
Knowledge Level Engineering: Ontological Analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

James H. Alexander, Michael J. Freiling, Sheryl J. Shulman,

Jeffrey L. Staley, Steven Rehfuss and Steven L. Messick

Computer Research Laboratory
Tektronix Laboratories

ABSTRACT

Knowledge engineering suffers from a lack of formal
tools for understanding domains of interest. Current
practice relies on an intuitive, informal approach for col-
lecting expert knowledge and formulating it into a
representation scheme adequate for symbolic process-
ing. Implicit in this process, the knowledge engineer for-
mulates a model of the domain, and creates formal data
structures (knowledge base) and procedures (inference
engine) to solve the task at hand. Newell (1982) has
proposed that there should be a knowledge level analysis
to aid the development of AI systems in general and
knowledge-based expert systems in particular. This
paper describes a methodology, called ontological
analysis, which provides this level of analysis. The
methodology consists of an analysis tool and its princi-
ples of use that result in a formal specification of the
knowledge elements in a task domain,

1. Knowledge Engineering needs a methodology.

Traditionally, knowledge engineering has been a difficult pro-
cess. Neophyte knowledge engineers often “don’t know where to
start.” The difficulty in getting started is related to confusions over
how to encode or classify relevant knowledge items from the task
domain. Clancey (1985) provides a typical example from MYCIN:

Perhaps one of the most perplexing difficulties we
encounter is distinguishing between subtype and cause,
and between state and process . . . For example, a physi-
cian might speak of a brain-tumor as a kind of brain-
mass lesion. It is certainly a kind of brain-mass, but it
causes a lesion (cut); it is not a kind of lesion. Thus, the
concept bundles cause with effect and location: a lesion

in the brain caused by a mass of some kind is a brain-
mass-lesion. (pg. 3 11)

This experience is familiar to any knowledge engineer. Misunder-
standings about the knowledge elements in a system often pervade
mature systems and cause endless problems, In response to this
problem Newell (1982) has suggested that there should be a
knowledge level analysis of domains which would guide
knowledge-based systems development.

In this paper we discuss a methodology for analyzing problem
domains we call ontological analysis. Most problems encountered
in knowledge-based systems derive from ad hoc design of the
knowledge structures. Often, knowledge is collected by writing
rules or frames in a language-specific syntax, without a systematic
consideration of the underlying structure of knowledge elements.
Ontological analysis focuses attention on the elements of
knowledge in their own right, independent of implementation tech-
niques. An ontological analysis is distinctly different from
knowledge representation languages in that it presents only a high
level description of a problem’s knowledge structure. Ontological
analysis is used to identify and construct an adequate knowledge
representation for a problem.

2. Ontological Analysis.

To philosophers, ontology is the branch of metaphysics con-
cerned with the nature of existence, and the cataloguing of existent
entities (Quine, 1980). The role of ontology in AI has been noted
previously (Hayes, 1985; Hobbs, 1985; McCarthy, J., 1980). We
use the term to emphasize that a knowledge-based system is best
designed by careful attention to the step-by-step composition of
knowledge structures. An ontology is a collection of abstract
objects, relationships and transformations that represent the physi-
cal and cognitive entities necessary for accomplishing some task,
Our experience indicates that complex ontologies are most easily
constructed in a three step process that concentrates first on the
(static) physical objects and relationships, then on the (dynamic)
operations that can change the task world, and finally on the
(epistemic) knowledge structures that guide the selection and use of
these operations.

Any useful methodology must contain both formal tools for
constructing an analysis, and informal principles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof practice to
guide application of the formal tools. Our research has indicated
that several different formal tools are useful for extracting and
defining ontologies. We are developing a family of languages col-
lectively called SPOONS (Specification Of ONtological Structure)
to encompass tools based respectively on domain equations, equa-

tional logic, and semantic grammars.

2.1 Domain Equations in Ontological Analysis

The most useful and concise of these languages is SUPE-
SPOONS (SUPErstructure SPOONS), which is based on the
domain equations of denotational semantics (Gordon 1979; Stoy
1977) and algebraic specification (Guttag and Horning, 1980).
Because of the rich ontologies found in most knowledge engineer-
ing problems, domain equations provide a concise and reasonably
abstract characterization of the necessary knowledge structures.
Furthermore, they do not encourage the knowledge engineer to get
prematurely involved in details.

2.1.1 SUPE-SPOONS Syntax and Semantics

SUPE-SPOONS consists of two basic statement types:

l Domain equations: Site = Building x Campus. These state-
ments define domains, or types of knowledge structures.*

l Domain element declarations: add-meeting: Meeting +
[Meetings + Meetings] These statements declare the type of
specific domain elements.

