory and 

Hypotheses 

 

The knowledge-based theory, permeating both team and organizational levels of analyses, holds 

that expertise, skills, and abilities are “owned” at the individual level and their integration into 

collective knowledge is necessary for productive outcomes [32, 33]. Project teams bring together 

members with diverse skill sets, know-how, and expertise, and enable the synthesis of individual 

knowledge resources into a shared stock of knowledge [14, 53, 69]. Teams then use this common 

stock of knowledge to develop a shared understanding of the project goals and to solve project 

problems at hand [42, 61]. This combining and aggregating of individually held expertise, know-

how, and ideas of team members, to jointly achieve project outcomes is referred to as team 

members’ knowledge integration [32, 61].3 

 

The importance of knowledge integration in software development teams has been well-

established in the literature [53, 79]. Software teams have been characterized as knowledge-

based open systems that have excessive requirements for “rich” noncodified knowledge with 

multiple interdependent components [36, 46]. Prior research on social networks proposes that 

teams fulfill their requirements for such complex forms of knowledge by ensuring that the 

members pool-in their expertise [38]. For example, developing a customized software 

application requires deep knowledge about the domain and user needs as well as knowledge 

about software development methodologies and technologies. Software teams serve as forums 

for integrating such specialized slivers of knowledge that lie distributed within the team (as in 

different team members possessing unique skills and knowledge) [76]. Prior studies have 

reported that software teams combine individual stocks of know-how, skills, and abilities into 

team-level expertise, and use this expertise to improve software outcomes [23, 79]. 

 

Although it is critical, knowledge integration is a challenging activity [83], especially in an 

outsourced software development setting, where complex information flows carried out between 

the vendor development team and various external entities can upset the team’s knowledge 

integration efforts. For example, teams have to regularly share project updates with the top 

management, and receive performance-related feedback in return. Also, to maintain quality 

compliance, teams have to share information with and receive feedback from the quality-control 

department [31]. Similarly, client personnel may seek information from the team via the project 

manager and send their feedback. Feedback from these external entities has the clout to influence 

team’s operations, so teams have to ensure that only appropriate information is shared with them. 

Sometimes, teams may also have to protect their members from negative external feedback. At 

times, the team may also be asked by peer teams to share their internal resources, such as 

expertise, which could influence their own resource equilibrium. 

 

All these external information exchanges can impact the team’s ability to integrate knowledge 

effectively. If left unmanaged, such exchanges may overwhelm the team’s information-

processing capabilities, which can diminish the team’s knowledge integration abilities. Even 

worse, unsupervised information exchanges with external entities may lead to undue external 

pressure on a team’s structure and political maneuvering of the team’s operations, both of which 

could disrupt the team’s knowledge integration [78]. Therefore, vendor teams have to devise 



“boundary buffering” activities, such as sentry and guard, to manage information flows with 

external entities [82]. 

 

Teams performing sentry activities actively manage their access to knowledge inputs from 

external sources. In doing so, sentry activities allow the team to integrate various internal and 

external knowledge inputs without undue external disturbances. Sentry activities also act as both 

facilitators and filters of information inflow from external entities. While the facilitator aspect of 

sentry activities helps the team decide what information is needed from external sources, the 

filter aspect helps the team closely monitor incoming information [64, 82]. Accurate information 

inflows facilitate their integration into project-level knowledge, while protecting the team’s 

knowledge integration efforts from “unwanted information” [2]. 

 

Guard activities prevent unauthorized access to the team’s information and resources. When 

external entities request information or resources from the vendor team, the team performs guard 

activities to manage the outflow of internal information [2, 82]. For example, teams have to 

regularly provide project-status updates to the vendor management. Guard processes can help 

teams decide exactly how to respond to these queries by releasing just the right kind of 

information. This could influence the nature of management’s interference in the team’s affairs. 

Releasing just enough information could keep managerial interference at bay, thereby allowing 

the team to perform its knowledge integration activities without external disturbance. [31]. 

 

In additiona, another team may seek a critical knowledge resource, which, if released 

unknowingly, may incur a cost to the core vendor team. It has been observed that such resource 

requests, whether official or unofficial, are common in knowledge-intensive work settings [2]. In 

the absence of guard activities, the team may unknowingly lend the resource, thus affecting the 

availability and usage of that resource for the team’s own knowledge integration efforts. Teams 

performing guard activities have procedures in place, to first decide the legitimacy of such 

resource requests, and to carefully negotiate them to minimize the impact of lending critical 

resources on the team’s knowledge integration. Such teams achieve a careful balance between 

maintaining good relations with external entities, while simultaneously ensuring the availability 

of their key internal resources for their knowledge integration activities [64, 82]. 

 

In sum, effective knowledge integration in vendor teams seems to rely on both sentry and guard 

activities. To the best of our knowledge, the existing literature is relatively silent on the 

importance of these activities and their impact on knowledge integration. This represents a 

critical gap in the literature that we seek to address in this study. We show that vendor 

development teams actively engage in both sentry and guard activities to manage information 

flows and that these activities have a critical and complex influence on the team’s knowledge 

integration. When performed in tandem and at appropriate levels, these activities fortify the team 

by regulating its importation of useful external information, while protecting its critical functions 

from undue external disturbances and restricting external access to its information and 

knowledge resources. 

 

Furthermore, we enhance our investigation by examining proposed effects under conditions of 

project uncertainty. Uncertainty is broadly defined as the absence of complete information about 

the organizational phenomenon being studied [4]. Zmud aptly summarized the role of 



uncertainty in software development by explaining that “most difficulties can be traced to the 

uncertainty that pervades software development. Software development is an information-

intensive activity, and decision points are continually reached where the decision maker 

possesses inadequate information” [84, p. 46]. 

 

A variety of uncertainties affecting software development projects have been examined in the IS 

literature. These include uncertainties regarding project requirements, technologies, and 

personnel [59, 84]. Because addressing all the sources of uncertainty is a complex endeavor, our 

study focuses on requirements uncertainty because of its central importance to software 

development [59]. Indeed, prior research has shown that software operation errors resulting from 

incorrect requirements can cost up to a hundred times more to fix than if they were corrected 

during system development [9]. 

 

As Barki, Rivard, and Talbot [7] have noted, the greater the uncertainty in a software project, the 

greater the amount of information decision makers must process during project execution. 

Uncertainty can be even more pervasive in the outsourcing context because vendor teams need to 

process information from sources scattered across geographical, cultural, and knowledge 

domains [17]. Thus, a vendor development team’s plans to regulate the inflow and outflow of 

information and knowledge resources can be frustrated by high information-processing 

requirements of an uncertain project [66]. In other words, project uncertainty may interact 

significantly with sentry and guard activities to influence the effectiveness of knowledge 

integration in vendor development teams. This is one of the first studies in the IS literature to 

empirically examine the impact of uncertainty on knowledge integration. 

 

Sentry Processes and Knowledge Integration 

 

Teams use sentry processes to actively monitor and control the inflow of information from 

external entities, deciding what type of information or resource to acquire. These coordination 

activities are therefore designed to help teams decide what type of inputs to access, from whom 

to accept inputs, and how much of external inputs to absorb [2, 64]. 

 

In outsourced software development, the vendor development team has to rely on several 

external sources for key information inflows. These information inflows help the vendor team to 

facilitate, among other things, the development of a collective mind, among key project 

stakeholders. Yet, the unregulated inflow of external information, even from stakeholders, can 

pose risks such as overengineering and missed critical deadlines, because unmitigated access to 

information can impose additional coordination costs on the team. 

