Knowledge Representation and Reasoning

 $\ensuremath{\mathsf{Peter}}\xspace$ Lucas 1 and Marcel van $\ensuremath{\mathsf{Gerven}}\xspace^2$

peterl@cs.ru.nl,m.vangerven@donders.ru.nl

¹Institute for Computing and Information Sciences, and ²Donders Centre for Cognition, Radboud University Nijmegen

People involved

Lectures:

- Peter Lucas
- Marcel van Gerven
- Arjen Hommersom
- Practicals and tutorials:
- Wenyun Quan (w.quan@cs.ru.nl)
- Maarten van der Heijden (m.vanderheijden@gmail.com)
- Arjen Hommersom (arjenh@cs.ru.nl)
- Max Hinne (mhinne@cs.ru.nl)

Start practical: See blackboard/website

Course outline

Website: http://www.cs.ru.nl/~peterl/teaching/KeR

(1) Lectures:

- Theory of knowledge representation and reasoning; core of this formed by:
 - Al-style logics and probability theory
 - Nowadays you can even combine logic and probability theory
- (2) Tutorials: do exercises
- (3) Practical:
- Learn some programming in Prolog (the Al logic programming language)
- Develop reasoning systems in Allog

Topics

- Refresh your memory on formal logic
 - this week: read "Logic and Resolution" (available on blackboard and website) no lectures on 8th September!
 - 12th September: revision lecture on logic
 - 19th September: logic exercises
- Week 26th September: programming in Prolog and AILog
- Knowledge representation formalisms
- Model-based reasoning
- Reasoning with uncertainty
- Decision making

Learning aims of the course

- Obtain insight into the development of knowledge systems, the use of problem solving methods, forms of knowledge representation, and model-based reasoning
- Gain knowledge about logical expressiveness of forms of knowledge representation and the use of probability theory in reasoning with uncertainty
- Being able to develop reasoning programs using Prolog and AlLog
- Being able to understand core Al research as reflected in ECAI, IJCAI, AAAI

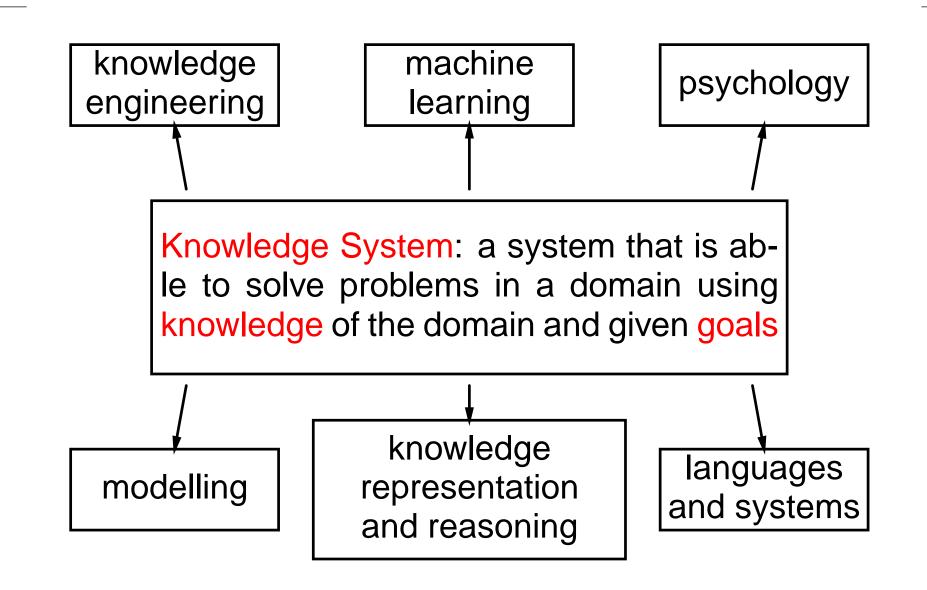
Reading and study material

- Slides and exercises
- Summarising lecture notes
- Practical manual
- Some material can be found in:
 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2003 or 2009:
 - Part III Knowledge and Reasoning
 - 8 First-Order Logic
 - 9 Inference in First-Order Logic
 - 10 Knowledge Representation
 - Part V Uncertain Knowledge and Reasoning
 - 13 Uncertainty
 - 14 Probabilistic Reasoning

