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Abstract-The conventional approaches to knowledge representa- 

tion, e.g., semantic networks, frames, predicate calculus, and Prolog, 

are based on bivalent logic. A serious shortcoming of such approaches 

is their inability to come to grips with the issue of uncertainty and 

imprecision. As a consequence, the conventional approaches do not 

provide an adequate model for modes of reasoning which are approx- 

imate rather than exact. Most modes of human reasoning and all of 

common sense reasoning fall into this category. 

Fuzzy logic, which may he viewed as an extension of classical logical 

systems, provides an effective conceptual framework for dealing with 

the problem of knowledge representation in an environment of uncer- 

tainty and imprecision. Meaning representation in fuzzy logic is based 

on test-score semantics. In this semantics, a proposition is interpreted 

as a system of elastic constraints, and reasoning is viewed as elastic 

constraint propagation. Our paper presents a summary of the basic 

concepts and techniques underlying the application of fuzzy logic to 

knowledge representation and describes a number of examples relating 

to its use as a computational system for dealing with uncertainty and 

imprecision in the context of knowledge, meaning, and inference. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Zndex Terms-Approximate reasoning, fuzzy logic, knowledge rep- 

resentation. 

I. INTRODUCTION 

NOWLEDGE representation is one of the most basic K and actively researched areas of AI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], [ 5 ] ,  [30], 
[3 11, [36], [37], [39], [46], [47]. And yet, there are many 
important issues underlying knowledge representation 
which have not been adequately addressed. One such is- 
sue is that of the representation of knowledge which is 
lexically imprecise and/or uncertain. 

As a case in point, the conventional knowledge repre- 
sentation techniques do not provide effective tools for rep- 
resenting the meaning of or inferring from the kind of 
everyday type facts exemplified by the following. 

1) Usually it takes about an hour to drive from Berke- 
ley to Stanford in light traffic. 

2) Unemployment is not likely to undergo a sharp de- 
cline during the next few months. 

3) Most experts believe that the likelihood of a severe 
earthquake in the near future is very low. 

The italicized words in these assertions are the labels 
of fuzzy predicates, fuzzy quantifiers, and fuzzy proba- 
bilities. The conventional approaches to knowledge rep- 
resentation lack the means for representing the meaning 
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of fuzzy concepts. As a consequence, the approaches 
based on first-order logic and classical probability theory 
do not provide an appropriate conceptual framework for 
dealing with the representation of common sense knowl- 
edge, since such knowledge is by its nature both lexically 
imprecise and noncategorical [36], [37], [63]. 

The development of fuzzy logic was motivated in large 
measure by the need for a conceptual framework which 
can address the issues of uncertainty and lexical impre- 
cision. The principal objective of this paper is to present 
a summary of some of the basic ideas underlying fuzzy 
logic and to describe their application to the problem of 
knowledge representation in an environment of uncer- 
tainty and imprecision. A more detailed discussion of 
these ideas may be found in Zadeh 1591, [60], [65], [671 
and other references. 

11. ESSENTIALS OF FUZZY LOGIC 

Fuzzy logic, as its name suggests, is the logic under- 
lying modes of reasoning which are approximate rather 
than exact. The importance of fuzzy logic derives from 
the fact that most modes of human reasoning-and espe- 
cially common sense reasoning-are approximate in na- 
ture. It is of interest to note that, despite its pervasive- 
ness, approximate reasoning falls outside the purview of 
classical logic largely because it is a deeply entrenched 
tradition in logic to be concerned with those and only those 
modes of reasoning which lend themselves to precise for- 
mulation and analysis. 

Some of the essential characteristics of fuzzy logic re- 
late to the following. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfuzzy logic, exact reasoning is viewed as a limiting 
case of approximate reasoning. 

In fuzzy logic, everything is a matter of degree. 
Any logical system can be fuzziJfed. 
In fuzzy logic, knowledge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis interpreted as a collection 

of elastic or, equivalently, fuzzy constraint on a collection 
of variables. 