 

Sentry processes are aimed at improving the software team’s ability to successfully access useful 

knowledge while minimizing unproductive knowledge access. Thus, teams performing sentry 

activities have necessary routines to manage the inflow of external information [68]. 

 

Teams with little or no sentry activities lack appropriate procedures to manage information 

inflow from external sources. This affects the team’s internal environment. For example, the 

team may allow diverse inputs from multiple external sources, which can lead to differences of 

opinion within the team, thereby creating dysfunctional conflicts [36]. These conflicts typically 



reduce internal cohesiveness, inhibiting open discussions and hurting the integration of team’s 

specialized knowledge resources [35]. In addition, the absence of sentry activities may render the 

team’s productive core unprotected from unrestricted inflow of information from divergent 

external sources [82]. This may bring in too many perspectives on critical project issues [41]. For 

example, one of the project leaders remarked, “our biggest mistake has been to keep accepting 

new requirements. We are now facing a bad case of requirements creep, and we don’t even have 

the resources to fulfill the new requirements. Honestly, I don’t foresee an easy way out of this 

mess.” This creates an environment of confusion in the team and hurts the efficiency with which 

team members share their ideas and knowledge with each other [51]. Thus, knowledge 

integration is likely to deteriorate in vendor development teams with little or no sentry activities 

to regulate the inflow of information. 

 

Sentry processes are also required to selectively source critical external inputs, insofar as 

software teams rarely have all the knowledge required to execute a project [71]. This involves 

connecting with authorized external sources and facilitating the transfer of information inputs 

from these sources. For example, one of the project leaders we interviewed remarked: 

“information inflow, both formal as well as informal, is actively monitored at various project 

stages … teams practice access control wherein access to external information is controlled in 

terms of its appropriateness.” By minimizing unproductive transfer (e.g., unwanted or inaccurate 

information), sentry processes prevent the team’s information-processing capabilities from 

overloading [2, 41]. Team members are able to use these capabilities to combine their individual 

knowledge resources to develop shared project concepts and jointly solve project-related 

problems. 

 

However, sentry activities are good only up to a point for vendor development teams [6]. Teams 

performing sentry processes excessively may monitor external stakeholders too closely and 

exercise very tight controls on the inflow of information. In doing so, teams face multiple risks—

first, overly vigilant teams may alienate helpful external sources by restricting their contacts with 

these sources, for example, limiting their touchpoints with key users as well as with other teams. 

This curtails the inflow of critical knowledge inputs from external sources, thereby hurting the 

team’s knowledge integration activities. Furthermore, by limiting their contacts with the external 

environment, teams run the risk of losing out on valuable feedback from helpful external entities, 

making them smug and complacent and hurting their motivation to try innovative approaches to 

improving project outcomes. This lack of motivation to innovate prevents the team members 

from performing critical project activities such as sharing their knowledge and ideas with each 

other. 

 

Taken together, the above-mentioned arguments suggest that very high levels of sentry activities 

will diminish the team’s ability to effectively integrate its internal knowledge resources for 

successful software development. These arguments are summarized in Table 1. Therefore, we 

predict that the influence of sentry activities on knowledge integration will follow an inverted-U 

shape—with optimum levels of knowledge integration more likely to occur at medium levels of 

sentry activities. In other words, there exists an inflection point beyond which increasing the 

level of sentry activities becomes counterproductive to the vendor team. Thus, 

 



Hypothesis 1: There is an inverted U-shaped relationship between a vendor development 

team’s sentry processes and its knowledge integration. 

 

Table 1. Summary of Arguments for Curvilinear Relationships 
  Low level Medium level High level 

Sentry 

processes 
• Team allows diverse external 

inputs, causing internal 

conflicts 

• Team allows too many 

perspectives on critical 

project issues, causing 

confusion 

• Team minimizes 

unproductive information 

transfer from external 

sources, preventing its 

information processing 

capabilities from overloading 

• Team overprotects members 

from valuable external 

feedback, making them smug 

and complacent 

• This hurts members’ ability to 

actively perform critical 

project-related activities 

Guard 

processes 
• Team is more open to lending 

its resources to other teams 

• Team resources gain new 

skill sets and expertise, thus 

enriching the team’s 

knowledge base 

• Team lacks clarity about the 

extent of guard activities, 

leading to ineffective use of 

the team’s internal resources 

• Team closes ranks to focus on 

key processes 

• Forms supportive 

environment for knowledge 

integration 

 

Guard Processes and Knowledge Integration 

 

Guard activities are directed at actively controlling the outflow of internal information and 

resources by preventing their unauthorized or unwarranted access by external entities. Guard 

activities are therefore designed to help vendor teams decide what internal information and 

resources (e.g., a core team member’s programming expertise) they might share externally, and 

with whom [2, 64]. 

 

Vendor development teams have to balance their time and resource constraints with external 

requests for information and resources. When faced with requests for information and resources 

from external entities, teams need to decide whether sharing information and resources will 

benefit the team or not. In order to optimize project outcomes, vendor teams routinely have to 

make smart choices about such issues. 

 

Given that the guard activities are focused on controlling and limiting the access of external 

entities to the team’s resources, teams may actually benefit from performing low-level guard 

activities. All teams have finite resources, and at some point in time, they may need to borrow 

resources from other teams [44, 64]. For example, one of the project leaders we interviewed 

remarked, “we all face resource crunch and sometimes another team has just what we need.” In 

such routine situations, teams that perform low-level guard activities are more open to sharing 

their resources, such as a field expert, with other teams. As a direct benefit, working on different 

projects offers exposure to the team’s experts and propels them to learn something new, such as 

a new skill set or the ability to see things from a different perspective [2]. As one project leader 

noted, “Other teams borrow our people, and we have noticed that when they come back, they 

have typically learnt something new. It’s like we gained two resources by lending one!” This 

enriches a team’s knowledge base because the new learning can be utilized to gain novel insights 

or to find innovative solutions to project-related problems. Thus, low-level guard activities can 

support the team’s resource enrichment and knowledge integration [2]. 

 



Less strongly guarded teams schedule their project work with an understanding that a particular 

resource may or may not be available to them at a certain time. For example, one project leader 

explained, “Lending them [other teams] one of my people is not easy for me. I have to plan my 

timeline accordingly; especially if I have a scarce resource onboard that I know others will ask 

for.” As a consequence, despite a resource-sharing mindset, less highly guarded teams are still 

able to use their internal resources efficiently by planning in advance [82]. 

 

Interestingly, high-level guard activities could also facilitate team’s knowledge integration, albeit 

for very different reasons. Highly guarded teams are extremely vigilant in monitoring external 

requests for information, scrupulously determining the legitimacy of those requests, and tightly 

controlling the use of their resources by fulfilling a very limited number of requests [2, 64]. 

