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ABSTRACT 

Knowledge engineering suffers from a lack of formal 
tools for understanding domains of interest. Current 
practice relies on an intuitive, informal approach for col- 
lecting expert knowledge and formulating it into a 
representation scheme adequate for symbolic process- 
ing. Implicit in this process, the knowledge engineer for- 
mulates a model of the domain, and creates formal data 
structures (knowledge base) and procedures (inference 
engine) to solve the task at hand. Newell (1982) has 
proposed that there should be a knowledge level analysis 
to aid the development of AI systems in general and 
knowledge-based expert systems in particular. This 
paper describes a methodology, called ontological 
analysis, which provides this level of analysis. The 
methodology consists of an analysis tool and its princi- 
ples of use that result in a formal specification of the 
knowledge elements in a task domain, 

1. Knowledge Engineering needs a methodology. 

Traditionally, knowledge engineering has been a difficult pro- 
cess. Neophyte knowledge engineers often “don’t know where to 
start.”  The difficulty in getting started is related to confusions over 
how to encode or classify relevant knowledge items from the task 
domain. Clancey (1985) provides a typical example from MYCIN: 

Perhaps one of the most perplexing difficulties we 
encounter is distinguishing between subtype and cause, 
and between state and process . . . For example, a physi- 
cian might speak of a brain-tumor as a kind of brain- 
mass lesion. It is certainly a kind of brain-mass, but it 
causes a lesion (cut); it is not a kind of lesion. Thus, the 
concept bundles cause with effect and location: a lesion 

in the brain caused by a mass of some kind is a brain- 
mass-lesion. (pg. 3 11) 

This experience is familiar to any knowledge engineer. Misunder- 
standings about the knowledge elements in a system often pervade 
mature systems and cause endless problems, In response to this 
problem Newell (1982) has suggested that there should be a 
knowledge level analysis of domains which would guide 
knowledge-based systems development. 

In this paper we discuss a methodology for analyzing problem 
domains we call ontological analysis. Most problems encountered 
in knowledge-based systems derive from ad hoc design of the 
knowledge structures. Often, knowledge is collected by writing 
rules or frames in a language-specific syntax, without a systematic 
consideration of the underlying structure of knowledge elements. 
Ontological analysis focuses attention on the elements of 
knowledge in their own right, independent of implementation tech- 
niques. An ontological analysis is distinctly different from 
knowledge representation languages in that it presents only a high 
level description of a problem’s knowledge structure. Ontological 
analysis is used to identify and construct an adequate knowledge 
representation for a problem. 

2. Ontological Analysis. 

To philosophers, ontology is the branch of metaphysics con- 
cerned with the nature of existence, and the cataloguing of existent 
entities (Quine, 1980). The role of ontology in AI has been noted 
previously (Hayes, 1985; Hobbs, 1985; McCarthy, J., 1980). We 
use the term to emphasize that a knowledge-based system is best 
designed by careful attention to the step-by-step composition of 
knowledge structures. An ontology is a collection of abstract 
objects, relationships and transformations that represent the physi- 
cal and cognitive entities necessary for accomplishing some task, 
Our experience indicates that complex ontologies are most easily 
constructed in a three step process that concentrates first on the 
(static) physical objects and relationships, then on the (dynamic) 
operations that can change the task world, and finally on the 
(epistemic) knowledge structures that guide the selection and use of 
these operations. 

Any useful methodology must contain both formal tools for 
constructing an analysis, and informal principles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof practice to 
guide application of the formal tools. Our research has indicated 
that several different formal tools are useful for extracting and 
defining ontologies. We are developing a family of languages col- 
lectively called SPOONS (Specification Of ONtological Structure) 
to encompass tools based respectively on domain equations, equa- 

tional logic, and semantic grammars. 

2.1 Domain Equations in Ontological Analysis 

The most useful and concise of these languages is SUPE- 
SPOONS (SUPErstructure SPOONS), which is based on the 
domain equations of denotational semantics (Gordon 1979; Stoy 
1977) and algebraic specification (Guttag and Horning, 1980). 
Because of the rich ontologies found in most knowledge engineer- 
ing problems, domain equations provide a concise and reasonably 
abstract characterization of the necessary knowledge structures. 
Furthermore, they do not encourage the knowledge engineer to get 
prematurely involved in details. 