Further reading

- R.J. Brachman and H.J. Levesque, Readings in Knowledge Representation, Morgan Kaufmann, San Mateo, CA, 1985:
 - good collection of early KR papers
- F. van Harmelen, V. Lifschitz, and B. Poter, Handbook of Knowledge Representation, Elsevier, Amsterdam, 2008:
 - state of the art handbook on KR
- D. Poole, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010
 - nice systematic and coherent approach to AI using logical and probabilistic reasoning (freely accessible)

Knowledge systems



Early knowledge systems

- Expert system: use of a large collection of symbolic expert knowledge to solve problems:
 - E.A. Feigenbaum, B.G. Buchanan, J. Lederberg Heuristic DENDRAL (1965): contains knowledge from organic chemistry
 - E.H. Shortliffe: MYCIN (1974–1979) diagnostics of infectious diseases
 - H.E. Pople, J.D. Myers: Internist-1 (1973-1982) diagnosis in the big area of internal medicine
 - D. Lenat: Cyc (1984-) representation of common sense knowledge

Modern knowledge systems

Use of more sophisticated logical methods:

- abductive reasoning (cause-effect reasoning and explaining observations), e.g., used in abductive diagnosis
- use of functional models of behaviour, e.g., in consistency-based diagnosis
- Use of probabilistic and decision-theoretic methods:
 - Bayesian networks (to reason with uncertain knowledge)
 - augmented by decision theory (to allow making decision about appropriate actions)

Knowledge: Implicit versus explicit

Two hypotheses:

- Human reasoning is hard to capture, and, thus, intricate implicit methods, such as neural networks, capture human reasoning best;
- (2) Human reasoning can be captured, although possibly incompletely. However, explicit representation is necessary for getting a grip on that knowledge (e.g., to be able to explain recommendations)

Choice: explicit knowledge

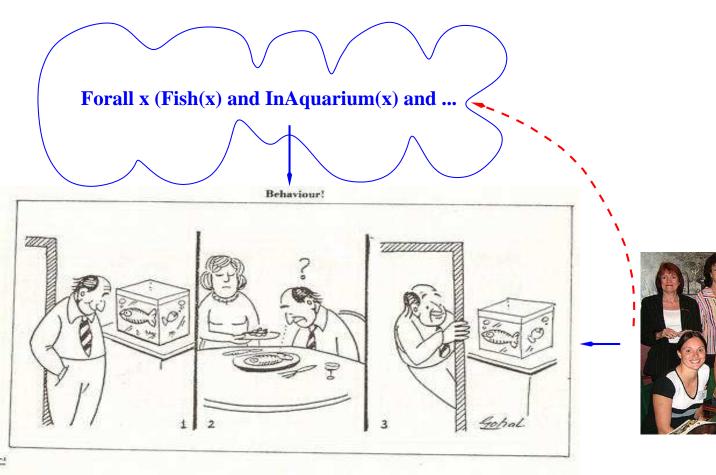
Knowledge representation hypothesis

Brian Smith (1982):

Any mechanically embodied intelligent process will be comprised of structural ingredients that

- (a) we as external observers naturally take to represent a propositional account of the knowledge that the overall process exhibits;
- (b) independent of such external semantical attribution, play a formal but causal and essential role in engendering the behaviour that manifests that knowledge

Knowledge representation hypothesis



Observers

Formal knowledge representation

- Logic was originally developed as a language for mathematical reasoning
- Goal of knowledge representation different: represent semantic content of psychologically plausible memory models
- Need for semantics shared by most researchers in knowledge representation
- In time logic has become the dominant language as probability theory for uncertainty reasoning

Natural kinds

Mathematical definitions: exact and complete. Example triangle: shape defined by three points that are not on a straight line and that are connected by lines

Natural kinds: objects in the real word. 'Definitions' of objects are often approximate and incomplete

Example:

 $\forall x (\mathsf{Human}(x) \to \mathsf{Animal}(x)) \\ \forall x (\mathsf{Human}(x) \to (\mathsf{walks}(x) = \mathsf{upright} \land \dots \land \dots))$

Role of representation system

- To manage beliefs expressed in the language
- More than just implementation of a (logical, probabilistic) calculus
- The symbolic representation cause the system to behave in a particular fashion