Ancona and Caldwell [2] observed that teams performing high-level guard activities often closed 

ranks to focus on their work without interruptions. Even in outsourced software development, it 

is common for vendor teams to display a very high level of guardedness for various reasons. For 

example, one respondent observed: “we are working on an intellectual property building project, 

and we control our internal information very strictly.” Such behaviors may also be helpful to 

teams facing impending deadlines, requiring them to focus on the project and not to release 

information that might hurt the project schedule or progress. For example, vendor teams 

typically perceive the management as driven by outcomes, budgets, and schedules, and to protect 

their own interests, the team may be very guarded in their updates to management [35]. As one 

respondent explained, “We share just enough information with the management to keep them 

satisfied. Sometimes, we tell them to back off, otherwise the project deliverable will suffer. That 

(reasoning) always does the job.” Closing their ranks to external interference not only helps 

teams to focus on their key processes but also creates a supportive environment within the team 

[2]. Members of such teams tend to form close working bonds, which facilitates their knowledge 

integration in many ways. First, close bonds remove the suspicion of opportunistic behavior 

among team members, so they can freely share knowledge that is critical to the project [72]. 

Second, a supportive environment motivates team members to share a variety of information 

without fear of ridicule, thereby enriching the team’s knowledge base. Finally, close working 

bonds promote harmony among team members and make them more amenable to using each 

other’s knowledge inputs for developing innovative project concepts [78]. 

 

Teams performing moderate levels of guard processes lose the benefits accrued by teams 

performing a high level of guard activities and by teams performing a low level of guard 

activities. Unlike teams performing high- and low-level guard activities, moderately guarded 

teams lack clarity about the extent to which they want to perform guard activities. For example, 

the team may sometimes fulfill management’s project status requests, and sometimes not. Or, the 

team may sometimes share their resources with peer teams and at other times avoid sharing. This 

behavior may lead them to be stereotyped by other entities as inconsistent, at best, and as 

noncooperative, at worst. More importantly, inconsistencies in guard activities hurt a team’s 

knowledge processes because the resources are not efficiently used. For example, the team may 

need a particular resource for its own project, but the resource may be on loan to another team at 

that time. At other times, the team may refuse to lend a resource that may be sitting idle, thereby 

forgoing the learning that could have enriched the team’s knowledge base [2]. As a project leader 

recounted her experience as a team member, “As a team member, I learnt what not to do as a 

project leader [PL]. My project didn’t need me and another PL would ask for me, but my PL 



would not let me go, just in case I was needed there. It was so frustrating to lose all those growth 

opportunities.” Such inconsistencies and their resulting dissatisfaction among the team members 

can also spoil the team’s internal environment, which hinders its efforts to effectively combine 

team members’ individual expertise and to share their ideas and knowledge with each other [69]. 

 

Based on these arguments, which are summarized in Table 1, we expect that a team’s knowledge 

integration will decline as the team increases its guard activities, but there is an inflection point 

beyond which guard activities will start to be beneficial to the team, leading to a U-shaped 

curvilinear relationship.  

 

Hypothesis 2: There is a U-shaped curvilinear relationship between a vendor 

development team’s guard processes and its knowledge integration. 

 

Interaction Effects of Project Uncertainty and Sentry Processes 

 

As noted earlier, project uncertainty plagues many software projects. Vendor teams working on 

projects marred with high uncertainty have to constantly seek critical information. The demand 

for external information inputs may be especially high during the requirements analysis phase 

the team has to refine the project scope and specifications [59]. Under these conditions, we 

expect the role of sentry processes to be even more salient for effective knowledge integration. 

This is because sentry processes may help teams working on high-uncertainty projects from 

overloading their information-processing capacity by preventing unwanted information inflows 

from the external environment [2]. This ability of sentry processes to serve as both facilitators 

and selective filters for accessing the most relevant and critical information inputs becomes even 

more important in uncertain projects. Sentry processes can also help negate high uncertainty by 

managing the within-team distribution of external information, for example, by ensuring that key 

inputs reach the team members who confront uncertainty the most [84]. Thus, compared to 

vendor teams working on low-uncertainty projects, those struggling with high-uncertainty 

projects can benefit more by using sentry processes as effective facilitators and filters of external 

information access and its internal distribution. 

 

Sentry processes can also protect teams in high-uncertainty work settings from unwanted 

external influences. Compared to teams working in low-uncertainty settings, such teams obtain 

more frequent information, know-how, and feedback from multiple external entities, some of 

which may have an undue influence on a team’s operations. For example, teams facing higher 

uncertainties may receive more stringent management feedback, which can sometimes 

demotivate the team [9]. Teams using sentry processes buffer themselves from such external 

influences by strictly monitoring what information reaches their members [2]. Furthermore, in 

high-uncertainty situations, teams spend valuable time and energy in gathering critical 

information, which leaves their members less time to allocate to its knowledge integration 

activities [20]. Sentry processes can be especially useful to improving a team’s knowledge 

integration in such situations, by tightly managing the team’s information gathering activities. 

Comparably, in low-uncertainty situations, sentry processes may be less helpful because the 

relative stability of project requirements may render the careful selection and filtering of new 

information inflow from external sources less relevant. 

 



In summary, vendor development teams working on high-uncertainty projects can improve their 

knowledge integration in multiple ways by performing sentry activities. They can use sentry 

activities as both facilitators and selective filters for accessing the most relevant and critical 

information inputs. Sentry activities can also improve knowledge integration in uncertain 

projects by ensuring that key information inputs reach the team members who confront 

uncertainty the most. In addition, sentry processes can buffer the team from external 

disturbances, which leaves the team more time and energy to integrate information and face the 

challenges of high uncertainty. With the above arguments in mind, we propose the following 

hypothesis:  

 

Hypothesis 3: Project uncertainty will moderate the relationship between sentry 

processes and knowledge integration in such a way that the same level of sentry activity 

corresponds to a higher level of knowledge integration when project uncertainty is high. 

 

Interaction Effects of Project Uncertainty and Guard Processes 

 

Teams use guard activities to classify and respond to external demands for their knowledge 

resources [62]. Software teams facing high uncertainty lack critical information and resources 

that are necessary for a project, and to compensate, they regularly share information and 

resources with external sources. Teams performing guard activities may face problems doing this 

because high uncertainty can interact with the guard activities to make the teams less predisposed 

to sharing their information and resources. In other words, the guardedness of teams facing high 

uncertainty might prevent them from fulfilling even legitimate external requests for information 

and resources. This can come back to hurt the team’s ability to source critical resources and 

knowledge inputs from external sources. For example, if a team facing high uncertainty receives 

a request from another team to borrow a technical expert, it has to decide whether the expert can 

be spared or not. The team may not need the expert at that moment, but given high uncertainty, 

the project requirements could change in the future, and then the team would need that expert. 

Guarded teams have typically been observed to be less open to sharing their information and 

resources [2], so teams performing guard processes may decide to decline the external request, 

thereby diminishing their chances of receiving critical knowledge inputs from the other team in 

future. Thus, teams performing guard activities under conditions of high uncertainty will hurt 

their knowledge integration. 

 

External demands for information are also likely to be more frequent in uncertain projects, and 

performing guard activities very often to manage the heavy influx of demands can be detrimental 

to knowledge integration in high-uncertainty projects. For example, requirements uncertainty 

causes a great deal of flux in project scope, leading to more demands than usual for status 

updates from the client and vendor management. Teams performing guard activities have to 

perform them more frequently to prevent releasing “too much” information, which takes time 

away from their knowledge integration efforts. Furthermore, performing guard activities in high-

uncertainty projects to monitor the outflow of information to the client hinders open 

communication with a critical source of external knowledge inputs. This is harmful to a team’s 

knowledge integration, more so in high-uncertainty projects, which need critical knowledge 

inputs more than low-uncertainty projects. Therefore, we propose:  

 



Hypothesis 4: Project uncertainty will moderate the relationship between guard 

processes and knowledge integration in such a way that the same level of guard activity 

corresponds to a lower level of knowledge integration when project uncertainty is high. 