2.1.1 SUPE-SPOONS Syntax and Semantics 

SUPE-SPOONS consists of two basic statement types: 

l Domain equations: Site = Building x Campus. These state- 
ments define domains, or types of knowledge structures.* 

l Domain element declarations: add-meeting: Meeting + 
[Meetings + Meetings] These statements declare the type of 
specific domain elements. 

The right hand side of statements can be composed of one or more 
domains or constant elements with operators relating these ele- 
ments, Four primitive domains, STRING, BOOLEAN, INTEGER 
and NUMBER, are always assumed to be defined. Other primitive 
domains can be defined by explicit enumeration of their elements, 
or by open assignment to some collection of atomic elements. 

*For most purposes, it suffices to think of domains as sets. A more 

complex semantics is needed if domains are defined recursively 
(Stoy 1977) or with multiple equations. 
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Table 1 

Static Ontology Fragment for IEC 

Meeting = <atomic> 

Project = <atomic> 

Department = <atomic> 

Person = <atomic> 

Scheduled-Meeting = ( Meeting x Person ) 

Meeting-Purpose = 

One-Time-Meeting-Purpose + Repetitive-Meeting-Purpose 

One-TimeMeeting-Purpose = {discuss, plan} x Project 

Repetitive-Meeting-Purpose = {staff, project} x Department 

Location-Of-Meeting = 

[Meeting -+ Location-Description] 

Time-OfMeeting = 

[Meeting + TimeDescription] 

Purpose-Of_Meeting = 

[Meeting + MeetingDescription] 

Participants-In-Meeting = 

[Meeting + Person-Description] 

Owner-of-Meeting = 

rScheduled_Meetinp + Person1 

a Explicit enumeration: MeetingJioom-Accessory = {black- 
board, screen, . ..} 

l Open assignment: Meeting = <atomic> 

The operators in the domain equations are of five types: 

l Discriminated Union: D + E. Discriminated union of two 
domains defines that domain composed of each member of D 
and E, where original domain identity is preserved. 

l Cross Product: D x E. Cross product of two domains 
describes a domain composed of all ordered pairs whose first 
element is a member of domain D and second element is a 
member of domain E. 

l Domain mapping: D + E. Mapping of one domain onto 
another creates a domain consisting of all functions which map 
domain D onto domain E. 

l Collection of 
subsets of D. 

Sets: 2**D . Defines the domain consisting of all 

l Collection of Ordered 
ordered sequences of D. 

Sets: D*. Defines the domain of all 

2.2 Building an Ontology 

We will illustrate our method by using SUPE-SPOONS to build 
an ontology for the task of scheduling meetings in an Intelligent 
Electronic Calendar (IEC: Staley, in press). The task of the IEC is 
to schedule meetings in a semi-automated fashion, and to support 
the negotiations necessary for determining who will meet when and 
where. A partial ontology for this task is found in Appendix A. It 
should be noted that the IEC is in the early stages of design, and our 
analysis here is for expository purposes only. A complete ontology 
for a knowledge-based system that has been implemented and runs 
can be found in Freiling et al. (1986). 

2.2.1 A Static Ontology for the IEC 

Ontological Analysis begins by enumerating the physical 
objects in the problem domain and identifying their inherent pro- 
perties and relationships. At the level of the static ontology, the 
analysis performed is quite similar to the entity-relationship model 
of Chen (1976). 

Table 1 presents a subset of the IEC static ontology. Only those 
equations relating to the domain Meeting are presented. This 
domain consists of abstract tokens, or surrogates (Codd 1979), each 
of which represents a single meeting. Another domain, 
Scheduletieeting, contains elements which indicate that a meet- 
ing has been entered on someone’s calendar. A number of map- 
pings are also defined that identify the salient properties of meet- 
ings,suchas Time-Description, Meeting-Description and 
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Table 2 

Dynamic Ontology for IEC 

State = Meetings x Purposes x Required-Participations 

x [Meeting + Arbitrator] x [Meeting + Reviewer] 

x [Meeting -+ Meeting-Plan] x [Person --+ Schedule] 

x [Room + Schedule] 