The right hand side of statements can be composed of one or more
domains or constant elements with operators relating these ele-
ments, Four primitive domains, STRING, BOOLEAN, INTEGER
and NUMBER, are always assumed to be defined. Other primitive
domains can be defined by explicit enumeration of their elements,
or by open assignment to some collection of atomic elements.

*For most purposes, it suffices to think of domains as sets. A more

complex semantics is needed if domains are defined recursively
(Stoy 1977) or with multiple equations.

KNOWLEDGE ACQUISITION I 963

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

Table 1

Static Ontology Fragment for IEC

Meeting = <atomic>

Project = <atomic>

Department = <atomic>

Person = <atomic>

Scheduled-Meeting = (Meeting x Person)

Meeting-Purpose =

One-Time-Meeting-Purpose + Repetitive-Meeting-Purpose

One-TimeMeeting-Purpose = {discuss, plan} x Project

Repetitive-Meeting-Purpose = {staff, project} x Department

Location-Of-Meeting =

[Meeting -+ Location-Description]

Time-OfMeeting =

[Meeting + TimeDescription]

Purpose-Of_Meeting =

[Meeting + MeetingDescription]

Participants-In-Meeting =

[Meeting + Person-Description]

Owner-of-Meeting =

rScheduled_Meetinp + Person1

a Explicit enumeration: MeetingJioom-Accessory = {black-
board, screen, . ..}

l Open assignment: Meeting = <atomic>

The operators in the domain equations are of five types:

l Discriminated Union: D + E. Discriminated union of two
domains defines that domain composed of each member of D
and E, where original domain identity is preserved.

l Cross Product: D x E. Cross product of two domains
describes a domain composed of all ordered pairs whose first
element is a member of domain D and second element is a
member of domain E.

l Domain mapping: D + E. Mapping of one domain onto
another creates a domain consisting of all functions which map
domain D onto domain E.

l Collection of
subsets of D.

Sets: 2**D . Defines the domain consisting of all

l Collection of Ordered
ordered sequences of D.

Sets: D*. Defines the domain of all

2.2 Building an Ontology

We will illustrate our method by using SUPE-SPOONS to build
an ontology for the task of scheduling meetings in an Intelligent
Electronic Calendar (IEC: Staley, in press). The task of the IEC is
to schedule meetings in a semi-automated fashion, and to support
the negotiations necessary for determining who will meet when and
where. A partial ontology for this task is found in Appendix A. It
should be noted that the IEC is in the early stages of design, and our
analysis here is for expository purposes only. A complete ontology
for a knowledge-based system that has been implemented and runs
can be found in Freiling et al. (1986).

2.2.1 A Static Ontology for the IEC

Ontological Analysis begins by enumerating the physical
objects in the problem domain and identifying their inherent pro-
perties and relationships. At the level of the static ontology, the
analysis performed is quite similar to the entity-relationship model
of Chen (1976).

Table 1 presents a subset of the IEC static ontology. Only those
equations relating to the domain Meeting are presented. This
domain consists of abstract tokens, or surrogates (Codd 1979), each
of which represents a single meeting. Another domain,
Scheduletieeting, contains elements which indicate that a meet-
ing has been entered on someone’s calendar. A number of map-
pings are also defined that identify the salient properties of meet-
ings,suchas Time-Description, Meeting-Description and

964 / ENGINEERING

Table 2

Dynamic Ontology for IEC

State = Meetings x Purposes x Required-Participations

x [Meeting + Arbitrator] x [Meeting + Reviewer]

x [Meeting -+ Meeting-Plan] x [Person --+ Schedule]

x [Room + Schedule]

3peration = Heuristic-Operation + Algorithmic-Operation

+ Autonomous-Operation + (schedule.newmeeting }

Heuristic-Operation = { select-arbitrator,selectreviewer}

Algorithmic-Operation = { create-newmeeting,assimilate}

Autonomous-Operation = { signoff-or-propose, assent,

arbitrate,initial-proposal}

schedulemeeting = (Purpose x Required-Participation)

--+[State + State]

create-new-meeting : (Purposex Required-Participation)

+ Meeting

select-arbitrator : Meetingx Purpose + Arbitrator

select-meeting-to-act-on : State + Meeting

select-reviewer : Meeting + [State + Reviewer]

initial-proposal : [Arbitrator + MeetingJlan]

signoff-or-propose :

[Reviewer+[Old_Meetirig-Plan-+New_Meeting_Plan]

arbitrate : (Old-Meeting-Plan x New-Meeting-Plan)

+ (Meeting_Plan x Continue)

Continuer = BOOLEAN

assent : MeetingJQn + [(Person + Room) -+ Schedule]

assimilate : ((Meeting x Meeting-Plan) + ((Person

+ Room) x Schedule) + (Meeting x Arbitrator)

+ (Meetinp x Reviewer)) + r State 3 State 1

PersonDescription. The domain Meeting_Purpose represents
various reasons why a meeting should be held, and embodies the
analytical decision that one time meetings are project oriented,
while repetitive meetings revolve around organizational units or
departments. This is a simplification of course, but what is impor-
tant is the ease with which such decisions can be expressed.