 

Methodology 

 

Measures 

 

To measure knowledge integration, items were developed based on previous studies [60, 74, 77]. 

A high score on the knowledge integration measure indicates that the team vigorously combined 

and aggregated the members’ expertise, know-how, and ideas to jointly achieve project 

outcomes. 

 

To measure sentry and guard processes, items were modified from prior studies to suit the 

context of software development projects (see [2, 3]). A high score on the items for sentry 

processes indicates that the team actively monitored and controlled the inflow of external 

information and explicitly decided what type of information or resource to acquire externally 

[2, 41]. The scale for guard processes included three items to measure the outflow of resources to 

external entities both within and outside the firm. A high score on the items for guard processes 

meant that the team actively controlled the outflow of internal information and resources to 

external entities and keenly prevented their unauthorized and unwarranted external access. 

 

Following Nidumolu [59], project uncertainty was measured in terms of the instability, 

diversity, and analyzability of project requirements. Requirements instability represents the 

extent to which requirements changed over the course of the project. Requirements diversity 

connotes the extent of differences among clients about the requirements of the project. Finally, 

requirements analyzability represents “the extent to which the process of converting user needs 

to a set of requirements specifications can be reduced to mechanical steps or objective 

procedures” [59, p. 80]. A high score on uncertainty items meant that project requirements 

fluctuated quite a bit and the team had to exert a strong effort to reconcile the requirements. 

 

To account for the possible effects of extraneous variables, we included six control variables. 

These variables are vendor firm (to control for firm-specific effects), team size (measured as the 

average number of members in the team), project duration (total time that it took to complete the 

project), project leader’s experience (number of years of industry experience), knowledge 

heterogeneity of the project team, and relational capital within the project team. Knowledge 

heterogeneity represents the diversity of team members’ technical and functional background 

and their expertise and skills [73]. Items were adapted from Campion, Medsker, and Higgs [12] 

to measure knowledge heterogeneity. Relational capital represents the extent of mutual trust, 

closeness of relationships, and reciprocity among the team members. Items to measure relational 

capital were adapted from Tiwana and McLean [77]. 

 

We refined the perceptual measures and assessed their validity in accordance with the 

recommendations of prior studies [28, 54]. We began with conceptual validation of the items by 

IS faculty, and four IS doctoral students who were researching various issues pertaining to 

software development projects. Each set was mixed up and given to an IS doctoral student. 



These students were also provided names and definitions of the constructs, and were asked to 

sort the items by assigning them to various construct categories or an “other” (no fit) category. 

This process helped to identify items that were ambiguously worded or did not conceptually fit 

with other items of the same construct. The four sorters correctly assigned 94.4 percent of items 

to the intended constructs. The interrater reliability was 0.98. Based on this exercise, and on the 

feedback of four IS faculty members, nine items were dropped. These included two items each 

for knowledge integration, guard processes, sentry processes, and relational capital, and one item 

for requirements uncertainty. 

 

To ensure that the resulting items were meaningful in the software development context, they 

were then subjected to a pretest. The items were placed in a questionnaire format and 

administered through the World Wide Web to fifty project leaders of vendor development teams 

in a Capable Maturity Model (CMM) Level-5 firm not included in the final data collection [63]. 

Thirty-six usable responses were received, of which 85.8 percent were male respondents and 

14.2 percent were female. Respondents had an average 7.3 years of experience in the software 

industry. To test construct validity, exploratory factor analysis was conducted on the pretest data 

using the principal components analysis (PCA) extraction method with Varimax rotation. The 

analysis reported clean loadings (in excess of .70) of all items on their respective factors. 

Cronbach’s alpha coefficients, calculated to assess scale reliabilities, were all in excess of .78. 

We report the final list of items and the sources from which they were adapted in Appendix 

Table A1. 

 

Sample and Data Collection 

 

To test the research model, data were collected over four months including the end of 2005 and 

the beginning of 2006. The questionnaires were administered through the World Wide Web to 

project leaders of vendor development teams. Only project leaders who had prior experience 

with teams on developing a single-application system were selected. Following the key 

informants methodology, data were collected from project leaders in sixteen mid- to large-sized 

software services firms in India. Project leaders were chosen as key informants because they 

possessed the most comprehensive knowledge of their team processes [72]. Thus, their responses 

could be used to represent aggregated information about the team activities being examined. 

 

Links to the questionnaires were forwarded to the chief knowledge officer in sixteen CMM 

Level-5 certified software firms in India, who sent the link to 225 project leaders in their 

companies. CMM Level-5 certification ensured consistency in the software development 

processes of the responding firms. The project leaders were asked to respond to the survey based 

on a recently completed project that required developing a single application system. A total of 

139 complete and usable responses were received (response rate of 61.8 percent). Project leaders 

had average industry experience of 8.9 years, with minimum experience of 1 year and maximum 

of 19 years. Average project duration was 12.1 months, with a minimum duration of 1 month and 

a maximum duration of 72 months. Average team size was about 17 members, with a minimum 

of two members per team and a maximum of 250 members per team. Comparisons of the sample 

demographics with population figures from an industry standard research report [57] yielded no 

significant differences, suggesting that nonresponse bias was unlikely to be an issue [5]. 

 



Additional Robustness Checks 

 

We conducted several tests to assess the threat of common methods bias because data for both 

the dependent and the independent variables were collected from the same source and using the 

same method. Harman’s one-factor test was conducted by entering all independent and 

dependent variables in an exploratory factor analysis [65]. If the data had a common method bias 

problem, a single factor would account for a large percentage of variance in the resulting factors. 

However, a single factor did not emerge, and the most covariance explained by one factor is 32.6 

percent, indicating that common method bias was not a likely contaminant of our results. Next, 

we conducted the marker-variable (MV) test [49], which uses a theoretically unrelated “marker” 

variable to adjust the correlations among the model’s principal constructs. Using the project 

leader’s experience as the dummy marker variable (since it was not significantly correlated with 

any of the main constructs), we decided to partial out its effect from other correlations to assess 

the extent of common method variance. The partial correlations between knowledge integration 

and the independent variables remained more or less unchanged, suggesting that common 

method bias was not driving the observed relationships among the study variables. 

 

Finally, prior studies have suggested that common method bias is unlikely to distort interaction 

effects [11]. It is unlikely that respondents would manipulate their responses on the respective 

scale items to produce interaction effects. Furthermore, because our model includes squared 

terms to examine curvilinear relationships, it would be extremely difficult for respondents to 

manipulate their responses to produce the desired effects [16]. 

 

Statistical Methods and Results 

 

Partial least squares (PLS) technique was used to validate the measurement model and to test the 

hypotheses.4 PLS is a second-generation structural equation modeling technique that uses a 

correlational, principal component-based approach to estimation [51]. It is a favorable technique 

for causal-predictive analysis in situations characterized by early stages of theory development 

[45]. Because this study is an early attempt to examine the theoretical underpinnings of teams’ 

knowledge integration, PLS is an appropriate technique. 

 

PLS is also preferred to regression in situations involving moderator analysis [15, 75]. 

