
KNOWLEDGE PROCESSING FOR A

CONSTRUCTION MANAGEMENT DATABASE

by
MING-TEH WANG

M.S.
M.S.
B.S.

in Civil Engineering, Rensselaer Polytechnic Inst. (1985)
in Civil Engineering, National Taiwan University (1978)
in Civil Engineering, National Taiwan University (1976)

Submitted to the Department of Civil Engineering
in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

20 December 1988

(c) Massachusetts Institute of Technology 1988

Signature of Author

Department of Civil Engineering

December, 1998

Certified by

Robert D. Logcher

Professor, Department of Civil Engineering

Thesis Supervisor

Accepted by

Professor Ole S. Madsen

Chairman, Departmental Graduate Committee

Knowledge Processing For A Construction Management Database

by
Ming-Teh Wang

Submitted to the Department of Civil Engineering
on 20 December 1988, in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy
in Construction Engineering and Management

ABSTRACT

The objectives of project control systems go beyond documentation to recognition of

problems and evaluation of their causes. Through the use of broad information systems, a

construction manager today is able to assemble a wide variety of data about his projects or

programs. Retrieval, analysis and interpretation of the meaning of these data, however,
usually requires the user to have detailed knowledge about the structure and content of the

database, use of a data retrieval language, and have further programming skills to have the

computer perform analyses.

The work reported in this thesis has three goals: to ease retrieval with near-natural

language query capabilities, to acquire and accumulate user defined knowedge, and to

exercise such knowledge for translation from English terms to database fields or their values,

access to database or other information sources, or pre-access and post-access processing. A

knowledge based query system, called Expert-MCA, has been developed by coupling the

techniques of natural language processing, knowledge-based expert systems, and database

management systems. The system architecture will be presented, followed by a description

of how knowledge is represented and processed in answering English-like queries. An

object-oriented formalism is applied to represent knowledge required in the process of

reasoning. Expert-MCA's reasoning capability has been extended by using context driven

reasoning, a generalization of reasoning mechanisms used in framed-based systems.

Thesis Supervisor: Dr. Robert D. Logcher

Title: Professor of Civil Engineering

Table of Contents

Table of Contents 3

List of Figures 6

List of Tables 7

1. Introduction 8

1.1 Background Subjects 8
1.2 Research Background 11
1.3 Goals of the Study 13
1.4 Organization of the Thesis 14

2. Related Work 16

2.1 Database Management Systems and Construction Management 16
2.1.1 Introduction to Database Management Systems 16
2.1.2 Use of Construction Management Databases 18
2.1.3 Adding New Information Techniques to Construction Management 19

2.2 Natural Language Processing 20
2.2.1 Introduction to Natural Language Processing 20
2.2.2 Issues in Natural Language Processing for the Construction Domain 22

2.3 Knowledge-Based Expert Systems 24
2.3.1 Introduction to Knowledge-Based Expert Systems 24
2.3.2 Major Issues in Knowledge-Based Expert Systems 25

2.4 Interaction among NLP, DBMS and KBES 27
2.4.1 Natural Language Processing and Database Management Systems 27
2.4.2 Natural Language Processing and Knowledge-Based Expert Systems 28
2.4.3 Database Management Systems and Knowledge-Based Expert Systems 28
2.4.4 Integration of NLP. DBMS and KBES 31

3. Overview of Expert-MCA 33

3.1 Desired System Features 35
3.2 General Architecture 35
3.3 Knowledge Processing in Expert-MCA 38

4. Knowledge Representation and Reasoning in the System 42

4.1 Representation Features in Expert-MCA 42
4.2 Classification of Terms Used in the System 44
4.3 Object-Oriented Representation 48
4.4 Context Driven Reasoning 51

4.4.1 Simple Reasoning Transitivity 54
4.4.2 Forward-Transit and Backward-Transit Reasoning Transitivity 55

5. Language Analyzer 60

5.1 Design of the Language Analyzer 60
5.2 Lexical Mapping 62
5.3 Lexical Analysis 67
5.4 Syntactic Analysis 71
5.5 Semantic Analysis 75

6. Knowledge Reasoner 82

6.1 Structure of the Blackboard in Expert-MCA 82
6.2 Construct of the Reasoner 83
6.3 Use of Context for Solving Query Ambiguity 84

6.3.1 Finding Context 84
6.3.2 Use of Context Driven Reasoning to Resolve Ambiguity 86
6.3.3 Using Context From Adjacent Terms 89

6.4 Use of User and Domain Profile Information 93
6.5 Execution of Tasks Triggered by Terms 96

6.5.1 Rule Base Inference Used for Answering a Query 97
6.5.2 Procedural Processing Used for Answering a Query 99

6.6 Pre-Access Processing and Post-Access Processing 102

7. Query Language Generator and Knowledge Acquisition 106
7.1 Query Language Generator 106

7.1.1 Features of the Query Language FOCUS 106
7.1.2 Composition of FOCUS Code in Expert-MCA 109

7.2 Knowledge Acquisition and Sharing in the System 114
7.2.1 Knowledge Acquisition in Expert-MCA 114
7.2.2 Knowledge Sharing in Expert-MCA 116

8. Implementation Details 119

8.1 Principles and Modules in the Programming Design 119
8.1.1 Programming Design Principles 119
8.1.2 What an Interface Task Does 120
8.1.3 How Interface Tasks Flow from One to Another 120
8.1.4 How to Define an Interface Task 121

8.2 Flow of Modules in Expert-MCA 126

9. Conclusion and Recommendation for Further Study 130

9.1 Conclusion 130
9.2 Discussion 131
9.3 Contributions 135
9.4 Recommendation for Further Study 136

Appendix A. Problems in Natural Language and Processing Issues 138

A. 1 Problems Inherent in Natural Language 138
A.2 Major Issues in Natural Language Processing 140

Appendix B. Specification of Terms Used in Expert-MCA 146

B.1 Specification of Fieldname 146
B.2 Specification of Fieldvalue 147
B.3 Specification of Synonym 148
B.4 Specification of Word/Phrase 148
B.5 Specification of Rule 151
B.6 Specification of Procedure 151

Appendix C. Syntax for FOCUS Query Language 153

C. 1 Syntax for TABLE Command Statements 153
C.2 Syntax for DEFINE Command Statements 154

Appendix D. List of Interface Tasks in Expert-MCA 156

-5-

Appendix E. List of File Names and File Paths in Expert-MCA 166

-6-

List of Figures

Figure 2-1:
Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 6-1:
Figure 7-1:
Figure 8-1:
Figure 8-2:

Coupling between DBMS and KBES
System Architecture of Expert-MCA
Abstraction Layers between Users and Computers in Expert-MCA
Simple Reasoning Transitivity
Forward-Transit Reasoning Transitivity
Backward-Transit Reasoning Transitivity
An Application of Context Driven Reasoning
A Syntactic Tree for the Definition Slot
Interface Task Flow in Expert-MCA, Part 1
Interface Task Flow in Expert-MCA, Part 2

29
34
43
53
56
58
87

117
128
129

-7-

List of Tables

Comparing Expert-MCA with Related SystemsTable 9-1: 134

Chapter 1

Introduction

This chapter first briefly introduces problems inherent in the construction industry.

Next, some technologies which are developed in other areas and might be useful to solve

these problems are mentioned, specifically management information systems and artificial

intelligence. Research background is then presented, followed by a description about the

goals of this research. Finally, organization of this thesis is described.

1.1 Background Subjects

The construction industry has been identified with the following deleterious

characteristics: fragmentation, transient nature, non-repetitive process, ineffectiveness of

learning, and inefficiency of communication [77, 86]. Today such disadvantages are further

compounded by the ever increasing complexity of construction projects that require more

specialized equipments and skills, that suffer stricter regulations and more pressures from

financial organizations [24]. As a result, the delivery of construction projects tends to

involve more participants and more diverse materials and skills. This implies that

construction management needs more sophisticated knowledge, more powerful tools, and

more advanced technologies than ever before to manage the process of construction projects.

The process usually involves a variety of parties, including owners, design

architects/engineers, project managers, superintendents, clerical staff, building departments,

material suppliers, contractors, and labors, each contributing to projects with different skills,

tasks and objectives. In order to execute their tasks, some parties require expertise which

needs vigorous training and long experience, while the others need diversified knowledge

backgrounds. Nonetheless, these parties often have quite different motivations in their part

of the delivery of construction projects.

All the parties must communicate with each other to make sure that the overall

performance of projects meets common interests and fulfill expected functionality

requirements. The communication process among parties can be viewed as an information

flow. In a construction project, the owner describes to designers what functionality and

constraints the project might have. Typical project constraints include budgeted amount and

construction duration available. Such a description actually is a piece of information that

serves as an initial set of design specifications. After the description is transferred to

designers, a conceptual design and initial estimate of cost and duration are created and then

sent back to the owner for review or correction. Based on the information from each other,

the owner and designers therefore can refine their decision by modifying old information or

create a new set of information in response. Along the process in construction, project

managers may manage to control the project's progress by making various decisions, such as

organizing field forces, assigning backup personnel in administrative and engineering

positions necessary for supervising labor, awarding subcontractors, purchasing materials,

keeping records, and engaging in a financial management. Construction information

therefore flows from one party to another in a cooperative network.

Computers have been used to cope with enormous amounts of data and to solve

problems in almost every business area. In order to save labor cost, increase productivity, or

improve product quality, most engineering and construction organizations in this country

have gradually made use of management information systems to help handle the data that

covers a variety of organizational purposes, such as payroll, job cost accounting, design

analysis, and project planning and scheduling. Currently, management information systems

that are used for construction management use database management systems and simple

applications built around them. Such systems are able to provide facilities for easy collection

of broad classes of data and provide some tools for retrieving and reporting such data.

Reports are generally direct presentations of collected data with simple arithmetic operations

among related items. Reports may select data based on arithmetic or logical conditions

among data items, i.e., exception reports.

Management information systems (MIS) can serve as an information exchange center

for the information flow that occurs along the process of construction projects. Data

captured in a management information system typically is a record about objects in progress,

status of milestone events, or decisions which are made by persons with various

responsibilities. It is stored in the system encoded to the object. Thus the use of MIS can

extract related data about a series of objects from a database and recognize or reason about

what happens to the projects. However, the data collected in reports can also be garbage to

those who do not know how to interpret it or use it. Therefore real value of data collected in

a database can be realized only when users can understand the meaning of data.

-10-

For the past few decades, research in artificial intelligence (AL) has been evolving

primarily within computer science groups. Currently Al research has broaden to include not

only computer science, but also research in areas such as humanity, engineering, and

management. Many researchers in AI try to model their computer programs after human

intelligence [73]. For example, in order to better use computers to solve the problems of

interest, engineers try to simulate the intelligence that they observe in human beings. The

researchers with humanity backgrounds may take AI programs as readily available

experiments for testing hypotheses about human cognition. In its interplay with other

cognitive science disciplines, AI provides an alternative methodology for exploring and

testing theories about human intelligence, such as the way we learn, speak, see, or reason.

Al research can be categorized into two types: theoretical research and application

research. Theoretical research in Al includes such subjects as search, knowledge

representation, knowledge reasoning, leaming, and programming languages [6,7, 8, 88];

where knowledge representation and knowledge reasoning are the most fundamental issues

in current Al research. Knowledge reasoning usually covers such topics as deduction and

induction. AI application research currently can be further divided into the following groups:

knowledge-based expert systems, natural language processing, robotics, speech recognition,

and image processing [92].

When facing newly available and advanced technologies developed in Al, we, as

members of the construction community, must ask ourselves: What technologies can we

adopt from Al research? What else should we do by ourselves in order to fully make use of

such technologies? While such issues will be examined in more detail in subsequent

chapters, the next paragraph exemplifies how Al technologies have been employed or their

use encouraged by researchers in the construction community.

Knowledge-based expert systems might be the most dominant AI technology

employed in the construction domain. For example, project planning, project scheduling and

control, and other project management issues have been active subjects of expert system

development [45, 46, 59]. In this country most knowledge-based expert systems in the

construction domain have been developed by academic construction management

groups [3, 59]. Examples of such expert systems are: construction planning and scheduling

at the Massachusetts Institute of Technology [13, 18, 19, 20, 34, 40], PLATFORM (for

construction control, planning, and objective-setting) and SITEPLAN (for layout of

temporary construction facilities) at Stanford University [51, 76], CONSTRUCTION

-11-

PLANEX (for project planning) at Carnegie Mellon University [33], construction schedule

analysis at the University of Illinois at Champaign-Urbana [23], and IRIS (for construction

risk identification) at the University of Texas at Austin [4]. Stone and Webster Engineering

Corporation of Boston has developed expert systems as advisors for welding and

construction management [27]. Still, some others are doing research on the robotics for

construction automation [71, 62, 86].

1.2 Research Background

Decision making in construction management is a complex process that requires not

only factual data but also heuristic knowledge for judgment. The complexity can be well

illustrated by the programming process of the US Anny construction projects. In order to

achieve their goals, commanders at different levels in the Army need various facilities, such

as training fields, barracks, offices, housing, and hospitals. In addition to Congress, army

agencies with various responsibilities and authorities make judgments on scope, cost and

timing within the lengthy construction programming process, which is called the MCA (short

for Military Construction, Army) cycle. The MCA program is a large and seemingly

complex system in which projects proceeds according to complicated regulations and

practices, each taking 8 to 15 years from identification of needs, inception, design, budget,

appropriation, to construction. To reach completion each project has to be described,

justified, reviewed, revised, programmed, and budgeted by offices and agencies involved in

the program development [80]. Projects are ultimately questioned at the Congressional level

before funds are approved for disbursement.

The Office of Chief of Engineers (OCE) is ultimately in charge of the management of

the US Army construction projects. The Construction Engineering Research Laboratory

(CERL) of the Army of Corps of Engineering is a supportive research institute, aiming at

providing ways to improve development of Army projects. CERL has been one of the major

research organizations on construction management in this country, mostly helping OCE and

other Army agencies find better ways to solve their problems.

One of the tools for the management of the Army construction projects is database

management systems. Information about the MCA program is maintained in a large, central

database containing more than 15,000 projects, with over 500 data items per project,

supported by an information system called CAPCES, short for Construction Appropriations

-12-

Programming Control and Execution System. The data is used for program planning,

budgeting, appropriations management and construction of U.S. Army projects [53, 80].

Use of the CAPCES system has some unique characteristics. Although it is a

centralized database system, running on a mainframe in Dallas, Texas, its use (or access) has

been highly distributed, meaning that users are located over this country and overseas; users

have diverse knowledge background and work in various agencies or groups; data items

retrieved by different users can be seldom overlapped. Using personal computer as a handy

tool, its users have largely moved toward decentralized use of the information. In order to

interact with the CAPCES database, the users, however, must be knowledgeable about

CAPCES and a formal query language, FOCUS. Although the CAPCES database system

offers many advantages for the efficient collection and reporting of information about the

U.S. Army construction program, the real value of the database will be realized only when

the users are able to get timely information easily and, more importantly, to understand the

meaning of this information and use it to reach conclusions and make decisions.

Specifically, issues about use of the CAPCES database for helping process the MCA

program can be divided into two categories: organizational and technical. Due to military

organizational practices, knowledge acquisition/accumulation and training for the MCA

program may exist some problems. For each project significant decisions have to be made

by different people ranging from users of facilities, facility engineers, district, division, major

commands, OCE, head quarter of the Department of the Army, to Congress, with different

interest such as cost estimate, timing control, funding approval, fund allocation, project

bidding, site construction, or facility occupancy. They must know the tasks in the MCA

cycle and what information is required for each task. This leaming is time-consuming, since

the knowledge is widely scattered across different agencies and embedded in voluminous

regulations. In addition, military personell are regularly rotated, staying in one position no

more than three years.

Involved in the technical issues are access to data, understanding the meaning of data,

and use of data. As projects develop in the MCA cycle, information is stored in the CAPCES

database and then used by the Army construction staff in the decision making about program.

To retrieve data from the database, however, users not only have to be able to program in a

query language and communicate through a data network for retrieval, but also have to be

aware of the data structure and the meaning of each data item in the database. As can be

imagined, it will be difficult to ask the decision makers involved in the MCA cycle to have

-13-

broad knowledge of both on computer science and MCA processing. In addition, due to the

large amount of data items stored in the database, it is very difficult for users to clearly

understand the meaning of each data item1 , not to mention being able to derive or process

new information (or new data items).

While programmers can retrieve data for the users who are not familar with the access

to the database, the retrieved data is not always sufficient. Its value is achieved only after

post-processing, when the user studies the data, looking for relationships and patterns based

on their experience or expertise from sophisticated colleagues. Users often have only a

"feel" of what data they need and how to look for patterns in the retrieved data. A

knowledge gap exists therefore between these two groups of people.

In construction management, having handy report generators for data retrieval is only a

tool for the first step in good decision making. The more important and challenging issues

are how one can derive and accumulate knowledge from the data collected in databases, and

how one can transfer such knowledge to another. After all, the difference between a

sophisticated construction manager and an ordinary one is not because the former knows

more about how to retrieve data or generate reports. Rather, the former knows more about the

interpretation of data items, the possible patterns among data items, the meaning of

relationships of some data instances to other data instances, and use of the data.

1.3 Goals of the Study

While there are still a number of ways that computers can be used better for solving

our routine works, it is believed that the issue of using the computer to work smarter is more

interesting and challenging. Computers can work more intelligently in construction

management, sharing more work that was originally done by humans.

This study has been funded by CERL for developing better tools to manage the process

of Army construction projects. A prototype system, called Expert-MCA, developed in this

study aims to better solve the problems as described in the last section.

Some constraints for this development are identified as follows. It should run on

IBM/AT PCs or compatibles. Within PC environment at fields, users like to have more

Ilt often needs to check a table for the meaning of a field and its values, since the database contains enormous
amounts of fields and their values.

-14-

control on data use and thus operate information on their PCs, a tendency of decentralization

of information operation. Since a variety of users do not have sufficient knowledge about

data communication, the system should automatically communicate with the mainframe for

data retrieval, given a user's password and necessary communication parameters for entering

the mainframe. As a result, the system is implemented in a single programming language

(i.e., Lisp) which can have overall control of every module.

To most of the staff involved in the military construction management, querying data

by using natural language can be a lot easier than using a computer language. Use of near

natural language queries seems a better choice as far as the acceptance by most users is

concerned. For users to customize their needs and use of language, use of user defined

language and knowledge is also required.

The goals of this study, being accomplished via the development of Expert-MCA, are

to provide tools for access to database, medium for understanding meaning of data, and use

of knowledge defined by a range of users. User defined knowledge is used for translation

from English terms to database fields or ranges of values, access to database or other

information sources, pre-access and post-access processing, or definition of user's

characteristics to establish necessary context.

1.4 Organization of the Thesis

The contents of subsequent chapters are briefly described as follows:

Chapter 2 discusses the subjects that are essential to the development of this thesis,

including natural language processing, database management systems, and knowledge-based

expert systems.

Chapter 3 depicts the system architecture of Expert-MCA, together with a brief

description of how its modules work.

Chapter 4 presents the details of the knowledge representation and reasoning

mechanisms used in Expert-MCA. The chapter describes an object formalism that is suitable

to the construction domain. The terms, being used to communicate with Expert-MCA are

defined by users to convey meanings. The reasoning mechanisms employed in Expert-MCA

is also detailed in this chapter.

The major knowledge processing modules in the system are described in Chapters 5 to

-15-

7. Chapter 5 describes the language analyzer, being detailed in such submodules as lexical

mapping, lexical analysis, syntactic analysis, and semantic analysis.

Chapter 6 describes how the knowledge reasoner resolves ambiguities left from the

language analyzer by using information about context, the domain, and the user; execute

tasks requiring rule based inference or procedural processing; ask the query generator to

produce query code; or activate communication module for data transmission.

Chapter 7 discribes the query language generator, which is used to generate FOCUS

code for data retrieval. Knowledge acquisition in Expert-MCA is also included at the end of

this chapter.

Chapter 8 detials the programming implementation of Expert-MCA. The requirements

of hardware and software for the implementation are first presented, followed by a set of

desired programming features for the implementation. Design algorithms for connecting

functional modules are then presented.

Chapter 9 concludes this thesis with a summary of Expert-MCA. The chapter also

outlines the contributions of this thesis and recommends further future work.

The reader who is only interested in what this study covers, Chapters 1 and 9 are

reading materials to start with. With reading additional materials in chapters 3 and 9, the

reader may get brief ideas of how the system works. The reader who goes over Chapters 2, 5,

6, and 7 will get more concrete ideas of how this study has been done technically. If you are

interested in how the system is implemented, Chapter 8 and Appendices B and D are a

necessity. For those who are new to the subject of Al or MIS, Chapter 2 and Appendix A are

good supplemental maeterials.

-16-

Chapter 2

Related Work

This chapter first reviews use of construction management databases. Having

discussed the problems in their use, this chapter continues to examine potential advantages of

using techniques developed in Al and MIS research to solve the problems. Research work

essential to the development of Expert-MCA is then identified and characterized, including

natural language processing, database management systems, and knowledge-based expert

systems.

2.1 Database Management Systems and Construction Management

2.1.1 Introduction to Database Management Systems

A database is a collection of related factual data for an entity ranging from a person to

a big organization. Database Management Systems (DBMS), using electronic devices such

as computers, are systems that are built to manage massive databases effectively and

efficiently. Such systems all provide tools for facilitating data processing, which may

include data collection, data storage, and data distribution. Database systems often encounter

problems when the users are getting more and data items/records become larger, or the

operation of data processing is getting more complex. Such problems are closely related to

such issues as reducing redundancy, avoiding inconsistency, sharing data, data security, data

integrity, and data independence [22].

In addition to shielding users from knowing the details of how to physically

store/update data in computers, a database management system can provide end users with

following benefits: availability of getting accurate and up-to-date data, efficient and easy

retrieval.

Data model is a representation of data collected in a database system. It is used as a

guidance of organizing and structuring the data in a uniform formalism. The selection of a

data model has to consider the following issues: What are the general patterns of data being

collected? What data models are available? How is the data going to be used?

Most commercially existing database management systems have been implemented

with the following data models: hierarchical, network, and relational [22]. The three data

models, however, all have the problems of addressing their data semantically. Namely, they

all lack the ability to embody the meaning of stored data. Rather, the interpretation of data

items or the relationships between data items is solely depending on users' knowledge on the

data items. The importance of understanding data is two-fold: one is on operational issue;

the other is on the use of retrieved data. If users are not doing right during an operation, the

system may have no way to detect or even to recover the errors made accidentally. It is

simply a piece of garbage to users if they do not understand the meaning of retrieved data.

As a result, to incorporate more meaning into database systems becomes the theme of

semantic data models [37, 63].

The research on semantic data models at present is very active, particularly after its

interwinding with the research in Al. In a semantic model, the concepts of entity, property,

and association are first identified, followed by a representation as symbolic objects for such

concepts. Integrity rules can be applied to these symbolic objects for ensuring the semantics

existing in data items. These objects can also be manipulated through a set of operators.

Since the early and most influential one of its kind was proposed in Chen's

Entity/Relationship model in the mid 1970's [17], various semantic data models have been

proposed [37, 63].

As can be imagined, capturing the meaning of the data is a never-ending task, and we

can expect to see continuing development in this area as our understanding continues to

evolve [22]. For long existing database systems, such as the CAPCES system, it is very

unlikely to remodel their data models to capture more meaning of data. Instead, their

coupling with new knowledge processing systems is a more promising alternative. In fact,

one of the objectives for the development of Expert-MCA is parallel to such a recognition.

Most of data models mentioned above are coupled with data definition language

(DDL) and data manipulation language (DML) for users to interact with database

management systems. DDL is used for the definition or description of database objects such

as: record types, relations, views, while DML for supporting the manipulation or processing

of those objects. The language used for retrieving data is also called query language.

-18-

2.1.2 Use of Construction Management Databases

Use of database management systems has become a prevailing necessity for helping

manage organizational business events such as inventory, payroll, personnel, and accounting.

Engineers also recognize that database management systems can be efficient tools for

extending use of the data among many participants for engineering applications.

Applications of DBMS in business and engineering can be quite different in many aspects,

such as how real world objects are identified, how information of the objects are encoded

into data and stored in databases, how the data is used, how the data is entered, and how

often the data is updated. It has been a challenging issue for managers to manage to better

integrate the use of DBMS. This issue is particularly complex to construction managers,

since construction management is involved with both business problems and engineering

problems.

A knowledge gap always exists between decision makers and programmers in using a

large database management system, such as the CAPCES database. Decision makers need

information for making their decision. What information they need is depending on how

they view the real world and how they would solve their problems. Although they own

working domain's knowledge, they may not be good at retrieving data from databases. On

the contrary, programmers know how to retrieve data from databases very well. However,

they may not realize what data is needed for making decision and how the data is used to

solve problems in the application domains.

While most currently available databases can bring construction management a great

help in data storage and retrieval, this thesis places a focus beyond data storage and retrieval.

Rather the focus is on how the data can be used effectively and efficiently, how information

can be extracted from the data, and how knowledge can be accumulated from data

processing.

Data is simply garbage if users do not know how to interpret it. Data becomes useful

information only when it is meaningful to users. Information about objects may be compiled

as knowledge when users familiarize the meaning of the information and recognize the

possible relationships or patterns among the data items about objects. The real value of data

is not realized until it is associated with or compiled into knowledge that can be used

repeatedly in construction management. When the scale of databases becomes larger, the use

of data and its interpretation becomes vaguer and more difficult.

-19-

A construction management database is not limited to the use as an efficient device for

data storage and data retrieval. It can also be a rich source from which one can gather

experiences and compile them into knowledge. Since the information about construction

management is highly complex in terms of its structure and format, to capture and store the

information in an appropriate format is never a trivial task. As can be seen in the CAPCES

database, many fields for project status or history of project development store values that are

artificially encoded to map with real world events. There exists tremendous information that

can be extracted from construction management databases, including the recovery of

meaning for the code and other field values. Moreover, ineffectiveness of leaming

individually at fields and inefficiency of communication among participants, two of

disadvantegeous characteristics in the construction industry, can be improved by better

utilizing databases. Currently, databases might be the only available medium that

construction participants can communicate with each other for the data stored. Therefore the

data collected in a construction management database deserves more attention for better use.

The challenge is how we can better use it.

2.1.3 Adding New Information Techniques to Construction Management

Knowledge processing for problem solving typically consists of the following steps:

knowledge formalization, knowledge representation, and reasoning. AI research has been

focusing on the subjects of knowledge representation and knowledge reasoning, while

leaving knowledge formalization almost untouched. This is because it is impossible for a

person to formalize a domain without prior knowledge about the domain in question. This

also suggests that Al researchers, most without backgrounds on the construction domain,

simply cannot do it for us. Instead, we have to formalize the domain by ourselves in such a

way that we could better make use of newly available information technologies to improve

our performance.

Information processing technologies such as those used in database management

systems and knowledge-based expert systems have been widely recognized as powerful tools

for improving work performance in the area of construction management [38]. However, the

techniques employed in natural language processing and object-oriented programming are

also needed [53]. It is our responsibility, and also a challenge, to adopt such technologies to

solve our problems or improve our work performance.

With the complexities and characteristics of construction management in mind, we

have to study how such information processing technologies should be applied to help solve

problems in construction management. A key to a success for the application is that we have

to know the strengths and the limitations of such techniques, the characteristics of our

problems, how such technologies can be fitted into our domain frameworks and then work

out desired results.

In order to solve the problems of an interdisciplinary subject such as construction

management, one needs more integrated systems, by incorporating various knowledge

sources and adding new information processing technologies to better make use of the

strengths of individual ones. Specifically, such integrated systems should be coordinated

with better information flow procedures in an organization; be allowed to have a broader use

of information; and be dynamically customized to meet user's needs [53].

While many research issues are all critical and essential to what and how new

information processing technologies can be added to construction management [49, 50, 77],

this thesis presents a prototype system trying to integrate some information technologies,

being discussed in the following sections, with the following objectives: to achieve a broader

use of information from a construction management database or related information sources;

to allow users get timely information by using near-natural language queries; to allow users

to define knowledge for such processing.

2.2 Nattiral Language Processing

In this section, natural language processing (NLP) is introduced, followed by a

discussion of how conventional NLP can be difficult in dealing with some problems.

Examples from the construction domain illustrate a need for a better approach.

The reader who is not familar with problems inherent in natural language and major

issues in natural language processing is strongly referred to the materials in Appendix A.

2.2.1 Introduction to Natural Language Processing

Current development of natural language processing has evolved from research in

areas such as linguistics and computer science. Natural language, as opposed to formal

languages, which are artificially developed to communicate with computers, has been leamed

and used for daily communication since our childhood. The process of understanding natural

-21-

language and generating further representations which are used to communicate with

computers is called natural language processing.

In addition to the knowledge about the domain discussed in a communication process,

the understanding of natural language needs a variety of linguistic knowledge, such as the

awareness of the structure of a sentence, the meaning of each word in the sentence, the

implication of context and discourse. In order to allow computers to understand and thus

communicate with target participants, many researchers, primarily with computer science

backgrounds, have devoted themselves to the issue of how to represent and reason with the

knowledge that is conveyed in a communication process.

Primary phases in natural language processing are syntactic analysis, semantic

analysis, and discourse interpretation. Natural language processing has to deal with, among

other factors, the following issues: how to characterize the capabilities that the system

should have, how representation is used for internal processing, how the system architecture

is designed, and how the system can deduce or reason new information logically and

correctly.

Being fundamental to the other phases, syntactic analysis plays an important role in

natural language processing. It deals with how the words in a sentence group into phrases,

and in turn how these phrases group into larger phrases. Grammars and parsing algorithms

are the core issues in this analysis. A parser is a construct that employs an algorithm to

produce a structured representation, called a parse tree or a derivation tree, for a sequence of

words according to a set of grammatical rules. Based on the definition of words and phrases,

a parser should be able to form efficiently a structured representation that in turn can help

interpret the sentence as a whole in semantic analysis. The various constructs of parsers

reflect the different views of their designers on how the words are used structurally and

semantically in sentences, what problems are to be attacked and what knowledge should be

used in order to attack the problems [64].

Although syntactic analysis is currently the most well-developed area in NLP,

conventional approaches employed in syntactic analysis are not always satisfactory to parse

sentences which consist of words with multiple meanings or multiple word classes. In other

cases, sentences may be further compounded by containing split terms2, each consisting of

2A military engineering officer may request: "What are the projects in fiscal year 88 with program amount
over 5000?", where the split term FISCAL YEAR 88 consists of a primary term FISCAL YEAR that expects an
associated variable term; in this case it is the number 88.

-22-

several words that are separated in position and as a whole contribute to a complete set of

meaning. Moreover, many professionals tend to use their domain jargons which may cause

words to have different meanings in different contexts.

The following section will identify problems which traditional systems of natural

language processing are found inadequate or difficult to resolve, and thus propose a more

promising approach.

2.2.2 Issues in Natural Language Processing for the Construction Domain

To capture ideas underlying the literal expression of sentences, participants in a

communication process not only need linguistic knowledge, but also information about

context and knowledge about the domain in discussion. Owing to the lack of context or

knowledge background of a domain, a novice may not capture the meaning of an utterance

about that domain at all, even if he or she understands quite well the meaning of each word

and the syntactic structure of the utterance. This is the case that often happens to students

when they start a new subject.

Based on their observation on language use, researchers have been building a variety

of natural language processing systems for the past few decades. Since natural language has

a great deal of complexity in its use, researchers often tend to work on a particular part of the

full scene that natural language performs. As a result, different systems designed for

language understanding (or natural language processing) so far reflect the facts that their

designers view language use differently; that some problems are more important than others

and should be resolved first; that different application domains are chosen for best illustrating

their key arguments about natural language processing.

Currently, many natural language processing systems have been designed to interface

with existing databases, using one parsing approach or another depending on their

application domain and the language patterns most frequently used in the domain. For

example, the INTELLECT system (formerly called ROBOT), one of the few systems that has

already been marketed, is designed to work with any database of the right form, using the

contents of the database itself as the information source for determining the meaning of its

input sentence based on a semantic grammar approach [91, 93]. It can parse input sentences

and retrieve data stored in a target database, with a simple calculation to the stored data if

necessary.

-23-

However, most conventional systems for natural language processing do not provide

mechanisms, or their capacity is inadequate, to cope with the following issues: how to

specify the contexts involved and the information about users, how to define knowledge for

resolving ambiguities, how to specify meaning of terms or data items, and how to further

process on retrieved data. These facts reflect the need to design systems that require more

knowledge for handling requests that often go beyond the capability of currently available

systems. As a result, Expert-MCA is designed to provide utilities for solving the problems as

mentioned above.

The need to cope with the above issues can be exemplified by the following queries.

1. What are the FY 88 projects in MA and PA with PA over 900 and
construction completion percent less than 80?

2. What are the housing projects that need congressional notification?

3. What are the design funds in FY 88?

4. When is the latest date to submit projects to OCE for FY 91?

5. Show the design performance for FY 87 projects by designers.

Use of language (or meaning of terms) can be domain dependent and context involved.

In the first query, the word MA may have two meanings: state code is 253 and program code

is MA (for military army projects). Note also that there are two PA's in the sentence. The

first one stands for the state of Pennsylvania and the second one for Program Amount.

Semantics is required to differentiate the two. In the second query, "housing" can be defined

as "CATCD34 IS 173 OR 175," whle "congressional notification" as "(Current Working

Estimate - Program Amount) > 2000 OR (Current Working Estimate / Program Amount) >

1.25."

Concept in use of language can be indirect to a field name or field value. The term

"construction completion percent" is not directly related to a field name in the CAPCES

database. Rather, it shares the field DESPERCENT with the term "design percent," but with

different ways of inserting a leading letter 5 to its field values. Namely, "construction

3Although MA can also be defined as a term with the definition: "State is Massachusetts", or as a synonym
for the term Massachusetts, which is associated with a field STATE, this thesis will stick on the definition:
"STATECD IS 25," where STATECD is for state code.

41t stands for project category code with 3 digits.

51n this case, the letter C is used to combine with a percentage for "construction completion percent," while
the letter D is for "design percent."

completion percent less than 80" is encoded as "DESPERCENT LT C80," while "design

percent less than 80" as "DESPERCENT LT D80."

Answers to queries may not be from individual fields, but from statistical,

mathematical, or logical operations on data. The derivation of design funds6 , as in query 3

above, is a process of combining logical operations on some fields and mathematical

calculations on other fields.

Answers to queries may not even come from databases, but from inference with

domain knowledge. To find the latest date to submit projects to OCE7 , as in query 4 above,

one has to consult with regulations or know the practices.

To derive answers to queries can also be a very complex process, combining data

retrieval, pre-access and post-access procedural processing, and rule based inference. To

evaluate design performance of a designer 8 , for example, one has to identify the projects

being designed by the designer, evaluate the design performance for each of the projects, and

average the design performance over the projects for the designer.

2.3 Knowledge-Based Expert Systems

Knowledge-based expert system (KBES) is a computer program which can serve users

as a consulting expert or an assistant in a narrow and specific domain area. While some

researchers deliberately distin guish underlying ideas of knowledge-based expert systems,

knowledge-based systems, and expert systems [38, 87], this thesis does not try to make

distinction among them. Instead, we use the term knowledge-based expert systems to

include the other two, or use them interchangeably.

2.3.1 Introduction to Knowledge-Based Expert Systems

Prior to the last decade, Al researchers tended to rely on non-knowledge-guided search

techniques or computational algorithms for problem solving. These techniques were very

6This is illustrated in Section 6.5.2.

7This is also illustrated in Section 6.5.1.

8Please see Section 6.6.

-25-

useful in solving well-structured problems. However, realistic problems usually have

characteristics that require an enormously large search space involving many parameters.

For such a problem, these search techniques have generally proved to be inadequate and a

new approach is needed. The new approach emphasizes use of knowledge explicitly. For

example, knowledge can be used to bound or reduce search space, to guide how to do

inference. This new notion of knowledge use has led to the field of knowledge-based expert

systems, which are a better alternative for solving problems in the domain that are ill-

structured or the conventional programming systems are not suitable.

The unique features of knowledge-based expert systems may outweigh conventional

programming systems in solving problems in some domains. Conventional programming,

such as the ones written in Fortran or C, often requires the programmers themselves be the

experts of the domain for which the programming system is written. Its programming style

is procedure-oriented, meaning that a program is a collection of procedures which mix

domain knowledge and inference knowledge. The mixed use of domain and inference

knowledge in programming code has made it very difficult to understand and maintain.

On the contrary, knowledge-based expert systems separate the knowledge for inference

from that about a specific domain. This new programming style facilitates many benefits,

such as expertise knowledge or heuristics acquired from experts could be easily

implemented; the system can grow by adding/updating new knowledge incrementally; the

knowledge encoded is transparent to users or experts so that they can easily understand or

debug the reasoning results: the reasoning process can be traced if necessary.

The module that does inference in a knowledge-based expert system is often termed

inference engine. Typically an inference engine consists of two special sets of knowledge:

that serves as rules for inference (such as deductive rules) and that controls how inference is

processed (such as forward chaining or backward chaining).

2.3.2 Major Issues in Knowledge-Based Expert Systems

Inference capability and knowledge representation are the two key issues in

knowledge-based expert systems. They are closed related. To select a knowledge-based

expert systems for an application domain, one has to take into accounts both of them.