The IEC static ontology also addresses time scales, meeting
room characteristics, and individual membership in projects and
departments (see Appendix A for the details). In total the static
ontology gives us a picture of all important elements within the
domain.

2.2.2 A Dynamic Ontology for the IEC.

Problem solving is often characterized as search through a state
space (Simon, 1981; Newell and Simon, 1972). Solution of a prob-
lem consists of selecting operators whpse application transforms the
current state into another. The dynamic ontology defines a problem
space in terms of configurations of elements from the static ontol-
ogy, and then defines problem operators as transformations built on
the domain of problem states.

The dynamic ontology defines which knowledge is unchanged
throughout the problem solving process (i.e., organizational charts,
see Appendix A) and which knowledge changes as the problem is
solved (i.e., schedules and meeting plans). In the IEC, the problem
state includes pending meetings, their purposes and required partici-
pations, room schedules, individual schedules, and state informa-
tion recording the negotiation process.

Table 2 shows a sample dynamic ontology for the IEC. To
define the dynamic ontology, we must commit to a particular model
for the negotiation process. Negotiation is an extremely subtle and
complex problem (Davis and Smith, 1981); for this example, we
will use a very simplistic model.

The task of scheduling a meeting is called schedule-meeting.

Significant subtasks include choosing an arbitrator, choosing
reviewers, producing proposals, reviewing them, and reserving
space on calendars. These operations are divided up into algo-
rithmic operations (no rules or heuristics required), heuristic opera-
tions (driven from a rule base to be specified in the epistemic

3. Principles of practice

Table 3

Epistemic Ontology for the IEC

Arbitrator-Selection-Rules =

2 ** (Purpose x Persotiescription)

Meeting-Selection-Rules =

2 ** Meeting-Plan-Pattern

Reviewer-Selection-Rules =

2 ** (Meeting-Plan-Pattern x PersonDescription)

ontology), and autonomous processes (which do not run in the IEC
at all, but represent the behavior of independent actors.)

Our negotiation model proceeds as follows. First, the IEC
selects an arbitrator (1
meeting plan (

se ect arbitrator), who proposes an initial
initial-proposal). The meeting plan consists of

proposals about time, location, and participants of the meeting, cou-
pled with signoffs from participants. A plan is considered complete
when the signoff list for each part of the plan is the same as the list
of participants.

Once a plan for the meeting is on the table, a reviewer is
selected to look at the plan (select-reviewer) and either approves
it or makes a counter-proposal (signoff-or propose). If a
counter-proposal is made the arbitrator selects either the old propo-
sal or the counter-proposal as the standing proposal (arbitrate)

then selects a new reviewer (select-reviewer). After each deci-
sion, the arbitrator also decides whether to continue the negotiations
(arbitrate). If negotiations are halted, all participants are required
to accept the current version of the plan (assent).

The IEC divides its time between coordinating the negotiation
processes for several meetings. It makes use of a heuristic process
(select-fneeting-to-act-on) to decide which meeting to work on
at any pomt in time.

2.2.3 The Epistemic Ontology.

The dynamic ontology defines the operations available to the
IEC for performing its task. The epistemic ontology defines
knowledge structures to guide the selection and use of these opera-
tions. Table 3 shows the epistemic ontology for the IEC.

The epistemic ontology usually contains two different types of
knowledge structures. One knowledge type is used to select which
operation should be performed. The other knowledge type controls
the actual performance of operations. Because our simple negotia-
tion model is so rigid, none of the former appear, In fact, the only
knowledge structures that do appear are those needed to guide the
operations classified as heuristic operations in the dynamic ontol-

ogy: select-meeting-to-act-on, select-arbitrator, and
select-reviewer.

For select-arbitrator, we assume that the purpose of the
meeting dictates who a likely arbitrator should be (e.g. the ranking
manager of the group calling the meeting), so that arbitrator selec-
tion rules need only associate certain purpose patterns with descrip-
tions of likely persons.