Thus,

Any language with sufficient expressive power can be used

Language requirements

Levesque & Brachman (A fundamental tradeoff in knowledge representation and reasoning)

Emphasis on:

- What is represented ≡ content ⇒ knowledge level (rather than symbol level)
- Statements must be interpreted in relationship to other statements (otherwise no knowledge)
- This implies: language should have a truth theory
- Not a single language, but spectrum of languages (from simple, computationally tractable, to complex, computationally intractable)

Truth theory

Showledge base KB: what we know about the world

- Question: is the truth of statement φ implied by KB (note φ need not be included in KB)
- Notation:

 $\mathsf{KB}\vDash\varphi$

In the form of inference = reasoning:

 $\mathsf{KB}\vdash\varphi$

or,

$$\vdash \mathsf{KB} \to \varphi$$

(KB $\rightarrow \varphi$ is a theorem) if we use logic, but many logics and other languages are still possible

Logics for knowledge representation

- First-order logic:
 - satisfiability: undecidable
 - when it is known that KB is unsatisfiable, then $KB \models \bot$ is decidable
- (Finite) propositional logic:
 - decidable, but NP complete
 - propositional Horn logic: model checking in polynomial time

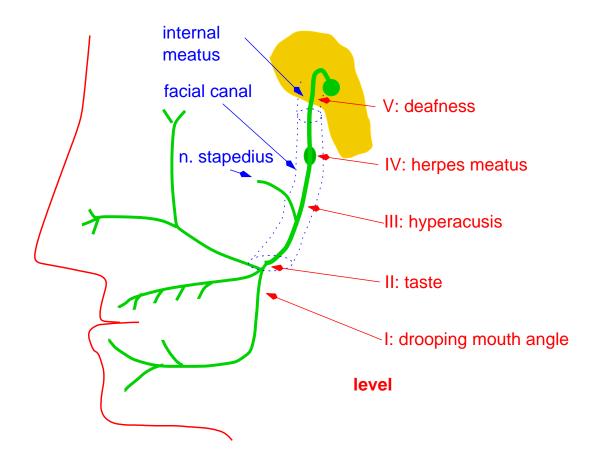
Horn formula: $(A_1 \land \cdots \land A_n) \rightarrow B$, with A_i and B positive literals

 \Rightarrow tradeoff between expressive power and computational complexity

Prolog

- Logical (programming) language with some restrictions, but based on first-order predicate logic
- One of the typical AI programming languages (other Lisp)
- Close relationship with knowledge representation and reasoning: AILog

Model-based reasoning



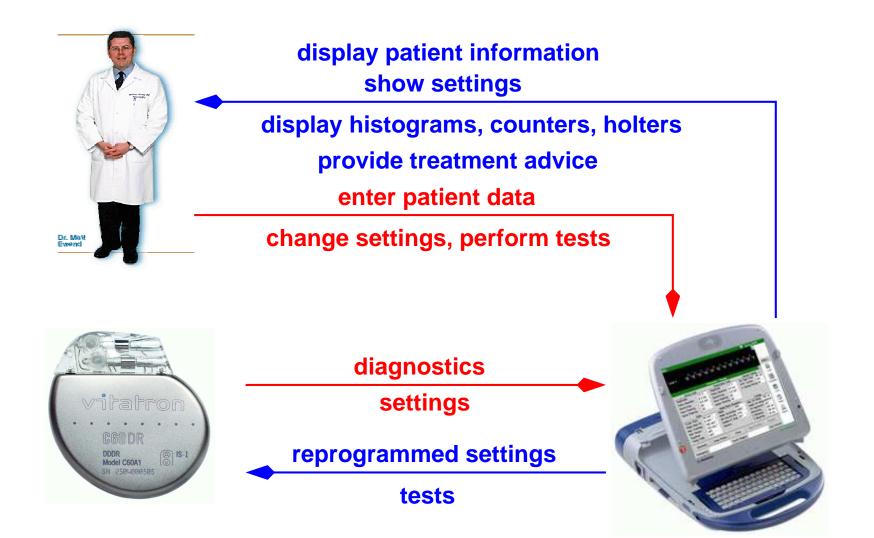
- Explicit representation of structure and function of systems (= model)
- Reasoning with this model to solve problems (e.g. diagnosis)