3peration = Heuristic-Operation + Algorithmic-Operation 

+ Autonomous-Operation + ( schedule.newmeeting } 

Heuristic-Operation = { select-arbitrator,selectreviewer} 

Algorithmic-Operation = { create-newmeeting,assimilate} 

Autonomous-Operation = { signoff-or-propose, assent, 

arbitrate,initial-proposal} 

schedulemeeting = (Purpose x Required-Participation) 

--+[ State + State ] 

create-new-meeting : (Purposex Required-Participation) 

+ Meeting 

select-arbitrator : Meetingx Purpose + Arbitrator 

select-meeting-to-act-on : State + Meeting 

select-reviewer : Meeting + [ State + Reviewer ] 

initial-proposal : [ Arbitrator + MeetingJlan ] 

signoff-or-propose : 

[Reviewer+[Old_Meetirig-Plan-+New_Meeting_Plan] 

arbitrate : (Old-Meeting-Plan x New-Meeting-Plan) 

+ (Meeting_Plan x Continue) 

Continuer = BOOLEAN 

assent : MeetingJQn + [ (Person + Room) -+ Schedule ] 

assimilate : ((Meeting x Meeting-Plan) + ((Person 

+ Room) x Schedule) + (Meeting x Arbitrator) 

+ (Meetinp x Reviewer)) + r State 3 State 1 

PersonDescription. The domain Meeting_Purpose represents 
various reasons why a meeting should be held, and embodies the 
analytical decision that one time meetings are project oriented, 
while repetitive meetings revolve around organizational units or 
departments. This is a simplification of course, but what is impor- 
tant is the ease with which such decisions can be expressed. 

The IEC static ontology also addresses time scales, meeting 
room characteristics, and individual membership in projects and 
departments (see Appendix A for the details). In total the static 
ontology gives us a picture of all important elements within the 
domain. 

2.2.2 A Dynamic Ontology for the IEC. 

Problem solving is often characterized as search through a state 
space (Simon, 1981; Newell and Simon, 1972). Solution of a prob- 
lem consists of selecting operators whpse application transforms the 
current state into another. The dynamic ontology defines a problem 
space in terms of configurations of elements from the static ontol- 
ogy, and then defines problem operators as transformations built on 
the domain of problem states. 

The dynamic ontology defines which knowledge is unchanged 
throughout the problem solving process (i.e., organizational charts, 
see Appendix A) and which knowledge changes as the problem is 
solved (i.e., schedules and meeting plans). In the IEC, the problem 
state includes pending meetings, their purposes and required partici- 
pations, room schedules, individual schedules, and state informa- 
tion recording the negotiation process. 

Table 2 shows a sample dynamic ontology for the IEC. To 
define the dynamic ontology, we must commit to a particular model 
for the negotiation process. Negotiation is an extremely subtle and 
complex problem (Davis and Smith, 1981); for this example, we 
will use a very simplistic model. 

The task of scheduling a meeting is called schedule-meeting. 

Significant subtasks include choosing an arbitrator, choosing 
reviewers, producing proposals, reviewing them, and reserving 
space on calendars. These operations are divided up into algo- 
rithmic operations (no rules or heuristics required), heuristic opera- 
tions (driven from a rule base to be specified in the epistemic 



3. Principles of practice 

Table 3 

Epistemic Ontology for the IEC 

Arbitrator-Selection-Rules = 

2 ** (Purpose x Persotiescription) 

Meeting-Selection-Rules = 

2 ** Meeting-Plan-Pattern 

Reviewer-Selection-Rules = 

2 ** (Meeting-Plan-Pattern x PersonDescription) 

ontology), and autonomous processes (which do not run in the IEC 
at all, but represent the behavior of independent actors.) 

Our negotiation model proceeds as follows. First, the IEC 
selects an arbitrator ( 1 
meeting plan ( 

se ect arbitrator), who proposes an initial 
initial-proposal). The meeting plan consists of 

proposals about time, location, and participants of the meeting, cou- 
pled with signoffs from participants. A plan is considered complete 
when the signoff list for each part of the plan is the same as the list 
of participants. 