Rules to select meetings to work on and reviewers to continue
negotiation depend on the current version of the meeting plan.
Thus, these rules require the definition of a pattern that can success-
fully match meeting plans. For meeting selection rules, all that is
required is that the meeting plan match the pattern -- that will make
it a candidate for selection. For reviewer selection rules, the meet-
ing pattern must be associated with some suggestion regarding a
reviewer.

To complete the epistemic ontology, the details of patterns and
the matching process need to be defined for meeting plans and pur-
poses. The interested reader is referred to Appendix A for some
sample definitions.

We have performed ontological analyses on a wide range of
domains including a system troubleshooting Tektronix Oscillo-
scopes (Alexander et al., 1985; Rehfuss et al., 1985; Freiling et al.,

1986), MYCIN’s medical knowledge (Shortliffe, 1984), design rule
checking for nMOS circuitry (Lob 1984), oscilloscope operation
and parts of the IEC (Staley, in press). Each analysis has improved
our understanding of the problem domain, and the use of SUPE-
SPOONS to sketch out designs has helped us clear up many confus-
ing situations.

Through this experience we have built up a series of principles
for constructing ontologies with SUPE-SPOONS. A methodology
is more than just a formal notation, it also requires guidelines of
proper practice. We have identified seven guidelines so far.

1. Begin with physical entities, proceed to their properties
and relationships from there. The most accessible elements of
any task domain are usually the physical objects and relationships
that must be manipulated. Formalizing these provides an easy way
to get started.

The recommended procedure for extracting an ontology is to
begin by analyzing a paper knowledge base (Freiling et al., 1985)
that describes the task domain in English. The paper knowledge
base may come from verbal protocols (Ericsson and Simon, 1984),
a textbook, or a training manual. The technical vocabulary used in
the paper knowledge base provides the initial elements of the static
ontology. After these vocabulary elements have been defined is the
time to examine the more esoteric dynamic and epistemic realms,

2. The static, dynamic and epistemic ontologies are not
strict boundaries, use them loosely. The placement of ontologi-
cal elements into categories has no formal effect on the semantics
of the ontology, the levels only provide a conceptual framework.
Arguing about whether a knowledge structure is actually dynamic
or epistemic is of little value.

3. Clearly establish the distinction between objects and
what they are intended to represent. TWO types of object
appear in an ontology: first-class and second-class objects. First-
class objects (surrogates in database terminology; Codd, 1979) can-
not be individuated by their properties. Instead they are indivi-
duated by identifying tokens (<atomic> in SUPE-SPOONS). In the
IEC, meetings are first-class objects:

Meeting = <atomic>
Time-OfMeeting = [Meeting + TimeDescription]

Properties of first class objects are expressed via functions that map
the objects into their property values.

Second-class objects refer to those elements of an ontology that
represent aggregations of other elements, Second-class objects are
individuated solely on the basis of common components. For
example, consider the following second-class object:

GregorianTime-Point=YearxMonthxDayxHourx{00,15,30,45}

Any two calendar dates are equal if they consist of the same year,
the same month, hour and quartile. Only when their composite
attributes are identical are the elements themselves identical.

The usefulness of this distinction usually does not appear until
implementation, and has to do with issues of representing identity
and partial knowledge about elements that are beyond the scope of
this paper.

4. Understand and separate intensional and extensional
entities. There are many cases in knowledge engineering where it
is important to distinguish between representatives for the physical

objects, and for descriptions or viewpoints of those objects. For the
IEC, it is necessary to define (extensional) units of absolute time,
and relate them to (intensional) descriptions of time units with
respect to one calendar or another. Only then is it possible to
represent the fact that descriptions like 1986 (Gregorian) and
Showa 60 (Japanese) refer to the same time interval.

KNOWLEDGE ACQUISITION / 965

A common way to achieve the distinction between extensional
representatives of real world objects and intensional representatives
of descriptions or classes of such objects is define representatives
for the extensional objects with only the bare minimum of structure.
In the IEC, for instance,

Real-Time-Point = INTEGER
Real-Time-Interval = (Real-Time-Point x ReaLTimePoint)

Here we define the primitive points in time as integers. We associ-
ate point 0 with 12 midnight on l/1/1901, by the Gregorian calen-
dar. The points are 15 minutes apart. Intervals of time can then be
represented simply as a pair of points. (There is actually a bit more
complexity for dealing with unbounded intervals, see Appendix A).

Intensional descriptions with respect to various calendars can be
constructed as necessary from different parts of the description.