Reasoning with uncertainty

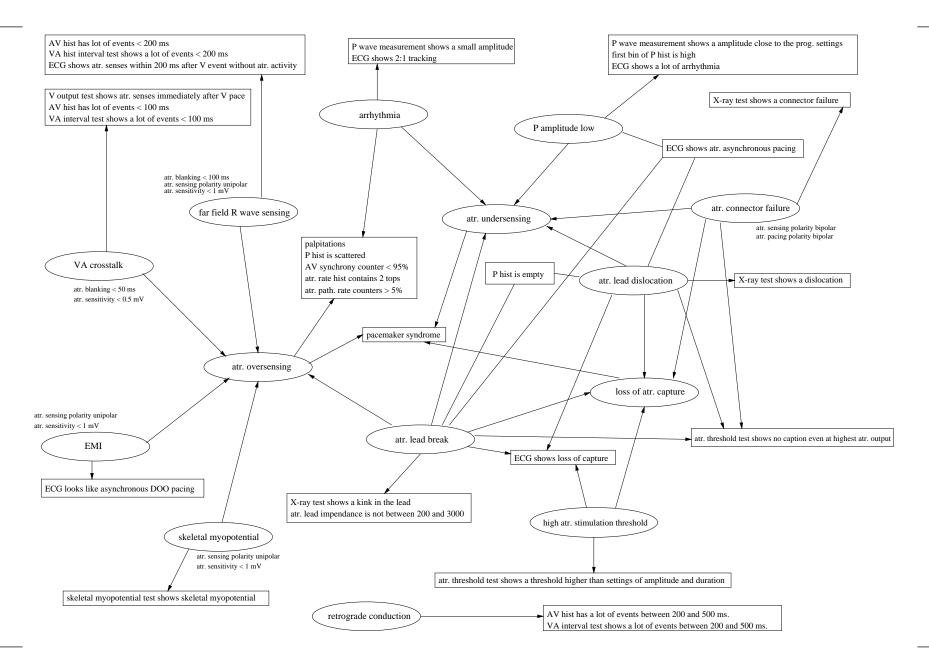
- Early: uncertainty attached to rule-based reasoning (ako uncertain reasoning with logical implications)
- 1990s: introduction of Bayesian/belief networks (causal networks with attached probability distributions)
- 1990s: extension to decision networks/influence diagrams (decision making under uncertainty)
- Recent: probabilistic logics (logic and probability theory integrated in an AI fashion)

Thus, after 30 years back to the early problem, which is now well understood

Examples 1: Pacemaker programming

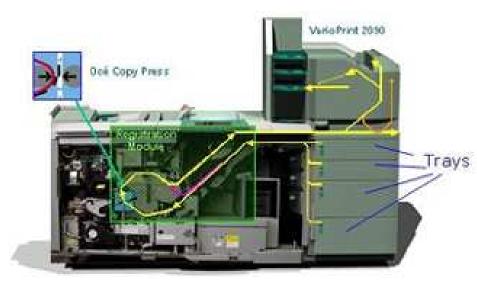


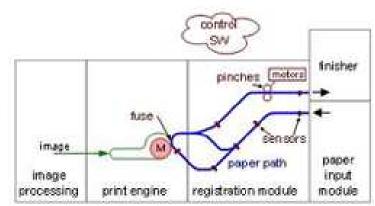
Examples 1: Causal pacemaker model



Examples 2: Smart production printers

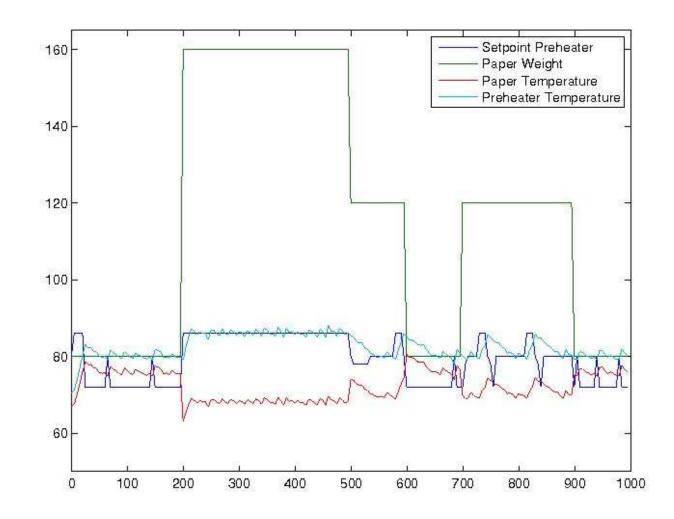
- project with Océ and Embedded Systems Institute
- model-based reasoning about behaviour of printers/copiers
- interpretation of sensor information
- adaptation to changing environment