Different representation systems can be used to represent a domain knowledge once the

domain is formalized. Rules, frames, semantic networks, and formal logic are the

representation systems most frequently used in knowledge-based expert systems currently.

-26-

Each of the systems tends to be better in one aspect, but may be worse in another. The

expression of knowledge and reasoning process of a rule-based system are transparent to all

kind of users, but it is not suitable for representing procedural knowledge. Although it can

grow by incrementally adding new rules, its performance may decrease dramatically when

the number of rules is getting larger. As long as we can have clear semantic specification for

the formats and symbols used in a formal logic system, its reasoning capability has proved to

be logically correct given factual premises. However, it cannot guarantee to run efficiently

and effectively in every domain. Nor is it appropriate for representing procedural

knowledge. In many aspects, we may think that frame-based systems were evolved from

semantic networks. In general, frame-based systems are quite flexible in expressing both

procedural knowledge and declarative knowledge. However, their reasoning capability can

differ very much from one system to another.

Expert-MCA has applied the framed-based systems as its backbone for its knowledge

representation, together with reasoning mechanisms that combine those embedded in other

representation systems. For example, context driven reasoning 9 is used to identify (or infer)

the relationships between objects semantically. To manage information in its processing,

Expert-MCA also employs the concept of blackboard, which is introduced in the next two

paragraphs.

A blackboard is typically used as a temporary environment or working place for

exchanging information among individuals of a group of people, each holding some kind of

expertise for solving problenm in question. The concept of blackboud has been extracted by

Al researchers to model our problem solving process and organize knowledge with

hierarchical nature [60, 61, 82]. The blackboard model has been applied to solve various

problems, such as the HEARSAY-II speech recognition system [25], SITEPLAN [76], and

BB1 [28].

A blackboard framework consists of three major components: knowledge sources,

control, and blackboard data structure. To solve a problem, we may need a variety of domain

knowledge, which can be partitioned and kept separate as different knowledge sources, each

being capable of solving a sub-problem. The various knowledge sources can modify or

update the information which is posted onto a so-called blackboard, or a global database. All

Ths is a generalization of inheritance mechanisms embedded in frame based systems. Please refer to

Section 4.4 for more details.

-27-

modifications to the information on the blackboard are explicit and visible to the knowledge

sources. Control mechanisms are required to monitor changes of the information and the

status in solving problems, and hence to decide who is going to work next and when. It does

not matter what knowledge representation a knowledge source is encoded. Knowledge

sources can be represented, for instance, as rules or procedures. However, it requires

uniform syntax and semantic for representing the information on the blackboard.

2.4 Interaction among NLP, DBMS and KBES

The technologies employed in natural language processing, database management

systems and knowledge-based expert systems have proved to be useful in various domains.

As needs and technologies continue to evolve, however, the emerging of the three becomes

prevailing both in academic environments and real world applications. This section

discusses how they can emerge.

2.4.1 Natural Language Processing and Database Management Systems

The easiest way for a casual user to communicate with a database management system

is via natural language front-end interface. As data in data management systems is getting

more complex and the systems become larger and more distributed in use and location, the

canability of qhielding users from knowing the detailq of the databases or writing formal

query languages seems to be a necessity in the future. With this in mind, researchers both in

academy and industry have been geared to develop better NLP techniques for interface with

database management systems, mostly with those used currently.

Most application research on the subject of natural language today are working on the

issue of how we can design a natural language front-end in which users, both sophisticated

and casual, are able to communicate, often for data retrieval only. with database management

systems, because database management systems are readily available in enormous

organizations and, more importantly, there exists a constant demand for such

communication. Issues such as transportability, effectiveness, distribution are important to

this emergence. Some of such research results can be exemplified in the following natural

language processing systems: TEAM [30], ASK [74], EUFID [70], Ginsparg's system [29],

IRUS [9], CHAT-80 [83], and LDC-1 [5].

-28-

2.4.2 Natural Language Processing and Knowledge-Based Expert Systems

Knowledge-based expert systems may require natural language processing for

generating explanations about their reasoning process and results in English-like statements.

In order to respond in a more friendly fashion and explain a reasoning process, knowledge-

based expert systems need to provide facilities for users to interact with them in English-like

statements. Therefore provision of natural language processing is essential to meet such a

need. An early knowledge-based expert system MYCIN, for instance, implemented a

module to handle the interface with users in a natural and transparent style [58].

Knowledge-based expert systems could provide explanations about: how a decision is

made; how one piece of information is used; why another is not used; why it fails to make a

certain decision; what the system is doing now. It is believed that there are reasons for a

knowledge-based system to explain its reasoning. These might be for the purpose of

understanding, debugging, education, acceptance, and persuasion [69].

The other perspective that we can draw from the relationships between NLP and KBES

is following: KBES can serve as knowledge sources and inference mechanisms to help

process natural language. Much of the knowledge required to interpret the words or contexts

involved in natural language is heuristic and domain dependent. With this in mind, one can

incorporate the expertise knowledge about lexicon, syntax, semantic, discourse context, and

pragmatic domain into a knowledge-based expert system which in turn provides language

nah zer necess infom on m its course of prncesing natura! language. While this idea

is no longer ne,. many researchers have devoted themselves to this end

continuously [21, 68]. The important works of this line include Schank's conceptual

dependency theory [66], Schank and Abelson's SCRIPTS [67], Wilensky's SAM [90], and

works by Carbonell, Cullingford, and Gershman [15].

2.4.3 Database Management Systems and Knowledge-Based Expert Systems

DBMS is good in processing large amounts of data, while KBES is good in problem

solving. Four types of coupling between these two systems can be identified, as graphically

shown in Fig. 2-1. The first one is that knowledge stored in KBES can be used to direct

DBMS how to proceed in data processing, such as data updating and data retrieval. In such a

coupling, KBES indeed serves as a front-end to DBMS. By doing so, we can add to DBMS

with semantics that will, for example, help maintain data integrity in databases. Without the

-29-

Type 1.

Support
KBES

Reasoning

Mechanism

Type 2. USER

Provide
KBES

Tvoe 3.

Knowledge Base -'ar agement Systerr

KBES DBMS

Figure 2-1: Coupling betweeni DBMNS and KBES

Pr,- "],:, i - a -4

-30-

. ase system, such kind of coupling is somehow able to

imed by semantical data models. An intelligent database

by GTE, is an example of such coupling system [41].

in proceedings on Expert Database Systems [44, 72].

'MS can serve as a supplemental information source to

ults useful to its users. If necessary, mapping mechanisms

form expressions in KBES to target query language code,

r data retrieval. The data obtained from databases is next

further processed in KBES. Users of the KBES may not

se two systems. The development of KADBASE is a good

s [35, 36]. However, its use of rule-based representation

:omplexity that mapping of expression between KBES and

two systems can in parallel serve as different information

em should sit on top of the two systems and decides which

ae at a time. User's requests for information retrieval can

-er 'hat eventually merges the information retrieved either

,d expert systems into the one that makes sense to users. In

ics of the infornation retrieved from databases and from

nay be quite different. Namely, the fonner is more about

m he measured objectivel by any person or can be

s. On the other hand, the latter is more about heuristic

gement or can be described by verbs. The CIS/TK system

ormation Systems) falls into this category [55, 84]. As can

s, this thesis employs this type of coupling in conjunction

ation requested by users.

concept of knowledge base management systems (not

nsiders all the information currently stored in databases or

vledge, which should be managed in a unified way just like

case management system. Many issues raised by such

cussed in a 1985 conference [14].

knowledge-based expert systems and database management

;tratigies are suggested: enhancements of existing systems,

ation resulting in a new class of

ling a sophisticated data access

soning capabilities. The coupling

ploy the KBES functions for more

same time play the role of an

very large database. This strategy

lied by the DBMS and to act as an

pration of KBES and DBMS is

constrained by KBES and DBMS

ks on both systems.

ity is concemed. Rather, its choice

lems to be solved, constraints of

-power, cost, and time. In the case

ould be more attractive, since the

search cannot interrupt CAPCES's

mendous ongoing projects.

aupling described above becomes

its from these three and to solve

ction domain, there exists a great

at strengths of them can be fully

Dlved, the design or arrangement of

-MCA is an integrated system with

t queries are received by a natural

:Mal representation for the queries.

ting module which will decide what

: system in Expert-MCA can play

dge source providing advices to the

iatural language processing module

-32-

and for constructing more complete queries with the knowledge about the user and the

domain. In parallel to the CAPCES database system, it can also serve as another information

source to the reasoning module by executing rule based inference and procedural processing,

which are triggered by some terms in the input queries.

-33-

Chapter 3

Overview of Expert-MCA

Just as do database management systems facilitate users the use of data at present, so

can knowledge processing systems help the practitioners to organize its knowledge structure,

to collect and maintain knowledge systematically, and to infer new facts automatically. Such

knowledge processing systems are deliberately integrated by incorporating various

knowledge sources and adding newly available information processing technologies, together

with comparable reasoning capabilities, to better make use of the strengths of individual

ones. Specifically, such integrated systems should be coordinated with better information

flow procedures in an organization; be allowed to have a broader use of information; be

dynamically customized to meet user's needs; be able to automatically reason new facts [53].

Expert-MCA is a knowledge processing system which provides both knowledge

acquisition facilities and problem solving. Its primary application is convenient querying of

a large database, but its reasoning capabilities can be used for other problems. Its

architecture, shown in part in Fig. 3-1, will be explained in this chapter. The technologies

included in the system are natural language processing, rule based inference, procedural

processing, database data processing, and object-oriented representation and programming

langu ages.

This chapter first presents the desired features for the system design of Expert-MCA,

followed by a brief overview of its system architecture. Next, it describes the processing in

the Query Session, a major session that users run in Expert-MCA.

Note that the materials in this chapter give only a brief overview about what is done in

each of the modules in the Query Session. How such modules are designed and processed

are described in the subsequent chapters. The reader who is interested in how the system is

designed and processed in more details may take a look at Fig. 3-1 and then skip this chapter.

-34-

REPOSITORY

SQUE
RY GENERATOR-

Figure 3- 1: System Architecture of Expert-MCA

-35-

3.1 Desired System Features

Expert-MCA is designed under the considerations of the following features:

friendliness, transparency, expansibility, transportability, and effectiveness. By friendliness

we mean that the system emphasizes mechanisms for ease of use such as by providing

learning examples, on-line help, detailed help messages as operational guides. The words or

phrases used for requesting information should be as transparent to user as possible, since it

is users who use and maintain the system. For simplicity, a word or a phrase used in Expert-

MCA is called a term. In order to allow users customize their needs, terms can be defined or

modified as they need. The definition of terms should be as easy and apparent as possible,

either with a free format or a guided approach. The system grows as it accumulates its

knowledge by having more terms and incorporating more knowledge sources.

Since ambiguities inherent in natural language sentences cannot be completely

resolved, the system allows users to correct its understanding of the query sentences if

necessary. In order to be adopted by similar applications, the programming style of the

system should be as modular as possible so that code revision and preparation can be as less

as possible.

3.2 General Architwcture

The sysiem 1' i,1;me , i1en, w 1 free itd oat." entr into slots witmin screens.

The major session that users run in Expert-NICA is the Query Session, which is used to

produce answers to near-natural language queries. Its supportive modules include Teaching

Session, Profile Update Session Download Session, Standard Report Session, etc. In the

Teaching Session, users can teach the system with new words and phrases or leam from the

system about how tenns are defined. Users can update or review user profile and domain

profile in the Profile Session. The user profile specifies information about user's background

information, including the agency and job the user is working on, the particular projects or

time span he or she is interested in, default data items for queries, the password and

communication parameters for him or her to enter the mainframe in Texas, etc. On the other

hand, users can specify knowledge about the domain in the domain profile, which is used to

reason new facts necessary for producing answers to the input query. How the profile

information is used and entered will be discussed in the subsequent chapters, while rest

sessions are presented in Chapters 7 and 8.

-36-

The system uses a blackboard architecture where facts are posted to the blackboard by

various processes of the system. For example, when a user logs onto Expert-MCA, the date

and a variety of information from the profile about the user and domain are posted. At

specific points, the reasoner, an inference processor in the system, is called to exercise a

specific rule or a procedure against the facts on the blackboard to derive new facts or supply

results.

The query capability uses of five major modules: a user interface, a language analyzer,
a reasoner, a knowledge repository, and a query generator. The user interface during query is

free field input in near English. The user's requests are passed to the language analyzer,

which finds word and phrase meanings in the lexicon and transforns the input into an

internal representation. The reasoner then works to form and execute a query. It does so by

operating on the word and phrase definitions, executing in the process any procedures and

inference processes identified within these definitions. If a database query is identified, it

will call the query generator to generate query code for retrieving data from the CAPCES

database. The query generator then calls the database, which may be either on the mainframe

or subsetted on the PC. It can read the PC database structure to determine if all data needed

for the response exists on the PC. If not. it provides the user with the option of accessing the

mamnframe or modifying the query. A communications package provides transparent access

me mair une and data i< then ipored o Expen-MCA. Tle reasoner may operate

further on this data or merely pass on the output as a report.

e oachi U I U anga a e C n eanguage processoi

depends upon the scope of infornation, the nature of interpretation problems to be resolved.

and how much ambiguity exists in the natural language [64, 91]. All the natural language

processing systems must build at least an internal representation for the input query. A

natural language processing system for database retrieval should have information about

words, phrases, syntax, semantics, and a target query language.

The language analyzer in Expert-MCA is a context driven parser which transforms the

English query into an internal (or intermediate) representation. This consists of a list.of

words or phrases in a semantic tree structure based on word or phrase type along with their

dictionary definitions. These definitions may include procedures which are sequences of

data manipulation and reasoning to be executed as a consequence of the use of the word or

phrase. Arguments for the procedure may come from the blackboard or other words or

phrases in the query. The reasoner then tries to move the meaning of words or phrases into

-37-

~. ~

I'~

query slots, these slots identified as requested results, selectors, and sorters. The r,

looks for procedures, stored with trigger words, and executes these procedures frott

right in the order of the trigger words. The procedures may take and leave informa

the blackboard, may bind other words or phrases in the input to the procedure, may c

bases which reason from information on the blackboard, and retrieve and manipulh

from the database.

The knowledge repository consists of a lexicon, various procedures and rule ba

information about the user. The lexicon is a collection of terms used by users ,

system. It also includes the data definitions in the target database. Some of the tel

synon'ms for data fields or items. others are synonvms for values or ranges of va

fields. For example, "family housing" includes a range of values of a field "categor

Other terms have semantic meaning or reference procedures.

Knowledge is primarily stored in rule bases and procedures. Basic knowledge

modified and supplemented by the user. Knowledge includes interpretation of the dat

user profile, syntactic knowledge, semantic knowledge, and report generating kno,

The reasoner calls such rule bases or procedures after the parsing by the language ai

The blackboard is useJ a a 01o area tor infonnation updating and exchar

e ni process. Ic of va rious ao for sto i ; all the infrmatpn neces

Expert-MCA.

procedures, or from execution of a rule base. If requested infornation does no,

database retrieval, the user will obtain results from a procedure which will print resu

the blackboard. The system is therefore not limited to database queries. Howeve

answer to the particular query requires information from the database, the reasoi

activate the query generator to generate a list of the database retrieval commands, wh

be displayed to the user, as an option, for his modification. The command list is, ther

the target database. The query generator is the module that translates the

representation to FOCUS commands used in CAPCES. If Expert-MCA is not

recognize words in the query, the user is asked to extend the system's vocabulary t

series of straightforward interactive screens provided in the user interface. These ne-

or phrases are stored in the lexicon for future use. In this way the system

personalized for each user.

Many queries can be answered by filling in the query slots for results re

-38-

selectors, and sorters, and retrieving the results from the database. The database output then

becomes the report. More complex queries, coded in procedures, can import data retrieved

from the database and perform further pattern recognition searching among the data.

The system provides several tools for extending, personalizing, and learning to use it.

These include a teaching capability and facilities for defining new words and phrases. They

also include a capability to input and edit procedures and rule bases. For these, the user is

aided by prompts related to the structure of the input. For example, in defining a procedure,

the system knows each line must start with a command. The user can easily select among the

alternatives. These must be followed by a variable, and so on. Editing existing knowledge is

equally easy.

3.3 Knowledge Processing in Expert-NICA

While the details of knowledge representation and reasoning in Expert-MCA are

described in Chapter 4. the section only presents an overview about its reasoning process

from a functional standpoint. Chapters 5 and 6 have mre subtle discussions about such

issues as why an approach is employed. how%, a mc1hanism is constructed, and how each of

he modules is processed

Reasoning in this knowledge based query system is primarily performed in the

nMOrmat1in retrieval from the database or rule bases;. and manipulation of the retrieved data.

In this section knowledge representation used in the system is briefly covered before

describing how knowledge processing is done in the system.

A user query is composed of many terms. A term can be a single word or multiple

words in structure. The terms used in Expert-MCA are classified into six types: database

field name, field value. procedure, rule base, synonym. and other word or phrase. Each term

represents an object, a concept, or a knowledge unit related to the domain of the application.

A frame representation is used to store the terms used in the system, with slots for different

types of information about the term. Terms of the same type have an identical set of slots.

The frame name is the term itself. All the terms are collected in the lexicon of the system.

Except for terms which define database fields and cornmonly used vocabulary, terms are

defined and maintained by the user. From a database management point of view, the terms

act as a data definition language (DDL), while the user's input sentences as a data

manipulation language (DML).

-39-

The lexicon contains terms which are values of and related to specific data fields in the

CAPCES database. For example, Massachusetts is a value for the field named STATE.

Field names are also stored, such as FY for fiscal year. A term synonymous with another

term can be defined as a synonym for the other ten-n. For example, MASS and MA can be

defined as synonyms for Massachusetts. A procedure or a rule base, just like the other terms,

is defined by the user. It is associated with a trigger term which can be used in user's input

queries or it can be called from another procedure. Usually, a rule base is used to find new

facts, while a procedure is used to fonn a pre-access processing part (for example, definition

of temporary fields) for data retrieval, or to manipulate tables of retrieved data.

Word/Phrases are used for terms that are not classified in the other five categories.

"In" and "for" are such terms. "Cost overrun" is also a term of type word/phrase. In its

meaning slot the cost overrun frame has a slot value "current working estimate greater than

program amount", where "current working estimate" is a synonym for a field CWE, "greater

than" is a synonym for the other word/phrase "GT", and "program amount" is a synonym for

a field PROGAMT.

After query input, the language analyzer develops an internl representation for the

query Within the language analyzer, there are several phases: lexical mapping. lexical

anlss syntactic analysis and semantic analysis The lexical mapping module is to retrieve

definition for each of the tennis in the input query and push it Irto an information stack.

If any word in the infonnation stack is indexed with "undefined". then the system will ask the

the option to ignore the word or correct it if it were misspelled.

After the lexical mapping is complete, the information stack consists of a sequence of

terms and their associated definitions, including syntax and semantics. The lexical analysis

module first assigns phrases a a higher priority than individual words and longer phrases

higher than shorter components in the retrieved definition stack, and second tries to bind

words into phrases according to informationI about how to form a new phrase by binding a

key term with its neighboring terms.

A database query can be viewed as an attempt to collect a subset of data from a set of

11The needed information for such a binding is not the ones about parts of speech. The term newly formed in
such a binding process is called split term. This is to be explained in more details in Section 5.3. Note that the
information about parts of speech for terms is needed in the syntactic analysis module, as can be seen in Section
5.4.

-40-

data which is stored in a database. For such a collection, it is first necessary to know which

data items will be collected, and then to specify possible screening conditions which such

data items must meet. How to arrange the data in an output report can also be embodied in a

query.

Therefore, the syntactic analysis module tries to segregate, after using syntactic

information to form a partial parse tree, the terms in the user query into requested data items,

screening conditions, and sorting conditions. A set of heuristic rules is used to group the

components of the parse tree into these three parts. For example, terms that relate to possible

values of data fields indicate selection criteria. The word "by" or data field names without

values indicate sorting criteria.

Semantic analysis, which is next, is a process of capturing the meaning of both terms

and the sentence as a whole. In Expert-MCA, semantic rules are used to refine the three

parts for determining query constituents for data retrieval. The query constituents, as a result

of the semantic analysis, are expressed in terms of an internal representation and posted onto

the information blackboard.

In conjunction with the intormiation posted to the blackboard, the reasoner next

undertakes several tasks. Firs*. it tries to resolve the ambiguities left so far by applying

knowled e about the context implied m some term n m the- uuer, or about the denain The

domaun knowiedge, -uch as State is-a-kind-of Location and Locauion can-be-preceded-by-

preposition IN. are entered be the tert in d a ed to help clri-f\ some ambiiuitie:

of the iput query s ary.

Secondly. it refines the specification of data items in the query constituents by

activating a rule base associated with the user profile. It contains such knowledge as default

requested and sorting data items, and default screening conditions for data retrieval based on

the facts such as what job the user is working on, what agency the user is in, and the context

of the input query.

This task ensures that the system retrieves data that is appropriate for the user, even

though his input query may not be well phrased. For example, a user who is working on the

projects in a specific fiscal year may pose a query without specifying the fiscal year. By

firing the rules encoded in the user profile, the reasoner is able to specify an additional

screening condition of a specific year. The retrieved data might otherwise span long periods,

up to 15 years or more, which would waste human and computer resources. This rule base

is, of course, accessible and may be modified or supplemented by the user, to better tailor the

system to the user's perceived needs.

-41-

Next, the reasoner checks the blackboard to see if any term used in the input query has

meaning associated with procedures or rule bases. If it does, then the reasoner will activate

an inference engine which will execute these to generate new facts or data. The blackboard

then is updated.

For solutions to complex queries, the reasoner often requires procedures or rule bases.

A procedure may expect and require specific types of information, or arguments, such as

values of a specific field or fields with specific contexts. The inference engine is able to

search for the required information from the input query. If such information is not found in

the query or on the blackboard, the system will request the information from the user.

Procedures may also be nested for generality and convenience, one calling other procedures

or rule bases.

The next task of the reasoner is to determine the processing sequence for generating

the answer to the input query. It must determine if database retrieval is required, and if

manipulation beyond direct field values retrieval is required, whether the generated data can

be generated within the database manager (pre-access processing in that the system must

generate instructions to the database manager) or must be imported first and solved within

the svstem (post-access processing). A simple query involves only direct retrieval and

reporting, with possihle simplie pre-access processing for such tenn as difference between"

or "sum f" Mlore complex quer e bas on procedur s. eify 'omiputations on data

which may or may not he able to be executed in the DBMS's query language. The most

retrieved data.

The pre-access processing forms FOCUS program code for calculated data items and

flags. It also activates the query generator to generate the FOCUS language using the

internal representation of input fields and selection and sorting conditions found in the query

and resulted from the execution of procedures and/or rule bases. The communications

package then uploads the FOCUS program to the CAPCES latahase and download the

output from it. For retrieval, the system may log onto a mainframe being located in Dallas,

Texas, through a dedicated telecommunication network. To save retrieval time, the system

can retrieve data from topical databases downloaded previously to the PC. These are

downloaded during off hours from the mainframe.

Post-access processing uses data imported from the database to infer additional

information. Post-processing can range from a simple arithmetical operation to a pattern

search, or a diagnosis or forecast of trends. These are directed with procedures or rule bases.

-42-

Chapter 4

Knowledge Representation and Reasoning in the System

Computers have been widely used for number crunching and data processing for the

last few decades. Researchers in many areas today try to push use of computers even further

by imitating human's intelligence to solve more difficult problems or share more work that is

otherwise done by humans. Currently, computers still cannot accept natural language

directly as a programming language, since it exists ambiguities both in structure and

mueanng.

Expert-MCA is designed to derive answers to queries that are expressed in natural

language. To derive the answers, Expert-MCA must reason. One strategy for such reasoning

process is to establish mechanisms for transforming natural language to an internal

representation which facilitates further processing, such as resolving ambiguities in a query,

identifying its correct meaning. and processing tasks as requested in the query.

Knowledge representation and reasoning are closely related. As far as knowledge

representation and reasoning are concerned, the following issues are essential to the design

and implementation of Expert-MCA How does Expen-NCA translate English sentences. a

surface language as used by user\ to query the system, into an internal representation

literally conveyed by the query, indicated by context in the query. or specified in the profile

session to describe the application domain'?

The chapter discusses the knowledge representation and reasoning mechanisms

provided in Expert-MCA. They serve as a foundation for building the modules that are

discussed in the next two chapters.

4.1 Representation Features in Expert-MCA

Representation systems used in Expert-MCA are designed under the following

considerations: abstraction in logical representation and physical implementation, flexibility

to accommodate changes in views about the real world, facilitation of reasoning process, and

enhancement of reasoning capability. In order to facilitate the advantages of abstraction and

-43-

flexibility, many layers of representation between users and computers are required. As

shown in Fig. 4-1, an object-oriented representation used internally in Expert-MCA serves as

a middle layer of representation system between user's sentences and a third generation

language Lisp, which might further generate programming code in FOCUS, a fourth

generation language.

Natural Language

Sent enced (rame-based form)

n erna~ R:epresentat on

050 S <> eneration

Lisp Eli ORTPAN e-d Generation

Figure 4-1: Abstraction Layers between Users and Computers in Expert-MCA

The top layer language is used by users. It is a subset of natural language. The basic

unit of the top layer language is term, which is an English word or phrase. Query sentences

are the language used to ask Expert-MCA for retrieving information. Each query sentence is

composed of several terms which are defined by users themselves. The use of a term is

given in the next section, while detailed specification in defining a term is given in Appendix

B.

The second layer is an internal (or immediate) representation that is constructed with

an object-oriented formalism. The internal language needs reasoning mechanisms for

processing knowledge that is conveyed in the surface language of the top layer. Underlying

Users

-44-

such internal language is a formal computer language, Lisp. In some cases, the formal query

language FOCUS is needed because the target database management system CAPCES can

only recognize FOCUS for data retrieval.

4.2 Classification of Terms Used in the System

Terms are the basic units that the user uses to communicate with Expert-MCA. A

query sentence will be transformed into an internal representation with which Expert-MCA is

able to process knowledge for deriving answers. Symbolically, a term is a group of

alphanumerical characters which may have spaces between them. Namely, a term can be an

English word or phrase, or other alphanumerical symbols which make sense to the user.

A term is usually associated with either an object in the application domain or an

operator that is used to relate objects. An object can be an concept, a state, or a physical

entity. Each object may be represented or derived by its more refined subobjects in

conjunction with some operators. For example, terms such as cost overrun, expected cost,

and actual cost are all concepts. However. the concept cost overrun can be semantically

refined by using the other two concepts. Namely, cost overrun can be defined as: actual

:t a ereater than expected cot Tem an nave multiple meaning . For inqtance. MA

is a field value for the field PRCD (for program 1o n CAPCES. It can also be used as a

evnonym for the state of Massachusetts

le knoXlede bein exma mm m m n entences is embedded in their

definitions stored in the dictionary of the system. In order to help the system understand the

meaning of the input sentence and help the user maintain or update the dictionary, terms are

classified into six types: database field name, database field value, procedure, rule base,

synonym, and other word or phrase. These six term types are abbreviated as Fieldname,

Fieldvalue, Procedure, Rule, Synonym, and Word/Phrase, respectively.

A frame-based format is applied to represent a term. More detailed specification for

these terms are given in Appendix B. The values in slots of term frames can be a single word,

a phrase, a simple sentence, a series of production rules, or a series of procedural statements.

A term frame has the term being represented as its name. A term type is also specified in a

term frame. Term frames have different slot names for different types of terms. Each term

frame has two parts: leading part and property part. The leading part contains the term being

represented and its associated term type, while the property part has several elements, each

containing a slot name and its associated values. To save its size, the dictionary does not

record the slots with valued unspecified.

Fieldname and Fieldvalue correspond to the two primary data types in CAPCES

database. For example, "Massachusetts" is a value for the field STATE; FY is the Fieldname

for fiscal year. These two tenn types can also be viewed as the basic components of a query

sentence in meaning. Fieldnames are used to specify different fields of data in the database

for printing or sorting data items in reports. On the other hand, Fieldvalues are used to

choose specific ranges of data that the user wants to obtain. The term type Synonym consists

of terms that have equivalent meanings to other terms. For instance, CA and MA can be

defined as Synonyms for the two Fieldvalues California and Massachusetts, respectively.

Word/Phrases are used to represent English words, phrases, or acronyms which have

simple meaning in the application domain. By simple meaning here, it indicates that the

meaning conveyed in a Word/Phrase is direct, straightforward. not as complicate as

Procedures or Rules which have to be processed in order to get its correct meaning. The

content of the meaning embodied in a Word/Phrase can be a contextual phrase, an

arithmetical statement, the term itself. or not hin.

A contextual phraseIc) i a proposition tha. specitzf a condition about a data item or a

For example. fica i8 . oram1 am')m i le's th1n 500(00. state code is 24

or 25, actual cost is greater than budgeted cost, and overrun cot i's greater than 10000 are

oe rak o. and N alue Loc i operatn ' aA L 1 GT. OR. and GREATER

THAN stand for terms that specify logical relationships between the terms located prior and

next to it.

A data item can be a Fieldname or a derived-item. A derived-item is an item whose

value is derived according to a statement which consists of one of the followings:

(1) two CAPCES fields and an arithmetical operator;
(2) a CAPCES field, another derived-item, and an arithmetical operator;
(3) tow other derived-items, and an arithmetical operator;
(4) a CAPCES field, a value, and an arithmetical operator;

(5) a derived-item, a value, and an arithmetical operator.

For example, the term overrun cost is a derived-item since it is defined as current working

estimate - program amount, where current working estimate and program amount are two

CAPCES fields and "-" is an arithmetical operator. If a Word/Phrase term is defined as a

derived-item, it can be used as a pseudo-field in Expert-MCA. This is because the way that

-46-

a derived-item term performs in Expert-MCA is exactly the same as a CAPCES field. In

other words, once a pseudo-field term is defined, mostly with a term type Word/Phrase, the

user can conceptually treat it as a Fieldname term and use it to define other terms or pose

queries. For example, we may use the pseudo-field (or derived-item) term overrun cost to

define another Word/Phrase seriously cost overrun as overrun cost is greater than 1

million.

A Word/Phrase can also be defined as an arithmetical statement. In this case, such

Word/Phrase is a derived-item term. An arithmetical statement is composed of several data

items that are connected by an arithmetical operator, such as PLUS, MINUS, "+", "/", or "-".

For example, overrun ratio can be defined as "current working estimate / program amount."

Since such terns as logical or arithmetical operators are fundamental vocabularies of

the internal representation used in the system, they are defined as Word/Phrases with

contents identical to the tenns themselves. The terms such as GT, LT. EQ, +, and - fall into

this kind of Word\Phrases. Some other Word/Phrases may have functional implications in

sentences but do not contribute meanings directly for retrieving data from CAPCES. The

terms such as prepositional words fall into this group of Word/Phrases. Although nothing

enters in their meaning slots (i.e., Definition slot in Word/Phrase term frame), they do

proide functional mechunism\ to help Expert-NiCA interpret input 'entence<

Moreover, a term expecting to bind w its neighboring words in the input sentence as

new rhrase mn mne'nme can al be defined !1Wrd/Pra'e n h context of

CAPCES database, fm exam il. 1 contextual hr OnairsC conuctiOi .onpletion percent is

less than 40" and "design percent is greater than 80" are represented as "des-percent It C40"

and "despercent gt D80", respectively. The term "construction completion percent" or

-design percent" can be defined as a Word/Phrase in which the specification about how to

select variable terms is defined in slots of the term frame. Such a specification includes

locations of the expected variable terns in a sentence relative to its primary term, their data

types, and their value ranges. After such a term as "construction completion percent" is

defined, Expert-MCA is able to look for its neighboring words and test on them given the

1
2Such a term is also called split term, which consists of a primary term and some variable terms. The

specification for such a term can be referred to in Appendix B.

-47-

specification in the term 13 . As such, Expert-MCA can understand the meaning of some

values, such as 40 without storing the definitions of them in the dictionary. It also frees the

user from frequently converting a constant to a specific type of field values with a special

coding format such as converting "40" to "C40" and "80" to "D80" above. The terms

"construction completion percent" and "design percent" share the same field

"DESPERCENT," but with different ways of differentiating their values. In this case, the

forner adds a leading letter "C" to a numerical value, while the latter inserts a leading letter

"C."

A Procedure or Rule involves with more complicated meaning and cannot be

determined without further processing on the infornation that is not literally conveyed by

each of the tenns in the input sentence. Rather its meaning is dynamically determined based

on the context in the input sentence, the user's status or working profile, or sequences of data

retrieval. A Procedure differs from a Word/Phrase in that the former does not have a

predefined properties for expected variable terms. It often derives its value from contextual

information available during a query session. The context of terms in a sentence, for

example, can be used as an indication for a Procedure to associate with related terns.

A procedure tenn in a sentence is more like a function which looks for its arguments

ky context. The arguments may he extracted either from the tems in the same sentence or

knowledCe %ources which comaintormation about the ui and the MCA cycle. A

Procedure can ,e defined as a series of procedural statements which are executed for

a aAnerProced,,,ires ini the

course of answering the user K queries. Procedures can be used to define temporary (or

derived) fields, derive new facts, generate customized reports, evaluate work performance,

diagnose troubled projects, or forecast project's progress.

A Procedure may be required when a sentence, for instance, contains a term that does

not directly match with any existing fields in the CAPCES database. A Procedure can be

used to derive the values for the term "design funds" in the sentence "what are the design

funds for the projects that are in MA and FY 89", since the data item "design funds" does not

exist in the CAPCES database. Rather the values for "design funds" are calculated by a

13How this is done will be detailed in Section 5.3. For example, given the input sentence, "Show the projects
with construction completion percent less than 40," Expert-MCA will test its following terms, In this case "less
than" will be identified as a logical operator "LT" and "40" as a number between 0 and 99. Therefore, variable
terms as specified in the definition slot of the term "construction completion percent" will be instantiated.

-48-

Procedure based on values of existing data items which are in context related to "design

funds."

Rules are knowledge units that support Procedures or other reasoning modules in the

system for finding new facts. Each Rule contains a series of production rules. They can be

triggered by referring to its name in conjunction with an initial set of working data. A

production rule is generally expressed in IF-THEN statements. Rules usually do not appear

in input sentences. They are triggered by Procedures or some reasoning mechanisms for

various purposes.

4.3 Ohject-Oriented Representation

In order to obtain requested information, Expert-MCA has to transform input sentences

into an internal representation, which is in turn used for knowledge processing. How Expert-

MCA allows users to define English words and phrases, or to pose English sentences is

essential to its interface performance, while the choice of an internal representation in

Expert-MCA has great influence on its reasoning capabdity intemnally.

Since we often need domain knowledge to help resolve tht ambig1uities in an input

entence and identif e meamng f f e u tasks. the representation;

suchli nowledge and the reaso ning mechanirsms under such representation are essential to the

I ofi1t 0h, z ~ T!'' 11~~-f~ ec n t! n. t

two section 0ddre-)u iu- and 'e em ne solutins for the knowledge

representation and conparahle reasoning mechanisms which are suitable to the Military

construction domain.

The commonly used relationships between objects include ISA or A-Kind-Of (for

classification or specialization), Is-Part-Of or Has-Part (for aggregation). and Is-Member-Of

(for grouping). The relationship A-Kind-Of allows is to organize objects in a hierarchical

structure. Such hierarchy has been used to great advantage by programs that operate in

knowledge domain where the hierarchical nature of the knowledge is important. For objects

that can be decomposed into different parts, Is-Part-Of is quite handy in representing

aggregation relationships among objects. A-Member-Of is used to represent the relationship

between a set and its members.

A robust representation system should be allowed to express a richer set of

relationships than the above three, which are always too simple to be able to precisely

specify relationships among objects with rich semantics, such as those in the construction

domain. Object relationships should be dynamically created or modified as users need,

because system designers cannot predefine all possible relationships that users might need in

the future. In other words, we need derivative relationships to specify objects with a dynamic

nature.

Basically, derivative relationships are to do with the notion of semantics. Here shows

some examples of derivative relationships that we may need. An object can be created by

associating multiple objects, as shown previously about the objects cost overrun project,

actual cost, and budgeted cost. After deriving an object like cost overrun project, one

may define another object troubled project as a project with cost overrun or time overrun.

Still. one may further define a new object called seriously troubled project by looking for

projects which meet the conditions that overrun cost is greater than a critical amount or

overrun time is lonlyer than a critical time period.

Classification of object types is fundamental to design of management infonnation

system or knowledge-based system, and to operations on such objects in the

sysztem [10, 48, 52. 781. Objects used in Exper CA can be classified. in function. as the

following types: attributive, procedura! operative, primitive. relational, and derivative.

A nrib utie objects contain ar'I utive information such ;as attribute names an- u

aIlues. A special case for attributive objects is that ticy are primitive concepts. such as

ocao S and T e Prn-edural nM t ent: which are u1sed t'

.mcedurally -orate Ton kemL a m a i carried by objects. An access to a

procedural object usually is to obtain infonnation for further processing. Operative objects

are some predefined objects that are used to operate the processing in the system. These

include all mathematical and logical operators. Primitive objects are primitive objects that

are created and maintained by the system itself. For example, the objects14 Transitive-

Relation, is-an-instance-of, is-a-kind-of, etc. fall into this type of objects. Users can use

primitive objects to define1 5 new objects as they see appropriate. These new objects in turn

can be used in defining other terms, perhaps together with some primitive terms.