Once a plan for the meeting is on the table, a reviewer is 
selected to look at the plan (select-reviewer) and either approves 
it or makes a counter-proposal (signoff-or propose). If a 
counter-proposal is made the arbitrator selects either the old propo- 
sal or the counter-proposal as the standing proposal (arbitrate) 

then selects a new reviewer (select-reviewer). After each deci- 
sion, the arbitrator also decides whether to continue the negotiations 
(arbitrate). If negotiations are halted, all participants are required 
to accept the current version of the plan (assent). 

The IEC divides its time between coordinating the negotiation 
processes for several meetings. It makes use of a heuristic process 
(select-fneeting-to-act-on) to decide which meeting to work on 
at any pomt in time. 

2.2.3 The Epistemic Ontology. 

The dynamic ontology defines the operations available to the 
IEC for performing its task. The epistemic ontology defines 
knowledge structures to guide the selection and use of these opera- 
tions. Table 3 shows the epistemic ontology for the IEC. 

The epistemic ontology usually contains two different types of 
knowledge structures. One knowledge type is used to select which 
operation should be performed. The other knowledge type controls 
the actual performance of operations. Because our simple negotia- 
tion model is so rigid, none of the former appear, In fact, the only 
knowledge structures that do appear are those needed to guide the 
operations classified as heuristic operations in the dynamic ontol- 

ogy: select-meeting-to-act-on, select-arbitrator, and 
select-reviewer. 

For select-arbitrator, we assume that the purpose of the 
meeting dictates who a likely arbitrator should be (e.g. the ranking 
manager of the group calling the meeting), so that arbitrator selec- 
tion rules need only associate certain purpose patterns with descrip- 
tions of likely persons. 

Rules to select meetings to work on and reviewers to continue 
negotiation depend on the current version of the meeting plan. 
Thus, these rules require the definition of a pattern that can success- 
fully match meeting plans. For meeting selection rules, all that is 
required is that the meeting plan match the pattern -- that will make 
it a candidate for selection. For reviewer selection rules, the meet- 
ing pattern must be associated with some suggestion regarding a 
reviewer. 

To complete the epistemic ontology, the details of patterns and 
the matching process need to be defined for meeting plans and pur- 
poses. The interested reader is referred to Appendix A for some 
sample definitions. 

We have performed ontological analyses on a wide range of 
domains including a system troubleshooting Tektronix Oscillo- 
scopes (Alexander et al., 1985; Rehfuss et al., 1985; Freiling et al., 

1986), MYCIN’s medical knowledge (Shortliffe, 1984), design rule 
checking for nMOS circuitry (Lob 1984), oscilloscope operation 
and parts of the IEC (Staley, in press). Each analysis has improved 
our understanding of the problem domain, and the use of SUPE- 
SPOONS to sketch out designs has helped us clear up many confus- 
ing situations. 

Through this experience we have built up a series of principles 
for constructing ontologies with SUPE-SPOONS. A methodology 
is more than just a formal notation, it also requires guidelines of 
proper practice. We have identified seven guidelines so far. 

1. Begin with physical entities, proceed to their properties 
and relationships from there. The most accessible elements of 
any task domain are usually the physical objects and relationships 
that must be manipulated. Formalizing these provides an easy way 
to get started. 

The recommended procedure for extracting an ontology is to 
begin by analyzing a paper knowledge base (Freiling et al., 1985) 
that describes the task domain in English. The paper knowledge 
base may come from verbal protocols (Ericsson and Simon, 1984), 
a textbook, or a training manual. The technical vocabulary used in 
the paper knowledge base provides the initial elements of the static 
ontology. After these vocabulary elements have been defined is the 
time to examine the more esoteric dynamic and epistemic realms, 

2. The static, dynamic and epistemic ontologies are not 
strict boundaries, use them loosely. The placement of ontologi- 
cal elements into categories has no formal effect on the semantics 
of the ontology, the levels only provide a conceptual framework. 
Arguing about whether a knowledge structure is actually dynamic 
or epistemic is of little value. 