Regression typically uses interaction terms to conduct moderator analysis. Moderated regression 

involving multiple item measures holds two key assumptions. The first assumption, called “equal 

item reliability,” implies an equal contribution of all items toward estimating the interaction 

effect. The second assumption, referred to as “unchanging scale reliability,” presumes no change 

in the reliability of the summated multiple item scale when it is applied in the theoretical model. 

But, as Chin, Marcolin, and Newsted profess, “Unfortunately, by virtue of the summation 

process, we have no opportunity to assess the validity of these two assumptions” [15, p. 190]. 

Thus, moderator’s measurement error should be considered both in the initial reliability 

assessment and in the subsequent analysis of the theoretical model. The latent variable modeling 

approach within PLS allows the subsequent assessment of this error, thereby providing more 

accurate estimates of the interaction effects [15]. Goodhue, Lewis, and Thompson [30] raised 

concerns about the “product indicators” approach proposed by Chin, Marcolin, and Newsted to 

estimate interaction effects. Following their recommendation, moderation and quadratic terms 



were computed using the “product of the sums” approach. For example, SP * PU was obtained 

as follows:  𝑆𝑆𝑆𝑆 ∗ 𝑆𝑆𝑃𝑃 = (𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆3) ∗ (𝑆𝑆𝑃𝑃1 + 𝑆𝑆𝑃𝑃2 + 𝑆𝑆𝑃𝑃3) 

 

Estimation of the Measurement Model 

 

The measurement model was assessed by examining the internal consistency, convergent 

validity, and discriminant validity of the constructs. As presented in Table 2,all item loadings on 

respective constructs were statistically significant, Cronbach’s alpha scores were well above the 

recommended cutoff of 0.70 confirming the reliability of the scales, and composite reliabilities 

(ρc), which avoid the assumption of equal weighting of items, were all above .80 (see Table 2) 

[24, 27]. Convergent validity was assessed by calculating average variance extracted (AVE). All 

AVE values were higher than the recommended value of 0.5 [24]. 

 

We then assessed the discriminant validity of the measures in two ways. First, the measurement 

items displayed higher loadings on their “assigned factor” than on any other factor (Table 3) [27, 

p. 93]. Second, the square root values of AVEs are greater than the interconstruct correlations 

(shown in Table 2) [24, 75]. A more conservative estimate of discriminant validity is to compare 

the AVE values themselves to the correlations (square root values of AVEs are higher than the 

AVE values). This comparison also supported the discriminant validity of the constructs. 

 

Estimation of the Structural Model 

 

To deal with possible multicollinearity between the squared and the interaction terms, we mean-

centered the independent variables before running the PLS models [75]. We also tested for 

multicollinearity by calculating variance inflation factors (VIFs) [34]. A VIF value in excess of 

10 typically indicates that multicollinearity may be influencing estimates [37]. As shown 

in Table 2, the VIFs of all predictor variables were below 2, indicating that multicollinearity is 

not a problem. 

 

In PLS, paths are interpreted as standardized regression weights. Thus, assessing the structural 

model involved estimating the magnitude, sign, and statistical significance of path coefficients in 

the model. We assessed three separate structural models (M1, M2, and M3). M1 included only 

the control variables, whereas M2 estimated the linear effects of sentry processes, guard 

processes, and requirements uncertainty and the quadratic effects of sentry and guard processes. 

M3 extended M2 to include the moderation effects of project uncertainty. 

 



Table 2. Descriptive Statistics, Reliabilities, Validities, and Correlations 
  Construct Mean(SD) Cronbach’s 

alpha 

Composite 

reliability (ρc) 

Item loadings 

(t-statistic) 

AVE 1 2 3 4 5 6 7 8 9 VIF 

1 Project duration 

(months) 

12.07       NA NA                 1.07 

(9.92)       

2 Team size 16.92       NA 0.22** NA               1.10 

(24.21)       

3 Experience (years) 8.92       NA 0.10 0.08 NA             1.05 

(3.15)       

4 Knowledge 

heterogeneity 

4.99 0.86 0.88 .78 (21.49) 0.71 0.09 0.09 –0.08 0.84           1.17 

(1.20)     .89 (42.63) 

.84 (24.24) 

5 Relational capital 5.10 0.78 0.86 .88 (40.07) 0.66 0.03 0.08 0.03 0.19* 0.81         1.19 

(1.10)     .81 (19.95) 

.74 (14.78) 

6 Project uncertainty 4.32 0.72 0.82 .81 (38.80) 0.61 0.05 0.14 –0.17 0.08 –0.14 0.78       1.09 

(1.51)     .84 (53.55) 

.70 (24.36) 

7 Sentry processes 4.72 0.84 0.88 .88 (87.51) 0.70 0.02 0.07 –0.14 0.33** 0.40** –0.27** 0.84     1.43 

(1.14)     .88 (72.28) 

8 Guard processes 4.04 

(1.26) 

0.73 0.88 .78 (15.68) 

.96 (47.12) 

.81 (21.48) 

0.76 –0.02 0.02 –0.05 0.25** 0.16 –0.07 0.25** 0.88   1.12 

9 Knowledge 

integration 

5.52 

(1.10) 

0.92 0.94 .76 (61.67) 

.84 (84.92) 

.94 (118.57) 

0.80 0.09 –0.03 –0.10 0.25** 0.58** –0.33** 0.53** 0.14 0.89 — 

Notes: **Correlation is significant at the 0.01 level (two-tailed); *correlation is significant at the 0.05 level (two-tailed). Diagonal elements show the square-root 

of average variance extracted (AVE) for each construct. Bold diagonal elements show the square-root of average variance extracted (AVE) for each construct. 

 

  



Table 3. Item Loadings and Cross-Loadings 
  KI KH RC PU SP GP 

KI_1 0.7690 0.2196 0.4935 –0.3253 0.4180 0.1551 

KI_2 0.8412 0.3007 0.5309 –0.3310 0.4709 0.1202 

KI_3 0.9416 0.1843 0.6471 –0.3322 0.4843 0.1522 

KI_4 0.9478 0.1841 0.6018 –0.3801 0.5356 0.1112 

KH_1 0.2037 0.8418 0.1624 –0.0696 0.2540 0.1059 

KH_2 0.2159 0.8991 0.1791 –0.0363 0.3389 0.1952 

KH_3 0.1382 0.7837 0.1275 –0.0219 0.2655 0.2767 

RC_1 0.4399 0.1695 0.8129 –0.0587 0.3272 0.2507 

RC_2 0.3507 0.1718 0.7481 –0.0666 0.2134 0.0786 

RC_3 0.7033 0.1406 0.8803 –0.3177 0.4207 0.1358 

PU_1 –0.3938 –0.1390 –0.2546 0.8449 –0.3168 –0.1678 

PU_2 –0.2649 –0.0161 –0.1681 0.8108 –0.1944 –0.0412 

PU_3 –0.1812 0.1288 –0.0211 0.7059 –0.1657 –0.0042 

SP_1 0.4932 0.3401 0.3501 –0.2769 0.8858 0.2345 

SP_2 0.4772 0.2853 0.3364 –0.2860 0.8828 0.2751 

GP_1 0.0632 0.2413 0.0530 –0.0688 0.2744 0.7816 

GP_2 0.1568 0.1787 0.2202 –0.1200 0.2476 0.9679 

GP_3 0.3907 0.2231 0.3663 –0.1975 0.1875 0.8125 

Notes: KI = knowledge integration; KH = knowledge heterogeneity; RC = relational capital; PU = project uncertainty; SP = sentry processes; GP = guard 

processes. 