Derivative objects mean that the objects are defined in a way that their meaning or

14Use of these objects will be exemplified in the next section.

15This can be defined in the user profile and domain profile in the Profile Session, or terms with the type
Rule in the Teaching Session.

-50-

attributes are derived from others. They do not have static values for their attributes.

Instead, they are dependent on other objects and change dynamically. The use and the

function of derivative objects are very similar to external views in a relational database.

Relational objects are used to relate objects. Relational objects in Expert-MCA are a

open class, meaning that uses create and use relational objects as they see a need. Names of

relational objects do not matter their use in reasoning process, as long as they can be used

consistently in semantics. For example, the object Massachusetts can be related to the

objects state and New England by using the relational objects is-an-instance-of and is-in, or

Massachusetts is-an-instance-of State and Massachusetts is-in New England, respectively.

The notions like is-preceded-by. is-followed-h is-not - preceded-b.y, and

is-not-followed-by may be used not only as relations, but also as concepts (or objects),

which in turn can be associated with other objects by relations [94]. This is why relations

used in Expert-MCA are also classified as relational objects. More importantly is that the

classification of relational objects allows Expert-MCA to greatly enhance its reasoning

capability (Please refer to the next section).

Note that an object can be associated with multiple objects types For example. is-

concatenated-by is a relational object in the statement: <sornnhrae> is-concatenated-by

BY <field> (Please refer to Section 7. T It iz also a der A jt.et meaninc that the

variable object <sorting-phrase> is derived by concatenating the two objects: a string object

B and a variable ohjc! <field> In inmlenentation Expen A associates a derivational

ohect wit a p u n Thereiore the use of an object that cai be a relational object and

a derivational object is two-fold. It can be used in context driven reasoning to relate objects.

It can also be used to derive a value for the object being associated. That how such objects

are used is solely depending on the environment in which the objects are activated.

For simplicity, we use associative object network to indicate the network which

consists of the nodes using the object-oriented representation as described above.

Associative object network is similar to semantic networks in concept, but similar to frame-

based systems in its representation structure. It allows users to represent objects in

conjunction with semantic relationships, which are also a kind of objects. The reasoning

capability in the associative object network can be extended well beyond the one commonly

used in frame-based representation, because it can be specified by users as they need to

customize their problem domain.

-51-

4.4 Context Driven Reasoning

The ability to reason (or inference) is one of fundamental criteria for a person or a

machine to be intelligent. There are many reasons why we need computer programs or,

specifically, knowledge-based expert systems to reason. We are not able to formulate

explicitly all the world we can conceive, and encode it to the systems. Nor can we possibly

perceive or forsee all the demands that the domain of interest may require. We are also

unable to predict all the changes in the environment with which the systems might have to

cope [39]. Reasoning is just like an information machine that can extract and use the

information implicit in what is explicitly represented. The purpose of the infonnation

machine is to create new information, or reach a coi n ,' that Is other wis unknwn.

From an object-oriented object standpoint, reasoning results should update or

instantiate objects with values for their attributes, establish or renew relationships among

objects, or both of the two. Conventional programmings have primarily work on

computation of values for objects and propagation of such values between objects, while

knowledge-based expert systems have more geared to the manipulations on relationships

among objects. In other words, the former focuses more on operations with numerical

'Ialues for objects. and the latter emphasizes more on nieaniniig association among objects.

Assertion of a propomton involved more th m o j i. w hat we men meaning

association here. Usually it takes the form: <object- I> <relational-object> <object-2> or

What most knowledge-based expert systems lack at present is the ability to

automatically propagate meaning association among objects. In rule based systems, for

example, to infer a proposition in a THEN-part, we have to explicitly specify in the THEN-

part the statement in which some objects might be expressed as variables, which will be

instantiated only when its counterpart IF-part is ture. Without such a predefined, fixed

statement for a proposition, the inference engine in the system simply cannot instantiate or

infer the proposition for users. In other words, it lacks the ability, or a kind of reasoning

knowledge, to automatically propagate meaning association among objects. By automatic

propagation in meaning association here, we mean, via an example, that

Given the facts:

Cambridge is-in Great-Boston
Great-Boston is-in New-England

the system should automatically infer that

Cambridge is-in New-England

without specifying the following rule:

IF
<object-i> is-in <object-2>
<object-2> is-in <object-3>

THEN
<object-i> is-in <object-3>

With this in mind, this research has presented a new mechanism for accomplishing

automatic propagation in meaning among objects. Being supported with this mechanism,

called context driven reasoning as described in what follows, users can alleviate a lot burden

in specifying rules in a knowledge-based expert system.

Context driven reasoning is a generalization of the reasoning mechanisms that most

frame-based systems have employed for property inheritance. Such reasoning is so named

because it makes sense only to those contexts involved or specified in the reasoning

mechanism. In other words, the way it reasons is primarily depending on the contexts

involved. Reasoning generalization presented here has been inspired by the works of many

researchers, such as Maida [5-7, Winston [9- Ind Woods f96]. The follow in2 sections will

discuss three cases of generalization for reasoning, as shown in Figures 4-2, 4-,l andJ 4

respectively. All of these three are used in Expert1-NICA

To illust lu de >o Nume relationai objects and primitive objects. While users

can define any relational object as they see a need to describe the domain of interest, we use

the following as exemplary relational objects to illustrate how context driven reasoning

works: is-an-instance-of, is-a-kind-of, is-a-member-of, is-part-of, is-a-unit-of, has-property,

is-in, and can-be-preceded-by-preposition. Again, the names of such relational objects are

not significant in their use, as long as users use them consistently in semantics.

Two primitive objects are described here: Transitive-Relation and transit-over. The

relation specified by an instance object of Transitive-Relation is transitive. The concept of

transit-over indicates that a relationship between one pair of objects can transit over to

another pair. As a matter of fact, many logical operators, such as ">", ">=", "<", "<=", and

"=, are some instances of the class object Transitive-Relation. For instance, the relation

specified by the logical operator gt (for greater than, i.e., ">") is transitive, as illustrated as

follows:

-53-

Case 1:

Meaning propagation along same kind of relational objects

is-in
1s-1n

Legend. - - Given Relationship

<Object-X> <relational-object-1> <Object-Z>

Figure 4-2: Simple Reasoning Transitivity

-54-

if
XgtY
Y gt Z

Then
X gt Z

where
X, Y, and Z are numerical variables,
gt is the logical operator ">".

In what follows, we will present three kinds of reasoning knowledge which can be

used in any domain to automaically propagate meaning association among objects, i.e.,

simple reasoning transitivity, forward-transit reasoning transitivity, and backward-transit

reasomnig transitiviy.

4.4.1 Simple Reasoning Transitivity

To generalize meaning transitivity over relational objects, three categories of

generalized reasoning knowledge can be identified. The first one, called simple reasoning

transitivity, is a generalized reasoning knowledge over the same relational objects. In the

second one, meaning transitivity occurs via a forward-transit direction over different

relational objects. while in the third one it occurs via a backwiard-transit direction over

different relational objects. These two are called forw', ard-iransit reasoning transitivity and

backward-transit reasoning transitivity. respectively. In Expert-MCA the three kinds of

into its inference engine for inference processing.

Some convention for the symbols used for reasoning transitivity is described as

follows: anything inside the arrow brackets "< >" is treated as an object variable, which can

be replaced by any object; a symbol with lower-case characters is a specific relational object;

a symbol with initial letters capitalized is a specific object name. As mentioned in Section

4.3, a small set of primitive objects is solely defined by the system. Users are not supposed

to define or modify the primitive objects, which are stored in the domain profile file.

Contents of the file can be echoed in the Profile Session of Expert-MCA.

For the purpose of explanation, simple reasoning transitivity can be described in terms

of the following rule:

Simple Reasoning Transitivity:

<Object-X> <Relational-Object> <Object-Y>
<Object-Y> <Relational-Object> <Object-Z>
<Relational-Object> is-an-instance-of Transitive-Relation

Then
<Object-X> <Relational-Object> <Object-Z>

Where
<Object-X>, <Object-Y>, and <Object-Z> are object variables,
<Relational-Object> is a variable for relational objects,
is-an-instance-of is a specific relational object,
Transitive-Relation is a primitive object.

In Expert-MCA, user can in advance specify in the Profile Session the proposition "Is-

In is-an-instance-of Transitive-Relation" as a piece of domain knowledge.

For example, when given the facts:

Cambridge is-in Great-Boston
Great-Boston is-in Massachusetts

the system will fetch available reasoning knowledge, including the generalized knowledge

about meaning transitivity, and then infers that Cambridge is-in Massachusetts by applying

the simple meaning transitivity rule described above.

4.4.2 Forward-Transit and Backwvard-Transit Reasoning TransitiN ity

To further generalize the notion of traiisitii bi hecn objects via a single relational

e.w my ueh prinm iect t ransit-m r eresthe tranivitv over multiple

ielational objcti Let us firsi examine an example for tise of the loeical operators gt (for

greater than) and eq (for equal to) as follows:

If
X gt Y

Y eq Z

Then
X gt Z

Where
X, Y, and Z are numerical variables,
gt is the logical operator ">",
eq is the logical operator ".

To generalize the notion of transitivity between objects over multiple relational

objects, we can express the ideas about forward-transit reasoning transitivity and backward-

transit reasoning transitivity as follows:

Case 2:

Meaning association transits forward over
different relational objects

....
USA

N ew E n gland

is-in

Bo Ston

Legend, Given Relationship

-Deduced Re at-

<R~e aonal-0 .ect-1> forward-transit-over ral-Object-2>

Then

<0bject-X> <relational-object- 1> <Object-Z>

Figure 4-3: Forward-Transit Reasoning Transitivity

Forward-Transit Reasoning Transitivity:

If <Object-X> <Relational-Object-i> <Object-Y>
<Object-Y> <Relational-Object-2> <Object-Z>
<Relational-Object- 1> forward-transit-over <Relational-Object-2>

Then
<Object-X> <Relational-Object-i> <Object-Z>

Backward-Transit Reasoning Transitivity:

If <Object-X> <Relational-Object- 1> <Object-Y>

<Object-Y> <Relational-Object-2> <Object-Z>
<Relational-Object-2> backward-transit-over <Relational-Object-I>

Then
<Obect-X> <Relat ina aOhbject-2> <Object-Z>

To illustrate the inference mechanisms described above, some relational objects are

exemplified as follows.

1. Is-a-kind-of backward-transit-over Is-a-unit-of:

If State is-a-unit-of Country

Country is-a-kind-of Location

Is-a-kind-of backward-transit-over Is-a-un it-nf

Then

State is-a-kind-of Location

2. Is-in forward-transit-over Is-part-of:

New-Engliand r n-of 1 SA

Is-in for ard-transit-over Is-part-of

Then

Boston is-in USA

3. Is-a-kind-of backward-transit-over Is-an-instance-of:

If MA is-an-instance-of State
State is-a-kind-of Location
Is-a-kind-of backward-transit-over Is-an-instance-of

Then
MA is-a-kind-of Location

4. Has-property backward-transit-over Is-member-of:

If PC is-member-of Computer

Computer has-property CPU
Has-property backward-transit-over Is-member-of

Then
PC has-property CPU

Meaning association
different relational

Lecend

transits backward over
objects

G vefn Reat,;nSh

R2> ac d-transt-ove" (o-ject -

nen

<Object-X> <relational -object-2> <Object-Z>

Figure 4-4: Backward-Transit Reasoning Transitivity

Case 3:

WWI

-59-

5. Has-property backward-transit-over Is-an-instance-of:

If David's PC is-an-instance-of PC
PC has-property CPU
Has-property backward-transit-over Is-an-instance-of

Then
David's PC has-property CPU

6. Has-property-value backward-transit-over Is-an-instance-of:

If David's PC is-an-instance-of PC/AT
PC/AT has-property-value Processor 80286
Has-property-value backward-transit-over Is-an-instance-of

Then
David's PC has-property-value Processor 80286

7. Can-be-preceded-by-preposition backward-trmsit-over is-a-kind-of:

If MA is-a-kind-of Location

Location can-be-preceded-by-preposition IN

Can-be-preceded-by-preposition backward-transit-over Is-a-kind-of

Then

MA can-be-preceded-by-preposition IN

As you may have found from the above examples, the use of relational objects is

involved with semantic notion. In this respect, Expert-NICA does not force a user to conform

his or her use on semanic-related objects with the one that is envisioned by its designer.

Rather, it leaves a user to decide how he or she will define and use relational objects in

specifying propositions for the application domain. Since a proposition in one context is

- *. . . IC cor: __f

Mflcir prOpoS1MonsT Wnn V1e1 r1 c11Onx.

Again, the above relational objects and propositions are not necessarily used in Expert-

MCA. Most of them serve as illustrated exanples for applying the reasoning knowledge

about forward-transit and backward-transit reasoning transitivity.

As you will see in Section 6.3.2, examples 3 and 7 above are used to solve an

ambiguity about the term MA that the language analyzer may not be able to resolve. Rather

its correct meaning is identified by using the context driven reasoning mechanisms.

As such, context driven reasoning can be used to reason any information in any

context, as long as relationships between objects, including relational objects and non-

relational objects, are specified correctly in the contexts involved. Therefore context driven

reasoning can be very powerful, especially in an environment involving complex contexts,

such as natural language understanding and managerial domains.

-60-

Chapter 5

Language Analyzer

The language analyzer of Expert-MCA is responsible for converting the English query

into an internal representation that can be used for further processing to answer the query.

This chapter first describes fundamental ideas underlying the design of the language

analyzer. These ideas reflect the facts that how the language analyzer is designed, what

would be its strength and weakness, and what it should pass to other modules those it cannot

do. Next, the modules of the language analyzer are detailed in uent sections, together

with examples of showing how they work.

5.1 Design of the Language Analyzer

As mentioned in Section 2.2.1, different systems designed for language language

processing have reflected the facts that their designers view language use differently; that

some problems are more important than others and should he resolved first: that different

application domains are chosen for best illustrating their key arguments about natural

language processing

characteristics that one must take into accounts prioi to design oi the language analyzer mi

Expert-MCA. Such characteristics include categories of requested information, sources of

the information, patterns of query expression16. The information requested by most of the

users is about: some specific projects that meet some conditions, or some specific data items

that might be associated with some conditions. Information for these data items can be

retrieved from the CAPCES database fields directly, calculated on the values of these fields.

derived from sources other than the database, or processed via a combination of the above.

The expression for such requests is typically arranged in an order beginning with

requested data items, followed by a series of conditions for specifying scope of retrieved data

instances, then, as an option, followed by a description of how the retrieved data should be

16Some of exemplary sentences are listed in Section 2.2.2.

-61-

sorted. The expression given at fields is always simplified, meaning that it can be

imcomplete both in structure and meaning. Some of words or phrase may also be complex in

meaning, requiring further processing for deriving their values.

The language analyzer in Expert-MCA is not designed with a generalized parser which

accepts all kinds of input sentences. To be able to derive answers to user's queries, Expert-

MCA must interpret these queries correctly. As long as a parse tree can help interpret the

meaning of an input sentence, its format and how it is constructed is not so important. Once

a parse tree is constructed, more importantly is how one can use it to help determine correct

meaning for the sentence as a whole. To the queries with the patterns as described in the last

paragraph, it is much more important that Expert-MCA is able to capture their meaning

correctly by utilizing the context and knowledge uiplicitly indicated i thc queries or

explicitly supplied by the user and the system.

Therefore, one of major concerns in the development of Expert-MCA, including the

language analyzer and reasoner, is how to actually derive answers to user's queries, not so

much on how well its parser can create parse trees. Rather, the focus is on how its language

analyzer can transform the surface form in English into an internal representation with which

the meaning of the surface form can be captured, or facilitate further processing in the

reasoner if ambiguities cannot be resolved completely.

The major issues in natural Ilanu ainige procesm for the usei s queries about NICA

cycle are how to extract definitions for words and phrases: how to group words into larger

Lae w lexicall; nlow to form mnean1ing uni tactically a.

semantically; and how to resolve ambiguities it necessary.

By knowing that the content of any query is related either to the MCA cycle or data

stored in CAPCES database, the language analyzer of Expert-MCA does not need to use all

the sentence constituents defined by linguists or to have massive amount of context-free rules

to answer the query. Nonetheless, it needs a parsing device that can decompose the sentence

into different components and checks various syntactic and semantic constraints within the

domain of CAPCES database and FOCUS query language.

The way of using different term types in the language analyzer as constraints is similar

to that syntactic constraints are used in the ATN approach [16]. The parsing technique used

in Expert-MCA is different from others in that it is designed, among others, to handle a term

with multiple meanings, to deal with a term that expects to bind its neighboring terms to form

a new phrase, to use function words or contexts for helping identify correct meanings,

-62-

The language analyzer of Expert-MCA can be detailed into four modules: lexical

mapping, lexical analysis, syntactic analysis, and semantic analysis. Lexical mapping is to

find the definition of each word in input sentences by first mapping the words with the terms

stored in the dictionary and then extracting the information of the matched terms from the

dictionary, while lexical analysis is to form new phrases for split terms 17 or the terms with

multiple meanings if possible.

Next, primarily according to parts of speech associated with the terms, syntactic

analysis constructs a parse three which contains three major query components: requested

information of the input sentence, screening conditions for selecting needed data instances,

and sorting information for arranging output data. Lastly, semantic analysis is to refine these

three into more meanmgful ones.

5.2 Lexical Mapping

The dictionary of Expert-MCA uses frames to store the definition of terms. After

reading the definitien of tenns from the dictionary files, Expert-MCA groups the terms into

27 term address directories according to the leading letter of each tenn. The additional one

is for the terms thmt do not begin with one of the 26 English letters. Each term address

directory contains man trIm address lists, each being for a term. For example, the

folowing list sho'A 'art of term address directories for the terms with the leading letters "C"

DIR-C-=

((CONGRESSIONAL ACTION FIELD) 27 CAPI)

((CONGRESSIONAL NOTIFICATION SYNONYM) 5 DIC2)

((CONGAPRVYR FIELD) 28 CAPI)

((CONSTRUCTION WORD/PHRASE) 88 DIC2)

((CONSTRUCTION CATEGORY CODE FIELD) 33 CAPI)

((CONSTRUCTION COMPLETION DATE FIELD) 61 CAPI)

((CONSTRUCTION COMPLETION PERCENT WORD/PHRASE) 79 DIC2)

17As mentioned in Section 2.2.2. a split term consists of a primary term and its associated variable words in
the same sentence, together making a complete set in meaning. Examples for split terms are as follows: fiscal
year 87, fiscal year 88, 89 fiscal year, and 90 fiscal year, where fiscal year is the primary term; the numbers 87
88 89 90 are the variable words bound to the primary term.

((CONSTRUCTION DIRECTIVE AMOUNT FIELD) 56 CAP1)

)

DIR-M ='(

((M-PDIP FIELD) 29 CAP2)

((M-TEMPPN FIELD) 43 CAP2)

((MA VALUE) 70 DIC2)

((MA WORD/PHRASE) 66 DIC2)

((MACOM FIELD) 55 CAPI)

((MACOM PRIORITY SYNONYM) 27 DIC2)

((MACOM REMARK FIELD) 40 CAP2)

((MACOM SCOPE FIELD) 41 CAP2)

In each of the 27 term address directories, the term address lists are arranged

alphabetically 18 . Each term address list in turn consists of four parts: the term itself, a term

type, an address in the file whose name follows it, and a name of the source file that stores

the term. Such organization of term address directories facilitates the mixed use of binary

search and linear search for a term in the lexical mapping module.

To illustrate how the language analyzer works in different modules, this chapter uses

the following query as an exemplary ex

What are the FY 88 projects in MA and PA with PA over 900 and

LEpon receiv ing the exemplary query, the lexical mapping module sarts to look up the

dictionary for finding information for each word in the sentence.

It first determines a term address directory for each word, and then tries to map the

word with tenns within the term address directory. The selected term address directory is the

one that has the same leading character as the first character of the word in question. For

example, if we are now in looking up the dictionary for the word "constnction," the selected

term address directory is *DIR-C*, which is shown above.

To retrieve information for each word in the input query, the module will go through

the following lexical mapping steps. Whenever the searching for a term is successful, its

definition will be pushed into a term list mapping stack.

181t is according to the characters of the terms only, not the entire term address list.

-64-

Steps for Lexical Mapping:

1. Binary search for the word: This is to find a term address list which contains
the term identical to the word being looked for through a binary search over a
selected tenn address directory. If it fails, then go to step 3 for looking for
phrases. For example, if the word being looked for is "MA", the selected term
address directory is *DIR-M*, which is shown previously. Suppose the

directory contains 97 terms. The module will try to map the word at the
following addresses in the directory: 49, 25, 13, 7, 4. As such, the module
finds the term address list: ((MA WORD/PHRASE) 66 DIC2), which means

"MA" is a Word/Phrase and it is stored at address 66 in the file DIC2 19.

2. Linear search for multiple meanings: This is to find other tenn address lists
that contain the word in question by a linear search starting at the address
where it stopped in step 1. Suppose we continue to search for other terms
mapped with the word "MA". It first searches forward for the word beginning
at the address ended in the first step. In this case, it finds the list at address 5
"((MACOM FIELD) 55 CAPI)", which is for the term "MACOM", is not the
one it needs. Next, it searches for backwards. It finds the list at address 3
"((MA VALUE) 70 DIC2)", which is another term it needs. It then continues to

search for another term till it fails. In this case, its search will stop at address 2.

3. Linear search for phrases: This is to find the phrases whose leading word is
identical to the word in question and they must appear in the input query. It

makes a forward linear searching for phrases beginning at the address where it
stopped in step 2 (if step 1 is successful) or in step I (if step 1 fails). For

example, if we are now in looking up the dictionary for the word
"c'nstruction," the selected term address directory is *DIR-C* which is shown

previously. Suppose also it has found in step I the ternn address list

"((CONSTRUCTION WORD/PHRASE) 88 DIC2)", which is at address 35 of

NtCI ~C1fhi 1 .a I I e \Xhl, 1 7

CATEGORY CODE FIELD) 33 CAPI . It tails in this case. Then it keeps

trying next one till the tern address list is beyond a phrase in the query that

starts with the word in question. Therefore, it will hit the tern address list
"((CONSTRUCTION COMPLETION PERCENT WORD/PHRASE) 79
DIC2)", which is for the term construction completion percent. Because the
input sentence contains this term, the term address list is then pushed into the

term list mapping stack.

If none is matched with the word being looked for, a tag "undefined" will be attached

to the word. As such, the definition associated with each word in the input sentence is all

pooled into the term list mapping stack. Based on the information in the stack, the module is

then able to extract definitions for each term in the input sentence from corresponding

dictionary files and addresses in the files. Such information will be stored in a parsing stack.

191n Expert-MCA's implementation, DIC2 indicates the file ESNDIC2.lsp.

-65-

Note that the above steps are used to extract definition for each word in the sentence,

even a word is part of a phrase that has been found previously. For example, after going

through the above steps for the word "construction", the module has found two terms

"construction" and "construction completion percent". The module still goes through the

above steps for the word "completion" and "percent".

The module also assigns priorities among definitions for a term which has multiple

meanings. The module assigns a higher priority to a definition for a phrase than that for a

word/phrase, one phrase with more words than another with less words, one term with term

type Word/Phrase than another with term type Value, a split term 20 than a phrase, and one

split term expecting more variable words than another expecting less variable words.

The purpose of this priority assignment is tow-fold. When there does not have enough

information to detennine a meaning for a term which has multiple meanings, the one with

highest priority will be assumed as its meaning. In the following modules, such as lexical

analysis and semantic analysis, a higher priority definition will be processed earlier to

resolve the ambiguity for the term. With this arrangement, it might save processing time,

since a higher priority definition is more likely a correct one.

The parsing stack now contains a set of definitions for each word in the query. Split

terms and the terms with multiple meanings are also collected in the parsing stack if they

exist. Each elemem of the stack is corresponding to the definition for each word in the input

sentence. If a term has multiple meanings or leads to phrases. its definition expression will

be arranged in an order from a higher prioi1 i meaning to lower one.

The parsing stack for the exemplary query given above looks like this21:

((WHAT WORD/PHRASE) ((PART-OF-SPEECH INTE)))

((ARE WORD/PHRASE) ((PART-OF-SPEECH VERB)))

((THE WORD/PHRASE) ((PART-OF-SPEECH DET)))

((FY WORD/PHRASE)
((DEFINITION FY IS ?X) (PART-OF-SPEECH NOUN) (CONTEXT FY)

(VARIABLE-PART ?X) (VARIABLE-LOCATION NEXT)

(VARIABLE-TYPE NUMBER) (VARIABLE-RANGE 70 99))

(FY FIELD)
((CAPCES-NAME FY) (CAPCES-ALIAS CFY)

(ENGLISH-NAME CURRENT FISCAL YEAR) (DEFINITION FY)))

20The next section will show an example about how a split term can be formed.

21This is part of actual parsing stack created in Expert-MCA for the given query.

(NVHJL SS-a-l aWVN-HSl-19N9) Ul NOLLM 9CO 4NOD HD99dS-J0-JLdVd))
(9SV"HHd/GXOA& SS"91)

(('dOlVX9dO- IV3l9O'I JX9,INOD)
(NVHJL SS9-1 9WVN-HSI-IDNR) (1-1 MOLUM-49CI) 4NOD HDggdS-40-1'dVd))

(3SVNHd/UHOAk NVHJL SS91))
(((-d99KflN JLX91NOD) (fCIV HDggdS-AO-JLHVd) (10'0 NOLUkGJ9CD)

(3SVXHd/U)fOtA JN3DX3d))
(((,,uo!ioldwo:),, f)NMS-jVM!)Ido)) ((jgfU4g(jNn NOLLg-IdNOD))

Q WnON HDggdS-40-JL-dVd) (NOLL)MUSNOD NOUINI-49(l))
(21SV)fHd/GHOAt NOUDIA USNOD)

WOOT 0) V/N 99NVH-3lqVI-dVA)
(-dggWnN SOJLVXgdO--IVDIDO-1 9dAl-9-lffVl-dVA)

(z-jxgN jLxgN NoijLvDo-i-g-iqvrjVA)
(,kZ XZL-JVd-9-lq'VI-HVA) (NOLLYlUISNOD J-XgINOD')

(dN HDaHdS-40-lHVd) XZ lNgDHgd-Sg(l NOLLLKI-49CI))
(gSlv dHd/(MOA 1N3DSgd NOUgld"ODNOIJ.Dfl LLSNOD))

M dOlV-H3dO-lVDl9O'l J-XgLNIOD')

P, O-D H,) J9dS-AO-lHV,-i I (CN-V NOUINI-4 10))

WN11ON HD9ldS-40-DiVd) (HHqWnN lXgJNOD) (.006 NOLLIN143(f))
(91-IrIVA 006))

MID -O-PUNiONkS) (HOlVN3dO-lVDl9Ol EK91NTOD)

(NYFU HUV9 D aWVN-HSl-l9N9) (19NOUINI-430) (fKOD HD99dS-J0-,LSVd'))
(2lSV'dHd/MlOAX AgAO))

MilW-DoNd NOMIN1.430)
(VCIOH lNnOWVLXgJ.NOD) (.INnOWV WVNDOEd 9WVN-HSI-IDN9)

(vd sVl-lv-S33dvD) Uwv-Do w 3WVN-S2DdvD))
(U-190 Vd)

((G39lVLS lXgJNOD) (KnON HDggdS-40-,LHVd) (OV SI (1391VlS MOUINI-9a))
(9S"H&UWA Vd))

(((dgX-d H399dS-d0-JL"d)) (gSV-dHd/G)fOtA HIMAL
MlWV-9ONd N01119H9U) (VUOH INnOWV.LX3.LNOD)

(INnOWV WV11DWId 9WVN-HSIIDN9)
(vd svi-iv-SgDJVD) uwv-qo ld 11, VN-sgDdVD))

(G-191-4 Vd)

((UD31VJLS JX31NOD) (NnON H33aJS-J0-JL*dVd) (0t, SI CID9,LVLS NOLUM-49ci))
(9SVSHd/GNOM Vd))

(((UOJLV-dgdo--IVDIDOl J.XaJNOD)
UNOD HDagdS-dO-JL Wd) (UNV NOLLIN149(l))

(3SVXHd/G'dOAk CINV))
WVW SI G3dd NOLLINL49G) WDIM G-19IJ-HDIHM-M))

(9flIVA VW)
091VIS JLXHINOD) (NnON MaMS-JO-EdVd) (9Z SI G39JLVJLS NOUARI49M)

(gSV'HHJ/G'HOA& VW))
(((dHSd HDHgdS-,40-JL)fVd)) (9SV-dHd/UllO& M))

OWWRO JXalNOO) (NnON HD3HdS-.40-JLXVd) (SJJHfO-dd NOUINUHU))
(aSV"HHdVCMOtA SIOHfOlld))

WRIV HDggdS-AO-JL-dVd) ('dgffWnN JLX9JLNOD) (88 NOIJIM43U)) (an-IVA 88))

-67-

(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF LT)))

((THAN UNDEFINED) ((ORIGINAL-STRING "than")))
((80 VALUE) ((DEFINITION 80) (CONTEXT NUMBER) (PART-OF-SPEECH ADJ)))

5.3 Lexical Analysis

The purpose of the lexical analysis module is to refine the parsing stack by using

lexical information.

It first tries to remove from the parsing stack information redundant words that have

been collected in the phrases prior to them. For example. infornation for such wvords as

"completion", "percent", and "than" are removed, since they appear in the phrases collected

previously, i.e., in "construction completion percent" and "less than", respectively. As such,

the current parsing stack is updated. Now the parsing stack looks like this:

((WHAT WORD/PHRASE) ((PART-OF-SPEECH INTE)))

((ARE WORD/PHRASE) ((PART-OF-SPEECH VERB)))

((THE WORD/PHRASE) ((PART-OF-SPEECH DET)))

((FY WORD/PHRASE)
((DEFINITION FY IS ?X) (PART-OF-SPEECH NOUN) (CONTEXT FY)

(VARIABLE-PART ?X) (VARIABLE-LOCATION NEXT)

(VARIABLE-TYPE NUMBER) (VARIABLE-RANGE 70 99))
(FY FIELD)

((CAPCES-NAME FY) (CAPCES-ALIAS CFY)

W88 VALUE) ((DEFINITION 8 CONTEXT NUMB ER t PART-OF-SPEECH ADJ)))

((PROJECTS WORD/PHRASE)
((DEFINITION PROJECTS) (PART-OF-SPEECH NOUN) (CONTEXT OBJECT))

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN) (CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)

(CONTEXT LOGICAL-OPERATOR)))
((PA WORD/PHRASE)

((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN) (CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)

(ENGLISH-NAME PROGRAM AMOUNT)(CONTEXT AMOUNT HQDA)

(DEFINITION PROGAMT)))

((WITH WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((PA WORD/PHRASE)

((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN) (CONTEXT STATECD))
(PA FIELD)

((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)
(ENGLISH-NAME PROGRAM AMOUNT) (CONTEXT AMOUNT HQDA)
(DEFINITION PROGAMT)))

((OVER WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION GT) (ENGLISH-NAME GREATER THAN)
(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF GT)))

((900 VALUE)
((DEFINITION 900) (CONTEXT NUMBER) (PART-OF-SPEECH NOUN)))

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)
(CONTEXT LOGICAL-OPERATOR)))

((CONSTRUCTION COMPLETION PERCENT WORD/PHRASE)
((DEFINITION DES_PERCENT ?X "C'?Y") (PART-OF-SPEECH NP)

(CONTEXT CONSTRUCTION) (VARIABLE-PART ?X ?Y)
(VARIABLE-LOCATION NEXT NEXT-2)
(VARIABLE-TYPE LOGICAL-OPERATOR NUMBER)
(VARIABLE-RANGE N/A (0 100))))

((LESS THAN WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION LT) (ENGLISH-NAME LESS THAN)
(CONTEXT LOGICAL-OPERATOR)))

((80 VALUE) ((DEFINITION 80) (CONTEXT NUMBER) (PART-OF-SPEECH ADJ)))

Secondly, it tries to lexically resolve the ambiguities that are inherent in a split term or

a tern with multiple meanings. To form a split tenn with its associated meaning, the module

tries to find a primary term and then bind it with qualified variable terms, which may be

parsing stack to see if there is any term that has been defined to associate with other variable

words. If such a primary tern is found, the module collects the conditions that specify where

to find these variable words, and what characteristics these words should have. These

conditions are stored in slots Variable-Location, Variable-Type, and Variable-Range.

The module checks whether or not the input sentence has contained the words that

meet all the conditions as specified. If no such variable word is found, then the primary term

with its definition is removed from the parsing stack. If such a variable word is found, the

primary term and its associated variable words will be collapsed into a new term, together

with an instantiated meaning. At the same time, the information for the previously matched

variable words will be removed from the parsing stack.

Given the exemplary query, the module will sequentially work on the two primary

terms "FY" and "construction completion percent". The word "FY" is identified as a primary

-69-

term, since its Variable-Part slot is not empty. The two words "FY" and "88" will be

collapsed into a new phrase "FY 88" with a meaning "FY IS 88" being instantiated by its

associated variable word 88, because the word NEXT to "FY" is "88", which is a number and

between 70 and 99.

Similarly, the three terms "construction completion percent", "less than", and "80" will

be collapsed into a new phrase "construction completion percent less than 80" with a

meaning "DESPERCENT LT C80." This is done as follows. In its Variable-Part slot, the

term frame indicates that it expects to bind two variable terms, called ?X and ?Y.

respectively. These two variable terms should be located, as indicated in its Variable-

Location slot, next and next two to the term. In this case, they are "less than" and "80,"

respectively. The module continue to check if these two variable terms meet the conditions

specified in its Variable-Type and Variable-Range slots. Namely, it checks if "less than" is a

logical operator, and if "80" is a number with a value between 0 and 100. When the content

in a Variable-Range slot is "N/A" (for not available) or nil (for empty), the module does not

check the variable term for its value range. Because the tests for these two variable terms are

all successful, the three terms "construction completion percent," "less than," and "80" are

then collapsed into a new term with a new definition by instantiating the variables ?X and ?Y

in the Definition slot for the primary tenn "construction completion percent."

Now the parsing stack looks like this:

(WHAT WORD/PHRASE) ((PART-OF-SPEECH INTE)))

RE WORD PHRASE; y PART-OF-SPEECH VERB)-

,(THE WORD/PHRASE) ((PART-OF-SPEECH DET))

(FY 88 WORD/PHRASE)
((DEFINITION FY IS 88) (PART-OF-SPEECH NP) (CONTEXT FY))

((PROJECTS WORD/PHRASE)
((DEFINITION PROJECTS) (PART-OF-SPEECH NOUN) (CONTEXT OBJECT)))

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN) (CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)

(CONTEXT LOGICAL-OPERATOR)))

((PA WORD/PHRASE)
((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN) (CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)

(ENGLISH-NAME PROGRAM AMOUNT)

-70-

(CONTEXT AMOUNT HQDA) (DEFINITION PROG_AMT)))
((WITH WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((PA WORD/PHRASE)

((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN) (CONTEXT STATECD))
(PA FIELD)

((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)
(ENGLISH-NAME PROGRAM AMOUNT)
(CONTEXT AMOUNT HQDA) (DEFINITION PROGAMT)))

((OVER WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION GT) (ENGLISH-NAME GREATER THAN)

(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF GT)))

((900 VALUE)
((DEFINITION 900) (CONTEXT NUMBER) (PART-OF-SPEECH NOUN)))

((AND WORD/PHRASE)
U(DEFINITION AND, (PART-OF-SPEECH CONJ)

(CONTEXT LOGICAL-OPERATOR)))
((CONSTRUCTION COMPLETION PERCENT LESS THAN 80 WORD/PHRASE)

((DEFINITION DESPERCENT LT "C80")
(PART-OF-SPEECH NP) (CONTEXT CONSTRUCTION)))

To resolve unrecognized words in an input sentence, three methods can be applied.

The first one is to find their relative locations in a sentence to other recognized terms, and

then bind them with the recognized terms. Checking their data types and trying to bind with

other recognized terns is the second method. By making use of these two methods, the user

d'es not need to define al! the words used in the system. As a result, the saving in dictionary

space and in time of entering the definition for such words may be a great payoff. The last

method is to echo the urnenn ized w Uordo sceen forI the use to ed 1if they are typo' or

to define if they are new terms.

As a matter of fact. construct of split terms makes use of the first two methods. Split

terms can be used to resolve unrecognized terns. For example, if the word "Woodland" is

not defined in Expert-MCA, the module is able to resolve this word by forming a new phrase

"FT Woodland" with a meaning "STATION IS FORT WOODLAND," given a query

consisting of the words " ... FT Woodland ..." and a definition for the term "FT" as

((FT WORD/PHRASE)
((DEFINITION STATION IS "FORT ?X") (PART-OF-SPEECH NOUN)
(CONTEXT STATION) (VARIABLE-PART ?X) (VARIABLE-LOCATION NEXT)
(VARIABLE-TYPE STRING) (VARIABLE-RANGE N/A))))

If there are unrecognized terms left at this point, Expert-MCA has to ask the user to

edit or define them. This will result in a rerun session through the lexical mapping and

lexical analysis modules again. Otherwise the lexical analysis module passes the current

parsing stack to the syntactic analysis module.