3. Clearly establish the distinction between objects and 
what they are intended to represent. TWO types of object 
appear in an ontology: first-class and second-class objects. First- 
class objects (surrogates in database terminology; Codd, 1979) can- 
not be individuated by their properties. Instead they are indivi- 
duated by identifying tokens (<atomic> in SUPE-SPOONS). In the 
IEC, meetings are first-class objects: 

Meeting = <atomic> 
Time-OfMeeting = [ Meeting + TimeDescription ] 

Properties of first class objects are expressed via functions that map 
the objects into their property values. 

Second-class objects refer to those elements of an ontology that 
represent aggregations of other elements, Second-class objects are 
individuated solely on the basis of common components. For 
example, consider the following second-class object: 

GregorianTime-Point=YearxMonthxDayxHourx{00,15,30,45} 

Any two calendar dates are equal if they consist of the same year, 
the same month, hour and quartile. Only when their composite 
attributes are identical are the elements themselves identical. 

The usefulness of this distinction usually does not appear until 
implementation, and has to do with issues of representing identity 
and partial knowledge about elements that are beyond the scope of 
this paper. 

4. Understand and separate intensional and extensional 
entities. There are many cases in knowledge engineering where it 
is important to distinguish between representatives for the physical 

objects, and for descriptions or viewpoints of those objects. For the 
IEC, it is necessary to define (extensional) units of absolute time, 
and relate them to (intensional) descriptions of time units with 
respect to one calendar or another. Only then is it possible to 
represent the fact that descriptions like 1986 (Gregorian) and 
Showa 60 (Japanese) refer to the same time interval. 
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A common way to achieve the distinction between extensional 
representatives of real world objects and intensional representatives 
of descriptions or classes of such objects is define representatives 
for the extensional objects with only the bare minimum of structure. 
In the IEC, for instance, 

Real-Time-Point = INTEGER 
Real-Time-Interval = (Real-Time-Point x ReaLTimePoint) 

Here we define the primitive points in time as integers. We associ- 
ate point 0 with 12 midnight on l/1/1901, by the Gregorian calen- 
dar. The points are 15 minutes apart. Intervals of time can then be 
represented simply as a pair of points. (There is actually a bit more 
complexity for dealing with unbounded intervals, see Appendix A). 

Intensional descriptions with respect to various calendars can be 
constructed as necessary from different parts of the description. 

IntensionalTimeSoint = 
GregoriaTimePoint + 
Japanese_ImperialReign-Time-Point 

Gregorian-Time-Point = 
Year x Month x Day x Hour x ( 00, 15,30,45 } 

Japanese_lmperialReign-Time-Point = 
Era x Year x Month x Day x Hour x { 00,15,30,45 } 

Finally, intensional description can be related to extensional 
descriptions by the use of various interpretation functions: 

interpret : [ Intensional-Time-Point + Real-Time-Point ] 

Extensional identity of descriptions of varying sorts can then be 
defined as equality of the image under the relevant interpretation 
functions. 

5. Build relevant abstractions through the use of generali- 
zation and aggregation. Generalization and aggregation (Smith 
and Smith) arc ,common techniques for building large knowledge 
structures. It is Interesting to note that generalization and aggrega- 
tion steps have a direct manifestation as discriminated unions and 
Cartesian Products: 

GENERALIZATION: Car = (Compact + Luxury-Car + Truck) 
AGGREGATION: Car-Assembly = (Engine x Chassis x Body 

x Drive _ Train) 

An ontology may also contain many implicit generalization and 
aggregation relations. Even the properties of a first class object are 
implicitly aggregated through the fact that some particular car 
defines values for each: 

Car = <atomic> 
Type = [ Car + [ Compact, Luxury-Car, Truck ) ] 
Has-Engine = [ Car + Engine ] 
Has-Chassis = [ Car + Chassis ] 
Has-Body = [ Car + Body ] 
HasDrive-Train = [ Car -+ Drive-Train ] 

Note also that generalizations are implicit in the properties of 
objects as well. Instances of the domain Car, for example, can be 
decomposed into Compacts, etc. on the basis of common images 
under the Type function. 