IntensionalTimeSoint =
GregoriaTimePoint +
Japanese_ImperialReign-Time-Point

Gregorian-Time-Point =
Year x Month x Day x Hour x (00, 15,30,45 }

Japanese_lmperialReign-Time-Point =
Era x Year x Month x Day x Hour x { 00,15,30,45 }

Finally, intensional description can be related to extensional
descriptions by the use of various interpretation functions:

interpret : [Intensional-Time-Point + Real-Time-Point]

Extensional identity of descriptions of varying sorts can then be
defined as equality of the image under the relevant interpretation
functions.

5. Build relevant abstractions through the use of generali-
zation and aggregation. Generalization and aggregation (Smith
and Smith) arc ,common techniques for building large knowledge
structures. It is Interesting to note that generalization and aggrega-
tion steps have a direct manifestation as discriminated unions and
Cartesian Products:

GENERALIZATION: Car = (Compact + Luxury-Car + Truck)
AGGREGATION: Car-Assembly = (Engine x Chassis x Body

x Drive _ Train)

An ontology may also contain many implicit generalization and
aggregation relations. Even the properties of a first class object are
implicitly aggregated through the fact that some particular car
defines values for each:

Car = <atomic>
Type = [Car + [Compact, Luxury-Car, Truck)]
Has-Engine = [Car + Engine]
Has-Chassis = [Car + Chassis]
Has-Body = [Car + Body]
HasDrive-Train = [Car -+ Drive-Train]

Note also that generalizations are implicit in the properties of
objects as well. Instances of the domain Car, for example, can be
decomposed into Compacts, etc. on the basis of common images
under the Type function.

6. Encode rules as simple associations, and heuristic
steps as mappings between domains. Novices at Ontological
Analysis are tempted to define rules in a form like;

Gate_Recognition-Rules = [Circuit + Gate-Type]

This mapping (from an Ontological Analysis of RUBICC (Lob
1984)) to choose a gate type from a circuit fragment really
describes the heuristic task that uses rules, rather than of the rules
themselves. We prefer to analyze rules as simple aggregations, -_
because this makes it easier to spot multiple uses for the-same rule
structure:

Gate-Recognition-Rules = 2 ** (Transistor-Pattern xGate_Type)
mcOgnize : GateRecognition-Rules + [Circuit + Gate-Type]
synthesize : GateRecognitionRules -+ [Gate-Type + Circuit]

Another advantage of separating the rules from the heuristic task is
that it focuses explicitly on the need to define classes of patterns
and matching criteria.

Table 4

Glib Fragment

<signal value> ::= ‘HIGH1 ‘LOW’

<signal> ::= ‘SIGNAL-‘cintegen

<atomic signal predicate> ::= <signal> IS <signal value>

<signal predicate> ::= <atomic signal predicate>

] <atomic signal medicate> ‘when’ <atomic signal medicate>

7. Ensure the compositionality of elements. This case illus-
ates vividly the usefulness of our methodology. We first encoun-

tered this problem in the process of building a semantic grammar
(GLIB) in order to extract the ontology of electronic instrument
behavior (Freiling et al., 1984). Table 4 shows a fragment of GLIB
that can generate the following atomic signal predicate.

SIGNAL-3 IS HIGH

Initially we assumed that this signal predicate would map signals
into Boolean values. However, the semantics of two such state-
ments combined with the connective when was not at all clear. If
when was assumed to produce a Boolean itself, then the result
would be returned by one of the 16 truth function of two Boolean
values, clearly not what we had intended.

SIGNAL-3 IS HIGH when SIGNAL-4 IS LOW

Using domain equations to analyze the problem,

Signal = [Time + Value]
Signal-Predicate =

[(Signal x Signal-Value) + BOOLEAN]
= [([Time + Value] x Signal-Value) + BOOLEAN]

we discovered that our signal predicate as defined was dropping the
temporal information and performing a global comparison with the
threshold value. This problem was solved by creating a more
appropriate definition for signa~~redicate, which follows:

SirmaLPredicate =
- &$& x Signal-Value) + [Time + BOOLEAN] J

= [([Time + Value] x Signal-Value)
+ [Time -+ BOOLEAN]]

when: [[[Time + BOOLEAN] x [Time + BOOLEAN]]
+ [Time + BOOLEAN]]

Thus, the comparison made by the si gnal9redicat e is made at

each instant of time, so that the result is not a single truth value
computed from the whole signal, but a truth value for every time
unit of the signal. This makes it possible for when to preserve its
when functional character, since the truth function (logical and) is
now applied on a point by point basis. The compositional analysis
of this type of problem is common to researchers familiar with the
techniques of semantics and model theory (Allen, 1981). Our hope
is that a language like SUPE-SPOONS can make such techniques
available to practitioners as well.