5.4 Syntactic Analysis

The syntactic analysis module is responsible for decomposing a query into several

components by using information mainly about part of speech for each term in the query.

The purpose of user's queries is to retrieve data from the CAPCES database, to derive or

analyze retrieved data, or to request information related to MCA cycle or the CAPCES

database. Therefore, the user first has to specify in his or her queries the data items needed.

However, he or she often does not have to retrieve all the possible data instances of requested

data items. Rather what the user needs is only a subset of the data instances for the requested

data items. Thus, to specify screening conditions for selecting an appropriate subset of data

istances is the second component in user's queries. Foi ease of data reading oi comparison,

an output report is often arranged in a specific order to fit user's needs. As a result, any

query made by the user always conveys the information consisting of the following three

query components: requested data items (or printing items), screening conditions (or

selecting conditions), and sorting data items.

In reality, queries made by users who routinely work on some tasks at fields are often

imcomplete syntactically and semantically. A generalized parser, mostly working from left

to right sequentially, will reject such ungrammatical queries. In order to better capture

information available from given input queries, the language analyzer is designed to handle

sentences that may be incomplete or loosely follow English grammar, .i.e., near natural

i2page u i I sumes that m of ing quen ow the patteni rcluested data

items, screening conditions, and sorting data items. As a trade-off, the language analyzer is

not designed to parse all kinds of English sentences, nor is it able to deal with all complex

embedded sentences2 2

Once a query has been parsed by the language analyzer and the reasoner, Expert-MCA

provides a chance 23 for the user to correct its understanding about the query. By doing so,

the system still continues to work on ungrammatical sentences without giving up and asking

the user to retype a new query, since the user still has a chance to modify his or her queries or

correct Expert-MCA's misunderstanding.

22An embedded sentence is a sentence used to modify a noun or phrase (or other part of speech) in a primary
sentence. Usually it starts at or follows a relative pronoun. For example, the sentence "which is designed by
District Engineers" is an embedded sentence used to modify the word "housing" in the sentence "Show me the
projects that are in MA and for housing which is designed by District Engineers.

23This is done in the interface task Understanding-Correction. Please see Chapter 8.

-72-

With the terms in the query are all defined, the syntactic analysis module processes to

separate the parsing stack into three query components. This is done by following a set of

heuristic rules24 . The major part of the rules25 can be simplified as follows:

Rules for Syntactic Analysis:

1. This rule is to find tenns for requested data items group. At beginning, the
searching mode is set to "in-requested-item-part." The terms prior to the first
noun phrase or noun (inclusive) are identified as the requested data items
group. For example, given the query as in the previous sections: "What are the
FY 88 projects in MA and PA with PA over 900 and construction completion
percent less than 80?" the module searches for a noun (not including pronoun)

or noun phrase starting from the first term, in this case "What". It fails. So it
goes to the next, which is "are". It keeps going till hitting the one "FY 88",
which is a noun phrase. Therefore, the four terms "What" "are" "the" "FY 88"
are pushed into a requested-item stack. Note that the requested-item stack, the
screening-condition-stack and the sorting-item stack (the last two will be

discussed in subsequent rules) are all composed of the information list for the

terms included in any of the three stacks. Then the module goes to the next
rule.

2. This rule is to find another requested data item if possible. If the first noun
phrase or noun is followed by another noun phrase or noun, or followed by a

conjunctive "and" and another noun phrase or noun, then the requested-item
stack is replaced with the new one which starts from the first term to the last
term checked so far. For the exemplary example, this rule will find that
"projects" is a noun. Therefore the new requested-item stack is replaced with

these terms: "What" "are" "the" "FY 88" "projects". This rule will continue to

work on the next term of the input query until it fails. It goes to the next rule
oncer" it faih

3. This rule is to find an ndicator of starting screening conditions. If the term

next to the requested data items group collected so far is a relative pronoun
such as "that" or "which", then the terms prior to this relative pronoun is

identified as the requested data items and the current mode will be set to "in-
screening-part". After this check, it goes to the next rule.

4. This rule is also to find an indicator of starting screening conditions. If the
term next to the requested data items group collected so far is a preposition,
then the terms prior to this preposition is identified as the requested data items

group and the current mode will be set to "in-screening-part". For the given
exemplary query, this rule finds that "in" is a preposition. Therefore, the

searching mode for this query is set to "in-screening-part". After this check, it

goes to the next rule.

2'These are not production rules in a rule based system.

25This module is also implemented in Lisp procedures.

-73-

5. This rule is to check an indicator of starting sorting data items. If one of the
following keywords is detected in the remaining sentence: "sorted by",
"ordered by", "for each", or "by", then the terms next to this keyword are
identified as the sorting data items group and the ones prior to it are identified
as either the screening conditions group (if the current mode is "in-screening-
part") or the requested data items group (if the current mode is "in-requested-
item-part"). If it fails to find any of these keywords, it sets the remaining
sentence as the screening conditions group (if the current mode is "in-
screening-part") or the requested data items group (if the current mode is "in-
requested-item-part"). In the exemplary example, no such a keyword is found,
so the remaining sentence "in MA and PA with PA over 900 and construction
completion percent less than 80" is identified as the screening conditions group,
and the information list for these terms is pushed into the screening-condition
stack. The sorting-item stack is set to empty.

Now information collected in the three stacks looks like this:

Requested-Item Stack:

((WHAT WORD/PHRASE) ((PART-OF-SPEECH INTE)))
((ARE WORD/PHRASE) ((PART-OF-SPEECH VERB)))
((THE WORD/PHRASE) ((PART-OF-SPEECH DET)))
((FY 88 WORD/PHRASE)

((DEFINITION FY IS 88) (PART-OF-SPEECH NP) (CONTEXT FY)))
((PROJECTS WORD/PHRASE)

((DEFINITION PROJECTS) (PART-OF-SPEECH NOUN) (CONTEXT OBJECT)))

4 creeningL-C onditionl Stackx:

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))
MA WORPHRASF)
((DEFINITION STATECD IS 25)(PART-OF-SPEELCH NOUN)(CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINTTION PRCD IS MA)

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)
(CONTEXT LOGICAL-OPERATOR)))

((PA WORD/PHRASE)
((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN)
(CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)
(ENGLISH-NAME PROGRAM AMOUNT)
(CONTEXT AMOUNT HQDA) (DEFINITION PROGAMT)))

((WITH WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((PA WORD/PHRASE)

((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN)
(CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)

-74-

(ENGLISH-NAME PROGRAM AMOUNT)
(CONTEXT AMOUNT HQDA) (DEFINITION PROG_AMT)))

((OVER WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION GT)
(ENGLISH-NAME GREATER THAN)
(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF GT)))

((900 VALUE)
((DEFINITION 900) (CONTEXT NUMBER) (PART-OF-SPEECH NOUN)))

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)
(CONTEXT LOGICAL-OPERATOR)))

((CONSTRUCTION COMPLETION PERCENT LESS THAN 80 WORD/PHRASE)
((DEFINITION DESPERCENT LT "C80")
(PART-OF-SPEECH NP) (CONTEXT CONSTRUCTION)))

Sorting-Item Stack:

(nil)

The noun phrase or noun indicated in the above five rules can be a Fieldname, a

Word/Phrase, a Synonym, or a Procedure, plus its modifiers if any. The modifiers, which

can be Fieldvalues, Synonyms, and Word/Phrase, are usually located in front of nouns which

may be connected by the conjunctive AND. The results after running through above rules

may require additional refinement in the semantic analysis module. For instance, based on

Rules 1 and 2 above, the terms "what are the FY 88 projects" are identified as the requested

data items. However, this identification is not absolutelv correct. because "FY 88" is not a

requested data item. Rather. it stands for a screening condition "FY IS 88". As cai be

imagined, the results after running through the above rules for some cases may not be

appropriate. These problems will be discussed and resolved in the semantic module.

After the entire query sentence is successfully decomposed into three query

components (i.e., the parsing stack is decomposed into the three stacks: requested-item stack,

screening-condition stack, and sorting-item stack.), they are then transferred to the semantic

analyzer.

The information used in the module is solely coming from the terms literally

(including parts of speech and the terms themselves). However, many presumptions and

background contexts exist in a communication process from time to time. Such kind of

26How to identify a screening condition in a query is described in the next section.

presumptions or contexts cannot be obtained from individual terms alone. Therefore, further

processing is required. The ambiguity that cannot be resolved in this module will be left to

the semantic analysis module, which utilizes non-literal information such as term contexts in

sentences, jobs or responsibilities of the user, and the domain knowledge of the MCA cycle

as a whole.

5.5 Semantic Analysis

The semantic analyzer is responsible for semantically refining each of the query

components identified in the syntactic analysis module. It scans the meaning of each term

and uses the characteristics of the six term types27 defined in Expert-MCA to refine the

query components. One key idea used in this module is how one can identify or form a

contextual phrase28

The algorithms used to analyze the requested data items (or printing items) group and

sorting data items group are relatively straightforward. On the contrary, the one for refining

the screening conditions into a series of contextual phrases is more complex.

First, the module removes dummy terms from the three stacks. The terms that do not

contribute to the process of data retrieval from CAPCES database will be removed from the

three components (i.e., the three stacks). Such terns do not contain any information in their

D) efinition slo,. ne exectn to thi. i prepr<itin which are function words

providing functional mechan ms for helping identify meaning for the phrases following

them. Such terms. for example. include THE. ARE, WHAT, SHOW, DISPLAY, ME, etc.

Secondly, the module tries to capture the action about how to report the data items

requested. When printing data items in reports, there have many action options about how to

handle the requested data items. The query language FOCUS provides such options as print,

list, count, and sum (Please refer to Section 7.1.1.). The default action used in Expert-MCA

is PRINT. However, the terns such as "How much" and "how large" can be defined as "sum

amount," meaning that the query starting with one of these terms may want to sum a data

27Please refer to Section 4.2.

28Please also refer to Section 4.2.

29Information for each term is stored in a frame with several slots. Please see Section .4.2.

-76-

item (or data items) with a context "Amount." On other cases, "how many" can be defined as

"Count." When one of such key terms is detected or not, a corresponding action will be

recorded30 . At the same time, the term indicating how to print requested data items will be

removed from the requested-item stack.

Given the exemplary query as described above, the modified requested-item stack now

contains information looks like this:

((FY 88 WORD/PHRASE)
((DEFINITION FY IS 88) (PART-OF-SPEECH NP) (CONTEXT FY)))

((PROJECTS WORD/PHRASE)
((DEFINITION PROJECTS) (PART-OF-SPEECH NOUN) (CONTEXT OBJECT)))

Thirdly, the module may move some terms in the modified-requested-item stack to the

screening-condition stack, if these terms indicate that they are screening conditions. The data

items requested by the user usually consist of Fieldnames or nouns that have the term type

Word/Phrase and their modifiers. Most of the modifiers are adjectives (such as average,

highest, latest, and lowest), nouns, or noun phrases. If a modifier is a noun or noun phrase

whose Definition slot contains a contextual phrase, logically the modifier should be another

screening condition for the data items requested. Therefore such a modifier will be moved to

screening-condition stack. For example, currently the modified-requested-item stack has two

terms "FY 88" "projects," where "FY 88" is the modifier of "projects" and its Definition slot

contains a contextual phrase "FY IS 88 Therefore, the new modified-requested-item stack

contains information only for the term "projects."

On the other hand, it a nmodifier 1s an adlective, it is very likelv used as an arithmetic.

modifier to restrict how its following data item (or items) should be handled. This is

important in constructing phrases in query language. Although Expert-MCA is currently not

designed to handle this case, its implementation is straightforward 31 .

Next, the module creates a modified-sorting-item stack after working on the sorting-

item stack. The dummy terms such as "sorted by," "by," or "for each" in the sorting-item

stack will be removed. What is left in the stack usually contains Fieldnames or temporary

fields.

3'lt is recorded into slot Action-in-Query, a slot in the query frame which is created for recording information
derived in the language analyzer.

31For example, at this point, the adjective and its following data item should be formed as an adjective phrase
with an assertion into a new slot indicating what is the operation according to the adjective. At the time the
query language generator constructs FOCUS code, such an indication will be used to form a code, mostly
adding a prefix to a field name.

-77-

Lastly, the module tries to refine the screening-condition stack around the idea of

contextual phrases. No matter how a query expresses its screening conditions in English,

each of these conditions semantically should be a contextual phrase, a proposition specifying

a range of data instances for a data item (a database field or a temporary field) related to the

target database. Therefore the issue is how one can identify screening conditions given

information for each term in the screening-item stack.

One strategy for such an identification is to look for patterns of definitions for the

terms, but not patterns of the terms themselves. As long as its underlying context can be

used to recover its meaning, English expression can be very succinct and flexible so that its

patterns can be as diversified as possible. On the other hand, patterns of its underlying

meaning for objects tend to be much more simpler. This is because the way we express a

simple proposition is limited, especially in expressing a range of a data item within a context

of database query.

For example, the following rules show how a contextual phrase can be formed by

using information about term types, contexts, and the terms themselves.

1. <Fieldname> <Operator-I> <Fieldva]ue> --> <Contextual-Phrase-I>

2. <Contextual-Phrase-I> OR <Fieldvalue> --> <Contextual-Phrase-i>

3. <Fieldname> <Operator-2> <Fieldvalue> --> <Contextual-Phrase-2>

4 <Fiedname> <Operator-> <Fieldvalue> TO <Fieldv!lue> - -ContextualPhrase-3>

. Conex tua-Pliase-1> -- > <Contextual-Phrases>

6. <Contextual -Phrase-2> --> <Contextual-Phrases>

7. <Contextual-Phrase-3> -- > <Contextual-Phrases>

8. <Contextual-Phrases> <Contextual-Phrases> --> <Contextual-Phrases>

where,

<Operator-1> is IS, EQ, or TO;
<Operator-2> is one of the six words: GT, GE, LT, LE, NE, and CONTAINS;

<Operator-3> is FROM;
<Fieldname> is a field name;
<Fieldvalue> is a value for a field.

Note that the module does not try to map English terms as tokens in using the above

rules. Rather, it looks at the patterns of meaning that is stored in the Definition slot for each

-78-

term. Let us consider the following simple case. "TX" in the query "Show me the projects in

TX for FY 90" will be identified as a contextual phrase, given the term TX being defined as:

((TX WORD/PHRASE)

((DEFINITION STATE IS TEXAS) (PART-OF-SPEECH NOUN)))

since its meaning expression "STATE IS TEXAS" matches with a contextual phrase pattern

(i.e., rule 1 as shown above), where "STATE" is a Fieldname; IS is an Operator-1; and

"TEXAS" is a Fieldvalue.

To identify contextual phrases, the semantic analysis module first searches32 , from left

to right, for an logical operator (such as IS, EQ, LT, LE, etc.) in the Definition slot for each

term being collected in the screening-condition stack. One occurrence of a logical operator

indicates a specific screening condition. If an operatoi is detected, the module will compare

meaning patterns of its neighboring ten-ns with the rules shown above. If a rule pattern above

is matched, corresponding terms will be collapsed into a new phrase with new meaning. This

new phrase is also marked with a flag contextual-phrase-true. This process continues until

no more operator can be found.

Next, the module is trying to test if any single term which has not been marked with

the flag contextual-phrase-true can be identified as a contextual phrase, as shown in the case

"TX" above. If it succeeds, information for the term is marked with the flag contextual-

phrase-true.

Note that undecidable situations in the above tw,7o steps may occur when a term is

i i i mn p lm, thre ways are feasible. Tik

first one tries to select a meaning which can be successfully combined with its neighboring

terms to form a contextual phrase. The second one is using the characteristics of function

words such as "AND". "OR". and prepositions. The last one is left to the reasoner, which

will tries to resolve the problems by using non-literal information.

After the module has moved "FY 88" to the screening-condition stack for the the

exemplary example, the new stack looks like this:

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25)(PART-OF-SPEECH NOUN)(CONTEXT STATE))

(MA VALUE)

3 2This module in Expert-MCA for identifying/forming contextual phrases is also implemented in Lisp

procedures.

-79-

((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))
((AND WORD/PHRASE)

((DEFINITION AND) (PART-OF-SPEECH CONJ)
(CONTEXT LOGICAL-OPERATOR)))

((PA WORD/PHRASE)
((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN)
(CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)
(ENGLISH-NAME PROGRAM AMOUNT)
(CONTEXT AMOUNT HQDA) (DEFINITION PROGAMT)))

((WITH WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((PA WORD/PHRASE)

((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN)
(CONTEXT STATECD))

(PA FIELD)
((CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)
(ENGLISH-NAME PROGRAM AMOUNT)
(CONTEXT AMOUNT HQDA) (DEFINITION PROG_AMT)))

((OVER WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION GT)
(ENGLISH-NAME GREATER THAN)
(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF GT)))

((900 VALUE)
((DEFINITION 900) (CONTEXT NUMBER) (PART-OF-SPEECH NOUN)))

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)
(CONTEXT LOGICAL-OPERATOR)))

(CONSTRUCTION COMPLETION PERCENT LESS THAN 80 WORD/PHRASE)
DlFINTION DES PERCENT LT "C8

(PART-OF-SPEFC1 NP tCONTFXT CO(iNSTRI'ECTbONm

((FY 88 WORD/PHRASE)

((DEFINITION FY IS 88) (PART-OF-SPEECH NP) (CONTEXT FY)

Suppose the module is looking for a logical operator on this stack. It will hit the one

"OVER" whose Definition slot contains a logical operator "GT"." The module tries to match

rule 3, which needs a fieldname and a fieldvalue prior to and next to "OVER." respectively.

Although the term prior to "OVER" is "PA" which has two meanings, the module is looking

for a meaning with a term type Field and check if the one after is a Value. It succeeds in this

case, so the new phrase will be formed as

((PA OVER 900 WORD/PHRASE)

((DEFINITION PROGAMT GT 900) (PART-OF-SPEECH NP)
(CONTEXTUAL-PHRASE-P TURE)))

Since no other term is indicated as a logical operator, the module continues to test if

any single term can be identified as a contextual phrase. As a result, the terms "FY 88" and

"CONSTRUCTION COMPLETION PERCENT LESS THAN 80" are marked with the flag

"contextual-phrase-ture." Next, the module looks for conjunctive such as "AND" or "OR."

The term "OR" indicates that its neighboring terms are two contextual phrases about the

same context or field, while the term "AND" indicates that its neighboring terms can be two

contextual phrases about the same, or different, context or field. In the given stack, there is a

conjunctive "AND," with a preceding term "MA" and a following one "PA." Both of "MA"

and "PA" have two meanings. Since both are about the field "STATECD," an appropriate

meaning for each of these two should be to do with the field "STATECD." Therefore, they

are collapsed into a new phrase which looks like:

qNIA AND PA WORD/PHRASE)
((DEFINITION STATECD IS 25 OR 40) (PART-OF-SPEECH NP)

(CONTEXTUAL-PHRASE-P TURE)))

The meaning for the new phrase is coerced from its meaning components: "STATECD IS

25." "AND," and "STATECD IS 40." Note that "AND" is replaced with "OR" in the new

definition. The second "AND" is also found. But the module does nothing because its

neighboring terms have been marked with the flag "contextual-phrase-ture" already.

In summary. the modified screening-condition stack now looks like this:

((IN WORD/PHRASE) ((PART-OF-SPICH PREP)))

((MA AND PA WORD/PHRASE)
((DEFINITION STATECD IS 25 OR 40) (PART-OF-SPEECH NP)

(CONTEXTUAL-PHRASF-P TU RE)

WITH WOR D IHRA SE\ S E PRT -!O FP H PiP

tPA OVER 900 WORD/PHRASE

((DEFINITION PROGAMT GT 900) (PART-OF-SPEECH NP)

(CONTEXTUAL-PHRASE-P TURE)m

((AND WORD/PHRASE)
((DEFINITION AND) (PART-OF-SPEECH CONJ)

(CONTEXT LOGICAL-OPERATOR)))

((CONSTRUCTION COMPLETION PERCENT LESS THAN 80 WORD/PHRASE)

((DEFINITION DESPERCENT LT "C80")(PART-OF-SPEECH NP)

(CONTEXTUAL-PHRASE-P TURE)))

((FY 88 WORD/PHRASE)
((DEFINITION FY IS 88) (PART-OF-SPEECH NP) (CONTEXT FY)

(CONTEXTUAL-PHRASE-P TURE)))

The algorithms described above may fail to resolve some ambiguities. For example.

meaning for the term "MA" in the following stack cannot be decided by using the above

semantic analysis, because its two meanings, "STATECD IS 25" and "PRCD IS MA,"33 are

equally qualified as contextual phrases.

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN)

(CONTEXT STATE))
(MA VALUE)

((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

((WITH WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((PA WORD/PHRASE)
((DEFINITION STATECD IS 40) (PART-OF-SPEECH NOUN)

(CONTEXT STATECD))
(PA FIELD)

k(CAPCES-NAME PROGAMT) (CAPCES-ALIAS PA)

(ENGLISH-NAME PROGRAM AMOUNT)

(CONTEXT AMOUNT HQDA) (DEFINITION PROG_AMT)))

((OVER WORD/PHRASE)
((PART-OF-SPEECH CONJ) (DEFINITION GT)

(ENGLISH-NAME GREATER THAN)

(CONTEXT LOGICAL-OPERATOR) (SYNONYM-OF GT)))

((900 VALUE)

((DEFINITION 900) (CONTEXT NUMBER) (PART-OF-SPEECH NOUN)))

Such kind of ambiguities and some others unsolved must leave to the reasoner. For

example, if no other literal information can be used to help identify a correct meaning. then

context driven reasoning must be used in the reasoner to find an appropriate context that in

turn helps resolve the ambiguity of multiple meanings of a term. as the term MA in the

~j;~-r..~i' \\ fl tht fle -n t ' T- A >!I

At this point, the query is decomposed into three refined query components. The

internal representation collected in the three stacks will then posted onto an information

blackboard. The reasoner then utilizes different knowledge sources, such as the knowledge

about databases, the user, and the MCA domain, to answer the query.

331t means state code is 25 and program code is MA (for Military Army projects).

Chapter 6

Knowledge Reasoner

A blackboard structure used in Expert-MCA is introduced in the section, followed by a

description of how the reasoner works step by step; including use of contextual information

to solve query ambiguities, use of user and domain profile information to refine query

components, execution of rule based inference and procedure processing for complex tasks.

6.1 Structure of t he Blackboard in Expert-NICA

The blackboard concept is also employed in Expert-MCA. The information stored on

the blackboard can be classified into two categories: static and dynamic. Static information

means the information does not change at all once it is created, mostly at the time of login.

Such information includes user's profile information, domain related knowledge and

infornation. Dynamic infonnation is the information being created at the time when a query

is made, and probably on the way of deriving the answer to the query. Such information

includes user's input queries, user's COrTeCti()n to the Expert-MCA's understanding of the

queries, and a modification of generated FOCUS code. Dynamic information may change

Miost at Ine in the processng of a user s input sentence, the blackboard serves as a

wor. iking area for information updating/exchange and its infornation is commonly shared by

different modules of Expert-MCA. The various knowledge sources attached to the

blackboard includes the modules of lexical mapping, syntactic analysis, semantic analysis,

the reasoner, the query language generator, user profile, and practical knowledge used in the

MCA cycle. The control mechanism of the Hnckhoard is preset by the designer in

Expert-MCA 34 Its primary functions are to assign various modules appropriate tasks, such as

how to understand a user's query, how to supplement additional or default information to the

query in order to make a proper data retrieval, how to select a target database locally in the

PC or to communicate with the mainframe, and how to arrange the sequence of producing

34Expert-MCA does not fully implement and use all the concepts that a blackboard structure can provide,

since the knowledge sources surrounding the reasoner are not so many and their roles are quite distinct.

-83-

final answers to the user. The data structure of the blackboard is like a frame with many slots

storing various information and instantiated by some global variables.

As mentioned already, user's profile information is first sent to the blackboard at the

start of entering Expert-MCA. It contains user's backgrounds in terms of levels of

sophistication about computer applications in general and the MCA processing knowledge in

particular. It can also hold user's status in terms of his or her roles and responsibilities, By

checking the information on the blackboard, Expert-MCA often directs appropriate steps in

solving problems. For example, if a user is not familiar with FOCUS query language, Expert-

MCA will not provide the user with a screen in which correction or modification of FOCUS

code can be made.

On the other hand, the blackboard also contains the information about how to make

supplemental adjustment to the understanding of user's queries.. This is conducted first by

checking user's status (or roles and responsibilities) and the understanding of a query derived

by the language analyzer, then by adding additional information to the queries. For example,

Expert-MCA may add a condition of specific years for selected data instances. It can also

find appropriate contexts for solving ambiguities of the queries.

6.2 Construct of the Reasoner

knowledge used in the MCA cycle. The problem is how such knowledge sources can be

used cooperatively and in what order or sequence.

In general, a query would specify the nature of the results desired, that is, the printing

data items, sorting data items, and screening conditions. This information, if not present in

the query, might be either preset by the user or is inferred by the system. In conjunction with

the facts embedded in the input query, the system infers more information based on context

of the input query, and knowledge about the user and the MCA application domain. This

more intelligent system would require less from the user and would therefore be easier to

use.

As discussed in Section 2.4.3, use of a KBES and DBMS may include the following

three strategies: enhancements of existing systems, coupling of independent systems, and

technology integration [81]. In the first strategy, providing CAPCES database with an input

system with reasoning capabilities can only solve problems prior to data retrieval.

Knowledge for interpreting output and then generating more sophisticated and useful

information to the user in the MCA could not be included. Thus, the enhancements would

only be a partial solution to improving the existing data retrieval process in the MCA

development cycle. The last strategy needs a great effort and suitable for building a new

enterprise.

The coupling of a KBES with a DBMS is an attractive alternative for this research,

because it does not require modifications to the existing DBMS and still provides the user a

tool that contains reasoning capability. Thus, a knowledge-based expert system with domain

knowledge in the generation of FOCUS code and further processing on retrieved data can

provide a more efficient and effective way of utilizing the CAPCES database.

The tasks of the reasoner include: resolution to the ambiguities left so far; modification

on the three query components if necessary; execution of complex reasoning process via

procedural processing or rule bases inference; request for generating query language code;

and activation of communication module for data retrieval.

To solve ambiguities left, the reasoner may use the following information sources:

contexts involved with terms in the query, knowledge about the domain, information about

the user.

"c. I 'm-nt\;H Sol% i[1no)I~

The section will talk about howx contexts involved with a term are collected, and how

they are used to help identify meaning or resolve ambiguities left.

6.3.1 Finding Context

To find contexts involved with a term, the reasoner looks for the contexts that are

stored in its Context slot, and associated with the field in its Definition slot, its English name

and CAPCES field name, or the term itself. For example, given a definition for the field

STATECD which looks like this3 5:

((STATECD FIELD)

35Ths is a partial, near representation of the one implemented in Expert-MCA.

-85-

((CAPCES-NAME STATECD)
(CAPCES-ALIAS STATECD)
(ENGLISH-NAME STATE CODE)
(CONTEXT)))

the reasoner first gets the context in the Context slot (in this case, empty). Then it is added

by its English name STATE CODE and CAPCES field name STATECD. Therefore, the

contexts collected include CODE, STATE, and STATECD. In general, collected contexts

are arranged in the follwing order: content in its Context slot, the last word of its English

name (if the term is a field), rest of its English name, contexts of a field or fields that are

referred to in its Definition slot. Such an arrangement for order of contexts for a term can be

useful in processing, since a higher priority context indicates a more specific one and may be

more often needed.

Given another term CA being defined as a Word/Phrase, as ((CA Word/Phrase)

((DEFINITION STATECD IS 15) (PART-OF-SPEECH NOUN) (CONTEXT

LOCATION))), the reasoner will collect the content in its Context slot and the contexts

involved with a field in its Definition slot, which is STATECD in this case. Therefore, the

contexts found for CA are LOCATION, CODE, STATE, and STATECD. If MAINE is

defined as a value for the field STATE, then the contexts involved will be the contexts

specified in its Context slot, plus the ones inherited from STATE. In another case, given the

term APPROPRIATED being defined as following:

((APPROPRIATED WORD/PHRASE)
~~-T Vl2PP 1"T-,TYri0)\ T\P'I T FTC'CrPART-F-SPEECH VER -: -D R O APPRO AM T

(CONTEXT APPROPRIATFE AMOUNT)

the contexts collected are APPROPRIATE, AMOUNT, APPROPRIATED and

APPROPAMT.

Simply by using literal infonnation for each term alone, the language analyzer, as

described in the previous chapter, can fail to correctly handle some terms that are associated

with obvious key words or contexts around in the same query. For example, it is unable to

determine the meaning for MA in the queries:

1. Show the projects in M A with PA over 900;
2. Show the projects in State MA with PA over 900;

3. Show the projects in the MA state with PA over 900;

4. Show the projects in the State of MA with PA over 900.

On another case, it seems very simple to figure out that the requested data item is

APPROPRIATED AMOUNT, given the sentence:

5. Show me the amounts that are appropriated for fy 87.

However, the language analyzer cannot derive this meaning either.

-86-

To resolve such problems, the reasoner has to use non-literal information, such as a

context provided around the unsolved term, use of preposition in context. The following

subsections will discuss how the reasoner can resolve these problems by using non-literal

information. Problems exemplified in query 1 above will be resolved by using the

knowledge that how a preposition can be associated with a context in its use, while those

exemplified in the rest queries will be solved by using contextual information from adjacent

terms.

6.3.2 Use of Context Driven Reasoning to Resolve Ambiguity

The reasoning mechanisms implicitly implemented in framed-based systems for

property inheritance are a special case to context driven reasoning, which is discussed in

Section 4.4. Context driven reasoning can be employed to infer meaning association and

propagation among objects.

In order to resolve the ambiguity about the term MA in the query "Show me the

projects in MA with PA over 900," context driven reasoning can help identify a correct

meaning from the two: "STATECD IS 25" and "PRCD IS MA." The process is also shown

in Fig. 6-1.

In the domain profile, some propositions about the domain are specified and used to

infer new facts in the reasoner. For example, these propositions may be about reasoning

n among t* The f two show tv o prop' s:tmons stored in

Expen-MCA about how reasoning transitivity exists among three relational objects.

Can-be-preceded-by-preposition backward-transit-over is-a-kind-of

Is-a-kind-of backward-transit-over Is-an-instance-of

On the other hand, the knowledge about how users use the preposition IN in their

queries, and about how one can relate the two objects Location and State can also be

specified in the domain profile, as shown as follows:

Location can-be-preceded-by-preposition IN

State is-a-kind-of Location

Now given the facts that the term "MA" follows the term "IN" in the query, one has to

check which meaning is more appropriate for "MA." The idea is as follows.e If a selected

meaning for "MA" is appropriate, then it should be allowed to infer that "MA" can follow

"IN." Otherwise one would not use the sequence "IN MA" to indicate the selected meaning.

First, the reasoner has to select one from these two meanings:

Meaning Association by the context Location and Preposition IN

cr -be-precede,

is-an-instance-of

* e the contetua resoin know eg-e

Can-B-<receded-By-Pre csit on backwarc-trans z-over

IGiven Relationsh

Deduced Relationship

Deduced Relationship

(first time)

(second time)

Object

is-an-instance-of Name of a Relational Object

Figure 6-1: An Application of Context Driven Reasoning

IZI

-88-

((MA WORD/PHRASE)

((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN) (CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

The first meaning selected is "STATECD IS 25" since it is defined as a Word/Phase, which

is assigned, in the lexical mapping module, with a higher priority than a Value.

The reasoner will find all possible contexts for this meaning and then makes some

instantiation. The contexts collected for this meaning include "state" "code" and "statecd," as

described in Section 6.3.1.

The reasoner then asserts propositions that associate the current term with the collected

contexts, as shown as follows:

MA is-an-instance-of STATE

MA is-an-instance-of CODE
MA is-an-instance-of STATECD

Next, the reasoner has to collect from the blackboard all related factual data or

propositions, including:

(1) Can-be-preceded-by-preposition backward-transit-over is-a-kind-of

(2) Is-a-kind-of backw ard-transit-over Is-an-instance-of

(3) Location can-be-preceded-by-preposition IN

(4) State is-a-kind-of Location

(5) MA is-an-instance-of STATE

(6) MA is-an-instance-of CODE

(7) MA is-an-instance-of STATECD

Propositions I to 4 above are retrieved from the domain profile, while propositions 5 to

7 are generated based on contexts involved in the selected meaning "STATECD IS 25" for

the term "MA." The inference rules used are the three reasoning transitivity rules (Please

refer to Section 4.4):

Rule 1.

If

<Object-X> <Relational-Object> <Object-Y>

<Object-Y> <Relational-Object> <Object-Z>
<Relational-Object> is-an-instance-of Transitive-Relation

Then
<Object-X> <Relational-Object> <Object-Z>

Rule 2.
If

<Object-X> <Relational-Object-I> <Object-Y>

<Object-Y> <Relational-Object-2> <Object-Z>

<Relational-Object-I> forward-transit-over <Relational-Object-2>

-89-

Then
<Object-X> <Relational-Object-1> <Object-Z>

Rule 3.
If

<Object-X> <Relational-Object-I> <Object-Y>
<Object-Y> <Relational-Object-2> <Object-Z>
<Relational-Object-2> backward-transit-over <Relational-Object-I>

Then
<Object-X> <Relational-Object-2> <Object-Z>

With rule 3 and propositions 2, 4, and 5, the inference engine will infer that

(8) MA is-a-kind-of Location

With rule 3 and propositions 1., 3, and 8, the infercnc- ewiagain infers that

(9) MA can-be-preceded-by-preposition IN

Therefore the selected meaning is an appropriate one. If the selected meaning cannot

be used to infer desired results, another meaning will be similarly processed again.

However, for some cases that two multiple meanings may have the same context, such

as amount or code, the idea of using word order in the query is no longer applicable to

resolve the ambiguity. In some other cases, there has no enough infonnation that can be

applied by using the same kind of inference. For example, the term "MA" in the query

"Show me the MA projects for FY 90" will be moved to the screening-condition stack, since

it stands for a contextual phrase (although it is unknown which contextual phrase is the

correct on11 at thc 1nm tt Is ml e. No nh ar correct mearn canno be identified

either in the sernatic analysis module or the reasoner so far-. For this situation, if one of

these two meaning is defined with a term type Word/Phrase and another with a term type

Value, the reasoner will assume that the one with term type Word/Phrase, which is defined

by the user or the designer, will be the default. If the two are all Values, then the user has to

specify a default one in user profile.

6.3.3 Using Context From Adjacent Terms

What follows will discuss how the reasoner uses contextual -information indicated from

adjacent terms to resolve ambiguities. Examples used to illustrate this process include:

1. Show the projects in State MA with PA over 900:

36Because there is no preposition prior to it, one is unable to use the above reasoning process.

.90-

2. Show the projects in the MA State with PA over 900;
3. Show the projects in the State of MA with PA over 900.

4. Show me the amounts that are appropriated for fy 87.

As you may have found, the context needed to identify the correct meaning for MA in

queries 1 to 3 is from the term STATE. Depending how the user defines STATE in the

dictionary of Expert-MCA, it may have many ways to select a meaning for MA from the two

"STATECD IS 25" and "PRCD IS MA."

A definition for the term STATE is defined by the system as a Fieldname. The user

can also define the term as the following:

((STATE WORD/PHRASE)
((DEFINITION STATE CONTAINS "?X")
(PART-OF-SPEECH NOUN)
(VARIABLE-PART ?X)
(VARIABLE-LOCATION NEXT)
(VARIABLE-TYPE STRING)
(VARIABLE-RANGE N/A))

The lexical analysis module will form, as similarly described in Section 5.3. for the term

"construction completion percent," a new term "STATE MA" with the meaning "STATE

CONTAINS MA." Therefore the language analyzer would not have problem in interpreting

the term STATE MA in query I above. Similarly, the user can also define STATE

differently for coping with such patterns as "?X STATE" and "STATE OF ?X." But this is

too tedious, for the user has to define other terns which are similar to STATE in pattern

mat,1chirya- ' Ti T '' .- ';;~i ~n ': 7 fh~ iJ

here is how the reasoner can use STATE as a cxt hclp identify a correct meaning for

MA.

Now suppose the dictionary contains only one definition for the term STATE, which is

a Fieldname. By the time the reasoner starts to work on each of queries 1 to 3, the three

modified-screening-condition stack 37 for them look like this (neglecting the part for "WITH

PA OVER 900"):

For Query 1:

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

3The term THE is a function word, which performs a function role in syntax and semantics. It can be used to

help solve ambiguity problems, just as the preposition "IN" does in the previous subsection. However, Expert-

MCA does not implement any mechanism to utilize its function role in this respect. Therefore it is seen as a

dummy word and removed in the language analyzer. As a result, the term THE in the above stacks for queries 2
and 3 does not appear.