 



The models (M1–M3) are as follows:5 

 

Knowledge Integration = 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒(𝐌𝐌𝐒𝐒): 𝛼𝛼1 + β1Duration + β2TeamSize + β3Experience + β4KnowledgeHeterogeneity

+ β5RelationalTrust 
 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 (𝐌𝐌𝐒𝐒):𝑀𝑀1 + β6SentryProcess + β7GuardProcess + β8ProjectUncertainty

+ β9SentryProcess2 + β10GuardProcess2 

 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟑𝟑(𝐌𝐌𝟑𝟑):𝑀𝑀2 +  β11Project Uncertainty2 + β12(ProjectUncertainty ∗ SentryProcess)

+ β13(ProjectUncertainty ∗ GuardProcess)

+ β14(ProjectUncertainty ∗ SentryProcess2) + β15(ProjectUncertainty∗ GuardProcess2) 

 

A bootstrapping method using 1,000 resamples was used to determine the statistical significance 

of the parameter estimates. Results indicate that the controls only model (M1) explained 46 

percent of variance in knowledge integration. Adding main effects to the model (M2 in Figure 1) 

increased the variance explained to 58 percent, while the full model (M3 in Figure 2) explained 

61 percent variance. 

 

 
Figure 1. Main Effects Model (M2) 
*p < 0.05; **p < 0.01; ***p < 0.001. 

 

https://www.tandfonline.com/doi/10.1080/07421222.2015.1029381


 
Figure 2. Full Model (M3) 
*p < 0.05; **p < 0.01; ***p < 0.001; numbers in parentheses are respective t-values. 

 

Among the control variables, project duration, knowledge heterogeneity, and relational capital 

were positively related to knowledge integration (p < 0.001). The effect of project duration is 

understandable because in projects that last longer, team members may have a better idea of each 

other’s expertise and skill sets, which might help their knowledge integration efforts. Similarly, 

teams with more knowledge heterogeneity hold diverse sets of expertise and skills, and do have 

an opportunity to integrate these resources for better project outcomes [10]. It is also 

understandable that a high level of relational capital in software teams, as indicated by strong 

mutual trust, close working relationships, and a culture of give-and-take among team members, 

may improve a team’s knowledge integration [77]. Project team size had a negative impact on 

knowledge integration (p < 0.001), suggesting that larger teams had more difficulty in effectively 

integrating knowledge. Project leader’s experience also had a negative impact on knowledge 

integration (p < 0.001), suggesting that the more experienced project leaders were less open to 

combining individual knowledge, expertise, and ideas. 

 

In the main effects Model M2 (see Figure 1), we added the sentry processes (SP), guard 

processes (GP), project uncertainty (PU), SP2, and GP2 terms, and found that SP was positively 

related to knowledge integration (p < 0.001), whereas SP2 was negatively related to knowledge 

integration (p < 0.001), thereby supporting the inverted U-shaped relationship between sentry 

activities and knowledge integration (H1). In addition, GP was negatively related to knowledge 

integration (p < 0.05) and GP2 was positively related to knowledge integration (p < 0.05), which 

provided support for the U-shaped association between guard activities and knowledge 

integration (H2). The main effect of PU was found to be overall negative and significant (p < 

0.001). The R2 value of 0.58 for Model M2 showed that the addition of SP, GP, PU, SP2, and 

GP2 accounted for an additional 12 percent of the variance in knowledge integration when 

compared to the controls only model. To gain further insights into the relationships modeled in 

this study, we plotted the effects of sentry and guard process on knowledge integration. As 

https://www.tandfonline.com/doi/10.1080/07421222.2015.1029381


depicted in Figure 3,6 the curvilinearity of the graphs corresponds to the predictions in the 

hypothesis. Also, we conducted the test to confirm the presence of inverted U-shaped and U-

shaped relationships.7 The results confirmed that our curvilinear relationships fulfilled the 

requirements of a U-shaped and an inverted U-shaped relationship. For the U-shaped relationship 

between guard processes and knowledge integration, we have one extreme point (8.249), and the 

slope starts with a negative value (–0.7714) and changes to positive at the end of the interval 

(0.7100). For the inverted U-shaped relationship between sentry processes and knowledge 

integration, we have one extreme point (16.707), and the slope starts with a positive value 

(1.344) and changes to negative at the end of the interval (–0.4209). 

 

 
Figure 3. Curvilinear Relationships of Sentry & Guard Activities with Knowledge Integration 

 

Finally, in the full model (M3 in Figure 2), we tested for the interaction effects of project 

uncertainty with sentry and guard activities. The interaction term of project uncertainty and 

sentry processes (SP * PU) was positively related to knowledge integration (p < 0.001), and the 

interaction term of project uncertainty and guard processes (GP * PU) was negatively related to 

knowledge integration (p < 0.001). As predicted, project uncertainty moderated the relationship 

between sentry processes and knowledge integration such that teams performing sentry activities 

under high uncertainty had higher knowledge integration compared to teams performing sentry 

activities under low uncertainty (H3). Project uncertainty also moderated the influence of guard 

activities on knowledge integration, such that teams performing guard activities under high 

uncertainty conditions had lower knowledge integration compared to teams performing guard 

activities under low uncertainty (H4). 

 

The model R2 for the full model (which included all the controls, main effects, second-order 

effects, and interactions) was 0.61, which is higher than the R2 for M2. We also calculated effect 

size (f 2) for the full model. Effect size can be calculated as: 𝑅𝑅included2 − 𝑅𝑅excluded2
1 − 𝑅𝑅included2  
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where, R2
included and R2

excluded are the squared Rs for the dependent latent variable when the 

interaction term is included and omitted, respectively, in the main-effects model. Values of 0.02, 

0.15, and 0.35 are recommended as small, moderate, and large effects, respectively [18]. 

The f 2 value for the full model was .08, which does not necessarily connote an unimportant 

effect. As Chin, Marcolin, and Newsted explain, “Even a small interaction can be significant 

under extreme moderating conditions, if the resulting beta changes are meaningful, then it is 

important to take these conditions into account” [15, p. 211]. 

 

Q2 is another measure of predictive relevance of the PLS (structural) model [43]. It is calculated 

using a blindfolding procedure that excludes a part of the data for a particular block of indicators 

during parameter estimations, and then tries to estimate the omitted part using the estimated 

parameter [15]. Q2 > 0 means that the model has predictive relevance, whereas Q2 < 0 suggests a 

lack of it. Q2 values of 0.31, 0.38, and 0.41 were obtained for the controls-only model, main-

effects model, and full model respectively, which suggests that all the models have predictive 

relevance. To account for multiple projects per firm, we performed two robustness checks. First, 

we tested for any significant firm-level effects using hierarchical linear modeling (HLM). As a 

first step, a one-way analysis of variance was performed to confirm that the variability in the 

outcome variable, that is, knowledge integration, by a level-2 group, that is, a firm, is 

significantly different from zero. This tests whether there are any differences at the firm level on 

the knowledge integration, and confirms whether HLM is necessary [81]. The chi-square test 

statistic was not significant (χ2 = 4.225, p = 0.237), indicating that there is no variance in our 

outcome variable by firm-level groupings, and that there is no statistical justification for running 

HLM. 