4. Future Work

There are a number of weaknesses with the ontological analysis
technique as currently defined. Even so, we have found the metho-
dology useful for conceptualizing a knowledge engineering prob-
lem, and creating a forum for cogent discussion. Consequently, we
actively use the ontological technique on a day to day basis.

Simultaneously, we are defining the theoretical foundations of
the methodology. Our goal is to create a formal mathematical sys-
tem for ontological analysis of problem solving domains. Formal
systems allow the creation of tools for automatically checking and
organizing the resulting analysis, automating the creation of some
components of the ontological systems.

We feel that SUPE-SPOONS provides a valuable tool that
enables knowledge engineers to sketch out solutions to knowledge
engineering problems at a fairly high level of abstraction. The limi-
tations of domain equations prevent a premature attention to the
low-level details of a domain. Eventually, however, those details

966 I ENGINEERING

do need to be addressed. We feel that this is best accomplished
with a separate language, and are actively working on another
member of the SPOONS family (T-SPOONS) that uses equational
logic to define and constrain actual domain elements beyond simply
naming their types.

In practice, we have found it hard to get consistent analyses
from different knowledge engineers. Only experience will show us
the proper formulation of the methodology. Presently, there is no
standard concept of a virtua2 machine to be assumed when the
analysis is being performed. Denotational semantics, for example
has implicitly assumed concepts such as stack that form the virtual
machine for programming language analysis. We are working to
establish a standard to serve as a basis for the methodology.

Finally, we are working to connect our work with other theoret-
ical work on the nature of the knowledge level. Specifically, we see
two connections with Clancey’s (1985) recent analysis of
classification problem solving. First, his notions of generalization,
aggregation and heuristics have a more formal description in our
formalism. Second, Clancey suggests that problem solving tech-
niques compose to form larger knowledge-based systems. Ontolog-
ical analysis can provide a means to highlight this composition pro-
cess. For both of these concepts, we hope eventually to be able to
build demonstrations that connect these higher level tasks with the
primitive ontological elements of the problem domain.

5. Summary

We have presented a technique, ontological analysis, that has
much promise as a knowledge engineering methodology. Metho-
dologies of this type will release the discipline from ad hoc descrip-
tions of knowledge and provide a principled means for a knowledge
engineer and expert to analyze the elements of a problem domain
and communicate the analysis to others. The abstract level at which
domain equations characterize the semantics of structures and pro-
cedures, not specifying too much detail, help in this regard.

The effectiveness of a technique depends critically on the for-
mulation of more and better principles to guide its use. Such prin-
ciples only come painfully with much practice. We invite other
knowledge engineers to try this approach, and relate their experi-
ences.

6. References

Alexander, J.H., M.J. Freiling, S.L. Messick & S. Rehfuss.
Efficient Expert System Development through Domain-Specific
Tools. Fifth International W orkshop on Expert Systems and

their Application, Agence de l’hrformatique Etablissement Pub-
lic National, Avignon, France, May, 1985.

Alexander, J.H. & M.J. Freiling. Smalltalk- Aids Troub-
leshooting System Development. Systems and Software, 4, 4,

April, 1985.

Allen, J.F. An Interval-Based Representation of Temporal
Knowledge. In Proc. ZJCAI-1981, Vancouver, British Colum-
bia, Canada, August, 1981.

Chen, P.P. The Entity-Relationship Model -- Toward a Unified
View of Data. ACM Transactions on Database Systems, 1, 1,

March, 1976.

Clancey, W.J. Heuristic Classification. Artificial Intelligence, 27,

289-3X),1985.

Codd, E.F. Extending the Database Relational Model to Capture
More Meaning. ACM TODS 4 :4, December 1979,397-434.

Davis, R. & R.G. Smith. Negotiation as a Metaphorfor Distributed

Problem Solving. Artificial Intelligence Laboratory Memo, 624,
MIT, May 1981.

Ericsson, K.A. & H.A. Simon. Protocol Analysis. MIT Press;
Cambridge, MA, 1984.

Freiling, M.J., J.H. Alexander, S.L. Messick, S. Rehfuss & S. Shul-
man. Starting a Knowledge Engineering Project - A Step-by-
Step Approach. A.I. Magazine, 6,3, Fall, 1985.

Smalltalk-80 is a registered trademark of Xerox corporation.

Freiling, M.J. & J.H. Alexander. Diagrams and Grammars: Tools
for the Mass Production of Expert Systems. First Conference

on Artificial Intelligence Applications, IEEE Computer Society,
Denver, Colorado, December, 1984.