((STATE FIELD)
((CAPCES-NAME STATE) (CAPCES-ALIAS STATENAME)
(ENGLISH-NAME STATE NAME) (DEFINITION STATE)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN)
(CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

For Query 2:
((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((MA WORD/PHRASE)

((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN)
(CONTEXT STATE))

(MA VALUE)
((IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA)))

((STATE FIELD)
((CAPCES-NAME STATE) (CAPCES-ALIAS STATENAME)
(ENGLISH-NAME STATE NAME) (DEFINITION STATE)))

For Query 3:
((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((STATE FIELD)

((CAPCES-NAME STATE) (CAPCES-ALIAS STATENAME)
(ENGLISH-NAME STATE NAME) (DEFINITION STATE)))

((OF WORD/PHRASE) ((PART-OF-SPEECH PREP)))
((MA WORD/PHRASE)

((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN)
(CONTEXT STATE))

A VALU E

IN-WHICH-FIELD PRCD) (DEFINITION PRCD IS MA))

The way of using the context STATE to help identify the meaning for MA in the above

three queries is described as follows. The reasoner first searches, form left to right, for a

term which has multiple meanings. In this case, the term MA will be hit. Next, the reasoner

collects the contexts involved with MA for one meaning at a time. If the following steps fail,

contexts associated with another meaning will be collected and the following steps will be

processed again. At this point, the first set of collected contexts are STATE, CODE, and

STATECD. Then the reasoner may check the following condition:

1. Check the case "context-term OF context-instance" 38: If the term prior to

MA is "OF," then check if the term prior to "OF" is one of the collected

38These three case are corresponding to STATE OF MA, STATE MA. and MA STATE.

-92-

contexts. If the check fails then go to the next step. Otherwise it stops and

claims the selected meaning for MA is a correct one. At the same time, the two

terms prior to MA and the meaning other than the selected one for MA is

removed from the stack.

2. Check the case "context-term context-instance": Check if the term prior to

MA is one of the collected contexts. If the check fails then go to the next step.

Otherwise it stops and claims the selected meaning for MA is a correct one. At

the same time, the term prior to MA and the meaning other than the selected

one for MA is removed from the stack.

3. Check the case "context-instance context-term": Check if the term next to

MA is one of the collected contexts. If the check fails then stops without doing

anything to the stack. Otherwise it stops and claims the selected meaning for

MA is a correct one. At the same time, the term after to MA and the meaning

other than the selected one for MA is removed from the stack

Having gone through the steps above, the reasoner updates all the three stacks above as

follows:

((IN WORD/PHRASE) ((PART-OF-SPEECH PREP)))

((MA WORD/PHRASE)
((DEFINITION STATECD IS 25) (PART-OF-SPEECH NOUN)

(CONTEXT STATE))

Although the context referred to in the above case is STATE, the algorithm can be used for

any context, such as code, cost. etc.

The reasoner also checks to make sure that appropriate items have been collected in

requested-item stacks for queries. If a data item in such a stack is not a Field or temporary

fild . a neighoring comext should be ed ut ref ine 'i For example. the term AM 1OUNTS

in the query "Show me the amounts that are appropriated for fy 87" is neither a field nor a

temporary field.

The following shows how the reasoner finds an appropriate substitute for this term by

using contextual information. In this case, the reasoner checks if there is one common

context involved with AMOUNTS and the term prior or next to AMOUNTS. If there is one,

the reasoner forms a new tern and then checks if the new term is a field. A new term is

formed by making a combination of two terms, each coming from the two sets of contexts

collected for the term and AMOUNTS, respectively. If the new term is a field, then

AMOUNTS will be replaced with the new term. Otherwise, the reasoner tries another

combination.

39A temporary field should be associated with a Procedure term, or with a Word/phrase that is defined as a

statement consisting of two fields connected by an arithmetical operator. Please see Section 4.2.

-93-

To be more clear, let us see how it works step by step. By the time Expert-MCA

enters the reasoner, the requested-item and screening-condition stacks for this query look like

this:

Requested-Item Stack:
((AMOUNTS WORD/PHRASE)

((DEFINITION AMOUNT) (PART-OF-SPEECH NOUN) (CONTEXT AMOUNT)
(SYNONYM-OF AMOUNT)))

Screening-Condition Stack:
((APPROPRIATED WORD/PHRASE)

((PART-OF-SPEECH VERB) (DEFINITION APPROPAMT GT 0)
(CONTEXT APPROPRIATE AMOUNT)
(CONTEXTUAL-PHRASE-P TURE)))

(FY 87 WORD/PHRASE)
((DEFINITION FY IS 87) (PART-OF-SPEECH NP) (CONTEXT FY)

(CONTEXTUAL-PHRASE-P TURE)))

The term next to AMOUNTS at this point is APPROPRIATED4 0 , which is involved with

such contexts as APPROPRIATE, AMOUNT, APPROPRIATED and APPROPAMT. With

contexts involved with the term AMOUNTS being AMOUNT and AMOUNTS, the reasoner

sequentially checks to see if one of the following terms is a field: APPROPRIATE

AMOUNT, AMOUNT AMOUNT, APPROPRIATED AMOUNT, APPROPAMT

AMOUNT, APPROPRIATE AMOUNTS, AMOUNT AMOUNTS, APPROPRIATED

AMOUNTS, and APPROP_AMT AMOUNTS. As a result, the term APPROPRIATED

AMOUNT is found as Fieldname. The reasoner them replace AMOUNTS in the requested

iack with the nev term APPROPRI D AMUST

6.4 Use of User and Domain Profile Information

The reasoner also refines contents of the three query components by using information

about the user and the domain and by activating the Profile Knowledge Source, a rule base

about how information or data items should be used to add (or delete) to query components

by considering, for example, user job characteristics or responsibilities, or regulations about

the application domain. Specifically, the rule base contains knowledge on how to specify

default printing data items, default sorting data items, and default screening conditions given

4OAt this point, the terms THAT and ARE are removed in the semantic analysis module, since they are
treated as dummy words. Please see Section 5.5.

-94-

the role and responsibilities of the user and the context of the sentence. Currently, Expert-

MCA does not implement too many of such rules. The rule base can be expanded or

modified (in Profile Session) as the user sees a need.

Some of rules are explained as follows. Set-Rpt-Rule is used to set up default printing

items according to the agency of the user. Set-Printer-Rule is used to set up data items for

requested and sorting information, according to user agency and contexts of the query. Set-

Download-Select-Rule is used to specify screening conditions in downloading a subset of

topical database from the mainframe. A similar concept can also be used for the screening

conditions by considering the user's information and domain's practices.

For example. Set-Printer-Rule looks like this:

Rule name: MACOM- I

IF
USER IS-A MACOM
CONTEXT IS-A AMOUNT

THEN
PRINTER CONTAINS PROJECT DESCRIPTION AND PROGRAM AMOUNT

SORTER CONTAINS MAJOR COMMAND AND STATE CODE

Rule name: DAEN-PRINTER
IF

USER IS-A DAEN
CONTEXT IS-A AMOUNT

THEN
PRINTER CONTAINS PROGRAM AMOUNT AND APPROPRIATED AMOUNT

SORTER CO)NTAINS FiSCAL 'AR ' D-) DISTRICT NA\"

Rule name: MACOM-2
IF

USER IS-A MACOM
CONTEXT IS-A DATE
CONTEXT IS-A DESIGN

THEN
PRINTER CONTAINS DESIGN START DATE AND DESIGN PERCENT

AND DESIGN COMPLETION DATE

SORTER CONTAINS FISCAL YEAR AND STATE

The rule MACOM-I says that if the user's agency is a major command and the query

is involved with the context amount, then the requested data items should contain such fields

as PROJECT DESCRIPTION and PROGRAM AMOUNT; the sorting data items should

contain such fields as MAJOR COMMAND and STATE CODE. The rule DAEN-PRINTER

says that if the user's agency is the Department of the Army, Engineering Office (including

-95-

the Office of Chief Engineers and Assistant to Chief Engineers Office) and the query is

involved with the context amount, then the requested data items should contain such fields as

PROGRAM AMOUNT and APPROPRIATED AMOUNT; the sorting data items should

contain such fields as FISCAL YEAR and DISTRICT NAME. The rule MACOM-2 says

that if the user's agency is a Major Command and the query is involved with the context date

and design, then the requested data items should contain such fields as DESIGN START

DATE and DESIGN PERCENT and DESIGN COMPLETION DATE; the sorting data items

should contain such fields as FISCAL YEAR and STATE.

In Expert-MCA, each of such rule set contains several production rules and is

associated with a term with a term type Rule, such as Set-Printer-Rule, or Set-Download-

Select-Rule. These rule sets (or Rule terms) are defined and customized by the user. To tell

the reasoner which rule sets are needed, the user has to fill in their names in the Domain-

Rule-Sets slot at running a Domain Profile Session4 1 .

On the other hand, adding data items to the query components can be personalized.

The user may have a specific interest in some data items for a short period or for a non-

routine work. This requires that the system be flexible for him or her to specify more

dominating information about requested data items, sorting data items, or screening

conditions. In Expert-MCA, the user can specify such information in the Default-Printed-

Items, Default-Sorting-items, and Default-Screening-Conditions slots, respectively, at

running a User Profile Session.

This default inonnatin can be very ueful in refinng the query components. Foi

example, a user, who is working on a specific group of projects in fiscal year 1989, forgot to

specify the fiscal year in his or her query. By having the default range of time period for the

projects from the user's profile, the reasoner can add additional screening conditions for data

retrieval. This might save a lot of time and efforts without retrieving information that is not

needed.

On another case, the user often asks "What are the projects" with some following

conditions in a query. However, in the CAPCES database, there is no such a field called

"project" or "projects." Rather it means a collection of some fields, such as PROJECT

DESCRIPTION, PROJECT KEY NUMBER, and PROGRAM AMOUNT. Although the

41The Profile Session contains two branching sessions: Domain Profile Session and User Profile Session.
Please refer to Chapter 8.

-96-

user can define the term as some specific fields, such a definition for the term may add

complication to analysis for queries. This is because the term PROJECTS (or project) can be

a dummy word in many locations in a query. A better approach, which is implemented in

Expert-MCA, is to allow the user to specify those fields in user profile as default printing

items. The reasoner then just removes the term PROJECTS (or project) from the query

components and add the default printing items to the query components.

The user profile can also store a default meaning for a term that is unable, or not easy,

to determine a correct one among its serval possible meanings. For example, if a term which

is a value for multiple fields appears in a query and there is no contextual tern around in the

query, Expert-MCA must check with the user profile for a default meaning, or ask the user to

select one in the middle of a Query Session.

6.5 Execution of Tasks Triggered by Terms

The reasoner next checks the terms to see if they invoke any procedure or rule. At the

same time it also removes from the three query stacks any term which is a function word,

such as prepositions and conjunctive (AND, OR), since the reasoner no longer uses function

words for helping identify the meaning of the query. If any of the terns in the query refers to

a procedure or a rule, the reasoner activates an appropriate inference engine to reason new

facts, based on the statements in Procedures or Rules. Such facts then are posted onto the

blackboard. A Procedure often needs other term types suc h as Ficldnanes or Fieldvalues to

do arithmetic calculations or logical analyses. The reasoner searches for this information

from the blackboard. If such information does not exist on the blackboard, the reasoner will

request it from the user.

In a rule base environment, an inference engine is a computer program that can infer

information symbolically based on a set of rules and an initial set of working facts. A

working memory is used to store the facts that include the input working facts initially and

will be updated after rules are applied. An inference engine uses some control mechanisms

to guide how repetitively matches the data in the working memory with the rules provided

and to update the working memory. Although the two algorithms forward-chaining and

backward-chaining are usually used in an inference engine. Expert-MCA primarily applies

the forward-chaining algorithm to infer new facts because the number of given facts that are

conveyed in the input query is quite small.

-97-

In addition to an inference engine for inferencing production rules, Expert-MCA also

implements a procedure processor for processing procudures that are triggered by some

terms in the query. When procedures are detected by the reasoner, they will be sent to the

procedure processor. Basically, the procedure processor performs as a miniature of complier

and loader. It first compiles the definition statements for the procedure and converts these

statements into equivalent expressions in Lisp functions. The procedure processor then

evaluates the Lisp expressions to acutually exectute tasks as specified in the procedure.

6.5.1 Rule Base Inference Used for Answering a Query

The system can also be used to store general knowledge, in the form of nles and

procedures, about the tasks in the MCA development cycle. Such knowledge can be encoded

from the regulations and practices of the organization. This subsection discusses how the

reasoner processes a procedure which in turn calls a rule base, while the next subsection

discusses how it processes a procedure which calls other two procedures.

A user may directly query such knowledge. For example, a user might want to know

the latest date that he may submit his or her projects to OCE (the Office of Chief Engineers)

and still have his project included in a program year. For such a query, the system functions

more like a simple expert system which uses domain knowledge called up with a natural

language interface.

VHEN IS THE LATEST D.ATE TO SUBMIT PROJECTS TO OCE FOR FY 91?

By the time the reasoner starts working, the stacks created by the language analyzer

look like this:

Requested-Item Stack:
((LATEST DATE WORD/PHRASE)

((DEFINITION LATEST DATE) (PART-OF-SPEECH NP)
(CONTEXT DATE-TYPE TIME)))

Screening-Condition Stack:

((SUBMIT PROJECTS TO OCE WORD/PHRASE) 42

((DEFINITION SUBMIT PROJECTS TO OCE) (PART-OF-SPEECH VP)))
((FY 91 WORD/PHRASE)

42The term SUBMIT is defined as a Word/phrase which expects to bind other words. What we see here is a
result after the lexical analysis. However, it is also defined as a Procedure with a definition shown below.

-98-

((DEFINITION FY IS 91) (PART-OF-SPEECH NP) (CONTEXT FY)))

At this point, the reasoner checks if any term in the Definition slots for the query

stacks left refers to a Procedure or Rule. Because a procedure SUBMIT is found in the

Definition slot, the reasoner will ask the procedure processor to process it.

In this example, the term SUBMIT is also defined as a procedure which develops a

process for determining a date for a type of submittal. Its definition is as follows:

SUBMIT PROC ;declare a knowledge procedure SUBMIT
PART-OF-SPEECH VERB
DECL FACT X Y Z U ;declare X, Y, Z, U as facts
GET X OBJECT ;get a fact bound to a context OBJECT
GET Y AGENCY :get a fact bound to a context AGENCY
GET Z DATE-TYPE ;get a fact bound to a context DATE-TPEL
U = DETERMINE DATE-TYPE USING SUBMIT-RULES

; call the rule SUBMIT-RULES with an input
OUTPUT U

The SUBMIT procedure specifies the need to find facts associated with an object, an

agency, and a date-type before activating a rule base "SUBMIT-RULES". The reasoner

searches the user query from the blackboard and finds out the following facts: the object for

the submittal is "projects"; the receiving agency for the submittal is "OCE"; the date-type for

the submittal is "latest"; and the submitting agency by default is the user's agency, which is

found from the user profile, in this case MACON (for Major Anny Command). Given these

facts in conjunction with FISCAL YEAR IS 91, the knowledge rule "SUBMIT-RULES" is

The SUBMIT-RULES rule base, partially shown below, contains knowledge of the

paperwork flow events in the construction program cycle, including submission dates and

constraints.

-99-

((SUBMIT-RULES RULE)

(RULE EVENT-16-1
(IF (AGENCY IS-A OCE)

(USER IS-A MACOM)
(OBJECT IS-A PROJECTS))

(THEN (EVENT IS-A EVENT-16)))

(RULE TIME-EVENT-16
(IF (EVENT IS-A EVENT-16)

(DATE-TYPE IS-A LATEST)
(FY IS ?X))

(THEN (THE LATEST DATE IS JUNE 30 1 + 4X -

The inference engine fires rules which relate the facts to dates. In this example, an

event, Event-16, is inferred as associated with a submission of projects from a MACOM to

OCE. This rule calculated the late date for Event-16. The variable ?X has been bound to FY

for programmed year and has a value of 91 in this example. Then the latest dates for the

submission is June 30 1989. Therefore the fact "THE LATEST DATE TO SUBMIT IS

JUNE 30 1989" is returned from the rule base SUBMIT-RULES to the calling knowledge

procedure SUBMIT, which in turn outputs the fact.

6.5.2 Procedural Processing Used for Answering- a Query

Another user might be interested in determining the amount of funds to be allocated

for the design of the projects in Massachusetts within his district office in fiscal year 1988.

CAPCES does not store such data. This user might ask an expert how design budgets are

determined. The expert might tell him that the amount of the design funds in one particular

year can be approximated as 4% of the program amount of the projects for the following year

which have less than 25% of their design completed, plus 5% of the program amount of the

projects programmed for two years in the future for which the design has yet to start.

The user would like to query the system by saying:

WHAT ARE THE DESIGN FUNDS FOR MA PROJECTS IN FY 88?

In Expert-MCA, DESIGN FUNDS must be defined, either by the user if he/she has

some programming skills, or by a programmer using the above heuristics. The user can

-100-

define the three terms; design funds, design-fundl, and design-fund2, each as a procedure.

Once they are stored in the system, they become part of the system's knowledge and can be

used again and by others. The definition of these three terms might look like this:

;;This column is for comments.

DESIGN-FUNDS PROC ;declare a knowledge procedure DESIGN-FUNDS

PART-OF-SPEECH NOUN
DECL FACT X ;declare X as a fact

DECL VAR X1 X2 ;declare X1 X2 as numerical variables

DECL FIELD Fl F2 F3 ;declare F1 F2 F3 as temporary fields

IF SCREENFIELDS NOT CONTAIN FY THEN ASK FY

;if screening-condition stack does not

;contain the field FY, ask the user to input

GET X FY ;get a fact bound to a field FISCAL YEAR

X1 =X+ 1
X2=X+2

F1 = CALL DESIGN-FUND1 (Xl) ;call procedure DESIGN-FUND1

F2 = CALL DESIGN-FUND2 (X2) ;call procedure DESIGN-FUND2

F3 = F1 + F2

REMOVE FY FROM SCREENFIELDS ;remove FY from screening fields

APPEND DISTRICT TO SORTFIELDS ;append DISTRICT to sorting fields

OUTPUT SUM F3 BY SORTFIELDS FOR SCREENFIELDS ;output a sum

The procedure DESIGN-FUNDS starts by declaring types of information needed,

including facts. variables, temporary field names, and tables. Then, it checks whether a

necessary piece of information was supplied in the quer. If not, it will ask for the

information from the user. Arithmetical computations and other processing such as

mIo d ified by remoing 11 e gr selection conditio tor fiscal year and adding a sorting

condition. Lastly. the report's contents is specified by requesting a summation of a

calculated field with sorting and selection criteria.

DESIGN-FUND1 PROC ;declare a knowledge procedure DESIGN-FUNDS

PART-OF-SPEECH NOUN

DECL FIELD Y
DECL VAR Xl
GET X1 INPUT ;get the variable X1 from the calling procedure

Y = IF FY IS Xl AND DESIGN PERCENT GT DO0 AND DESIGN PERCENT

LT D25 THEN Y = 0.04 * PROGRAM AMOUNT

WHEN Y GT 0

OUTPUT Y

-101-

DESIGN-FUND2 PROC ;declare a knowledge procedure DESIGN-FUND 1
PART-OF-SPEECH NOUN
DECL FIELD Y
DECL VAR X2
GET X2 INPUT ;get the variable XI from the calling procedure
Y = IF FY IS X2 AND DESIGN PERCENT EQ D0

THEN Y = 0.05 * PROGRAM AMOUNT

WHEN Y GT 0
OUTPUT Y

The procedure DESIGN-FUNDI contains conditions for selecting the projects with

design completion less than 25% for a specific fiscal year, and calculating 4% of the program

amounts of these projects as the procedure's output. Similarly. the procedure DESIGN-

FUND2 contains instructions for selecting the projects with design yet to start in a specific

fiscal year, which when called is the following, and calculating that 5% of the program

amounts of these projects be taken as the procedure's output.

When the reasoner starts to screen the blackboard for a procedure or rule in the query

"What are the design funds for MA projects in FY 88." the blackboard has the stacks which

look this:

Requested-Item Stack:

((DESIGN FUNDS PROC)
((PART-OF-SPEECH NOUN) (DECL FACT X) (DECL VAR Xl X2)

(DEFINITION DESIGN-FtNDS) (SYNONYM-OF DESIGN-FUNDS)))

Screemng-Conditon Stal.
((MA WORD/PHRASE)

((DEFINITION STATECD IS 25)
(PART-OF-SPEECH NOUN)
(CONTEXTUAL-PHRASE-P TRUE)))

((FY 89 WORD/PHRASE)
((DEFINITION FY IS 89)
(PART-OF-SPEECH NP)
(CONTEXTUAL-PHRASE-P TRUE)))

The reasoner now detects that a procedure DESIGN-FUNDS is referred to in the

query. It then asks the procedure processor to execute the procedure DESIGN-FUNDS.

During its processing, it discovers that it needs two other procedures. DESIGN-FUNDI and

DESIGN-FUND2. It creates two other environments for executing the two procedures

DESIGN-FUND1 and DESIGN-FUND2. After finishing each of the two procedures,

processing continues in DESIGN-FUNDS.

-102-

By integrating the results of these three procedures, the query generator is able to

define the needed temporary fields which are incorporated in the FOCUS code. They are

used to the construct the following calculation section for FOCUS:

DEFINE FILE PMMFILE
DESIGN-FUND 1 = IF (FY IS '89' AND DESPERCENT GT 'DOO'

AND DESPERCENT LT 'D25') THEN 0.04 * PROGAMT;
DESIGN-FUND2 = IF (FY IS '90' AND DESPERCENT EQ 'D00')

THEN 0.05 * PROGAMT;
DESIGN-FUNDS = DESIGN-FUND 1 + DESIGN-FUND2;
TEST-D-F = IF DESIGN-FUND1 GT 0 THEN 'Y'

ELSE IF DESIGN-FUND2 GT 0 THEN 'Y' ELSE 'N'
END

The query generator then will generate the main part of FOCUS code as:

TABLE FILE PMMFILE
HEADING CENTER
" REPORT ON DESIGN FUNDS"
" </2 "
" <20 MADE BY SYSTEM <60 ON 10-30-88"
SUM
DESIGN-FUNDS
BY DISTNAME
IF STATECD IS 2
IF TEST-D-F IS 'Y'
END

To answer a query, one may need a complex process. via specification in Procedures or

Rules, that operates on information both prior to and after data retrieval from the database.

Further processing, including post-access (or post-retrieval) processing, is only carried out

through the remainder of active Procedures. The primary objective of pre-access processing

is to translate infornation about the query to its corresponding FOCUS code. The next

chapter will discuss how this is accomplished.

Most procedures are used to create temporary fields, such as DESIGN-FUNDS.

DESIGN-FUNDI, and DESIGN-FUND2 above. The reasoner can perform the calculations

for the temporary fields within FOCUS by sending FOCUS code as a prefix to a report

request. It may also import the raw data and perfonn the calculations in post-access

processing. Because of the speed of the mainframe and convenience, if performing

calculations and setting conditions can be processed in the database system and post-access

-103-

processing is not required, the reasoner prepares and sends pre-access processing instructions

to the query generator.

However, there are queries which can only be solved by using post-access processing.

The reasoner must scan procedures and determine if the process described in the procedures

can be processed completely within a pre-access processing, and thus just reports the

received information to the user. As illustrated below, a need for a post-access processing

can be detected by looking at the sequences of use of needed fields or factual data in

procedures or rules used. If any operation specified in a procedure cannot continue without

providing data retrieved from the database, then the reasoner has to proceed in a post-access

processing4 3

Now let us consider the following query: "Show me the design performance for FY 87

projects by designers." Assume the inquirer is working as a manager in a design agency and

wants to know how each of his or her design employees performs in design. Also the

following assumptions are made in order to process an evaluation about design performance:

each project has a project ID and jointly designed by many designers; a bad designer tends to

have bad design performance with the projects he or she is involved; one may know who is

responsible for project's delay by looking at the patterns of design performance with all the

projects associated with designers.

The reasoner detects that data item DESIC PERFORMANCE collected in the

re'anested-item stack and then will inform the procedure proce or to execute the procedure.

DESIGN-PERFORMANCE PROC ;Declare a procedure

DECL VAR ID X :Declare two variables ID and X

GET ID DESIGNER-ID ;Find an ID value by looking for

the context DESIGNER-ID

FOR-EACH ID DO ;For each ID. do the following:

X = AVERAGE (DESIGN-PERFORMANCE-INDEX)

:Assign X an average over design-performance-index involved

;with the current ID. Design-performance-index is another procedure.

OUTPUT X ID AS "DESIGN PERFORMANCE" "DESIGNER ID"

;Output the values for the two columns X and ID

END-DO ;End of FOR-EACH loop, the output is a table.

The procedure processor then compiles each of the above statements into equivalent Lisp

43Since post-access processing is much more complicated than pre-access processing, it has yet been fully

implemented in the prototype system Expert-MCA. However, a conceptual idea about how to process a

post-access processing is illustrated in the DESIGN PERFORMANCE case.

expression. In the middle of the compiling process, it recognizes that DESIGN-

PERFORMANCE-INDEX is another procedure. Therefore, the procedure processor

continues to compile the procedure DESIGN-PERFORMANCE-INDEX. As such, the

procedure processor records all procedures and rules, together with their variables and

detected fields.

The definition for DESIGN-PERFORMANCE-INDEX is show as below:

DESIGN-PERFORMANCE-INDEX PROC ;Declare a procedure
DECL VAR X Y Z INDEX ;Declare variables X, Y, Z, and INDEX
GET X PROJECT_ID ;Assign X a value associated with ProjectID
FOR-EACH X DO ;For each X do the following:
Y = DETERMINE EXPECTED-DESIGN-DURATION

USING EXPECTED-DESIGN-DURATION-R TLES

;Assign Y a value that is determined for expected design duration

; by using a rule base EXPECTED-DESIGN-DURATION-RULES.
Z = Retrieve Actual-Duration

:Retrieve a value for term associated with the current X
;(or the project ID in question).

INDEX = Z / Y
OUTPUT = INDEX Z Y X AS "DESIGN PERFORMANCE INDEX' ".."" "..

END-DO Finish the For-Each loop, and output a table with above four columns.

A rule base EXTECTED-DESIGN-DIRATION-RULES and a term Actual-Duration are

needed in the above procedure. Definitions for them are shown as below:

EXPECTED-DESIGN-DURATION-RULES RIULE Declare a rule

RPULE-i

IF CATCD3 FROM 100 TO 199 ;If project's category code is from 100 to 199

PROGAMT FORM 200 TO 300 ;and program amount is from 200 to 300 thousands
THEN EXPECTED-DESIGN-DURATION IS 60

:then expected design duration is 60 days.

R ULE-9

ACTUAL-DESIGN-DURATION WORD/PHRASE ;This is a Word/phrase.

DEFINITION DESIGN COMPLETION DATE - DESIGN START DATE

:Difference of two fields

PART-OF-SPEECH NOUN

-105-

The procedure processor finally reports to the reasoner that a post-access processing is

needed and the following data items are required for its further processing: DESIGNERID,

PROJECT_ID, CATCD3 (for project category code with 3 digits), PROGAMT (for

program amount), ACTUAL-DESIGN-DURATION (a temporary field associated with two

fields DESIGN COMPLETION DATE AND DESIGN START DATE).

Upon receiving the report from the procedure processor, including cases for both pre-

access processing and post-access processing, the reasoner must request the query language

generator to compose the database query, send it to the DBMS, and download the results. If

the case needs a post-access processing, the returning results will send to the procedure

processor for continuing its process.

As illustrated in the above example, statements specified within a Procedure is often

used to infer additional information from the retrieved data in order to obtain a proper

solution. The post-access processing can range from a simple algorithmical operation to a

complicated pattern search, or from a diagnosis of problems to a forecast of trends.

Once the query generator produces a set of FOCUS statements. the reasoner has to

exploit either the local databases stored in the personal computer or the mainframe database

in Dallas. Texas. If data items included in the FOCUS code exist in a local database, the data

retrieva wxill he done locally by sending the FOCUS code to PC/FOCUS, a PC version of

FOCU) iatabase mt'ane n tem Otherwise the reasoner will send the FOCUS code to

m e w om c par ametrne information Such

number connected to the mainframe, and values for a set of communication parameters, such

as baud and port. The reasoner then is able to trigger a telecommunication process to the

mainframe.

-106-

Chapter 7

Query Language Generator and Knowledge Acquisition

7.1 Query Language Generator

The query language generator is a module that translates the internal representation for

the input sentence into the target query language FOCUS. Before entering this module, the

internal representation has been refined through previous processing modules. The query

language generator simply extracts the meaning expression that is stored in the Definition

slots of the terms in the three refined groups: requested items, screening conditions, and

sorting items. It then follows the syntax for FOCUS to construct FOCUS query expression.

7.1.1 Features of the Query Language FOCUS

FOCUS is a product of Information Builders, Inc [79]. It is an information control

system, with facilities for describing files, for entering, changing, and deleting records in the

files, and for preparing reports from the information in the files. This study is concerned

with its report request language only. FOCUS files are arranged in a structure in which

different segments of data are related to each other in a hierarchical parent-to-child

r nhip. AlhuhF S query lana is used to imeract with hierarchical data

models, it has been carefully designed to generate reports efficiently and easily. It is claimed

that little or no knowledge of file structures is needed to use the report request language.

To prepare reports, users have to program their requests in terms of FOCUS request

language, or so-called query language. Such request programs specify the directions for

which records are to be retrieved, what calculations are to be performed, how the lines of the

resulting reports are to he sorted, and how the report is to be formatted on display. A report

program may consist of report request statements, report formating statements, report pre-

processor statements.

A tabular report is requested by a TABLE command statement, which consists of

several phrases: such as TABLE-phrase, verb-phrase, sorting-phrase, screening-phrase, and

End-phrase. A detailed description about the syntax of the TABLE command statement is

given in Appendix D. 1. The TABLE command statement looks like this:

-107-

TABLE FILE <filename>
<verb-phrase>
[<sorting-phrase>]
[<screening-phrase>]
<end-phrase>

where [<phrase>] means <phrase> is optional.

<Filename> is the file from which data is to be retrieved. <End-phrase> can be a

single command, such as END, RUN, or QUIT. A verb in FOCUS is a word of action that is

perfonned on the fields which are its objects in a verb-phrase. A verb-phrase looks like this:

Verb fieldname and fieldname and fieldname For e*anmple, PRINT PROGAMT (for

program amount) AND APPROPAMT (for appropriated amount) is a verb-phrase. The

verbs used are LIST, PRINT, COUNT, SUM, ADD, and WRITE. LIST is to list the records

one on a line, and to number them. PRINT is to list the records one on a line, but not to

number them. COUNT is to count the number of occurrences. SUM is to write a record in a

line which may contain other records, adding computational fields together, overwriting

alphanumeric fields. The use of ADD or WRITE is the same as SUM. The conjunction

AND between two fieldnames are optional.

The lines of a report page can be sorted by a field, including temporarily defined fields

(see below), or a list of fields. The report can also be sorted across the columns of a page by

a field or a list of fields (but not more than 5 fields). A matrix type of reports can be

produced by sorting fields in rows, using the command BY, and columns, using the

command 2ACROSS. T'he defau: sortng seguence is iow to high. A to Z, or 0 to 9. The

format of a sorting statement looks like this: BY fieldname or ACROSS fieldname. To

produce a tabular report with a hierarchy in sorted fields, we can write a sorting-phrase

consisting of several sorting fields sequentially. For example, if we have the sorting

statement:

BY STATE
BY FISCALYEAR

then the data in the target tabular report will be categorized (sorted) by the sequence of

STATE, with a subcategory in terms of FISCAL YEAR within each of the occurrences of

STATE.

Screening conditions, as specified in screen-phrase, are used to limit the acceptance of

individual records to the ones which past the tests. These are the records which are then

sorted, accumulated, and processed into the output format of the finished report. If a TABLE

-108-

command statement does not contain screening conditions, every record of requested fields

in the data file will be considered acceptable and hence retrieved. A screening condition

looks like this: IF fieldname <relation> <value>, where <relation> stands for a logical

relation such as IS, EQ (for equality), NE (for inequality), GT, GE, LT, LE, TO, FROM (for

a range); <value> stands for a data instance or a number. A screening-phrase may consists of

multiple screening conditions. For example, the following is a valid screening-phrase:

IF FY GE 90
IF STATE IS MASSACHUSETTS

where
FY stands for fiscal year, and GE stands for greater than.

In FOCUS, temporary data fields can be defined as arithmetical or logical

combinations of real fields or other temporary data fields. To define temporary data fields

needs to issue DEFINE command statements, each having the format as follows:

DEFINE FILE filename
temporary-field- 1/format- 1 = expression-i ;
temporary-field-2/format-2 = expression-2 ;

END

A more detailed description of the syntax of the DEFINE command statements is given in

Appendix D.2. Once a temporary data field is defined, it can be used later in report requests

inex y tham w a rea feld s use, su ain verb-phirase. sorting-phrase, or

screening-phrase. In other words, the computed or derived data fields by using the DEFINE

command statements appear to users (or internally to report generator of FOCUS) as if they

were actual fields.

The use of such DEFINE command statements is the major part of what we called

report pre-processor statements previously. The formating statements are used to echo text,

such as heading. and footing, for supplemental purposes. They are composed of statements

which are described within the symbols " ", or are led by some special commands such as

HEADING, ON, FOOTING.

-109-

7.1.2 Composition of FOCUS Code in Expert-MCA

Since Expert-MCA has grouped, in the language analyzer and the reasoner, user's

input queries into the three components: requested data items (or printing items), screening

conditions, and sorting data items, it is fairly straightforward to compose a TABLE command

statement. In theory the internal representation for such three components is nothing to do

with any database query language, because any database query must contain the information

about the three components44, and hence the query can be transformed into a single set of

infornation in terms of an internal representation, as long as a set of syntax and semantic for

such a transformation is followed.

When the FOCUS query generator 45 is requested to compose FOCUS code, it retrieves

the information about the three components from the blackboard and then applies a set of

rules to transform the information into target FOCUS code46. Such rules can be described in

concept as follows:.

Rule 1.

If Action-In-Query 47 is <verb>

Then Report-Verb has-meaning-or-value <verb>

Rule 2.

If <term> is-a-member-of Requested-Data-Item

Then <field> is-derived-by-finding-FOCUS-field-from <tenn>

FOCUS-Requested-Field is-pushed-with-attribute-value

Has-Meaning-Or-Value <field>

Rule 3.

If FOCUS-Requested-Field has-meaning-or-value <fields>

Report-Verb has-meaning-or-value <verb>

Then <phrase-value> is-concatenated-by <verb> <fields>

Verb-Phrase is-pushed-with-attribute-value

Has-Meaning-Or-Value <phrase-value>

4If screening conditions and sorting data items are not provided in the query, it may imply some default

information about them. In Expert-MCA, they can specified in user profile.

45This is the generator designed as a module of Expert-MCA to generate FOCUS code. Please do not get

confused with the report generator of FOCUS.

46The transfornation is implemented in Lisp procedures. The following rules presented here are only for

explanation purpose.

47Please see Section 5.5.

-110-

Rule 4.
If <term> is-a-member-of Sorting-Data-Item
Then <field> is-derived-by-finding-FOCUS-field-from <term>

<field> is-a-value-of FOCUS-Sorting-Field

Rule 5.
If <field> is-a-value-of FOCUS-Sorting-Field
Then <phrase-value> is-concatenated-by BY <field>

Sorting-Phrase is-pushed-with-attribute-value
Has-Meaning-Or-Value <phrase-value>

Rule 6.
If <contextual-phrase> is-a-member-of Screening-Conditions
Then <cond> is-derived-by-finding-FOCUS-screen-from <contextual-phrase>

<cond> is-a-value-of FOCUS -Screening-Condition s

Rule 7.
If <cond> is-a-value-of FOCUS-Screening-Conditions
Then <phrase-value> is-concatenated-by IF <cond>

Screening-Phrase is-pushed-with-attribute-value
Has-Meaning-Or-Value <phrase-value>

Rule 8.
IF Verb-Phrase has-meaning-or-value <verb-phrase-value>

Sorting-Phrase has-meaning-or-value <sorting-phrase-value>
Screening-Phrase has-meaning-or-value <screening-phrase-value>

Then <phrase-value> is-concatenated-by
TABLE FILE PMMFILE
<verb-phrase-value>

<screening-phrase-value>

END
TABLE-Command-Statement is-pushed-with-attribute-value

Has-Meaning-Or-Value <phrase-value>

Note:
1. <content> stands for a variable object (named content),

which is to be replaced by facts when such rules are used.
2. PMMFILE is the file from which Expert-MCA retrieves data.

The relational object is-derived-by-finding-FOCUS-field-from in rules 2 and 4, or is-derived-

by-finding-FOCUS-screen-from serves as a derivational object, which is used to derive its

preceding objects by taking its following object (or objects) as its input. Similarly, the object

is-concatenated-by is also a derivational object. As mentioned in Section 4.3, the use of an

object which can be a relational object and a derivational object is two-fold. It can be used in

context driven reasoning to relate objects. It can also be used to derive, by activating an

-111-

associated Lisp function, a value for the object preceding it. That how such objects are used

is solely depending on the environment in which the objects are activated.

To illustrate, let us consider the query: Show the current working estimate for fy 90

projects by size. Prior to entering the FOCUS query generator, the blackboard contains such

information as:

1. Action in query: PPFNT 4 8

2. Requested data items: ((CURRENT WORKING ESTIMATE) (meaning: CWE) ...)
3. Sorting data items: ((SIZE) (meaning: PROGAMT) ...)
4. Screening conditions: ((FY 90) (meaning: (is FY 90) ...)