 

Second, we conducted a fixed-effects regression with clustered heteroskedasticity-corrected 

standard errors [80]. By using a fixed-effects model with firm and clustered standard errors, we 

ensured that no firm-specific effects impacted the results. After mean-centering the independent 

variables [1], we first tested a model with all the control variables, the first-order terms of the 

main-effect variables, namely, sentry and guard processes, and the quadratic terms of these two 

variables in order to test our prediction that sentry and guard processes would exhibit curvilinear 

relationships with knowledge integration. Next, we tested the moderating effect of project 

uncertainty by adding the interaction terms. 

 

The results of regression analysis, as shown in Table 4, were the same as those of PLS analysis, 

indicating that no firm-specific effects were impacting our results. Then, we followed Aiken and 

West’s [1] procedures to plot graphs to further investigate the curvilinear relationships between 

sentry and guard processes and knowledge integration under varied levels of project uncertainty. 

Specifically, we examined the relationship at low uncertainty (two standard deviations below the 

mean), medium (project uncertainty at the mean value), and high uncertainty (two standard 

deviations above the mean). The interaction plots (see Figures 4a and 4b)8 lend support to the 

predictions made in H3 and H4. The curve representing the relationship between sentry 

processes and knowledge integration shifts upward under conditions of high uncertainty but 

remains an inverted-U shape in low uncertainty conditions—– indicating that teams performing 

sentry processes under high-uncertainty conditions will improve their knowledge integration 

more than teams performing sentry processes under low-uncertainty conditions. Interestingly, the 



curve representing the relationship between guard processes and knowledge integration shifts 

downward under conditions of high uncertainty, indicating that teams performing guard activities 

under conditions of high uncertainty will have lower levels of knowledge integration than teams 

performing guard activities under low-uncertainty conditions. Overall, the figures show that 

sentry and guard processes become much more critical to knowledge integration when dealing 

with high-uncertainty projects. 

 

Table 4. Regression Results 
Variable Model 1 Model 2 Model 3 

Control variables 

Duration 

Team size 

Project leader experience 

Knowledge heterogeneity 

Relational trust 

0.01** 

–0.003** 

0.02 

0.11** 

0.45*** 

0.007* 

–0.003* 

0.012 

0.07 

0.36*** 

0.00 

–0.002* 

0.019 

0.13** 

0.37*** 

Main effects 

Sentry processes 

Guard processes 

  1.31*** 

–0.58** 

0.69** 

–0.06*** 

Sentry processes2 (H1) 

Guard processes2 (H2) 

  –0.12*** 

0.06* 

–0.56* 

0.06** 

Project uncertainty     –0.25*** 

Interaction effects       

Sentry processes X Project uncertainty (H3) 

Guard processes X Project uncertainty (H4) 

    0.21** 

–0.11** 

N 139 139 139 

R2 0.40 0.51 0.62 

Change in R2   0.11*** 0.11*** 

 

 
Figure 4a. Moderating Effects of Project Uncertainty on Sentry Processes and Knowledge 

Integration 
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Figure 4b. Moderating Effects of Project Uncertainty on Guard Processes and Knowledge 

Integration 

 

Discussion 

 

Building on the literature on team-level processes, we examined the relationships between sentry 

and guard activities and knowledge integration in software development teams. Furthermore, 

given the salience of uncertainty in software development, we examined the extent to which the 

relationships observed here were moderated by the level of uncertainty faced by the software 

development team. Our results demonstrate complex, curvilinear relationships between sentry 

and guard processes and a team’s knowledge integration and a significant influence of project 

uncertainty on these team processes. These results not only provide impetus for future research 

but also have sound implications for practice as noted below. 

 

Implications for Research 

 

This paper makes two important theoretical contributions. First, it provides a theoretical 

explanation for how and why sentry and guard activities, which have previously been identified 

as important team-level processes, impact knowledge integration in software teams. Knowledge 

integration has been described in prior IS literature [cf. 53, 76] as a critical antecedent of overall 

software team performance. Therefore, there is significant interest in examining the underlying 

team level factors that impact a team’s ability to successfully integrate knowledge. Our work 

extends the findings of Ancona and Caldwell [2], who first observed sentry and guard to be 

critical team-level activities in new product development teams. They conjectured that there 

were associations between these activity sets and team performance, but the nature of the 
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associations was not clear. Moreover, in the context of information systems development, it was 

not understood whether these activity sets were: (a) prevalent among software teams, or (b) had 

any influence on the team’s knowledge integration ability. Our study confirmed the existence of 

complex curvilinear associations among sentry, guard, and knowledge integration activities. 

 

The second contribution of this study is its examination of how the patterns of relationships 

among team-level activity sets (sentry and guard) and knowledge integration are impacted by the 

level of uncertainty that the project faces. It is a well-known fact that when compared to other 

projects, software projects typically encounter higher levels of uncertainty and it is not surprising 

that a great deal of work in the IS literature has examined the direct impact of uncertainty on 

software project performance [cf. 59]. However, the nuances of how uncertainty interacts with 

other team-level activities to influence performance parameters remain a mystery. Our findings 

help to explain how activities aimed at regulating the inflow and outflow of information to and 

from software teams influence project teams facing greater flux in their requirements. 

 

The current study has certain limitations that provide opportunities for future research. First, 

while we examine the extent to which teams engage in sentry and guard activities, we do not 

investigate how these activities are carried out. In other words, the roles that team leaders and 

team members play as gatekeepers is not something we study or measure. Hence the study is 

unable to shed any light on how these important activities are coordinated within the team. This 

limitation can be an important basis for future studies aimed at studying roles and behaviors that 

affect the extent to which teams engage in sentry and guard activities. In particular, the studying 

the role of the team leader vis-à-vis other team members would shed light on how the powers 

associated with performing sentry and guard activities are negotiated within teams. A related 

offshoot of this topic could entail identifying the specific skills and personality types of people 

who are more comfortable performing sentry and guard activities. 

 

Second, prior research points to varying levels of internal and external information and resource 

sharing across the different project stages, which suggests that teams might judiciously vary the 

extent to which they engage in sentry and guard activities during the different stages in the 

project life cycle [35, 71]. However, our study treated these effects as invariant over the entire 

project and only measured them at the end of the project. It would be interesting to extend this 

study to see how the effects seen here vary across the different stages of software development 

projects. For example, in the analysis stage, more external access might be preferred, whereas in 

the development stage, teams may actively seek to shut off certain external channels of 

communication in order to protect against the threat of scope creep [71]. Another interesting area 

of inquiry would be the relationship between sentry and guard activities. For example, future 

research can examine whether different levels of these activities interact with one another to 

affect project outcomes.9 

 

A third limitation stems from the fact that all the data for the study come only from the responses 

of the team leaders and not from any of the team members. Although we were careful to guard 

against the well-known biases of single-respondent studies, additional concerns that team leaders 

may not fully reflect the underlying “true behaviors” of their teams persist. Triangulating the 

data obtained from team leaders with those obtained from team members should be an important 

consideration in future studies. An additional caveat in interpreting the results of this study is that 



the data are obtained from software teams from Indian vendor firms working on outsourced 

projects. It would be worthwhile to determine whether these results hold for other types of 

projects—internal (nonoutsourced) projects as well as projects outsourced to vendors in other 

countries. Similarly, it would be interesting to examine whether the results hold for projects that 

are deemed “important” or are “highly visible” because they involve developing a 

“revolutionary” application. 