Freiling, M.J., J.H. Alexander, D. Feucht & D. Stubbs. GLIB - A
Language for Describing the Behavior of Electronic Devices.
Applied Research Technical Report, CR-84-12, April 6, 1984;
Tektronix, Inc., Beaverton, OR.

Freiling, M.J., S. Rehfuss, J.H. Alexander, S.L. Messick, & S. Shul-
man. The Ontological Structure of a Troubleshooting System
for Electronic Instruments. First International Conference on

Applications of Artijicial Intelligence to Engineering Problems,

Southampton University, U.K., April, 1986.

Gordon, M.J.C. The Denotational Description of Programming

Languages. Springer Verlag; New York, NY, 1979.

Guttag, J. & J.J. Horning. Formal Specification as a Design Tool.

Xerox PARC Technical Report, CSL-80-1, January, 1980.

Hayes, P.J. Naive Physics I: Ontology for Liquids. In J.R. Hobbs &
R.C. Moore (Eds.), Formal Theories of the Commonsense

W orld. Ablex Publishing; Nor-wood, NJ, 1985.

Hobbs, J.R. Ontological Promiscuity. 23rd Annual Meeting of the

ACL, Chicago, July, 1985.

Lob, C. RUBICC: A Rule-Based Expert System for VLSI Integrated

Circuit Critique. Electronic Research Laboratory Memo
UCB/ERL M84/80, University of California, Berkeley, 1984.

McCarthy, J. Circumscription - A form of non-monotonic reason-
ing. Artificial Intelligence, 13, 1980,27-39.

Newell, A. The Knowledge Level. Artificial Intelligence, 18, pp.
87-127, 1982.

Newell, A. & H.A. Simon. Human Problem Solving. Prentice-
Hall; Englewood Cliffs, N.J., 1972.

Rehfuss, S., J.H. Alexander, M.J. Freiling, S.L. Messick & S.J.
Shulrnan. A Troubleshooting Assistant for the Tektronix 2236

Oscilloscope. Applied Research Technical Report, CR-85-34;
Tektronix, Inc.; Beaverton, OR; September 25, 1985.

Simon, H.A. The Sciences of the Artificial. The MIT Press; Cam-
bridge, MA; 1981.

Quine, W.V.O. From a Logical Point of View. Harvard University
Press; Cambridge, MA; 1980.

Shortliffe, E.H. Details of the Consultation System. Rule-based

Expert Systems: The MYCIN Experiments of the Stanford

Heuristic Programming Project, Addison-Wesley; Reading,
MA, 1984.

Smith, J.M. & D.C.P. Smith. Database Abstractions: Aggregation
and Generalization. ACM Transactions on Database Systems,

2:2, June, 1977.

Staley, J.L. An Intelligent Electronic Calendar: A SmalltaIk-808
Application. Tekniques, in press, Information Display Group,
Tektronix, Wilsonville, OR.

7. Appendix A: Ontology for IEC

Person = <atomic>
Static Ontology

Persons = 2**Person
Project = <atomic>
Department = <atomic>
Scheduled-Meeting = (Meeting x Person)
Meeting-Room = <atomic>
Name = <string>
Group = <atomic>

Mee$x&RoomAccessory ={ blackboard, screen, projector}
~~rAmqwnent_Type = [conference, classroom, auditorium }
Meeting = <atomic>

KNOWLEDGE ACQUISITION / 967

Meeting-Purpose = One-Time-Meeting-Purpose
+ RepetitiveMeeting-Purpose

One-TimeMeetingPurpose = {discuss, plan, review} x Project
RepetitiveMeetingPurpose = (staff, project } x Department

Meeting-Proposal =
Time-Proposal + Location-Proposal + Participant-Proposal

Time-Proposal = TimeDescription
Location-Proposal = Location-Description
ParticipantProposal = Persons

Reflection = [Scheduled-Meeting + Meeting]

Person-Name = [Person *Name] = [Name + Person]
Person-Attribute =

Name + [Name x Hierarchical-Link]
+ [[rep-of} x Group]
+ [{ resp-rep-of} x Group]
+ [{head-of} x Group]

Person-Description = 2**Person.-Attribute

HierarchicaLLink = {boss-of, subordinate-of) *
Organizationrelationof4erson = Hierarchical-Link

Concession-Type = [time, location, . . .)
Owes-Concession-To = [(Person x Person) + Concession-Type*]
negotiating-points :

[(Person x Person x Concession-Type*
x Organization-Relation-of-Person) + INTEGER

Group-Contained-By = [Group + Group]
Member-Of-Group = [Person + Group]
Project-Name = [Project + <string>]

Location-Description = (Room-Capacity) x INTEGER
x {blackboard, no-board)