As shown above, the internal representation is expressed as a combination of axioms in

formal logic form. Being defined as a synonym of the field CWE, the tern Current Working

Estimate is transformed into a predicate expression: (meaning: CWE). Because the database

with which Expert-MCA considers to interact is solely the CAPCES database, Expert-MCA

directly transforms definition of user's terms into fieldnames of the CAPCES database.

Using the information above, the FOCUS query generator has to transform it into the

statements:

5. Action-In-Query is PRINT
6. CWE is-a-member-of Requested-Data-Item
7. ProgAmt is-a-member-of Sorting-Data-Item
8. (FY is 90) is-a-member-of Screening-Conditions

Given statements 5. and 6. and rules 1, 2, and 3, we can infer that

Report -Verb has-meanin r-value "PRINT'

10. Verb-Phrase has-meaning-or-value "PRINT CWE"

Note that the value "CWE," being instantiated by the derivational object is-derived-by-

finding-FOCUS-field-from in Rule 2, is pushed into the attribute Has-Meaning-Or-Value of

the object FOCUS-Requested-Field, while the value "PRINT CWE," being instantiated by

the derivational object is-concatenated-by in rule 3, is pushed into the attribute Has-Meaning-

Or-Value of the object Verb-Phrase. Given statements 7, and 8, and rules 4, 5, 6, and 7, we

can similarly infer

11. Sorting-Phrase has-meaning-or-value "BY PROGAMT"
12. Screening-Phrase has-meaning-or-value "IF FY IS 90"

Finally, given statements 10, 11 and 12, and rule 8, we have

TABLE-Command-Phrase has-meaning-or-value

OThis is a default set by the semantic analysis module. Please see Section 5.5.

-112-

"TABLE FILE PMMFILE

PRINT CWE
BY PROG_AMT
IF FY IS 90
END "

The symbols used internally in the meaning: slot, as shown in statements 1, 2, 3, or 4,

are not necessarily transformed from user's definition into field names of a specific database.

While multiple target databases are used, such transformation to target field names should be

deferred until it is necessary in a query language generator. It can be done by two steps. For

each term in user's queries, we first have to generate a symbol standing for its meaning

internally, by applying a simple algorithm, such as to form it by replacing the blank spaces"

" between words in a term with the underscore mark "_." Expert-MCA employes such

symbols internally, mostly in a formal logic format. Next, the query generator has to consult

a table which specifies how fieldnames of different databases are associated with the symbols

being defined in the first step.

The user often needs to request information that is not directly stored in the CAPCES

database. In other words, Expert-MCA should allow users to express derived-items, or

temporary data fields as opposed to real data fields in the database. For such temporary data

fields, Expert-MCA first generates their corresponding DEFINE command statements and

then puts the statements prior to a TABLE command statement to form a complete set of

FOCUS query code. Once a temporary data field is defined, it is used exactly the same as a

ral field in olwn TABi commnd eem

Again, let us consider an example. "Show the projects in fy 90 by overrun cost" is a

query to print a report with data sorted by the data item overrun cost, in a low-to-high order.

However, the term Overrun Cost is not a field name of the CAPCES database. Users can

define it, for example, as: Current Working Estimate - Program Amount if Current Working

Estimate is greater than Program Amount. Such a meaning expression is transformed, in the

lexical mapping module, into an internal expression led by the symbol meaning:, as shown

below:

((Overrun Cost word/phrase)
(part-of-speech: noun)

(definition: Current Working Estimate - Program Amount

if Current Working Estimate is greater than Program Amount)

-113-

(meaning: (=> (> CWE PROGAMT) (- CWE PROG_AMT)))) 49

)

Suppose the FOCUS query generator is requested to produce FOCUS code again. It

can extract information from the blackboard about Overrun Cost as:

13. Sorting data items:
((Overrun Cost)
(meaning: (=> (> CWE PROGAMT) (- CWE PROG_.,AMT))))

Following the logic of processing as described in the above 8 rules, the query generator

will have to execute rule 4, which is repeated here:

Rule 4.
If <term> is-a-member-of Sorting-Data-Item
Then <field> is-derived-by-fmding-FOCUS-field-from <term>

<field> is-a-value-of FOCUS-Sorting-Field

The Lisp function which is associated with the derivational object is-derived-by-finding-

FOCUS-field-from discovers that <term>, in this case Overrun Cost, is not a field of the

CAPCES database. It means that a DEFINE command statement has to be made for creating

a temporary data field OverrunCost. Taking statement 13 as an input of another set of rules

for producing DEFINE command statements, Expert-MCA can produce a DEFINE

command statement as follows:

DEFINE FILE PMMFILE
OVERRUNCOST = IF (CWE GT PROG_AMT) THEN (CWE - PROG_AMT);
END

As a result, the complete set of FOCUS code for the query "Show the projects in fy 90

by overrun cost" looks like this:

DEFINE FILE PMMFILE

OVERRUNCOST = IF (CWE GT PROG_AMT) THEN (CWE - PROGAMT);
END

TABLE FILE PMMFILE

PRINT CWE AND PROGAMT

BY OVERRUNCOST 50

IF FY IS 90

49The idea of translation for the meaning slot from the definition slot has not been fully implemented in
Expert-MCA currently. The content in the meaning slot is created and used internally by the system when it
processes a query. This internal expression (=> (> CWE PROGAMT) (- CWE PROGAMT)) is interpreted as
IF (CWE > PROGAMT) THEN (CWE - PROG_AMT), Or in generality, (=> (expression-1) (expression-2))
means that IF Expression-i Then Expression-2, where both Expression-1 and Expression-2 are a well-formed-
formula, with logical operators connected its neighboring operands other well-formed-formula.

-Ibis is defined as a temporary field in the DEFINE part at the beginning.

-114-

END

Note that FOCUS is able to deal with multiple temporary data fields up to 256 items, in

conjunction with other conditions. As described in Section 4.2, more complex concepts or

data items can be defined as procedural terms, which generally corresponds to temporary

data fields that require more complex steps for producing DEFINE command statements as

pre-processor of TABLE command statements, or that needs post-processing after data

retrieval from the database.

7.2 Knowledge Acquisition and Sharing in the System

Knowledge acquisition into a knowledge-based expert system is always in great

demand. System designers cannot predict all the needs users may have in the future. Nor

can they pre-define how users view the domain world and formulate the domain world in

their problem solving process.

The most fundamental and handy tools that humans communicate with each other is

natural language. As a result, Expert-MCA is designed to acquire knowledge mostly via

adding new terms into its dictionaries. Such terms are English words or English phrases,

with definitions describing concepts, objects. or chunks of knowledge. In other words, terms

are the fundamental unit defined to the Expert-MCA and used to compose queries. They are

also the knowledge unit employed in Expert-MCA to process knowledge for finding

information and soivmg problems.

7.2.1 Knowledge Acquisition in Expert-MCA

The module used to acquire knowledge in Expert-MCA is the Teaching session. As

defined in Section 4.2, terms are classified into six types. To start defining a new term or

modify definition of an existing one, the user is asked to select a term type for the term.

Next, the user has to type the term, which can be a single word or multiple words. If the term

entered has been defined before, the system will allow the user to make a choice among the

following: to define a new one, to edit an existing one, or to quit.

Based on the type of the term being defined or edited, Expert-MCA provides the user

with an appropriate template, which is arranged like a table with row names and blank spaces

to be filled out. Each of the rows corresponds to an attribute of the term object. For

-115-

example, a term may have the following attributes (or slots): Part-of-speech, Definition,

Context, and Comment51.

A Help-Define mechanism has been implemented to direct the user to fill out the slots

of a term. The idea employed in the mechanism is that the syntax of slot definition can be

used to guide how to construct valid statements for the slot. For example, if we defme the

syntax of the Definition slot for a Word/Phrase in Backus-Naur Form as follows:

<Definition-slot-content-syntax;>
::= <flv> I <flf> I <faf> I <fav> I <fav-if> I <faf-if> I KEY-IN
<flv>: <fieldname> <logical-operand> <value>

<flf> <fieldname> <logical-operand> <fieldname>
<faf> : <fieldname> <arith-operand> <fieldname>
<fav> ::= <fieldname> <arith-operand> <value>
<fav-if> <fieldname> <arith-operand> <value> <if-statement>
<faf-if> <fieldname> <arith-operand> <fieldname> <if-statement>
<if-statement> ::= <if-flv> I <if-fif>

<if-flv> ::= IF <flv>

<if-fif>::= IF <flf>
<logical-operand>::= GT I GE I LT I LE I EQ I IS I NE
<arith-operand> ::= + I / I * I / I

where
<fieldname> is a field of the CAPCES database

or a derived-item (i.e., temporary data field);
<value> is an alphanumeric or a number;
KEY-IN means that the user will enter the current word by himself.

Examples of valJid state for the Definition slot are, lited aq follmys:

Types:

Examples for the contents in the Definition Slot:

<flv> Program Amount gt 1000

<flf> Program Amount gt Current Working Estimate

<faf> Program Amount * some-special -code-of-a -field

<fav> Program Amount * 0.04

<fav-if> Program Amount * 0.05 IF Fiscal Year gt 90

<fav-if> Program Amount * 0.05 IF Program Amount gt Appropriated Amount

<faf-if> Current Working Estimate / Program Amount

5 tDetailed specifications for terms are defined in Section 4.2 and Appendix B.

-116-

IF Program Amount gt 0

<faf-if> Current Working Estimate - Program Amount

IF Current Working Estimate gt Program Amount

Suppose the user is going to fill out the Definition slot of a Word/Phrase term. Now

the cursor is on the text of Definition: in the screen template. The default mode in a process

of filling out a slot is manual. If the user is not familar with the syntax of the slot. Nor is he

or she aware of what are the terms that he or she can fill in the slot. By pressing a special

key, according to on-line help as shown on the bottom of the screen, the user can switch to a

Help-Define mode. In a Help-Define mode, Expert-MCA dynamically provides the user

with a list of options which are determined by locating the input status in a syntactic tree,

which is built based on the slot syntax, such as the one described above. The syntactic tree

for the Definition slot is graphically shown in Figure 7-1.

After the user presses a special key, F6 in this case, a one-line display window on the

top portion of the working window prompts the options FIELDNAME and KEY-IN in

horizon. If the user selects FIELDNAME, a session of selecting a field that is defined in the

dictionary proceeds. Such a field selection process will be detailed in Section 7.2.2. For the

time being, assume the user has selected one from the field selection process, and the

,elected field will be automatically filled into the current slot and echoed as well on the

screen as if it were filled by the user manually. Next, the one-line display window shows the

options: LOGICAL-OPERAND, ARITH-OPERAND, and KEY-IN. If ARITH-OPERAND

is selected, its following options shown on the display window are a list of all the defmed

arithmetical operands. After an arithmetical operand is selected, the selected operand will be

filled into the current slot and the display window shows the new options: FIELDNAME,

VALUE, and KEY-IN. As such, the user is guided to construct validate statements step by

step.

7.2.2 Knowledge Sharing in Expert-MCA

To share knowledge with others, users have to exchange with each other the

dictionaries of term definition. To accumulate knowledge in Expert-MCA somehow means

to update dictionaries. These are actually accomplished by reviewing or editing the

definition of terms.

-117-

Data-Item

Logical-Operand Arith-Operand

Value Value Data-Item Data-Item Value Value Data-Item Data-item

IF IF IF IF

Data-Item Data-Item Data-item Data-item

A/\A
1 ,iC3 -C;P erand

Aritb-Operand Logical-Operand Arith-Operand

Logical-Operand Aritb-Opern Logical-Operand Arith-Operand

Vaalu ea Valu at aeA

l ue Data-Item

Value Data-Item

Value Dat a-ltemr

Value Data-Lie' Value Data-lier vau D ata-Iter

Data-tem is a 7et or a temporarv fle'4

Hgure 7-1: A Syntacuc Tree tor the Deftnition Slot

It is not easy for a casual user to find a term of interest or to know what terms are

available in defining a new term, particulary when the term dictionary is getting larger. An

algorithm to aid users in searching for a term has been implemented in Expert-MCA.

Expert-MCA establishes a context map by associating all defined terms with a list of

contexts (or keywords). To find a target term, the user has to walk through a context map.

with each step meaning that a context is collected. Based on the collected contexts so far,

Expert-MCA dynamically determines a list of candidate contexts to be selected next.

The algorithm is described as follows:

1. Define Context-Collected as a set consisting of the contexts collected so far.

2. The first few terms whose associated contexts are a super set of Collect-

Collected are shown on the screen. Such terms are also called qualified terms

at the moment when the contexts in Context-Collected are considered.

-118-

3. Collect the terms that are associated with a set of contexts which is a super set

of Context-Collected. Define such a set as Term-Context for such a term i.

4. Union the contexts that are in Term-Context but not in Context-Collected.

Define the set of such a union as Candidate-Context. The members of

Candidate-Context are the contexts shown on the screen to be selected by the

user.

5. Update the set Context-Collected. If a new context is selected, push this new

context into Context-collected. If a QUIT option is selected or a special key for

the previous screen is pressed, the last selected context is removed from

Context-Collected. If EXIT option is selected, the process of walking through

the context map is over and Expert-MCA will switch to a new session of

selecting a target term from a list of qualified terms.

6. Go to step 2 for another run of selecting a context.

In other words, the system provides users with a context map, which is used to

automatically suggest a next level of available context options/directions after a context is

selected. If the the next level of options seems no good, users can go back to the previous

one and reselect an option. A set of qualified (candidate) terms according to the contexts

selected so far will be prompted to help users decide which way to go next. This process

goes on until the EXIT option is selected. Now the user can proceed to select the desired

term form a menu with qualified candidate tenrs.

-119-

Chapter 8

Implementation Details

Expert-MCA operates under the GCLisp Developer, a product of Gold Hill Company,

of Cambridge, MA, on an IBM PC/AT level personal computer. It requires at least three

megabytes of RAM. It has been written entirely in GCLisp and runs with mostly compiled

code. Part of the communication package called COMMLisp, a product of Brodies

Associates Co. of Boston, MA, is modified and incorporated into Expert-MCA. To run

queries against the databases stored in PCs, installation of a package called PC/FOCUS is

needed.

8.1 Principles and Modules in the Programming Design

8.1.1 Programming Design Principles

Object-oriented programming languages have proven to be beneficial in such aspects

as data abstraction, modularity of code, and ease of maintenance. With this in mind, Expert-

MCA has been designed with an object-oriented programming style. In addition to the

characteristics such as modularity. data abstraction, Expert-MCA is aimed at providing

prograumers with ease of code maintenance.

Expert-MCA is a package designed to fit the need of frequently interfacing with end

users. Therefore, the overall programming flow of Expert-MCA is derived from a user's

point of view, and is established around the concept of interface tasks in which Expert-

MCA and users can communicate with each other in a friendly fashion.

From a user's point of view, what he or she needs to do or can provide to Expert-MCA

can be identified as the following action types:

1. a decision making via a selection from a menu which consists of several

options;

2. a text input for simple communication;

3. a series of selection input for searching desired information or making a
decision;

4. a series of text input which all together contributes to form a complete set of
information to Expert-MCA;

-120-

5. a review of messages provided by Expert-MCA.

Most users do not concern how Expert-MCA arrives at its answers. Instead, they tend

to make easy decisions to instruct computers what to do next, and thus leave dirty works to

computers until it becomes a need to tell computers how to do in another situation. Dirty
works in the application domain of Expert-MCA include symbolic matching, information

searching, selection of next task, and number crunching.

As a result, a task-oriented formalism is used in Expert-MCA to represent and reason

the communication process until an output is worked out. The concept of objects and user

action types in man-machine interactions induces the need of task dispatcher for various,

interface tasks. For each interface task, the task dispatcher decides what and when dirty

works should be done internally by computers and leaves decision making via interface tasks

to users.

8.1.2 What an Interface Task Does

An interface task is processed via display windows in which Expert-MCA is able to

interactively communicate with users. At each interface task, display windows convey

useful information to help users make a good decision. Typically, an interface task enables

users to do one of the following main tasks:

1. select an option from a candidate list which is prompted vertically;

2 selec* an option from cadite lt which is prompted horizontally

3. enter strings in a small display window wihich performs as a text editor;

4. enter strings in several small windows sequentially; (although each acting as a
text editor, together they are associated with a title. This is useful when we are
editing content of slots of a frame.)

5. review text or message.

8.1.3 How Interface Tasks Flow from One to Another

After checking for a usemame and password, Expert-MCA initiates the main menu (or

Top-Task) by calling the Lisp function Task-Dispatcher with the argument Top-Task.

Depending on the execution result, Task-Dispatcher decides a task which is to be executed

next, and then triggers the next task by calling the function Task-Dispatcher with the new

selected next task as its input argument. As such, via calling the function Task-Dispatcher

one after another, Expert-MCA is able to gain such benefits as: ease of debugging,

-121-

independence of task, clarity of task flow, modulation of data flow, and maintenance of a

minimum Lisp calling stack group.

Each time the function Task-Dispatcher basically goes through the following steps:
1. Retrieve the definition of the current task (i.e, given the input argument as a

task name);

2. Execute a pre-processor if necessary;

3. Execute the main task;

4. Check the output of main task and decide what to do next;

5. Execute a post-processor if the output is not an interrupt;

6. Decide a next task 52.

7. Clean the task stack to maintain a minimum stack group of Lisp function
calling;

8. Call the next task.

The detailed algorithm for Task-Dispatcher can be referred to the Lisp code in the file

c:\mca-task\basic\tsk-main.lsp. The person who is to add or modify Expert-MCA modules is

highly encouraged to fully understand the function before he or she starts programming.

Note that the definition (or the slot contents) of a task can be updated dynamically as Expert-

MCA proceeds in a session.

8.1.4 How to Define an Interface Task

In terms of AI's terminology, an interface task is a frame associated with several slots,

each containing a set of information with various formats, such as string, symbol, list,

number, executable code, and combinations of the above. The definition of tasks is stored in

*.TSk files. For example, the task Top-Task (main menu) is defined in the file c:\mca-

task\basic\basic.tsk, and the task QUERY is defmed in the file c:\mca-task\queryaquery.tsk.

The following shows an example of a task definition, followed by a detailed

description of how to define contents for slots in an interface task.

Suppose we want to define the main menu (or top menu) in Expert-MCA. The format

of a task definition is like a table. Therefore to define a task is just like to fill out a table,

52When the output of main task is an interrupt, Task-Dispatcher will decide a next task based on the type of
the interrupt.

-122-

with each row being led by a slot name which is followed by its value. Part of the definition

for task Top-Task is shown as follows:

Name: Top-Task
Title-Text: ("Please Choose One")
Window-Type: single-selection-menu
Option: ("Overview" "Query" "Report" "Download" "Teach"

"Profile" "Utility" "Logout")
Next-Task: (overview query report download teach

update-user-profile utility exit-to-Lisp)
Brief-Help: See Below
Detailed-Help: See Below

Note: This is the Main Menu of Expert-MCA.

The slot Name: is used to store the task name being represented. In this case, the value

is Top-Task. The slot Title-Text: is used to indicate the text which is shown on the screen

as a title for the menu. The slot Window-Type: is used to specify what kind of window type

the menu is going to use. In this case, single-selection-menu stands for a menu that is used to

select a single choice. The slot Option: is used to store the options that the menu provides

to users. The slot After-Action: is used to store actions which needs to be executed after a

choice is made from the menu If it is emptx' then iust go to the next task. The slot

Next-Task: is used to store the task names that will be executed after the actions stored in

the slot After-Action: are done. Note that the sequence of the task names in Next-Task:

should be parallel to that of the options listed in the slot options:. For example, if the second

option is selected, then the second next-task, in this case QUERY, is the next task to be

executed.

The slot Brief-Help: is used to store a brief help message that is to he prompted on the

screen as the cursor moves around on the menu. The content stored in the brief-help: slot

for Top-Task (or main menu) looks like this:

(("Overview About Expert-MCA: what it can do for you.")

("Execute a Query Session for Retrieving Information.")

("Execute or Review/Update Standard Reports.")

("Download CAPCES Data to PC As Topical Databases.")

("Teach or Edit the Terms Used in Expert-MCA.")

("Modify User Profile and Default Information for Data Retrieval.")

("Utilities in Expert-MCA Environment."

-123-

"NOT implemented yet.")
("Quit from Expert-MCA and Go back to Lisp Top-Level."
"Type (MCA) at Lisp Top-Level to start another session."
"Hit F1 to DOS temporarily, and type EXIT back to Expert-MCA."))

The slot Detailed-Help: is used to store a detailed help message that is to be prompted

on the screen when users need more detailed help. The content stored in the detailed-help:

slot for Top-Task (or main menu) looks like this:

(("General Overview about Expert-MCA:"
"Line I is to be filled with the description about Expert-MCA Overview")

("General messages about Queries:"
"Line 1 is to be filled with the description about Queries.")

("General messages about Standard Reports:"
"Line 1 is to be filled with the description about Standard Reports.")

("General messages about Downloading:"
"Line 1 is to be filled with the description about Downloading.")

("General messages about Teaching/Editing Terms:"
"Line I is to be filled with the description about Teaching/Editing.")

("General messages about User Profile:"
"Line 1 is to be filled with the description about User Profile.")

("General messages about System's Utilities:"
"Line 1 is to be filled with the description about System's Utilities.")
("Detailed message about what you can do after loging out.")))

What follows gives a more detailed specification of defining an interface task. To

describe the specification we will apply the terms such as Symbol, String-List, Symbol-List,

and Functional-Expr, which are defined as follows:

1. A Symbol is C OMposed Of lphanuImerical chaiacters. such as English letters
and numbers.

2. A String-List is defined with the format: ("line 1" "line 2" ..) Usually, each
string element in the String-list conveys the text that is to be printed in a line on
the screen. If the input is a single string, it will be converted to a String-List.
For example, If input to a slot is "only one line strg", the system will check and
convert it into ("only one line strg").

3. A Symbol-List is defined with the format: (symboll symbol2 ..). If a Symbol-
List consists of a single Symbol, it can be entered with the element without
parentheses.

4. A Functional-Expr is an expression consisting of a Lisp function associated
with necessary arguments.

5. Each element of String-List or Symbol-List can be a Functional-Expr.

The slot names which are used in Expert-MCA to define an interface task include:

Name:, Title-Text:, Window-Type:, Option:, Window-Size, Message:, Brief-Help:, Detailed-

-124-

Help:, Before-Action:, After-Action:, Next-Task:, Loop-Over:, Input:, Output:, and Needed-

Global-Variables:. The following describes syntax and use of each slot.

1. Name: a unique Symbol, must be different from other task symbols. If the slot
title Name: is not provided in the definition list, then the first symbol right after
Deffask must be the task name itself (i.e., it is the content for the slot Name:).
The order of the other slots in a task definition is not significant as long as each
slot title is followed by its content. Default content of each slot is set to NIL if
not provided.

2. Title-Text: a String-List used to print as a title of the interface task . The
window space for printing the title-text is defined by the variables such as
menul-head-window -size, *text-input-head-size*. Currently, the size is 3 x
80 in characters.

3. Window-Type: a Symbol which defines the working type in the major display
window. It must be one of the following types: single-selection-menu (for
choosing one out of several candidates), line-text-input (for an input with a
single line), text-input (for text input/editor with many lines), frame-slot-editor
(for defining/editing an object with several slots), and message-lookup (for
prompting messages).

4. Option: a String-List which defines the content of a selection menu. The
number of options in a menu is not limited. The text of each option is stored as
a string element in the String-List.

5. Window-Size: a value list which specifies a window's left-top position & size.
This slot is needed only when TEXT-INPUT is selected in the Window-Type:
slot. Content of the slot is used to specify the dimension of the display window
for editing text. The syntax for the slot content is (left top width height), where
left < 76, top < 10, width < 76, height < 12 in characters. Top stands for a
relative margin in lines below the top of *text-input-window-size* which holds
the size (0 5 80 12) measured in a global screen scale (see tsk-vari.lsp file).

6. Message: a String-List, or a Function-Expr that will be evaluated when the
slot content is needed. The slot content represents for the text to be printed as a
message when the message-lookup window type is selected.

7. Brief-Help: a String-List, or a Function-Expr that will be evaluated when the
slot content is needed. The content will be prompted in a BRIEF-HELP-
WINDOW as a brief message to help explain the situation where the cursor is
on.

8. Detailed-Help: a String-List, or a Function-Expr that will be evaluated when
the slot content is needed. This slot provides a detailed message under the
situation where the cursor is on and when users need more information for
making a decision.

9. Next-Task: a Symbol-List, a Symbol, or Nil. It defines candidate tasks to be
run after the current task. The tasks included in the Symbol-List must be
arranged in an order corresponding to the options in Options: slot. The content

in the slot can be a Symbol indicating the next task to run. Also we can leave it

-125-

unspecified at the moment of defining the task and later dynamically assign one
to it at the time of executing procedures which are specified in the After-
Action: slot or elsewhere. A next-task can be dynamically decided by the
procedures defined in the After-Action: slot.

10. Before-Action: a Symbol or a Symbol-List, the Symbol or each element of the
Symbol-List serves as a dynamic procedure to update information into slots of
the current interface task. The slot may contain several symbols, each standing
for a Lisp function and being executed sequentially. Together, the Lisp
functions act as a pre-processor before a main job is executed. Usually a pre-
processor is used to modify the initial input to the current task or to update
contents of other slots before its main task starts. The updated input (if any)
then will be sent to main action for furd*er executions. However, the Input: slot
still holds the original input. By doing so, if the interface task is triggered by a
later task, it will perform exactly the same as it does now.

11. After-Action: a Symbol or a Symbol-List, the Symbol or each element of the
Symbol-List serves as a dynamic procedure to update information into slots of
the current interface task. This action may modify output of the current task or
direct the system how to select an appropriate one among those candidate tasks
stored in the Next-Task: slot. If output of the current interface task is not a
number which stands for a selection from an option menu, the output will be
sent to the Input: slot of the next interface task. Users do not need to specify
arguments for the functions specified in Before-Action: and After-Action: slots.
Instead, the function Task-Dispatcher will find one, since the only argument for
the functions stored in Before-Action: slot and After-Action: slot is the
interface task name itself (see Input: and Output: slots below).

12. Loop-Over: This slot is updated by other actions. Based on the content stored
in the task, Task -Dispatcher can repeat a series of interface tasks until the slot
is consuned conpletely.

13. Input: and Output: The two slots are used by the function Task-Dispatcher
to pass arguments between any two interface tasks or the functions specified in
Before-Action: and After-Action: slots. We do not fill out these two slots in
defining a new interface task. In cases that some parameters are needed
globally, we can define global variables or parameters. As a good convention,
we may name global variables having the character "*" both at the beginning
and the end of the variables.

14. Needed-Global-Variables: This slot stores global variables used in the
current interface task. The slot is optional. It is used to indicate the stored
global variables may be updated inside this slot. It is a good convention for
program maintenance and debugging.

Note that users are not supposed to use quote (i.e., the mark ""') in front of slot

content, since the Lisp function DefTask knows how to add quotes in front of slot contents.

Users have to make sure that every slot title ends with ":". Definitions of interface tasks are

stored in files with a file extension ".TSK". The functions referred to in Before-Action: and

-126-

After-Action: slots for an interface task are stored in a file that has a file extension ".LSP,"

preceding with the same file path as the file storing the interface task.

8.2 Flow of Modules in Expert-MCA

The entire display screen of PC is divided into several rectangular areas for different

types of messages or functions. The top one, called top-line window, shows the name of

current interface task, date, and time. The one right below is the working area that users

respond to Expert-MCA. This working area, called major window, may occupy a spacewith

a height from 15 to 22 lines. The next one is a one-line area indicating the mark

"Construction Engineering Research Laboratory of the USA Army." Below this mark is a

five-line window called brief-help window, which prompts brief help message corresponding

to the situation where the cursor is on. The bottom window, a two-line display window,

shows on-line help about the function of special keys, such as Fl, F2, etc.

All user interface screens (or interface tasks) are defined in files *.tsk, which can be

modified as needed. For example, the file Basic.tsk defines some basic templates with slot

titles and associated tokens. Most tokens are used to define syntactic formats for slot

contents. Such templates can be used in defining new terms or other tasks (such as update-

report, update-download, and update-profile for tasks in sessions REPORT, DOWNLOAD,

and PROFILE. respectively). The interface tasks defined in Expert-MCA are listed in

Appendix D, each being attached with its major definition content. A 1st of the files being

used in Expert-MCA is also given in Appendix E.

Major functions within the system are querying the system and its database (i.e, Query

Session), knowledge acquisition (i.e, Teaching Session). downloading a subset of the

mainframe database to the PC (Download Session), and providing user profile data and

domain knowledge (Profile Session). The system also can provide access to preprogrammed

mainframe reports (Standard Report Session).

The Profile Session has two brancing sessions: User Profile Session and Domain

Session. The user can specify information about his (or her) job background (such as

agency, the projects in question), communication parameters (such as a usemame for

entering the mainframe, baud, port, telephone number, etc.) and some default data items and

screening conditions that are needes in answering a query. In the Domain Profile Session,

the user can specify propositions that are related to the domain and language use in queries,

-127-

names of rule bases for inferencing information to refine queries, names of objects that are

defined by the system and the user.

The first interface task is Top-Task, which serves as the main menu of Expert-MCA.

Currently the available interface tasks from the Top-Task are OVERVIEW, QUERY,

REPORT, DOWNLOAD, TEACH, PROFILE, and LOGOUT. At any point in running

Expert-MCA, users can go back to the main menu or the previous screen (or task) by hitting

a special key as indicated on the bottom window.

Figures 8-1, 8-2 show the flow of the interface tasks used in Expert-MCA.

-128-

Overview

Query

Report

~- Download

Expert-MCA -Overview

Expert-MCA-Overvlew
Overview

Query-Overview

Standard-Report-Overview

Input-Query W Uderstanding-Correction

Modify-Prev-Queries

Exec- Prev-Queries orrect-Unrecognized-Term 2

Add-Report

Select-Report

Select-Report

Select-Download

Add-D nwniaodd

Select-Download -

Select-Download -

upaa*e-Report

Delete-Report

Execute-Report

Update-Download

Download

Delete-Downlcad -

Execute-Dowr): a

\- -r

To-Task

Ade-User P ihh f i
Le-env Direction of Task Flow

Go back to a Previous Task Delete-User -e

Teach Name of an Interface Task in Expert-MCA

O Node connected to other Interface Tasks Drawn in Other Figure

Figure 8-1: Interface Task Flow in Expert-MCA, Part I

-129-

Pc-or-Mainframe-or-Cancel

Focus-Correction

Mainframe-or-Cancel

Run-PC-Database-Now

Comm-with-Mainframe

Add-Mainframe-Batch

Run-Mainframe-Batch Query

Conf l ict-I nfo-w/-PC-DB

Marame-or-anc

New -Word/ Phrase-Check Select-Term-Type-for-Unrec - 0

Edi t-Word Enter-Phrase

Ignore-Word

~e-New Term

~j~t-Context-for-Target-f~7T~

Paciew/Edit-Existing-Term

Legend: -4 Direction of Task Flow

Go back to a Previous Task

Edit-Word Name of an Interface Task in Expert-MCA

Node connected to other Interface Tasks Drawn in Other Figure

Figure 8-2: Interface Task Flow in Expert-MCA, Part 2

0

-130-

Chapter 9

Conclusion and Recommendation for Further Study

This chapter summarizes this thesis work and recommends future directions in the line

of knowledge processing for the construction domain.

9.1 Conclusion

With such deleterious characteristics as fragmentation, transient nature, non-repetitive

process, ineffectiveness of learning, and inefficiency of communication, the construction

industry today has been further compounded by the ever increasing complexity of

construction projects that require more specialized equipments and skills, that suffer stricter

regulations, and that are encompassed by higher pressures for shorter delivery duration. This

strongly suggests that we may need more powerful tools, such as knowledge processing

systems, to help manage the problems in construction management.

Just as do database management systems facilitate users the use of data at present, so

can knowledge processing systems help the practitioners improve their learning effectiveness

and communication efficiency. Specifically, knowledge processing systems can be used to

niztdm knwldge structure, colect and maintain knowledge systematicalIIY

and infer new facts automatically. Such systems are deliberately integrated by incorporating

various knowledge sources and adding newly available information processing technologies

to better make use of the strengths from individual ones. They are coordinated with better

information flow procedures in an organization; allowed to have a broader use of

information; dynamically customized to meet user's needs; able to automatically reason

about new facts.

Knowledge processing typically consists of the following steps: knowledge

formalization, knowledge representation, and knowledge reasoning. Al researchers have

been working on the subjects of knowledge representation and knowledge reasoning, while

leaving knowledge formalization to researchers in application domains.

This study has been working on the knowledge based query system Expert-MCA to

demonstrate how a knowledge processing system can be designed and implemented as a

-131-

system that can better utilize domain knowledge and information by integrating today's

information processing technologies, mainly drawn from Al and MIS areas. It has been

deeply motivated by how we can improve communication efficiency and learning

effectiveness in the domain of construction engineering and management. The construction

management database, CAPCES, which supports various staff of the US army for making

decision about their construction project programs, serves in Expert-MCA as the primary

source of information requested by the staff via near-natural language queries.

Expert-MCA has shown how a knowledge processing system can alleviate the burden

of leaming details of a database and a database management system in order to get some

useful information from an existing database. It also shows the coupling of data stored in a

database with heuristic knowledge in order to increase the value of both. Although the

knowledge based query system only deals with a narrow domain of the U.S. Anny

construction program, it illustrates improvements in the communication between users and a

database that contains broad classes of data from multiple components of an organization. At

the same time, the coupling of an expert system to the database management is shown to help

the database management system user to better understand the data and use them to provide

more intelligent decision making. On the other hand, the teaching facilities in Expert-MCA

offer mechanisms for accumulating knowledge in the military construction domain, and

hence may provide its casual users with the chances to share the knowledge extracted from

more experienced colleagues.

9.2 Discussion

The use of near-natural language queries, when combined with user's maintenance of

terms, in Expert-MCA provides users with adequate power and ease in expressing requests

for database information. All database fields exist in the lexicon, so do common synonyms

for field names and terms for field values and value ranges. The uwer may then compose a

query in terms that are English words or terminologies used in the application domain. By

providing their own definition of terms, users can express their requests as they wish. Rules

for query construction (which need not be rigidly followed) follow at worst a simple syntax.

starting with requested data items, followed by screening conditions for selecting desired

data instances, and then followed by sorting data items if necessary. By providing the user

near-natural language query tools, he or she can be relieve of a programming burden, either

-132-

for himself or having to deal with programmers to translate English terms into corresponding

field names and values for a target database. This is particularly true in the case of large,

multi-user databases such as the CAPCES database, which contains over 500 field names,

most with names not close to natural language expressions and with tables for meaning of

their values.

Online help, clear messages, and guidance throughout the process make the use of

Expert-MCA easy for the casual user. If a user gets lost, he or she may interrupt processing

and go back to top level to start again and rephrase the query or use keyword or topic

searching to look at definitions of the terms which refer to his or her need. On the other

hand, a more knowledgeable user may define new terms, procedures and rule bases, so that

the potential users may range from a sophisticated programmer to casual clerks. The system

is designed to fit the needs of users with different levels of knowledge backgrounds on the

CAPCES database and MCA construction program.

Defiing terms and the procedures they call, such as the procedures illustrated in

Section 6.5, provide the user with the ability to extract and manipulate the data in complex

ways. While the capabilities (inferencing, for example) go beyond those available in query

language alone, including FOCUS, their use does require programming skills. It is believed

that Expert-MCA provides a language simpler than FOCUS and yet more powerful. It is

simpler in that it allows the use of terms instead of database fields and values, does not

necessitate database structure knowledge, and coordinate database retrieval. It is also

;x erful in that it can direct reasoning about retrieved data and contexts involved. Its

progranIming style facilitates such benefits as data abstraction, code modulization, and code

reuse. It is a language with many characteristics of FOCUS and procedural languages such

as FORTRAN.

The approach used in the system is not limited to retrieval of data from a single file or

table. The use of an internal representation makes this possible. User's input queries are

superficial representation because they may imply more meaning than what is conveyed

literally by each of the English terms. An internal representation is formed to represent the

meaning that includes the literal one transformed from the input queries and the embedded

one derived by Expert-MCA. The use of an internal representation is two-fold. It facilitates

the reasoning process internally in the reasoner module. It also provides a transition

framework for further transformation to a target formal query language such as FOCUS or

SQL. Although currently Expert-MCA is limited in the generation only to the target query

-133-

language FOCUS, its query language generator can be replaced with a new one aiming at

producing another target query language.

Most DBMS focus on how the data can be effectively and efficiently retrieved. This

system, however, tries to focus on how information can be extracted from the data and how

knowledge can be accumulated for this extraction process. In construction management,

having handy report generators for data retrieval is only a tool for the first step in good

decision making. The more important and challenging issues are how we can derive and

accumulate our knowledge from the data collected in existing databases, how we can transfer

such knowledge from one to another. After all, the difference between a sophisticated

construction manager and a casual one is not because the former does know more about how

to retrieve data or generate reports. Rather, the former does know more about the

interpretation of data items, the possible patterns among data items, and the implication of

some data instances to other data instances.

This study has experienced many difficulties in shaping its research framework. It

does not attempt to develop a generalized parser for processing a large set of natural

language, nor does it deal with the data processing other than data retrieval from a single

database. Although Expert-MCA has not been tested in the field, two issues important to its

use are: how the user is capable of composing queries and of defining new terms. Since

Expert-MCA may fail to understand user's queries, the user may be frustrated in a sense that

he or she does not know what queries are acceptable and what else are not. On the other

hand, the use! Imv bc puzzled to act in defini a term, mo Ith the unawareness of what

terms or the syntax he or she can use. To reduce the possible perplexity, the system has

provided a Help-Define module to guide, with a selection menu, the user to define a term

correctly.