6. Encode rules as simple associations, and heuristic 
steps as mappings between domains. Novices at Ontological 
Analysis are tempted to define rules in a form like; 

Gate_Recognition-Rules = [ Circuit + Gate-Type ] 

This mapping (from an Ontological Analysis of RUBICC (Lob 
1984)) to choose a gate type from a circuit fragment really 
describes the heuristic task that uses rules, rather than of the rules 
themselves. We prefer to analyze rules as simple aggregations, -_ 
because this makes it easier to spot multiple uses for the-same rule 
structure: 

Gate-Recognition-Rules = 2 ** (Transistor-Pattern xGate_Type) 
mcOgnize : GateRecognition-Rules + [ Circuit + Gate-Type ] 
synthesize : GateRecognitionRules -+ [ Gate-Type + Circuit ] 

Another advantage of separating the rules from the heuristic task is 
that it focuses explicitly on the need to define classes of patterns 
and matching criteria. 

Table 4 

Glib Fragment 

<signal value> ::= ‘HIGH1 ‘LOW’ 

<signal> ::= ‘SIGNAL-‘cintegen 

<atomic signal predicate> ::= <signal> IS <signal value> 

<signal predicate> ::= <atomic signal predicate> 

] <atomic signal medicate> ‘when’ <atomic signal medicate> 

7. Ensure the compositionality of elements. This case illus- 
ates vividly the usefulness of our methodology. We first encoun- 

tered this problem in the process of building a semantic grammar 
(GLIB) in order to extract the ontology of electronic instrument 
behavior (Freiling et al., 1984). Table 4 shows a fragment of GLIB 
that can generate the following atomic signal predicate. 

SIGNAL-3 IS HIGH 

Initially we assumed that this signal predicate would map signals 
into Boolean values. However, the semantics of two such state- 
ments combined with the connective when was not at all clear. If 
when was assumed to produce a Boolean itself, then the result 
would be returned by one of the 16 truth function of two Boolean 
values, clearly not what we had intended. 

SIGNAL-3 IS HIGH when SIGNAL-4 IS LOW 

Using domain equations to analyze the problem, 

Signal = [Time + Value] 
Signal-Predicate = 

[(Signal x Signal-Value ) + BOOLEAN] 
= [([Time + Value] x Signal-Value) + BOOLEAN] 

we discovered that our signal predicate as defined was dropping the 
temporal information and performing a global comparison with the 
threshold value. This problem was solved by creating a more 
appropriate definition for signa~~redicate, which follows: 

SirmaLPredicate = 
- &$& x Signal-Value) + [Time + BOOLEAN] J 

= [([Time + Value] x Signal-Value) 
+ [Time -+ BOOLEAN]] 

when: [[[Time + BOOLEAN] x [Time + BOOLEAN]] 
+ [Time + BOOLEAN]] 

Thus, the comparison made by the si gnal9redicat e is made at 

each instant of time, so that the result is not a single truth value 
computed from the whole signal, but a truth value for every time 
unit of the signal. This makes it possible for when to preserve its 
when functional character, since the truth function (logical and) is 
now applied on a point by point basis. The compositional analysis 
of this type of problem is common to researchers familiar with the 
techniques of semantics and model theory (Allen, 1981). Our hope 
is that a language like SUPE-SPOONS can make such techniques 
available to practitioners as well. 

4. Future Work 

There are a number of weaknesses with the ontological analysis 
technique as currently defined. Even so, we have found the metho- 
dology useful for conceptualizing a knowledge engineering prob- 
lem, and creating a forum for cogent discussion. Consequently, we 
actively use the ontological technique on a day to day basis. 

Simultaneously, we are defining the theoretical foundations of 
the methodology. Our goal is to create a formal mathematical sys- 
tem for ontological analysis of problem solving domains. Formal 
systems allow the creation of tools for automatically checking and 
organizing the resulting analysis, automating the creation of some 
components of the ontological systems. 

We feel that SUPE-SPOONS provides a valuable tool that 
enables knowledge engineers to sketch out solutions to knowledge 
engineering problems at a fairly high level of abstraction. The limi- 
tations of domain equations prevent a premature attention to the 
low-level details of a domain. Eventually, however, those details 
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do need to be addressed. We feel that this is best accomplished 
with a separate language, and are actively working on another 
member of the SPOONS family (T-SPOONS) that uses equational 
logic to define and constrain actual domain elements beyond simply 
naming their types. 