 

Finally, in this study we propose that a high level of guard processes will facilitate a team’s 

knowledge integration. One reason to support this proposition is that a high level of guard 

processes helps teams to close ranks on external entities such as client and vendor management, 

so the team can focus on key processes such as knowledge integration. Interestingly, this might 

create principal–agent information asymmetry where the agents (software teams) have some 

vested interests in guarding the information from the principals (clients and 

management).10 Therefore, although a high level of guard activities might aid in team-level 

knowledge integration efforts, potentially adverse consequences could appear elsewhere, such as 

diminished trust between the team and external entities. Thus, future studies could examine 

whether sentry and guard activities affect these other project-level outcomes. 

 

Implications for Practice 

 

Our study provides several novel and useful insights to managers in charge of software 

development. Software project team leaders seeking to enhance knowledge integration for 

improved team performance would do well to pay attention to how well their teams manage the 

activity sets of sentry and guard, insofar as they influence the team’s ability to integrate 

knowledge successfully. For knowledge-intensive projects, team leaders are known to assemble 

software teams with greater knowledge heterogeneity and relational capital in order to have 

better access to different types of knowledge. But even after controlling for these well-known 

factors, we find that the manner in which software teams share and protect the information 

resources they have impacts the knowledge integration ability of the team. Since software teams 

operate under conditions of resource dependence, team leaders need to ensure that their teams 

have not only the requisite technical skills but also the ability to import and transfer information 

and resources. This also implies that organizations develop holistic performance appraisal 

policies that assess individuals for both intergroup and within-group activities. 

 

Software teams sometimes perform sentry processes excessively, mostly to protect themselves 

from political agendas of external entities, but team leaders need to realize that excessive sentry 

processes put tremendous pressure on the people performing these processes. Individuals 

performing sentry activities typically have high levels of stress created by the high personal cost 

of protecting the team from external pressure [2]. This could impede their contribution to the 

team’s knowledge integration efforts. In addition, software teams typically depend on each other 

for exchanging critical information and resources, and teams performing excessive sentry 

activities may run the risk of being branded as apathetic to external help, which could dry up 

their pool of helpful external sources. 

 

Software team leaders should also calibrate their guard activities. A low level of guard activities 

enriches team’s knowledge base by exposing team members to new knowledge. Thus, keeping 



guard processes at a low–key level might be better for the team’s knowledge integration, unless 

situations, such as impending project deadlines, warrant a high level of guard activities. In such 

situations team leaders need to judiciously decide what information to share and what sharing 

mechanisms to follow (e.g., planned releases). Another situation could be a client’s demand for 

secrecy because of the classified nature of the application being developed. A high level of guard 

activities is also justified if the team needs to protect its unique or rare information and resources 

[2]. 

 

Our findings regarding the impact of uncertainty have key implications for project leaders. The 

project leaders not only should know what degree of sentry and guard activities they need to 

improve project outcomes, but also need to be aware that requirements uncertainty could shift 

those relationships. Project leaders facing high uncertainty should therefore calibrate the levels 

of sentry and guard activities appropriately. 

 

Conclusion 

 

To improve their project outcomes, software teams must integrate their knowledge resources 

effectively. We examined the impact of sentry and guard activities, which teams use to manage 

the complex inflow and outflow of information and resources, on knowledge integration. 

Furthermore, given the presence of uncertainty in most software projects, we examined how 

these associations shift under conditions of uncertainty. Results highlight complex curvilinear 

associations between sentry and guard activities, and knowledge integration. Enhancing our 

understanding of knowledge integration, the results also show that the knowledge integration of a 

team battling high uncertainty will benefit more by the performance of sentry activities. On the 

other hand, performing guard activities under high uncertainty conditions will lead to lower level 

of knowledge integration. These results should be analyzed in light of some limitations. We do 

not examine how teams perform sentry and guard activities, nor do we examine whether 

software teams vary the degree of sentry and guard activities during different project stages. We 

also do not examine any unintended effects of guard activities, such as diminished trust levels 

between the team and other project stakeholders. Despite these limitations, the results have some 

key implications. We recommend that team leaders should intentionally staff their teams with 

people capable of performing both inter- and intragroup activities. Team leaders will also need to 

carefully calibrate both sentry and guard activities to optimize their project outcomes, more so if 

the project is facing high uncertainty. 

 

Notes 

 

1. New product development teams have been described as being similar in goals and structure to 

information systems development (ISD) teams. For more details on how social activities of ISD 

teams are comparable to those of new product development, please see [55, 71]. 

2. Please note that we are referring to the processes that software teams use to manage their 

formal and informal interactions with external entities. 

3. From here onward, team members’ knowledge integration will be referred to as knowledge 

integration. 

4. SmartPLS 2.0 was used to conduct the PLS analysis. 



5. When discussing Models M1–M3 the abbreviations SP (sentry process), GP (guard process), 

KI (knowledge integration), and PU (project uncertainty) are used. 

6. To generate Figure 3 we plotted the equation in Model M3, but taking only the coefficients 

of SP and SP2 and GP and GP2 respectively, and keeping uncertainty at its mean value. 

7. The test is proposed in J.T. Lind and H. Mehlum, With or without U? The appropriate test for 

a U-shaped relationship,” Oxford Bulletin of Economics and Statistics, 72, 1 (2010), 109–118. 

8. To generate Figures 4a and 4b, we plotted the equation in Model M3, but taking only the 

coefficients of SP and SP2 and GP and GP2, respectively, and keeping uncertainty at its mean 

value and two standard deviations below the mean (for low uncertainty) and two standard 

deviations above the mean (for high uncertainty). 

9. We would like to thank one of the reviewers for highlighting this implication. 

10. We would like to thank one of the reviewers for highlighting this possibility. 
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Appendix 

Table A1. Scales and Items 

Construct Scale items 

(7-point scale: 1 = strongly disagree and 7 = strongly agree) 

Adapted from 

Knowledge 

integration 

1. Team members combined their individual expertise to 

jointly solve project-related problems. 

[64, 74, 83, 77] 

2. Team members combined their individual perspectives to 

develop shared project concepts. 

3. Team members often gained new insights by sharing their 

ideas with each other. 

4. Team members improved their task efficiency by sharing 

their knowledge with each other. 

Sentry 

processes 

1. The team actively monitored information coming from 

external sources such as other teams, individuals, and 

departments. 

[2, 41] 

2. The team actively decided what type of information to 

acquire from external sources such as other teams, individuals, 

and departments. 

Guard processes 1. The team avoided releasing internal information to others in 

the company. 

[2] 

2. The team actively controlled the use of its internal 

resources by others in the company. 

3. The team shared its internal resources only in response to 

legitimate external requests. 

Requirements 

uncertainty 

1. Compared to other projects, requirements for this project 

fluctuated quite a bit. 

[59] 

2. Compared to other projects, a lot of effort was spent in 

reconciling the requirements for this project. 

3. Compared to other projects, established procedures and 

practices could not be relied upon to generate requirement 

specifications. 

Relational trust 1. The team was characterized by close personal relationships 

among members at multiple levels. 

[77] 

2. The team was characterized by high reciprocal behavior 

among members at multiple levels. 

3. The team was characterized by mutual trust among 

members at multiple levels. 

Knowledge 

heterogeneity 

1. Members of this team vary widely in their areas of 

expertise. 

[12] 

  2. Members of this team have a variety of different 

background and experiences. 

  

  3. Members of this team have wide-ranging skills and 

abilities. 

  

 