As compared with other natural language front-end systems used to interface with

existing databases, mostly for data retrieval only, Expert-MCA has shown many distinct

features in parsing. It is designed to retrieve data by using information about, in addition to

syntax and semantics, the contexts involved, user profile, and domain pragmatic practices.

Although it can be weak in analyzing compound sentences syntactically, its mechanisms for

users to define knowledge for forming split terms, resolving ambiguities, specifying meaning

of terms or data items, and further processing on retrieved data (in coupled with rule based

inferencing or procedural processing) may well go beyond conventional ones, such as the

INTELLECT system.

-134-

Table 9-1: Comparing Expert-MCA with Related Systems

Features xpert-MC/. Q & A Intellect L N I Knowledge
__________Craf t

Use of Near Natural langauge Y Y Y y y

Operation On PC Y Y N N N

Help Define New Terms Y N

Use User Defined Knowledge Y N

Rule Based Inference Y N

Procedural Processing Y N N N N

Access to PC Database Y Y N N N

Access to Mainframe Database Y Y Y Y

Access to Damain Knowledge Y N N N N

Understanding Correction Y N N

Query Language Code Correction Y N N N N

Explanation of Reasoning Process N Y

Dierarchica Relational Relational
Data Model/Query Language N

FOCUS

ATN Case Frame Case Frame
Expert-MCA does not focus on

eductive

Quantfier

Note: Y: Yes, N: No, Blank: Unknown

-135-

Having been designed as an integrated system, Expert-MCA has many features that

related systems are weak or not provided. A comparison of Expert-MCA with related

systems about some important features is given in Table 9-I.

The syntax used in the system for defining procedures and rule bases is still incomplete

in a sense that one cannot forsee all the information manipulations required in solving user's

problems. Although Expert-MCA has simple syntax for composing simple statements (or

propositions), the transformation from such statements to their underlying internal

representation is non-trivial. How the information is aggregated or disaggregated for further

processing is also not simple in executing complex procedures.

9.3 Contributions

Expert-MCA is a knowledge based query system, notably with an integration of user

defined knowledge in database query processing. The contributions of this research, via

problem identification and the development of Expert-MCA, can be listed as follows.

1. Integration of information technologies for information retrieval

Expert-MCA has integrated natural language processing with rule based inferencing

and procedural processing to retrieve information from a database or other information

sources.

2 Devolopint an ease tool for acce Ss to datahase

Users can use near natural language to query a very large database via an automatic

communication mechanism.

3. Providing a medium for understanding meaning of data

Meaning of data and patterns among data items can be captured in defintion of terms.

Various types of terms are classified in Expert-MCA to help understand their meaning via a

friendly user interface.

4. Establising an environment to define knowledge

Users can define knowledge about the application domain, mostly in a form of rules

and procedures, and their language use. User defined knowledge can also be specified in

frames of user profile and domain profile.

5. Exercising of user defined knowledge

User defined knowledge is used for translation from English terms to database fields or

-136-

ranges of values, access to database or other information sources, pre-access and post-access

processing, or definition of user's characteristics to establish necessary context.

Although the application domain of Expert-MCA is the Military construction

programs, its underlying ideas and approaches can be used in other areas.

9.4 Recommendation for Further Study

It is believed that knowledge processing systems, mostly integrating the technologies

from AI and MIS research results, will be getting more recognition in their use in the

construction domain. This trend has been exemplified by many works, such as in

[23, 36, 49, 54]. However, it seems that most researchers have been working on various

subjects without consulting with each other about fundamental design philosophy and

implementation tools. Rather they tend to embody the design philosophy they see the most

important, and select the tools that are available to them. While these works continue to

evolve independently, it would be better to have an understanding about the directions both

in Al application research and MIS research.

Natural language is the most natural and fundamental tool for humans to communicate

with each other. Although graphics, tables, or mathematical equations can be a very

effective and efficient representation system for a specific domain, the meaning embedded in

them can all be described, or substituted, by using natural language. However, the reverse is

not always feasible in many domains.

In highly complex, loosely coupled domains, such as the construction engineering and

management, natural language tends to be the ultimate tool with which the users can request

knowledge processing systems to solve their problems. The obvious benefits that can be

gained by using natural language as a communication tool between humans and computers

need not any elaboration here.

Currently, the ambiguity-prone characteristics inherent in natural language have

greatly impeded the research progress in natural language processing. A challenging

research issue is how one can make computers understand natural language expressions

effectively in a narrow domain, if he is not able to generally attack all issues on natural

language processing as a whole. We need some kind of internal representation systems

which allow computers to reason and derive correct meanings that are explicitly conveyed

and perhaps implicitly implied by clues in natural language expressions, in a way similar to

humans reason from the expressions.

-137-

The next issue is how we can construct more expressive representation systems for the

construction domain, which is involved with a complex knowledge structure. Object.

oriented formalism has been a pervasive concept in building a knowledge processing system,

for objects are an intuitive representation in the real world. Such a formalism has been

further strengthened by the development of object-oriented languages. However, a lot of

relevant issues still remain unsolved. For example, How can we store various types of

knowledge and information expressively enough? How can we allow users to, both

explicitly and implicitly, relate one object to another by what kind of relationships in order to

model the real world 53 ? How can we derive or reason about new inforimation along the

relationships between objects or throughout whatever available methods and paths54? How

can we retrieve infonnation efficiently? Such issues will be further complicated if one

considers the integration or coordination of different systems, such as knowledge-based

expert systems and database management systems. While today's database management

systems have encountered many unsolved issues as illustrated in the so-called composite

infonnation systems [56, 85], the integration of various knowledge sources resided in

different knowledge-based expert systems may be required and many problems resulted from

this integration remain open for further research.

Another issue is what reasoning mechanisms underlying a representation system

should be provided in order to solve problems in a domain involved with richer contexts. For

example, considering how a person can understand English sentences quite effectively and

ont may realize hIt to solve ambiguities in sentences needs a lot of contextual

information for reasoning about correct results. As described in Section 4.4, context driven

reasoning is only a start to enhance computer's reasoning capability that goes beyond the

ones we often see today.

"For example, how a concept design is related to a final design? How the concept design is related to the
total construction cost and to the total duration of its delivery?

MFor example, how drawings, specifications, documentations are related to each other? How can one be
derived or automated from another?

-138-

Appendix A

Problems in Natural Language and Processing Issues

A.1 Problems Inherent in Natural Language

Natural language is an efficient system for transmitting ideas among human beings.

From a sociocultural point of view, human beings cooperate with each other to gain all kinds

of benefits in their daily life. Such cooperation often requires communication via a medium

with desired characteristics such as being easy to learn and easy to manipulate. As a result of

progress in its development, the medium, which we call natural language, becomes flexible

and succinct in its use via sounds or symbols. People have learned it since childhood without

any difficulty. We not only can easily and flexibly express our ideas in natural language, but

also are able to efficiently and effectively figure out meaning for expressions.

However, natural language gains succinctness and flexibility in its use at the cost of

proliferating ambiguities in interpretation. Succinctness means that the form for expressing

an idea tends to be as succinct as possible in language use. Yet the succinctness often results

in words that have multiple uses, words that are used to refer to some other sentence

constituents, phrases that are made up of several nouns, or sentences that are expressed in

elliptical forms. For example, the word BOOK can be used as a noun and a verb. When

used as a ver it ca alo have ditferent (m reerve a flight, to charge

somebody with a crime, or to go very fast. Therefore use of the word BOOK may cause

ambiguities in syntactic analysis, because it involves multiple word classes and multiple

senses.

Flexibility means an idea can be expressed by different sequences of words, or a

sequence of words can be used to represent different ideas. For example, to indicate a state

with a name, Massachusetts, we may at least have the following symbolic representations:

"the state of Massachusetts", "Massachusetts state", "state Massachusetts", "the

Commonwealth of Massachusetts", or "the Bay State." On the other hand, the symbol

"dishwashers" can indicate machines that wash dishes, or people who wash dishes.

As can be expected, such flexibility may cause people to create a sentence that can be

associated with multiple syntactic structures and multiple interpretations. Being grouped

word by word, a sentence has a linear structure in the arrangement of its components. Yet

-139-

syntactic relationships among sentence constituents are more like a tree structure. The linear

arrangement of words in a sentence obviously makes it difficult to cleary specify word

relationships in syntax and in meaning. This difficulty, for example, is reflected in the so-

called modifier attachment problems, which means a constituent can be syntactically

attached to several other constituents in the same sentence. The prepositional phrase "with a

telescope" in the sentence "The silly robot saw a box on a hill with a telescope" can be used

to modify any of the words SAW, BOX, and HILL. Contextual information is required to

resolve such problems.

Understanding natural language is a cognitive process which requires a variety of

knowledge, including knowledge of language, knowledge of the world, and knowledge of

situations during a communication process. Knowledge of language primarily consists of the

following categories: phonology, morphology, syntax, and semantic [2, 64,91].

Phonological knowledge concerns how words are realized as sounds, while morphological

knowledge concerns how words are formed from morphemes, which are basic meaning units

in natural language. How words can be grouped into phrases and how these phrases into

sentences are the major components in syntactic knowledge. Semantic knowledge is dealing

with meaning of words, phrases, and sentences as a whole. How well one can understand a

sentence solely depends on how well he or she is able to make use of the knowledge of

language, coupled with the knowledge on the contexts involved and on the domain being

discussed in a communication process. Constituents in a sentence and the sentence as a

he ambiguos in structure and in maning, if sone knowledge required as

described above is not clear.

Ambiguity problems in natural language exist in many aspects. English, for instance,

may occur on a lexical level, a syntactic level, or a semantic level. These three levels all have

to do with two kinds of subproblems: representation problems and interpretation problems.

Namely, a representation (either in terms of symbols or sounds) can have several

interpretations, while an interpretation may be associated with multiple representations as

well. The examples of "dishwashers" and "state of Massachusetts" above also illustrate the

representation problems and the interpretation problems, respectively.

Lexical ambiguities occur when words have multiple word classes or multiple senses.

The word BOOK, as mentioned previously, may exhibit such ambiguities. Syntactic

ambiguities occur when a sentence has words with lexical ambiguities, or when constituents

of a sentence can be structured in multiple ways. Most prepositional phrases can be

-140-

syntactically associated with several constituents in the same sentence, as illustrated in the

previous example about the prepositional phrase WITH A TELESCOPE.

Semantic ambiguities occur when a sentence has lexical or syntactic ambiguities, or

sentence constituents have multiple interpretations. With some nominal phrases, for

instance, it is difficult to specify their meaning. The nominal phrase "toy factory" may have

two interpretations. One is talking about a factory that produces toys, while the other is about

a factory that is played around in by kids. Moreover, a modifier can change ways of

interpretation of a nominal phrase. For instance, a "toy elephant" is not an elephant. Rather it

is a toy that has a shape similar to an elephant. In addition to such nominal compound nouns,

referential problems can also contribute to semantic ambiguities. What constituent a pronoun

or a determiner refers to is not always so obvious. Sometimes it is not so straightforward to

recover the full equivalents of the sentences which are expressed in terms of elliptical forms

or incomplete forms.

A.2 Major Issues in Natural Language Processing

The major modules in the analysis for transforming a sentence into an internal

expression are a parser and an interpreter. A parser deals with syntactic analysis, while an

interpreter deals with semantic analysis and contextual analysis.. The internal expression is

also called logical form, which is designed in such a way that the natural language processing

system is able to reason oi manipulate information intera\lly Using semantic infoniation

such as the meaning of words, selectional restrictions or referential objects, the interpreter

will rule out some ambiguities that cannot be resolved by a parser which uses syntactic

infonnation only.

Depending on how syntactic knowledge and semantic knowledge are employed,

systems built for natural language processing can be categorized as a multiple-phased

system, a single-phased system, and a parallel system. In a multiple-phased system, syntactic

analysis and semantic analysis are kept separate. They are executed sequentially in different

stages. Examples of such system are LUNAR [95] and IRUS [9].

Single-phased system processes input sentences in a unified module. Basically, this

unified module have three types of structure. The first one matches input sentences with

predefined pattern templates. Each pattern template is associated with a predefined format

for interpretation in terms of an internal representation for further processing. Early natural

-141-

language processing system, such as ELIZA [891 and STUDENT [11], has good performance

in a very small and simple domain by using this template pattern formalism. The second

type is called Semantic-Based-Grammar system. In this system words are categorized

according to a set of semantic categories such as names of attributes, values of attributes, and

question marks or other keywords frequently appear in the sentences used for a domain of

interest. Grammatical rules in this system are represented as templates that primarily consist

of semantic categories. Each template is also associated with a description of how to interpret

the sentence which is matched with the template. The description, of course, is expressed in

an internal representation. Note that the grouping of new constituents in this system is not

based on syntactic categories (i.e., parts of speech). Instead, it is based on semantic

categories. Examples of a Semantic-Grammar-Based system include PLANES [83],

LADDER [32], and REL [75]. The third one has a set of uniform grammatical rules for

analyzing sentences. Each rule simultaneously contains syntactic and semantic information

in a uniform representation. Functional-Lexical-Grammar systems fall into this

type [12, 42, 911.

A parallel system has two sets of rules for syntactic knowledge and semantic

knowledge, respectively. Each syntactic rule has an associated semantic rule. Each time a

syntactic rule is applied, its associated semantic rule is also executed. The purpose of

parallel execution of semantic rules is to detect early on constituents that are inappropriate as

far as semantic constraints are concerned. If such a constituent is detected, the system will

e up trymg to co ine th contituent with other constituents to build up an even larger

Constituent.

The immediate constituent approach and functional approach are two major

approaches used in syntactic analysis. The researchers that primarily follow Chomsky's

view have been designing syntactic analysis based on the notion of the immediate constituent

since his milestone work in the book Syntactic Structures in 1957. Chomsky's emphasis on

syntactic aspects of language has brought tremendous influence on natural language research

work both in linguistics and computer science ever since. For example, transformational

grammar has led to the development of parsing tools such as transition network, recursive

transition network (RTN), and augmented transition network (ATN) for the complexity of

English. In this approach terminal constituents (i.e., words) are grouped into nonterminal

constituents and then these nonterminal constituents are further grouped into even larger

ones. If a sentence can be successfully generated or consumed in terms of constituents, then

this sentence is recognized by the system which is associated with a specific set of

grammatical rules.

-142-

A functional approach is based on the notion that words or phrases have their

underlying functional roles inherent in sentence expressions. .In functional analysis, the

elements composing a larger structure are identified by the roles they play, while in

immediate constituent analysis those are identified by the kinds of elements they are.

Functional analyses generally place less emphasis on the order of constituents [91].

Being influenced by Katz and Fodor's semantic theory [31], some researchers

emphasize direct use of semantic aspects, or closely integrate the use of both syntactic and

semantic information to analyze sentences. This includes Fillmore's case grammar [26],

Haliday's systemic grammar [47], Bresnan and Kaplan's lexical-functional

grammar [12, 42], and Kay's functional unification grammar [43]. Syntactic analysis using

these grammars can be called functional analysis, because the concept of function plays a

central role in all these grammars. For example, in systemic grammar a sentence

simultaneously embeds the following systems: mood, transitivity, theme, and

information [47, 91]. Each system is in turn composed of several functional roles. For

instance, the roles GOAL, ACTION, and ACTOR are conveyed in the transitivity system.

Functional analysis has been attracting more researchers recently because it can offer

some advantages over the immediate constituent analysis. Many linguists believe that

syntactic regularities are stated more naturally and economically within a functional

framework. Functional description also makes cross-language generalization more feasible

because different languages may well serve the same functions in the process of transmitting

iea. Funnnnore, becaus(e f unctionaL anal)siS is quite relevant to meaning analysis, it has

generally been more readily adopted by the research that emphasizes the integration of

syntax and meaning than immediate constituent analysis [91].

As mentioned previously, language use becomes more and more flexible and succinct

after successive evolvement. However, it is at the cost of proliferating ambiguities in

interpretation. The more flexible or more succinct a language is, the more often ambiguity

problems may occur. By contrast, artificial languages such as computer languages generally

require more strict specifications in their use, and more rigid format and thus more length in

their expression.

As long as we are able to resolve the ambiguity problems, use of ambiguous words

should not be discouraged. In the first place, we may think that we have to limit the use of

the words or structures that may cause ambiguity problems. For communication in daily life,

however, nobody would like to use a natural language in the same way as one has to write or

-143-

read a computer language, such as FORTRAN, which does not have so many ambiguity

problems. As a matter of fact, although all kinds of natural languages in the world have more

or less ambiguity problems, people seldom have trouble in using their languages. In order to

gain flexibility and succinctness in the use of language, having ambiguity problems can be a

justifiable cost [65]. People seem very good at solving such problems, often efficiently and

effectively enough. This is because people are capable of using linguistic knowledge

coupled with the information about a discourse or about a domain to derive correct

interpretations of sentences. Errors, however, do occur.

Use of language can be considered as a cognitive process in which ideas are first

represented as symbols or sounds, and then the ideas bound to the symbols or sounds are

recovered [43, 91]. English words and punctuation marks in sentences are such

representation symbols. In other words, language use can be seen as a process of information

transmitting that requires a consistent algorithm for encoding and decoding. Language

generation is a process of encoding a set of ideas into a language representation medium,

while language understanding is a process of decoding the language representation medium

into the other set of ideas. The two sets should be identical semantically, if they are

processed according to a consistent algorithm for encoding and decoding. In fact, people

who are using the same language must have in mind the same grammars and similar

approaches to either generate a sentence or understand a sentence. Now the problems are

how we can make use of available information to resolve ambiguities, and how we can

reover the orioin'al meanings conveyed by the language producers (i.e., speakers or wXfriters).

Each word in a sentence plays some role in the process of making up the ultimate

interpretation of the sentence. There are three types of roles a word can play. In general,

English words can be divided into two groups: content words and function words [1].

Content words, such as nouns, verbs, adjectives, and adverbs, have meanings or contents

associated with them. Words in this group are also called open classes, since the number of

such words increases all the time. A word is the simplest form of a sentence constituent.

Constituents can be grouped into a larger constituent with a meaning relevant to each of its

components. For example, the noun phrase "red books" has a meaning that is intersected by

the meanings "objects that are red" and "objects used for recording knowledge in symbols."

A nominal phrase is a highly succinct expression that can convey a rich set of meanings

associated with each word in the phrase. To indicate "an institute that is doing research on

the safety problems that are associated with construction work," for example, the nominal

phrase "construction safety research institute" is a succinct substitute.

-144-

Function words can perform syntactic functions (or mechanisms) in a sentence, but

with no or little semantic contribution to the sentence. Such words include conjunctions

(and, or), articles (the, a), demonstratives (this, that), and prepositions (with, in, at). Words

in this group are also called closed classes, since the number of such words does not increase.

Such words specify structural relationships among the words in a sentence or across adjunct

sentences. For example, the word "that" in the sentence "The book that I bought yesterday is

gone" is used to structurally connect its following embedded sentence "I bought yesterday"

with its preceding word "book." The word "and" can link two predicates in a simple form.

For example, the sentence "He wants to see John and Mary" is a succinct expression for the

two sentences "He wants to see John" and "He wants to see Mary." Although such words do

not contribute meaning to the interpretation of a sentence, they instead offer syntactic

functions which allows us to express ideas in a highly succinct fonnat. As such, function

words make it possible for English to have features of succinctness and flexibility.

Nonetheless, some English words have characteristics of both content words and

function words. This is evidenced by the primary term of a split term, which has two parts:

primary term and variable term. Each of these two terms can be a single word or multiple

words, as illustrated in Section 2.2.1 by the split term FISCAL YEAR 88. A primary term,

like content words, contributes the major or control meaning of its associated split term.

Moreover, a primary term is expected to syntactically bind a variable term in order to have a

complete set of meaning.

In a sentence a variable tern is not necessarily located next to its associated primary

term. A variable term can be located right after or right before its associated primary term.

A variable term can also be away from the location of its associated primary term. For

instance, in the two sentences "He turned the light on" and "He turned on the light," the

variable term "on" can be away from and next to its associated primary term "turned." Asa

matter of fact, English has a lot of split terms. A multiple-word verb, which has a major verb

and associated words to perform as a single verb. can be considered as a split term. The

verbs such as turn, make, pick, and get serve as primary terms which are expected to bind

with other particles such as on, up, off, and out. Note that each of the particles above can be

located right after its associated verb or be located after a direct object.

The concept of split terms can also be applied to sentences typically discussed in the

case grammar. In the case grammar, a verb can serve as a case header which decides, for

example, cases such as direct object, indirect object, location, and instrument. The case

-145-

header can also be considered as a primary term which is expected to syntactically bind with

other variable terms. For example, in the sentence "He wrote a letter to John with a pencil,"

the primary term "wrote" is expected to syntactically bind with the variable terms "some

object," "to somebody" and "with some instrument."

-146-

Appendix B

Specification of Terms Used in Expert-MCA

The terms used in Expert-MCA are classified into the following six types: Fieldname,

Fieldvalue, Synonym, Rule, Procedure, and Word/Phrase. The specification of them are

described as follows.

BA Specification of Fieldname

A frame-based fonnat is applied to represent a term. The values in slots of term

frames can be a single word, a phrase, a simple sentence, a series of production rules, or a

series of procedural statements. A term frame has the term being represented as its name. A

term type is also specified in a term frame. Term frames have different slot names for

different types of terms. Each term frame has two parts: leading part and property part. The

leading part contains the term being represented and its associated term type, while the

property part has several elements, each containing a slot name and its associated values. To

save its size, the dictionary does not record the slots with empty value.

The terms with the type Fieldname have the following slots: Capces-Name, Capces-

Alias. English-Name. Context, Print-Name, Data-Length, File-Segment, Data-Type, Agency-

Responsible, Footer, Description, and Comment.

Most of the information stored in Fieldname term frame are copied from CAPCES

database. Expert-MCA does not allow the user to delete any Fieldname from the dictionary.

The user are not expected to modify the values of all the slots except the four: Print-Name,

Context, Footer, and Comment.

The slot Capces-Name stores the field name coded by the developers of CAPCES

database. Each data item in CAPCES has a unique field name by which the corresponding

data item can be manipulated by using the database query language FOCUS. A field name

cannot have more than 12 alphanumerical characters. The slot Capces-Alias is for an alias of

the field name. This slot value is optional. Both field name and its alias can be recognized by

the CAPCES database management system. A field name also has a English name which is

stored in the slot English-Name. A field name is usually an abbreviation or an acronym of its

English name. Although English name is not recognized by the database management

system, Expert-MCA accepts all of these three representations for a field.

-147-

The slot Context contains the information of context or contexts about the

corresponding field. This information is important while dealing with complicated queries

which often require contexts or keywords to relate to other terms. The slot can have several

contexts with the most specific one in the beginning. The information is used in Procedures

or Rules. Via the inference on such contextual information in Rules and Procedures, Expert-

MCA is able to process knowledge in depth in the semantic analyzer and reasoner. Terms of

other term types also have this Context slot.

The slot Print-Name contains a name that will be printed as a column name on reports.

The value in this slot is optional and can be modified by the user. If a field needs

explanations about the meaning of its coded values, the message that is entered in the slot

Footer will be automatically printed as footer on reports.

The value in the slot Data-Length is a number indicating how many characters the data

value is. Data-Type has a value either "A," for an alphabetical value, or "N," for a numerical

value. The slot File-Segment indicates a name of a segment in which the field resides. The

agency who is responsible for the maintenance of the field is stored in the slot Agency-

Responsible. The slot Description details the meaning or the use of the corresponding field.

The user can also make comments into the slot Comment.

B.2 Specification of Field'alue

The terms with the type Fieldvalue only have three slots In-Which-Field, Context, and

Comment. The name of a field of which the term is a field value is stored in the slot In-

Which-Field. The value for the slot Context is optional, since it will be inherited from its

associated field. The user, however, can enter a value if it is possible to have a more specific

keyword for this term than that of its associated field. The slot Comment is used to for

comments.

In CAPCES database, MA is a field value of the field PRCD (for project code). The

user can define this term MA in Expert-MCA (in Teach/Edit Session, see Section 6-5) by

entering PRCD in the slot In-Which-Field. Expert-MCA records this information and creates

a term frame for MA by adding other appropriate information if necessary. The term frame

then is stored into the dictionary with this content:

((MA VALUE)

-148-

((In-Which-Field PRCD)))

Expert-MCA will make an instance of the associated field as it looks up the dictionary.

B.3 Specification of Synonym

Synonyms only have two slots Synonym-Of and Comment. The slot Synonym-Of

stores its synonymous term. The term with a type of Synonym will inherit properties from

the term that is indicated in the slot Synonym-Of.

For example, the tenn frame SMALLER THAN is stored in the dictionary with the

content:

((SMALLER THAN Synonym)

((Synonym-Of LT)))

where LT (for less than) is a Word/Phrase.

After looking up the dictionary for the term SMALLER THAN, Expert-MCA will produce

the following:

((SMALLER THAN Word/Phrase)
((Part-Of-Speech CONJ)
(Definition LT)
(English-Name LESS THAN)
iContext LOGICAL-OPERATOR)
(Synonym-Of LT L

The term stored in the slot Synonym-Of can be another Synonym term as well. In this case,

the properties of the current term will be inherited from a term which is not a synonym. In

doing so, the system is able to dramatically reduce its dictionary size.

B.4 Specification of Word/Phrase

A Word/Phrase term frame has nine slots as follows: Definition, Part-Of-Speech,

Context, Variable-Part, Variable-Location, Variable-Type, Variable-Range, English-Name,

and Comment. Values in the first two slots are required, while values in the remaining slots

are optional.

The slot English-Name is used to store an English Name for the term represented in a

-149-

term frame if necessary. The slot Definition stores the meaning of the term being

represented. The slot is also called "meaning" slot. The value in this slot can be a contextual

phrase (please refer to Section 5.4.1), an arithmetical manipulation phrase, the term itself, or

nothing. The slot value will be converted into an internal representation. It is also a

component that helps the semantic analyzer to determine an appropriate meaning for the

terms having multiple meanings, or to group the terms in a sentence into new phrases that

have meanings equivalent to contextual phrases.

As mentioned in Section 2.2.3, English words usually can be separated into two

groups: content words and function words. The content words such as nouns, verbs,

adjectives, and adverbs have meanings or contents associated with them. The function words

perform some functions syntactically in a sentence, but with no semantic contribution to the

sentence. Nonetheless, some English words, such as the primary terms in split terms (see

Section 2.2.1), tend to perform as both content words and function words.

To extract a split term from an input sentence, Expert-MCA requires the user to define

its primary term with specifications about its variable terms. Without defining all the

military station names starting with FORT, the user can define a term FT by entering

STATION IS "Fort ?x" into this slot, where "?' is a symbol indicating a variable to be bound

to a term. By having the slot value like this in conjunction with other associated slot values

in the same term frame for the term FT, Expert-MCA is able to semantically form a

contextual phrase by binding Ft with the term following it in an input sentence. For example,

although the word DIXSON is unrecognized by the system. the words "Ft Dixson" in a

sentence like "What are the design status for the projects at Ft Dixson for fy 89" will be

interpreted as STATION IS "Fort Dixson" in an internal representation for the sentence. A

more subtle use of this feature is to extend to multiple variable bindings, such as in defining

the term DESIGN PERCENT as a Word/Phrase with the value in its meaning slot: DESIGN

PERCENT ?X "D?Y", where ?X is used to bind a logical operator and ?Y is used to bind a

number in an input sentence. The variable words in a split term are not necessarily located

next to the primary term. They can also be located before the primary term.

The slot Part-Of-Speech is used to store a part of speech or a phrase name for the term.

When the user first defines a term, he or she may select a value by toggling special keys on

the keyboard from a predefined value list: NOUN, NP (for noun phrase), VERB, PREP (for

preposition), PP (for prepositional phrase), PRON (for pronoun), DET (for determiner), ADJ

(for adjective), ADV (for adverb), and INTE (for interjection). Such information is used in

-150-

syntactic analysis. The use for the slot Context is the same as the one in a Fieldname (please

refer to Section 5.4.2).

The slot Variable-Part is used to sequentially indicate variable symbols entered in the

meaning slot. For example, the slot of the Word/Phrase term DESIGN PERCENT

mentioned above has variables ?X and ?Y. The information about the location of the

variable words in a sentence relative to the location of the primary term (i.e., the term

expecting to bind with other words) is entered in the slot Variable-Location. The slot value

can also be selected from a candidate list having values such as: next, previous, next next-2,

and previous previous-2. The value NEXT NEXT-2 is for the case of binding with two

variable words: first one is located in the input sentence next to the primary term and the

second one is located at next two words.

The information about data type and data range of variable words is stored in the slots

Variable-Type and Variable-Range, respectively. The slot Variable-Type has values such as:

number, string, word, logical-operator, Fieldname, fieldvalue, phrase, undefined, number-or-

string, logical-operator number, logical-operator string, and logical-operator word. If

multiple sets of values are suitable for a variable word, the user should select the most

specific one. In the slot Variable-Range, empty value or N/A means no constraint. To

specify a numerical range, the user can enter a pair of lower and upper bound data in a

parenthesis. If there is a single variable word to be bound, the numerical values of a range

can be entered without a parenthesis.

Here shows a list consisting of major content of a WX ord/Phrase, DESIGN PERCENT:

((DESIGN PERCENT Word/Phrase)
((Definition DESIGN PERCENT ?X "D?y")
(Part-Of-Speech NP)
(Variable-Part ?X ?Y)
(Variable-Location NEXT NEXT-2)
(Variable-Type LOGICAL-OPERATOR NUMBER)
(Variable-Range N/A (0 99))

By making use of the information stored in the above slots for DESIGN PERCENT, Expert-

MCA is able to extract 55 the phrase "design percent greater than 90" from the sentence

"What are the projects with design percent greater than 90," or "design percent less than 10"

from "What are the projects with design percent less than 10."

'5This is done in the lexical analysis module, as described in Section 6.2.3

-151-

B.5 Specification of Rule

The construct of Rules is fairly straightforward. The property part of a Rule term can

contain Rules as many as needed. Each Rule starts with a flag Rule, followed by its name,

and then followed by IF and THEN parts. IF part starts with a flag IF followed by a series of

condition statements, while THEN part starts with a flag THEN followed by a series of

action statements. To illustrate, the content for Set-Rpt-Rule (rules for setting report content)

can be defined as follows:

((SET-RPT-Rule Rule)
((Rule MACOM-1

(IF (USER IS-A MACOM))
(THEN (REPORT CONTAINS FY PROGAMT)))

(Rule DAEN- 1
(IF (USER IS-A DAEN))
(THEN (REPORT CONTAINS FY PROGAMT PROJECTDESC)))))

Expert-MCA provides the user with a special editor designed for editing Rules as above. The

editor will provide mechanisms for producing parentheses automatically.

B.6 Specification of Procedure

The propen> pan of a Procedure term consists of a slot Part-Of-Speech with its slot

value, and a series of procedural statements. Most of procedural statements begin with a

command followed by its arguments. There are about ten commands used in Procedure

frames. Definition of two Procedures 56 are shown as follows:

5 The use of these two are illustrated in Chapter 8.

-152-

1. ;;This column is for comments.
SUBMIT PROC ;declare a knowledge procedure SUBMIT

PART-OP-SPEECH VERB
DECL FACT X Y Z U ;declare X, Y, Z, U as facts
GET X OBJECT ;get a fact bound to a context OBJECT
GET Y AGENCY ;get a fact bound to a context AGENCY
GET Z DATE-TYPE ;get a fact bound to a context DATE-TYPE
U = DETERMINE USING SUBMIT-RULES; call a rule with input
OUTPUT U

2.
DESIGN-FUNDS PROC ;declare a knowledge procedure

PART-OF-SPEECH NOUN ; DESIGN-FUNDS
DECL FACT X ;declare X as a fact
DECL VAR X1 X2 :declare X1 X2 as numerical variables
DECL FIELD Fl F2 F3 ;declare F1 F2 F3 as temporary fields
IF SCREENFIELDS NOT CONTAIN FY THEN ASK FY
GET X FY ;get a fact bound to a field FISCAL YEAR
Xi=X+1
X2=X+2

Fl = CALL DESIGN-FUND1 (Xl) ;call procedure DESIGN-FUNDl
F2 = CALL DESIGN-FUND2 (X2) ;call procedure DESIGN-FUND2
F3=F1 +F2
REMOVE FY FROM SCREENFIELDS ;remove FY from screening fields
APPEND DISTRICT TO SORTFIELDS ;append DISTRICT as a sorting field
OUTPUT SUM F3 BY SORTFIELDS FOR SCREENFIELDS

The command DECL is used to declare data types, as specified by its first argument,

tor the variables that starts with its second arguments. A data type for the procedural

variables in the frame can be a field, a fact, a simple numerical variable, or a report table.

The data type FIELD here is used for the variables that are bound to derived or temporary

fields. A FACT variable is used to represent a fact or field instance available from the input

sentence or user profile. The statements starting with the command IF are for branching

conditional actions.

The command GET is to find a fact from the information blackboard by searching for a

context which is specified as the third argument in the GET statement. The output fact will

be bound to its second argument. The command CALL is used to trigger another Procedure

in conjunction with input arguments if any. The commands DETERMINE and DISCOVER

are used to infer Rule terms by using forward chaining algorithm and backward chaining

algorithm, respectively. The commands REMOVE, APPEND are used to modify printing or

sorting items. The commands OUTPUT and REPORT are used to specify a value or values

after calling a Procedure term.

-153-

Appendix C

Syntax for FOCUS Query Language

The syntax for FOCUS query language described here is the most important part used

for its retrieving data. The reader may be referred to the FOCUS User's Manual [79] for

more details.

C.l Syntax for TABLE Command Statements

A tabular report is requested by the command TABLE, followed by a request

statement 57 , and a finish command. A request statement may consist of the following

components: format-control, verb-phrase, sorting-phrase, screening-phrase, and control-

phrase. In what follows the content between the bracket symbols "[] " is optional. Syntax

for a major portion of FOCUS query language is given below. Semantics of these symbols

can be referred to Section 6.4 and FOCUS User's Manual. A TABLE command statement

looks like this:

TABLE FILE <filename>

[<format-control>]
<verb-phrase>
[<sorting-phrase>]
[<screening-phrase>J
[<control-phrase>]
<end-statement>

The symbols used above are defined in Backus-Naur Form as follows:

<end-statement>::= END I RUN I QUIT

<verb-phrase> ::= <verb> <and-fieldname>I<verb-phrase> <verb> <and-fieldname>

<verb>::= LIST I PRINT I COUNT I SUM I ADD I WRITE

<prefix>::= MAX I MIN I AVE I ASQ I FST I LST I PCT I RPCT I

TOT I SUM I CNT I ALL I

<field>::= <fieldname> I <prefix>.<fieldname> I COLUMN-TOTAL

<and-fieldname> ::= <field> I <and-fieldname> AND <field> I

<and-fieldname> <field> I OVER <field>

<and-value> ::= <value> I <and-value> AND <value>

571n some complex cases, it may have multiple request statements.

-154-

<sorting-phrase> ::= BY <fieldname> I BY <by-selector> <fieldname> I
By <fieldname> IN-GROUPS-OF <value> I
By <fieldname> IN-GROUPS-OF <value> TOP <value> I
RANKED BY <by-selector> I
ACROSS <fieldname> I
ACROSS <fieldname> IN-GROUPS-OF <value> I
ACROSS <fieldname> IN-GROUPS-OF <value> TOP <value> I
ACROSS <fieldnane> COLUMNS <and-value> I

<by-selector> ::= HIGHEST I HIGHEST <integer> I TOP I TOP <integer> I
LOWEST I LOWEST <integer>

<screening-phrase> ::= IF <field> <relation> <or-value> I
IF <field> FROM <or-value-to-value> I
IF <field> NOT-FORM <or-value-to-value> I
IF TOTAL <field> <relation> <or-value>

<relation>::= IS I EQ I IS-NOT I NE I IS-FROM I FORM I GE I TO I
LE I IS-MORE-THAN I EXCEEDS I GT I IS-LESS-THAN I
LT I CONTAINS I INCLUDES I EXCLUDES I OMITS

<or-value>::= <value> I <or-value> OR <value>
<value-to-value> ::= <lower-value> TO <upper-value>
<or-value-to-value> ::= <value-to-value>l<or-value-to-value> OR <value-to-value>
<control-phrase> ::= ON <fieldname> <on-selector>
<on-selector>::= SUB-TOTAL I SUBTOTAL I PAGE-BREAK I SKIP-LINE I

FOLD-LINE I SUMMARIZE I RECOMPUTE I SUP-PRINT I
NONPRINT I COMPUTE I RECAP I UNDER-LINE I SUBFOOT I
SUBHEAD I REPAGE

Where
<fieldname>: a field name defined in the data base;
<literal>: a combination of alphabets and numbers;
<value> a literal or a nurnber:
<integer>: an integer;
<lower-value> : a <value> used as a lower limit;
<upper-value> : a <value> used as a upper limit;
<format-control>: statements to control report format or print

necessary text such as a heading, footing, etc.
[<content>] : the <content> is optional.