RoomHas = MeetingRoom + 2**MeetingJioomAccessory
Room-Capacity = MeetingRoom + INTEGER
ChairArrangement-InRoom

= Meeting-Room + Chair-Arrangement-Type

Building = <atomic>

campus = <atomic>
Site = Building x Campus
At = [Meeting-Room + Site]

Quarter={OO,15,30,45)
Hour = { 0..24)
Date = (1..31)
Month = { 1..12)
Year = { -BB . . +BB)
Cycle = {-BB’ . . +BB’)
Year’ = {OOO, 100, 900)
Ap = { l.13)
Day = (1..28)
Identified-Time_InteIval = [Real-Time-Point + INTEGER]
Calendar = [Real-Time-Interval + Calendar-Interval]
Real-Time-Interval =

[Real-Time-Point x RealTimePoint]
+ [RealTimePoint x {unbounded)]
+ [{unbounded) x Real-Time-Point]
+[{unbounded)x {unbounded)]

Event-Description = Interval-Description x MeetingDescription
Interval-Description =

[(between) x Calendar-Point x Calendar-Point]
+ [{before) x Interval-Description]
+ [{after) x Interval-Description]
+ [(before, after, during) x Event-Description]

Calendar-Region = <atomic>
Calendar-Point = Gregorian-Point + Japanese-Point
Calendarlnterval = Calendar-Point x Calendar-Point
PointDescription =

Calendar-Point + [{after) x Calendar-Point]
+ [{before) x Calendar-Point]
+ [{within] x Interval-Description]

Gregorian-Point = Year x Month x Day x Hour x Quarter
JapanesePoint = Era x Year x Month x Day x Hour x Quarter
express-as : [Calendar + [Real-Time-Point + CalendarPoint]
interpret-as : [Calendar + [Calendar-Point + Real-Time-Point]

Event = Scheduled-Meeting + BlockSchedule
Events = 2**Event
Assignments = [Event + Real-Time-Interval]
Schedule = Events x Assignments
BlockSchedule = (read, errand, fill-out-form) x Time-Quantum

Dynamic Ontology
Meeting-Plan = [MeetingProposal + Signoffs]
Signoffs = Persons
Arbitrator = Person
Reviewer = Person
Participant = Person
Old-Meeting-Plan = Meeting-Plan
NewMeetingPlan = Meeting-Plan

State = Meetings x Purposes x Required-Participations
x [Meeting + Arbitrator] x [Meeting + Reviewer]
x [Meeting + MeetingPlan] x [Person + Schedule]
x [Room + Schedule]

Operation = Heuristic-Operation + Algorithmic-Operation
+ Autonomous-Operation’+ { schedule-newmeeting)

Heuristic-Operation = { select-arbitrator , selectdeviewer ,
selectmeeting-to-act-on)

Algorithmic-Operation = { create-new-meeting, reserve)
Autonomous-Operation = (signoff-or-propose , assent , arbitrate ,

initial-proposal)

schedule-meeting = (Purpose xRequired4articipation)
+[State + State]

createnewmeeting : (PurposexRequiredParticipation)+Meeting
select-arbitrator : MeetingxPurpose + Arbitrator

selectmeeting-to-actn : State + Meeting
select-reviewer : Meeting + [State + Reviewer]

initial-proposal : [Arbitrator + MeetingPlan]
signoff-or-propose : [Reviewer + [OldMeetingPlan

+ New-Meeting-Plan]
arbitrate : (Old-Meeting-Plan xNewMeeting_Plan)
Continue = BOOLEAN
assent : Meeting-Plan + [(Person + Room) + Schedule]
assimilate :

((Meeting xMeeting9la.n) +
((Person + Room) xschedule) +
(Meeting XArbitrator) +
(Meeting xReviewer)) +

[State + State])

Epistemic Ontology
Arbitrator-Selection-Rules =

2 ** (Purpose xPersonDescription)
Meeting-Selection-Rules =

2 ** Meeting-PlariPattern
Reviewer-Selection-Rules =

2 ** (Meeting_Plan-Pattern xPersonDescription)
MeetingPlan-Pattern =

((Time-Pattern XSignoff-Pattem)
(Locatiotiattem XSignoff-Pattem)
(Participant-Pattern XSignoff-Pattem))

Time-Pattern = TimeDescription + { anytime)
Location-Pattern = 2 ** Location-Description + { anywhere)
Participant-Pattern = 2 ** PersoUescription + { anybody }
Signoff_Pattem = 2 ** Person-Description + { anybody) +

{ nobody-but-proposer)

968 / ENGINEERING