In practice, we have found it hard to get consistent analyses 
from different knowledge engineers. Only experience will show us 
the proper formulation of the methodology. Presently, there is no 
standard concept of a virtua2 machine to be assumed when the 
analysis is being performed. Denotational semantics, for example 
has implicitly assumed concepts such as stack that form the virtual 
machine for programming language analysis. We are working to 
establish a standard to serve as a basis for the methodology. 

Finally, we are working to connect our work with other theoret- 
ical work on the nature of the knowledge level. Specifically, we see 
two connections with Clancey’s (1985) recent analysis of 
classification problem solving. First, his notions of generalization, 
aggregation and heuristics have a more formal description in our 
formalism. Second, Clancey suggests that problem solving tech- 
niques compose to form larger knowledge-based systems. Ontolog- 
ical analysis can provide a means to highlight this composition pro- 
cess. For both of these concepts, we hope eventually to be able to 
build demonstrations that connect these higher level tasks with the 
primitive ontological elements of the problem domain. 

5. Summary 

We have presented a technique, ontological analysis, that has 
much promise as a knowledge engineering methodology. Metho- 
dologies of this type will release the discipline from ad hoc descrip- 
tions of knowledge and provide a principled means for a knowledge 
engineer and expert to analyze the elements of a problem domain 
and communicate the analysis to others. The abstract level at which 
domain equations characterize the semantics of structures and pro- 
cedures, not specifying too much detail, help in this regard. 

The effectiveness of a technique depends critically on the for- 
mulation of more and better principles to guide its use. Such prin- 
ciples only come painfully with much practice. We invite other 
knowledge engineers to try this approach, and relate their experi- 
ences. 
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7. Appendix A: Ontology for IEC 

Person = <atomic> 
Static Ontology 

Persons = 2**Person 
Project = <atomic> 
Department = <atomic> 
Scheduled-Meeting = ( Meeting x Person ) 
Meeting-Room = <atomic> 
Name = <string> 
Group = <atomic> 

Mee$x&RoomAccessory ={ blackboard, screen, projector} 
~~rAmqwnent_Type = [conference, classroom, auditorium } 
Meeting = <atomic> 
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Meeting-Purpose = One-Time-Meeting-Purpose 
+ RepetitiveMeeting-Purpose 

One-TimeMeetingPurpose = {discuss, plan, review} x Project 
RepetitiveMeetingPurpose = ( staff, project } x Department 

Meeting-Proposal = 
Time-Proposal + Location-Proposal + Participant-Proposal 

Time-Proposal = TimeDescription 
Location-Proposal = Location-Description 
ParticipantProposal = Persons 

Reflection = [Scheduled-Meeting + Meeting] 

Person-Name = [Person *Name] = [Name + Person] 
Person-Attribute = 

Name + [Name x Hierarchical-Link] 
+ [[rep-of} x Group] 
+ [ { resp-rep-of} x Group] 
+ [{head-of} x Group] 

Person-Description = 2**Person.-Attribute 

HierarchicaLLink = {boss-of, subordinate-of) * 
Organizationrelationof4erson = Hierarchical-Link 

Concession-Type = [time, location, . . . ) 
Owes-Concession-To = [(Person x Person) + Concession-Type*] 
negotiating-points : 

[(Person x Person x Concession-Type* 
x Organization-Relation-of-Person) + INTEGER 

Group-Contained-By = [Group + Group] 
Member-Of-Group = [Person + Group] 
Project-Name = [Project + <string>] 

Location-Description = (Room-Capacity) x INTEGER 
x {blackboard, no-board) 

RoomHas = MeetingRoom + 2**MeetingJioomAccessory 
Room-Capacity = MeetingRoom + INTEGER 
ChairArrangement-InRoom 

= Meeting-Room + Chair-Arrangement-Type 

Building = <atomic> 

campus = <atomic> 
Site = Building x Campus 
At = [Meeting-Room + Site] 

Quarter={OO,15,30,45) 
Hour = { 0..24) 
Date = (1..31) 
Month = { 1..12) 
Year = { -BB . . +BB) 
Cycle = {-BB’ . . +BB’) 
Year’ = {OOO, 100, . . . . 900) 
Ap = { l.13) 
Day = (1..28) 
Identified-Time_InteIval = [Real-Time-Point + INTEGER] 
Calendar = [Real-Time-Interval + Calendar-Interval] 
Real-Time-Interval = 