C.2 Syntax for DEFINE Command Statements

In FOCUS, temporary data fields can be defined as arithmetical or logical

combinations of real fields or other temporary data fields. To define temporary data fields

needs to issue the DEFINE command statements as follows:

DEFINE FILE filename
<temp-field-expression>

-155-

END

The syntax for <temp-field-expression> is expressed in Backus-Naur Fonn as follows:

<temp-field-expression>
::= <temp-field>/<field-format> = <expression> ; I

<temp-field-expression>
<temp-field>/<field-format> = <expression>;

<temp-field> ::= <literal>
<field>::= <fieldname> I <temp-field>
<field-format> ::= A<integer> I I<integer> I D<integer>.<integer>
<arith-operand>::=+ I - 1 * /f ** I (I)

<logic-operand> ::= EQ I NE 1'GT I GE I ILE I AND I OR I
NOT I CONTAINS VOMiTS

<logic-operation>
::= <field> <logic-operand> <value> I

(<logic-operation>) I
<logic-operation> OR <field> <logic-operand> <value> I

<expression> ::= <arith-operation> I
IF <logic-operation> THEN <result> ELSE <result>

<result> ::= <field> I <value> I <arith-operation> I <expression>

Where
<fieldname> : a field name defined in the data base;

<literal>: a combination of alphabets and numbers;
<value> a literal or a number;
<integer>: an integer;
<arith-operation> : a combination of <field>, <value>, and <arith-operand>.

-156-

Appendix D

List of Interface Tasks in Expert-MCA

The interface tasks implemented in Expert-MCA are listed, each being with some slot

contents, as follows:

1. TOP-TASK

Name:
Window-Type:
Option:

Next-Task:

Top-Task
single-selection-menu

("Overview" "Query" "Report" "Download" "Teach"
"Profile" "Utility" "Logout")
(overview query report download teach
update-profile utility exit-to-Lisp)
Note: This is the Main Menu of Expert-MCA.

2. OVERVIEW

Name:
Option:

Window-Type:
Next-Task:

overview

("Overview about Expert-MCA" "Overview about Query Session"
"Overview about Standard Reports")

single-selection-menu
(Expert-MCA-overview Query-overview standard-report-overviewiv

3. EXPERT-MCA-OVERVIEW

Name:
Window-Type:
Message:

Next-Task:

expert-mca-overview
message-lookup
(read-string-file (get-data-file 'expert-mca-overview))
;;The message is read from a file
;; C:\MCA-TASK\EXPE-MCA.ovw, which is an overview about
;;Expert-MCA. This file is an ASCII flat file

and can be edited as wished.
(overview)

4. QUERY-OVERVIEW

Name:
Window-Type:
Message:

query-overview
message-lookup
(read-string-file (get-data-file 'query-overview))

-157-

(overview)
Note: Here is an Overview about Query Session in Expert-MCA.

5. STANDARD-REPORT-OVERVIEW

Name:
Window-Type:
Message:
Next-Task:

standard-report-overview
message-lookup
(read-string-file (get-data-file 'standard-report-overview))
(overview)
Note: This task is an Overview about Standard Reports Session
in Expert-MCA.

6. QUERY

Name:
Option:
Window-Type:
Next-Task:

query

("Input Query" "Modify Prev Queries" "Exec Prev Queries")
single-selection-menu
(Input-Query Modify-Prev-Queries Exec-Prev-Queries)

7. INPUT-QUERY

Name:
Window-Type:
After-Action:
Next-Task:

input-query
text-input
(mca 1-parse)
(understanding-correction correct-unrecognized-term)

8. MODIFY-PREV-QUERIES

Name:
Window-Type:
Before-Action:
After-Action:

Next-Task:

Modify-Prev-Queries
frame-slot-editor
(Collect-previous-queries)
(pick-up-the-modified-query ;this is a function name.

mcal -parse) ;this is another function name.
(understanding-correction correct-unrecognized-term)
;;Note: Modifying One of the Previous Queries.

9. EXEC-PREV-QUERIES

Name:
Before-Action:
Option:

Exec-Prev-Queries
collect/exec-prev-query
nil
;;The content of this slot will be filled out by the function
;;Collect/exec-prev-query, which is stored in Before-Action slot.

Next-Task:

Window-Type:
After-Action:

Next-Task:

-158-

single-selection-menu
(pick-up-selected-exec-prev-query

mcal-parse) ;MCAI-parse will select a next task to run.
(understanding-correction correct-unrecognized-term)
;;Note: Choose a Query to Execute

10. UNDERSTANDING-CORRECTION

Name:
Window-Type:
After-Action:
Next-Task:

understanding-correction
frame-slot-editor
(mcal -query-generator)
(Focus-correction)
Note: This task is to correct Expert-MCA's Understanding of
the Query if Necessary.

11. FOCUS-CORRECTION

Name:
Window-Type:
Window-Size:
After-Action:
Next-Task:

Focus-correction
text-editor
(1 0 78 12) ;nx, ny, width, and height of the outer frame
select-target-db ;look for local databases in PC first
(pc-or-mainframe-or-cancel mainframe-or-cancel)
;The order of the above slot content is significant in function
; select-target-db.
Note: This task is to correct FOCUS codes if necessary.

I 2. NALNFRANE-OR-CANCEL

Name:
Window-Type:
Option:

After-Action:
Next-Task:

mainframe-or-cancel
single-selection-menu
("Mainframe Now" "Mainframe in Batch Later"

"Mainframe in Batch Now" "Cancel"
"Conflict Info with Local Databases")
(select-next-task-and-pass-arg-in-mainframe-or-cancel)
(comm-with-mainframe add-mainframe-batch run-mainframe-batch
query conflict-info-w/-pc-db)
;;Note: To Choose One To Run For The Current Query

13. CONFLICT-INFO-W/-PC-DB

Name:
Before-Action:
Window-Type:
Message:

conflict-info-w/-pc-db
collect-conflict-info-when-tring-to-access-pc-database
message-lookup
nil

-159-

Before-Action:
Next-Task:

;the Message: slot content will be updated by the function
slot.
(mainframe-or-cancel)
;;Note: to take a look.

14. COMM-WITH-MAINFRAME

Name:
Window-Type:

After-Action:
Next-Task:

comm-with-mainframe
self-execution
;It executes the function COMM-WITH-MAINFRAME, which
;controls its window specifications.
next-task*-after-congn-with-mainframe
nil ;assigned by the above function
;;Note: In Communication with Mainframe

15. PC-OR-MAINFRAME-OR-CANCEL

Name:
Window-Type:
Option:

After-Action:
Next-Task:

pc-or-mainframe-or-cancel
single-selection-menu

("PC Databases" "Mainframe Now" "Mainframe in Batch Later"
"Mainframe in Batch Now" "Cancel")

(select-next-task-and-pass-arg-in-pc-or-mainframe-or-cancel)
(run-pc-database-now comm-with-mainframe add-mainframe-batch
run-mainframe-batch query)
;;Note: To Choose One To Run For The Current Query

16. RUN-PC-DATABASE-NOW

Name: run-pc-database-now
Before-Action: in-comm-with-pc
Window-Type: message-lookup
Message: (" "

Next-Task:
"Summary of the data retrieval.")
(query)
;;Note: just finished a session for data retrieval from local databases.

17. CORRECT-UNRECOGNIZED-TERM

Name:
Option:
Window-Type:
After-Action:

correct-unrecognized-term

("DEFINE NEW WORD" "EDIT WORD" "IGNORE WORD")
single-selection-menu
(pass-unrecognized-term-to-next-task)
Next-task: (new-word/phrase-check edit-word ignore-word)

-160-

18. NEW-WORD/PHRASE-CHECK

Name:
Option:
Window-Type:
After-Action:
Next-Task:

new-word/phrase-check

("No" "Yes")
single-selection-menu
(update-unrecognized-terms-in-new-word/phrase-check)
(select-term-type-for-unrec enter-phrase)
Note: Is this term part of a phrase?

19. ENTER-PHRASE

Name:
Window-Type:
After-Action:
Next-Task:

enter-phrase
line-text-input
(update-unrecognized-tenns-in-enter-phrase)
select-tenn-type-for-unrec
Note: enter the phrase that contains the unrecognized term.

20. EDIT-WORD

Name:
Window-Type:
After-Action:
Next-Task:

edit-word
line-text-input
(update-unrecognized-term-in-edit-word)
(correct-unrecognized-term)
Note: enter a correct one.

21. IGNORE-WORD

Name:
Window-Type:
Message:
After-Action:
Next-Task:

ignore-word
help-message-lookup

("You want to ignore the term. Please hit F5 key to proceed.")
(update-unrecognized-term-in-ignore-word)
(correct-unrecognized-term)

22. SELECT-TERM-TYPE-FOR-UNREC

Name:
Option:
Window-Type:
After-Action:
Next-Task:

select-term-type-for-unrec

("Field Instance" "Synonym" "Word" "Phrase") ;"Procedure Rule")

single-selection-menu
(remember-which-type-for-unrec) ;to do with order of OPTIONs.

(defme-new-term)
Note: Terms can be defined as one of the following types.

-161-

23. REPORT

Name:
Option:

Window-Type:
Next-Task:

report

("Review/Update Reports" "Add Reports" "Delete Reports"
"Execute Reports")
single-selection-menu
(select-Report Add-Report Select-Report select-report)

24. SELECT-REPORT

Name:
Before-Action:
Option:
Window-Type:
After-Action:
Next-Task:

select-report
(prepare-report-names)
nil ;This will be updated by the function of Prepare-report-list.
single-selection-menu
decide-one-report-task
(update-Report Delete-Report Execute-Report)
;;One of the 3 tasks will be selected to execute depending on the input
;; to the current task Select-report.

25. UPDATE-REPORT

Name: update-report
Before-Action: (prepare-report-content)
Window-Type: frame-slot-editor
A fter-Action: (update-report-to-dictionary)
Next-Task: (report)

26. ADD-REPORT

Name: add-report
Before-Action: (prepare-report-names)
Window-Type: line-text-input
Next-Task: (update-report)

27. DOWNLOAD

Name:
Option:

Window-Type:
Next-Task:

download

("Review/Update Downloading Tasks" "Add Downloading Tasks"
"Delete Downloading Tasks" "Execute Downloading Tasks")

single-selection-menu
(select-download Add-download Select-download select-download)

-162-

28. SELECT-DOWNLOAD

Name:
Before-Action:
Option:
Window-Type:
After-Action:
Next-Task:

select-download
(prepare-download-names)
nil ;This will be updated by the function of Prepare-download-list.
single-selection-menu
decide-one-download-task
(update-download Delete-download Execute-download)
;;One of the 3 tasks will be selected to execute depending on the input
;; to the current task Select-download.

29. UPDATE-DOWNLOAD

Name:
Before-Action:
Window-Type:
After-Action:
Next-Task:

update-download
(prepare-download-content)
frame-slot-editor
(update-download-to-dictionary)
(download)

30. ADD-DOWNLOAD

Name:
Before-Action:
Window-Type:
Next-Task:

add-download
(prepare-download-names)
line-text-input
(update-download)

31. TEACH

Name:
Option:
Window-Type:
Next-Task:

teach

("Review/Edit Existing Terms" "Define New Terms")
single-selection-menu
(select-context-for-target-tenns select-term-type)

32. SELECT-TERM-TYPE

Name:
Option:
Window-Type:
After-Action:
Next-Task:

select-term-type

("Field Instance" "Synonym" "Word" "Phrase") ;"Procedure Rule")
single-selection-menu
(remember-which-type) ;This is to do with order of OPTIONs.
(input-new-term)

-163-

33. INPUT-NEW-TERM

Name:
Before-Action:

Window-Type:
After-Action:
Next-Task:

input-new-term
store-input-for-input-new-term
title-text: nil ;updated by the above function
line-text-input
check-and-combine-text-with-term-type
(define-new-term select-from-existing-term)

34. DEFINE-NEW-TERM

Name:
Before-Action:
Window-Type:
After-Action:
Next-Task:

defin-new-term
set-define-new-term-title
term-frame-editor
update-dictionary-in-define-new-term
(teach select-context-for-target-terms)
;; In the process of defining a term using a HELP-DEFINE

hori-menu, we may need to search for a target term, either
a fieldname of word/phrase. The function stored in
AFTER-ACTION: slot has to identify this situation
and thus decides which task has to be executed next.

35. SELECT-FROM-EXISTING-TERM

Name:

Option:
Window-Type:
After-Action:

Next-Task:

select-from-existing-term
nil ;will be updated by the task which calls this one.
single-selection-menu
reset-select-from-existing-term ;This resets next-task.
(review/edit-existing-term define-new-term)

36. REVIEW/EDIT-EXISTING-TERM

Name:
Before-Action:
Window-Type:
After-Action:
Next-Task:

review/edit-existing-term
set-review-term-title
term-frame-editor
update-dictionary-in-review/edit-existing-term
(teach)

37. SELECT-CONTEXT-FOR-TARGET-TERMS

Name: select-context-for-target-terms
Before-Action: prepare-context-tree
Window-Type: layered-horizontal-menus
After-Action: remeber-context-for-terms

-164-

Next-Task: (select-term-after-context select-term-type)

38. SELECT-TERM-AFTER-CONTEXT

Name:
Before-Action:
Window-Type:
Option:
After-Action:
Next-Task:

select-tenn-after-context
prepare-for-select-term-after-context
single-selection-menu
nil ;will be updated by the task which calls this one.
prepare-diction-list
(review/edit-existing-term define-new-term)
needed-global-variables:
(*qualified -terms* ; set in function collect-qualified-terms.
find-a-term-through -context-tree -p ;This is defined in FR-EDITOR.
retuming-termn) ;This is needed in HELP-DEFINE hori-menu.

39. UPDATE-PROFILE

Name: update-profile
Window-Type: single-selection-menu
Option: ("Update/Review Domain Profile" "Update/Review User Profile")
After-Action: (assign-next-task-for-profile)

Note: The above function may reasign a new next task
SELECT-PROFILE-TASK-BY-SYSTEM if the user is System.

Next-Task: (update-domain-profile update-user-profile)

40. UPDATE-DOMAIN-PROFILE

Name: update-domain-profile
Before-Action: prepare-to-update-domain-profile
Window-Type: frame-slot-editor
After-Action: update-for-domain-profile
Next-Task: (top-task)

Note: Review/Edit Domain Profile.

41. UPDATE-USER-PROFILE

Name:
Before-Action:
Window-Type:
After-Action:
Next-Task:

update-user-profile
prepare-to-update-user-profile
frame-slot-editor
update-for-user-profile
(top-task)
Note: Review/Edit A User Profile.

-165-

42. SELECT-PROFILE-TASK-BY-SYSTEM

Name:
Option:
Window-Type:
Next-Task:

select-profde-task-by-system

("Review/Update User Profile" "Add User" "Delete User")
single-selection-menu
(select-user add-user delete-user)

43. SELECT-USER

Name:
Before-Action:
Window-Type:
Option:
After-Action:
Next-Task:

44. ADD-USER

Name:
Before-Action:
Window-Type:
After-Action:
Next-Task:

select-user
(send-existing-users-to-option)
single-selection-menu
nil ;THis is updated by the function Prepare-existing-users.

(prepare-user-profile-for-a-user)
(update-user-profile)

add-user
(send-and-prepare-existing-users)
line-text-input
(prepare-user-profile-for-a-user)
(update-user-profile)

45. DELETE-USER

Name:
Before-Action:
Option:
Window-Type:
After-Action:
Next-Task:

delete-user
(send-existing-users-to-option)

o ;updated by the above function.
single-selection-menu
(update-user-profle-after-deletion)
(select-profle-task-by-system)

-166-

Appendix E

List of File Names and File Paths in Expert-MCA

The following is a list of file names and a brief description of content for each file in

Expert-MCA.

Directory: Filename: File content:

1. c:\mca-task
config.lsp variables bound with names of subdirectory paths.
tsk-vari.lsp value binding of global variables
window.lsp definitions of window arrangements and attributes
wind-fun.lsp manipulation functions on windows

2. c:\mca-task\basic
tsk-func.lsp Macro functions for reading *.Tsk files
tsk-main.lsp interface task-dispatcher and screen generators
tsk-gene.lsp window generators for various types of tasks
basic.tsk definitions of symbols used in interface tasks
toptask.tsk definitions of interface tasks in the top (or main) menu
toptask.lsp functions used in toptask.tsk, functions for login

3. c:\mca-task\overview
overview.tsk interface tasks in the overview session

4. c:\mca-task\query

query.tsk interface tasks in the query session
query.lsp functions used in query.tsk

lookup.lsp functions for dictionary lookup
parse.lsp functions for parsing queries
reasonco.lsp functions for reasoning by using contextual info.
understa.lsp functions for interpreting queries
focusgen.lsp functions for generating FOCUS codes

5. c:\mca-task\report
report.tsk interface tasks in the standard report session
report.lsp functions used in report.tsk

6. c:\mca-task\download
download.tsk interface tasks in the database downloading session
download.lsp functions used in download.tsk and query.tsk

7. c:\mca-task\teach
teach.tsk interface tasks in the teaching/reviewing session
teach.lsp functions used in teach.tsk

-167-

8. c:\mca-task\profile
profile.tsk interface tasks in the user profile session
profile.lsp functions used in profile.tsk

9. c:\mca-task\utility
utility.tsk interface tasks as mca utilities (not implemented)
utility.lsp functions used in profile.tsk (not implemented)

10. c:\mca-taskhdata data files for:
esnuser.lsp user profile
esnrpt.lsp standard reports
esndnld.lsp downloading
esncap I.lsp dictionary for CAPCES fields
esncap2.lsp dictionary for CAPCES fields
esndic1.lsp dictionary for other terms
esndic2.lsp dictionary for other terms

*.ovw overview text file - description of different sessions

11. c:\mca-task\commun
mca-comm.lsp telecommunications functions used to link to mainframe

12. c:\mca-task\library
esnrmeng.lsp functions used in a rule's inference engine
esnm0-.isp functions for file input and output
esnm0-2.lsp functions for list and string manipulations
esnrn0-4.lsp functions for reading data dictionaries
esnm3-2.lsp functions for processing procedural terms

(need to polish this file in the near future)

struct.lsp definitions of structures (such as editor, editorfr..)
editor.lsp definition of a text editor
editorfr.lsp definition of a frame-slot editor
se-menul.lsp definition of a single-selection-menu (vertical)
msge.lsp definition of a message-echo/lookup template
hor-menu.lsp definition of a horizontal-single-selection-menu

13. c:\mca-task\working
working.lsp functions used in developing /modifying Expert-MCA
esnrnmgt.lsp functions used to alphabetically sort all the

functions defined in the 45 files of Expert-MCA.
mgsorted.fun a name list of all the functions defined in Expert-MCA

it is arranged in an alphabetical order.

-168-

References

[1] Akmajian, A., Demers, R.A., and Hamish, R.M.
Linguistics: An Introduction to Language and Communication.
The MIT Press, Cambridge, MA, 1984.

[2] Allen, James.
Natural Language Understanding.
The Benjamin/Cummings Publishing Co., Menlo Park, CA, 1987.

[3] Ashley, David B. and Levitt, Raymond E.
Expert Systems in Construction: Work in Progress.
Journal of Computing in Civil Engineering 1(4), October, 1987.

[4] Ashley, David B. and Perng Y. H.
An Intelligent Construction Risk Identification System.
In Sixth International Symp. on Offshore Mechanical and Arctic Engineering.

Houston, TX, March, 1987.

[5] Ballard, B., and Tinkham, M.
A Grammatical Framework for Transportable Natural-Language Processing.
Computational Linguistics 10(2), 1984.

[6] Barr, Avron, and Feigenbaum, Edward A. (editors).
The Handbook of Artificial Intelligence, Vol. 1.
William Kaufmann, Los Altos, CA, 1981.

[7] Barr, Avron, and Feigenbaum, Edward A. (editors).
The Handbook of Artificial Intelligence, Vol. 2.
William Kaufmann, Los Altos, CA, 1981.

[8 Barr. Avron, and Feigenbaum, Edward A. (editors).
The Handbook of Artificial Intelligence, Vol. 3.
William Kaufmann, Los Altos, CA, 1981.

[9] Bates, M., and Bobrow, R.J.
A Transportable Natural Language Interface.
In Research And Development in Information Retrieval. ACM, 1983.
The 6th Annual International ACM SIGIR Conference.

[10] Bever, M. and Ruland, D.
Aggregation and Generalization Hierarchies in Office Automation.

In Conference on Office Information Systems. ACM SIGOIS and IEEE CS TC-OA,
March 22-23, April, 1988.

[11] Bobrow, Daniel G.
Natural Language Input for a Computer Problem Solving System.

In Marvin Minsky (editor), Semantic Information Processing, pages 133-215. The

MIT Press, Cambridge, MA, 1967.

-169-

[12] Bresnan, Joan W.
A Realistic Transformational Grammar.
In Morris Halle, Joan W. Bresnan, and George A. Miller (editor), Linguistic Theory

and Psychological Reality, pages 1-59. The MIT Press, Cambridge, MA, 1978.

[13] Brisson, Francoise.
Knowledge Based Expert System for Planning and Monitoring construction Projects.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, June, 1987.

[14] Brodie, M.L., and Mylopoulos, J. (editor).
On Knowledge Base Management Systems.
Springer-Verlag, New York, 1986.

[15] Carbonell, J. G., Cullingford, R. D., and Gerschman, A. V.
Knowledge-Based Machine Translation.
Technical Report Research Report #146, Computer Science Department, Yale

University, New Haven, CT, 1978.

[161 Chamiak, E., and McDermott, D.
Introduction to Artificial Intelligence.
Addison-Wesley Publishing Co., Reading, MA, 1985.

[17] Chen, Peter .P.S.
The Entity-Relationship Model - Toward a Unified View of Data.
ACM TODS 1(1), March, 1976.

[18] Chen Frank H.S.
Expert-MCA: An Expert System for CAPCES Database.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, February, 1988.

[19] Chemeff, Jonathan.
Automatic Generation of Construction Schedules from Architectural Drawings.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, June, 1988.

[20] Chung, Se-Hack.
The Expert System for Resource Constrained Scheduling.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, June, 1987.

[21] Cullingford, R.E.
Natural Language Processing - A Knowledge Engineering Approach.
?,? , 1986.

[22] Date, C.J.
An Introduction to Database Systems.
Addison-Welsley, Reading, MA, 1986.

170-

[23] De La Garza, Jesus M. and Ibbs, C. William.
A Knowledge Engineering Approach to the Analysis and Evaluation of Schedules for

Mid-Rise Construction.
Technical Report, Construction Engineering and Management, Civil Engineering

Department, the University of Illinois at Urbana-Champaign, Champaign, IL,
July, 1988.

Civil Engineering Studies, Construction Research No. 23.

[24] Dorsey, Robert W.
Managerial and Social Problems of Robotization in the United States of America.
In Fourth International Symposium on Robotics and Artificial Intelligence in

Building Construction. Building Research Station - Technion I.I.T., Haifa, Israel,

June, 22-25, 1987.

[25] Erman, L., Hayes-Roth, F., Lesser, V., and Reddy, D.
The Hearsay-Il Speech Uderstanding System: Integrating Knowledge to Resolve

Uncertainty.
ACM Computing Surveys 12(2):213-253, 1980.

[26] Fillmore, Charles.
The Case for Case.
In Emmon Bach, and Robetr T. Harms (editor), Universals in Linguistic Theory,

pages 1-90. Holt, Rinehart, and Winston, Chicago, 1968.

[27] Finn, G. A. and Reinschmidt, K. F.

Expert Systems in an Engineering-Construction Firm.

In Kostem, C.N. and Maher, M.L. (editor), Expert Systems in Civil Engineering.

American Society of Civil Engineers, New York, NY, 1986.

[28] Garvey, A., Hewett, M., Johnson, M., Schulman, R., and Hayes-Roth B.
BB1 User Manual: How to Implement a System in BBJ.

Technical Report, Knowledge Systems laboratory. Stanford University, Stanford. CA.

October, 1986.

[29] Ginsparg, J.M.
A Robust Portable Natural Language Data Base Interface.
In Conference on Applied Natural Language Processing, pages 25-30. Association

for Computational Linguistics, 1983.

[30] Grosz, B, Appelt, D.E., Martin, P. and Pereira, F.
TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces.

Technical Report 358, Artificial Intelligence Center, SRI International, Menlo Park,

California, Aug., 1985.

[31] Harris, Mary Dee.
Introduction To Natural language Processing.

Reston Publishing Co., Reston, VA, 1985.

[32] Hendrix, G.G., Sacerdoti, E., Sagalowicz, D., and Slocum, J.

Developing a Natural Language Interface to Complex Data.

ACM Transactions on Database Systems 3(2):105-147, 1978.

-171-

[33] Hendrixson, Chris, Zozaya-Gorostiza, Carlos, Rehak, Daniel, Baracco-MIller,
Eduardo, and Lin, Peter.
Expert System for Construction Planning.
Journal of Computing in Civil Engineering 1(4), October, 1987.

[34] Hindy, Ayman M.
Expert-MCA: A Knowledge-Based Natural Language Interface to CAPCES database.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, February, 1987.

[35] Howard, H.C. and Rehak, D.R.
Interfacing Databases and Knowledge Based Systems for Structural Engineering

Applications.
Technici Report EDRC-12-06-86, Design Research Center, Carnegie-Mellon

University, November, 1986.

[36] Howard, H.C. and Rehak, D.R.
KADBASE - A Prototype System-Database Interface for Integrated CAE

Environments.
In Proceedings of American Association for Artificial Intelligence, pages 804-808.

AAAI, 1987.

[37] Hull, Richard and King, Roger.
Semantic Database Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys 19(3), September, 1987.

[38] Ibbs, C. Williams.
Future Direction for Computerized Construction Research.
Journal of Construction Engineering and Construction 112(3), September, 1986.

[39] Israel, David.
Notes on Inferences: A Somewhat Skewed Survey.
On Knowledge Base Management Systems.
Spring-Verlag, New York, NY, 1986, pages 98-109.

[40] Ivan, John N.
CAPES: A Cafeteria Architectural Planning Expert System.
Master's thesis, Civil Engineering Department, Massachusetts Institute of

Technology, February, 1988.

[41] Jakobson, G., Lafond, C., Nyberg, E. and Piatetsky-Shapiro, G.
An Intelligent Database Assistant.
IEEE Expert :65-79, Summer, 1986.

[42] Kaplan, Ronald M.
On Process Models for Sentence Analysis.
In Donald A. Norman, David E. Rumelhart, and the LNR Research Group (editor),

Explorations in Cognition, pages 117-135. Freeman, San Francisco, CA, 1975.

-172-

[43] Kay, Martin.
Parsing in Functional Unification Grammar.

In David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky (editor), Natural

Language Parsing, pages 251-278. Cambridge University Press, Cambridge,
England, 1985.

[44] Kerschberg, L. (editor).
Expert Database Systems.
The Benjamin/Cummings Publishing Co., 1986.

[45] Kim, Simon S.
Survey of the State-of-the-Art Expert/Knowledge Based Systems in Civil Engineering.

Technical Report Special Report P-87/01, CERL, US Army of Corps of Engineers,
October, 1986.

[46] Kostem, C.N. and Maher, M.L. (editor).
Expert Systems in Civil Engineering.

American Society of Civil Engineers, New York, NY, 1986.

[47] Kress G. R.
Haliday: System And Function In Language.

Oxford University Press, London, England, 1976.

[48] Lee, Jintae and Malone, Thomas W.

How Can Groups Communicate When They Use Different Languages? Translating

between Partially Shared Type Hierachies.

In Conference on Office Information Systems. ACM SIGOIS and IEEE CS TC-OA,

March 22-23, April, 1988.

[49] Levitt, R. E., and Kunz, J. C.

Using Artificial Intelligence Techniques to Support Project Management.

A] EDAM 1(1). 1987.

[50] Levitt, R. E., Kunz, J. C., and Kartam, N. A.

Using Artificial Intelligence Techniques for Automated Planning and Scheduling.

In Fourth International Symposium on Robotics and Artificial Intelligence in

Building Construction. Building Research Station - Technion I.I.T., Haifa, Israel,

June, 22-25, 1987.

[51] Levitt, R. E., Kartem, N. A., and Kunz, J. C.

Artificial Intelligence Techniques for Generating Construction Project Plans.

Journal of Construction Engineering and Management 114(3), September, 1988.

[52] Li, Qing and Mcleod, Dennis.

Object Flavor Evolution in an Object-Oriented Database System.

In Conference on Office Information Systems. ACM SIGOIS and IEEE CS TC-OA,

March 22-23, April, 1988.

[53] Logcher, R.D., Hindy, A., and Wang, M.T.

Expert-MCA, A Knowledge Based Natural Language Interface To CAPCES

Database.
Technical Report CCRE-87-1, Civil Engineering Department, MIT, January, 1987.

-173-

[54] Logcher, R.D.
Adding Knowledge Based Systems Technology to Project Control Systems.
In Ibbs, C. William and Ashley, David B. (editor), Project Controls: Needs and

Solutions, Proceeding of a Specialty Conference, Lincolnshire, IL, pages 88-100.
ASCE, New York, 1987.

[55] Madnick, Stuart E. and Wang, Y. Richard.
Logical Connectivity: Applications, Requirements, and An Architecture.
In Richard Wang and Stuart Madnick (editor), Connectivity among Information

Systems, pages 37-5 1. Sloan School of Management, M.I.T., Cambridge, MA,
1988.

Composite Information Systems (CIS) Projects.

[561 Madnick, Stuart E. and Wang, Y. Richard.
A Framework of Composite Information Systems for Strategic Advantage.
In Richard Wang and Stuart Madnick (editor), Connectivity among Information

Systems, pages 6-21. Sloan School of Management, M.I.T., Cambridge, MA,
1988.

Composite Information Systems (CIS) Projects.

[57] Maida, Anthony S. and Shapiro, Stuart C.
Intensional Concepts in Propositional Semantic Networks.
Readings in Knowledge Representation.
Morgan Kaufmann Publisher Co., Los Altos, CA, 1985.

[58] Melle, William.
The Structure of the MYCIN system.
Rule-Based Expert Systems.
Addison Wesley Publishing Co., Reading, MA, 1984, pages 67-77.

{591 Mohan S.
Expert Systems Technology in the Domain of Construction.
In Fourth International Symposium on Robotics and Artificial Intelligence in

Building Construction. Building Research Station - Technion I.I.T., Haifa, Israel,
June, 22-25, 1987.

[601 Nii, H.P.
Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution

of Blackboard Architectures, Part 1.
The Al Magazine 7(2):38-53, Summer, 1986.

[61] Nii, H.P.
Blackboard Systems: Blackboard Application Systems, Blackboard Systems form a

Knowledge Engineering Perspective.
The Al Magazine 7(3):82-106, August, 1986.

[62] Paulson, Boyd C.
Automation and Robotics for Construction.
Journal of Construction Engineering and Management I11(3), September, 1985.

-174-

[63] Peckham, Joan and Maryanski, Fred.
Semantic Data Models.
ACM Computing Surveys 20(3), September, 1988.

[64] Perrault, C.R. and Grosz, B.J.
Natural Language Interfaces.
Technical Report 393, Artificial Intelligence Center, SRI International, Menlo Park,

CA, Aug., 1986.

[65] Samad, Tariq.
A Natural Language Interface For Computer-Aided Design.
Kluwer Academic Publishers, Boston, MA, 1986.

[66] Schank, Roger C.
Conceptual Dependency: A Theory if Natural Language Understanding.
Cognitive Psycholoy 3(4), 1972.

[67] Schank, Roger C. and Abelson, R.
Scripts, Plans, Goals, Understanding.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[68] Schank, Roger C, and Shwartz Steven P.
The Role of Knowledge in Natural Language Systems.
Applications in Artificial Intelligence.
Petrocelli Books, Inc., Princeton, NJ, 198?.

[69] Scott, A.C., Clancey, W.J., Davis, R., and Shortliffe, E.H.
Methods for Generating Explanations.
In Buchanan, B.G., and Shortliffe, E.H. (editor), Rule-Based Expert Systems, pages

338-362. Addison Wesley Publishing Co., Reading, MA, 1984.

[701 Shieber, S.M.
The Design of a Computer Language for Linguistic Information.
In International Conference on Computational Linguistics, pages 362-366.

Association for Computational Linguistics, 1984.

[71] Slocum, A. H., L. Domsetz, D. Levy, B Schena, and A. Ziegler.
Construction Automation Research at the Massachusetts Institute of Technology.
In Fourth International Symposium on Robotics and Artificial Intelligence in

Building Construction. Building Research Station - Technion I.I.T., Haifa, Israel,
June, 22-25, 1987.

[72] Smith, J.M.
Expert Database Systems: A Database Perspective.
In Kerschberg, L. (editor), Expert Database Systems. The Benjamin/Cummings

Publishing Co., 1986.

[73] Stillings, Neil A., Feinstein, Mark H., Garfield, Jay L., Rissland, Edwina L.,
Rosenbaum, David A., Weisier, Steven E., and Baker-Ward Lynne.
Cognitive Science - An Introduction.

The MIT Press, 1987.

-175-

[74] Templeton, M., and Burger, J.
Problems in Natural-Language Interface to DBMS with Examples from EUFID.
In Conference on Applied Natural Language Processing, pages 3-16. Association for

Computational Linguistics, 1983.

[75] Thompson, F.B., and Thompson, B.H.
Practical Natural Language Processing: The REL system prototype.
In Rubinnff, M., and Yovitis, M.C. (editor), Advances in Computers, pages 109-168.

Academic Press, New York, NY, 1975.

[76] Tommelein, I. C., Levitt, R. E. and Hayes-Roth B.
Using Expert Systems for the Layout of Temporary Facilities on Construction Sites.
In CIB W-65 Symp.. London, UK, September, 1987.

[77] Tucker, Richard L.
Perfection of the Buggy Whip.
Journal of Construction Engineering and Management 114(2), June, 1988.

[78] Tueni, Michel, Li, Jianzhong, and Fares, Pascal.
AMS: A Knowledge-Based Approach to Tasks Representation, Organization and

Coordination.
In Conference on Office Information Systems. ACM SIGOIS and IEEE CS TC-OA,

March 22-23, April, 1988.

[79] Tymshare.
FOCUS User's Manual, Release 4.5.
Technical Report, Information Builders, Inc., New York, 1984.

[80] US Army Corps of Engineers.
PAX CAPCES Training Manual.
Technical Report, US Army Corps of Engineers, 1984.

[81] Vassiliou, Y.
Knowledge Based and Database Systems: Enhancements, Coupling or Integration?
In Brodie, M, and Mylopolous, J. (editor), On Knowledge Base Management Systems,

pages 87-91. Spring-Verlag, New York, NY, 1986.

[82] Walters, John R. and Nillsen, Norman R.
Crafting Knowledge-Based Systems.
John Wiley and Sons Co., New York, 1988.

[83] Waltz, D. L.
An English Language Question Answering System for a Large Relational Database.
Communications of the Association for Computing Machinenary 21(7):110-122,

1978.

[84] Wang, Y. Richard, Madnick, Stuart E., and T. K. Wong.
Concept Agents In CIS/TK: A Tool Kit for Composite Information systems.
In Richard Wang and Stuart Madnick (editor), Connectivity among Information

Systems, pages 80-94. Sloan School of Management, M.I.T., Cambridge, MA,
1988.

Composite Information Systems (CIS) Projects.

-176-

[851 Wang, Y. Richard and Madnick, Stuart E.
Connectivity among Information Systems.
In Richard Wang and Stuart Madnick (editor), Connectivity among Information

Systems, pages 22-36. Sloan School of Management, M.I.T., Cambridge, MA,
1988.

Composite Information Systems (CIS) Projects.

[86] Warszawski, Abraham and Sangrey, Dwight A.
Robotics in Building Construction.
Journal of Construction Engineering and Management 111(3), September, 1985.

[87] Waterman, D. A.
A Guide to Expert Systems.
Addison-Wesley, Reading, MA, 1986.

[88] Webber, Bonie L. and Nilsson Nils J. (editor).
Readings In Artificial Intelligence.
Tioga Publishing Co., Palo Alto, CA, 1981.

[89] Weizenbaum, J.
ELIZA - A Computer Program for the Study of Natural Language Communication

between Man and Machine.
CACM, Vol. 9 :36-45, 1966.

[90] Wilensky, R.
Understanding Goal-Based Stories.
Technical Report Research Report #140, Computer Science Department, Yale

University, New Haven, CT, 1978.

[91] Winograd, Terry.
Language As a Cognitive Process, Vol. 1: Syntax.
Addison-Wesley, Reading, MA, 1983.

[92] Winston, Patrick H.
Artificial Intelligence.
Addison-Wesley, Reading, MA, 1984.

[93] Winston, P. H. and Hom, B. K. P.
LISP.
Addison-Wesley, Reading, MA, 1984.

[94] Winston, Patrick H.
Learning Structural Descriptions from Examples.
Readings in Knowledge Representation.
Morgan Kaufmann Publisher Co., Los Altos, CA, 1985.

[95] Woods, William A.
Progress In Natural Language Understanding: An Application To Lunar Geology.
In Conference Proceedings 42, pages 441-450. IFIPS, 1973.

-177-

[96] Woods, William A.

Knowledge Base Retrieval.
On Knowledge Base Management Systems.
Spring-Verlag, New York, NY, 1986, pages 179-195.