Examples 2: Adaptive control

Avoid that paper temperature becomes lower than $66^{\circ}C$ with 99% certainty:



Research at CAI

- Cognitive robotics
- Theoretical models of human reasoning
- Brain-computer interfaces
- Brain reading

Cognitive robotics

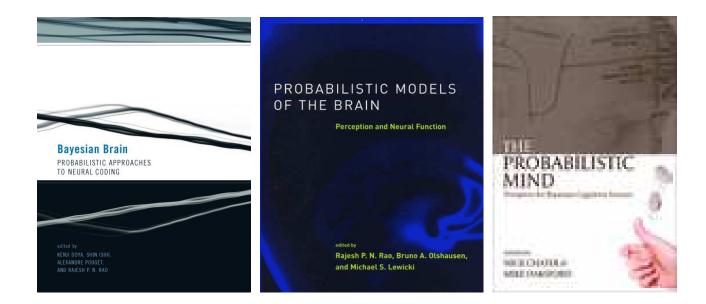
- Robots perceive an incomplete image of the world using sensors that are inherently unreliable
- Given this partial observability, we need algorithms to:
 - Estimate the true state of the world
 - perform planning in order to reach goals
- Relies on probability theory and decision theory

Models of human reasoning

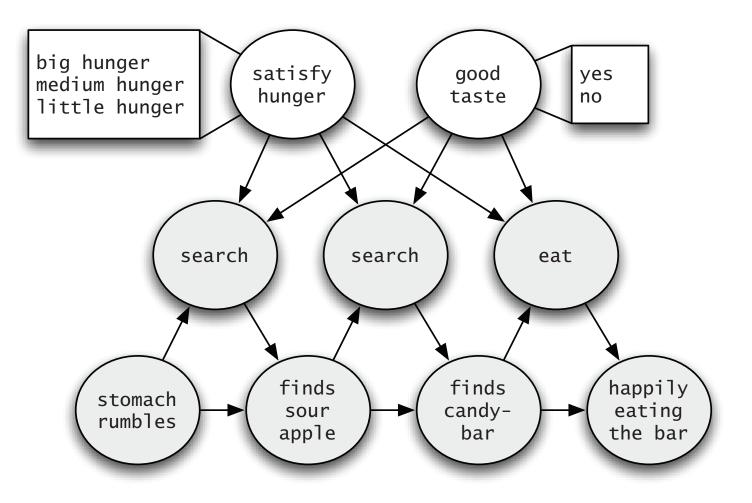
- Helmholtz proposed that perception is unconscious inference.
- That is, our percepts are our best guess as to what is in the world, given both sensory data and prior experience
- This hypothesis can be formulated in terms of probability theory

Models of human reasoning

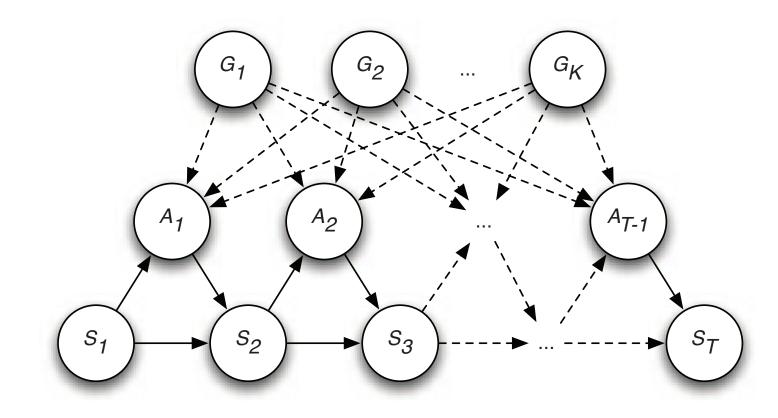
Probabilistic theories of human brain function and cognition are dominant