[Real-Time-Point x RealTimePoint] 
+ [RealTimePoint x {unbounded)] 
+ [ {unbounded) x Real-Time-Point] 
+[{unbounded)x {unbounded)] 

Event-Description = Interval-Description x MeetingDescription 
Interval-Description = 

[(between) x Calendar-Point x Calendar-Point] 
+ [ {before) x Interval-Description] 
+ [{after) x Interval-Description] 
+ [(before, after, during) x Event-Description] 

Calendar-Region = <atomic> 
Calendar-Point = Gregorian-Point + Japanese-Point 
Calendarlnterval = Calendar-Point x Calendar-Point 
PointDescription = 

Calendar-Point + [{after) x Calendar-Point] 
+ [ {before) x Calendar-Point] 
+ [{within] x Interval-Description] 

Gregorian-Point = Year x Month x Day x Hour x Quarter 
JapanesePoint = Era x Year x Month x Day x Hour x Quarter 
express-as : [Calendar + [Real-Time-Point + CalendarPoint] 
interpret-as : [Calendar + [Calendar-Point + Real-Time-Point] 

Event = Scheduled-Meeting + BlockSchedule 
Events = 2**Event 
Assignments = [Event + Real-Time-Interval] 
Schedule = Events x Assignments 
BlockSchedule = (read, errand, fill-out-form) x Time-Quantum 

Dynamic Ontology 
Meeting-Plan = [ MeetingProposal + Signoffs ] 
Signoffs = Persons 
Arbitrator = Person 
Reviewer = Person 
Participant = Person 
Old-Meeting-Plan = Meeting-Plan 
NewMeetingPlan = Meeting-Plan 

State = Meetings x Purposes x Required-Participations 
x [ Meeting + Arbitrator ] x [ Meeting + Reviewer ] 
x [ Meeting + MeetingPlan ] x [ Person + Schedule ] 
x [ Room + Schedule ] 

Operation = Heuristic-Operation + Algorithmic-Operation 
+ Autonomous-Operation’+ { schedule-newmeeting ) 

Heuristic-Operation = { select-arbitrator , selectdeviewer , 
selectmeeting-to-act-on ) 

Algorithmic-Operation = { create-new-meeting, reserve) 
Autonomous-Operation = ( signoff-or-propose , assent , arbitrate , 

initial-proposal ) 

schedule-meeting = (Purpose xRequired4articipation) 
+[ State + State ] 

createnewmeeting : (PurposexRequiredParticipation)+Meeting 
select-arbitrator : MeetingxPurpose + Arbitrator 

selectmeeting-to-actn : State + Meeting 
select-reviewer : Meeting + [ State + Reviewer ] 

initial-proposal : [ Arbitrator + MeetingPlan ] 
signoff-or-propose : [ Reviewer + [ OldMeetingPlan 

+ New-Meeting-Plan ] 
arbitrate : (Old-Meeting-Plan xNewMeeting_Plan) 
Continue = BOOLEAN 
assent : Meeting-Plan + [ (Person + Room) + Schedule ] 
assimilate : 

((Meeting xMeeting9la.n) + 
((Person + Room) xschedule) + 
(Meeting XArbitrator) + 
(Meeting xReviewer)) + 

[ State + State ] ) 

Epistemic Ontology 
Arbitrator-Selection-Rules = 

2 ** (Purpose xPersonDescription) 
Meeting-Selection-Rules = 

2 ** Meeting-PlariPattern 
Reviewer-Selection-Rules = 

2 ** (Meeting_Plan-Pattern xPersonDescription) 
MeetingPlan-Pattern = 

((Time-Pattern XSignoff-Pattem) 
(Locatiotiattem XSignoff-Pattem) 
(Participant-Pattern XSignoff-Pattem)) 

Time-Pattern = TimeDescription + { anytime ) 
Location-Pattern = 2 ** Location-Description + { anywhere ) 
Participant-Pattern = 2 ** PersoUescription + { anybody } 
Signoff_Pattem = 2 ** Person-Description + { anybody ) + 

{ nobody-but-proposer ) 
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