Example: Goal inference

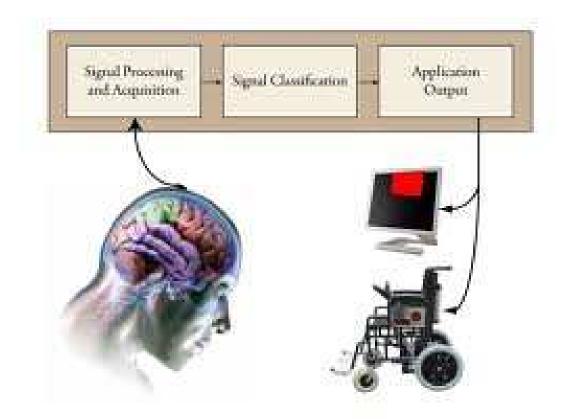


Example: Goal inference



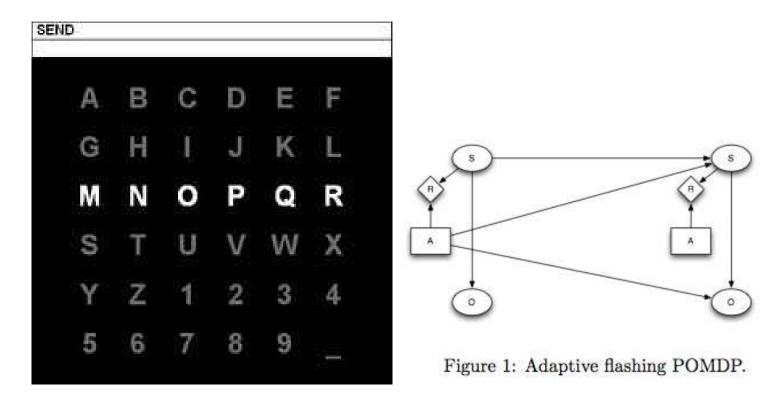
- Formal models of abstract reasoning
- Formulated as inference in probabilistic networks
- Complexity analysis of these models informs human cognition

Brain-computer interfaces



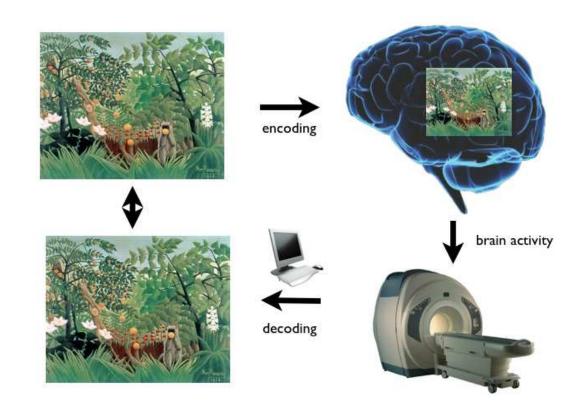
- BCIs allow brain-based communication and control
- Requires new algorithmic developments

Example



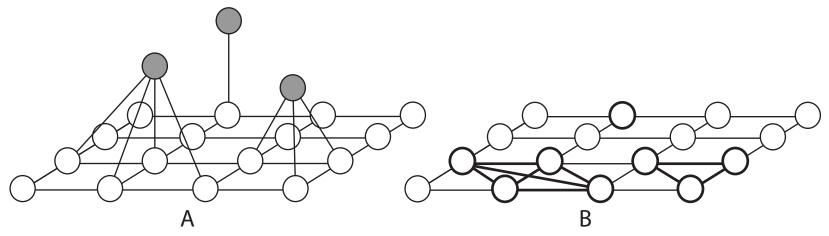
- Optimal experimental design for P300 spellers
- Based on partially-observable Markov decision processes

Brain reading



- It is possible to decode mental states from brain data
- New ways of analyzing the brain increases our understanding
- This relies on sophisticated probabilistic machine learning algorithms

Example



- Reconstruction of perceived images from BOLD data
- Probabilistic inference in Markov random fields

Conclusions

- Knowledge representation and reasoning defines the very core of AI
- Logic, probability theory and decision theory form its theoretical foundations
- The basis for building intelligent agents and applications
- Concepts form the basis of modern theories on human knowledge representation and reasoning and their complexity