Inference is viewed as a process of propagation of elas- 
tic constraints. 

Fuzzy logic differs from traditional logical systems both 
in spirit and in detail. Some of the principal differences 
are summarized in the following [62] .  

Truth: In bivalent logical systems, truth can have only 
two values: true or false. In multivalued systems, the truth 
value of a proposition may be an element of: a) a finite 
set; b) an interval such as [ 0, 11; or c) a boolean algebra. 
In fuzzy logic, the truth value of a proposition may be a 
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fuzzy subset of any partially ordered set, but usually it is 
assumed to be a fuzzy subset of the interval [0, 1 1  or, 
more simply, a point in this interval. The so-called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlin- 
guistic truth values expressed as true, very true, not quite 
true, etc., are interpreted as labels of fuzzy subsets of the 
unit interval. 

Predicates: In bivalent systems, the predicates are 
crisp, e.g., mortal, even, larger than. In fuzzy logic, the 
predicates are fuzzy, e.g., tall, ill, soon, swifi, much 
larger than. It should be noted that most of the predicates 
in a natural language are fuzzy rather than crisp. 

Predicate Modijers: In classical systems, the only 
widely used predicate modifier is the negation, not. In 
fuzzy logic, there is a variety of predicate modifiers which 
act as hedges, e.g., very, more or less, quite, rather, ex- 
tremely. Such predicate modifiers play an essential role in 
the generation of the values of a linguistic variable, e.g., 
very young, not very young, more or less young, etc. [57]. 

Quantijiers: In classical logical systems there are just 
two quantifiers: universal and existential. Fuzzy logic ad- 
mits, in addition, a wide variety of fuzzy quantifiers ex- 
emplified by few, several, usually, most, almost always, 
frequently, about jve,  etc. In fuzzy logic, a fuzzy quan- 
tifier is interpreted as a fuzzy number or a fuzzy propor- 
tion [61]. 

Probabilities; In classical logical systems, probability 
is numerical or interval-valued. In fuzzy logic, one has 
the additional option of employing linguistic or, more 
generally, fuzzy probabilities exemplified by likely, un- 
likely, very likely, around 0.8, high, etc. [65]. Such prob- 
abilities may be interpreted as fuzzy numbers which may 
be manipulated through the use of fuzzy arithmetic 1241. 

In addition to fuzzy probabilities, fuzzy logic makes it 
possible to deal with fuzzy events. An example of a fuzzy 
event is: tomorrow will be a warm day, where warm is a 
fuzzy predicate. The probability of a fuzzy event may be 
a crisp or fuzzy number [56]. 

It is important to note that from the frequentist point of 
view there is an interchangeability between fuzzy proba- 
bilities and fuzzy quantifiers or, more generally, fuzzy 
measures. In this perspective, any proposition which con- 
tains labels of fuzzy probabilities may be expressed in an 
equivalent form which contains fuzzy quantifiers rather 
than fuzzy probabilities. 

Possibilities: In contrast to classical modal logic, the 
concept of possibility in fuzzy logic is graded rather than 
bivalent. Furthermore, as in the case of probabilities, pos- 
sibilities may be treated as linguistic variables with values 
such as possible, quite possible, almost impossible, etc. 
Such values may be interpreted as labels of fuzzy subsets 
of the real line. 

A concept which plays a central role in fuzzy logic is 
that of a possibility distribution [59], [SI, [28]. Briefly, if 
X is a variable taking values in a universe of discourse U ,  
then the possibility distribution of X ,  Ilx, is the fuzzy set 
of all possible values of X .  More specifically, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArX( U )  

denote the possibility that X can take the value U ,  U E U. 
Then the membership function of X is numerically equal 

to the possibility distribution function r x ( u ) :  U -, [ 0 ,  
1 1 ,  which associates with each element U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE U the possi- 
bility that X may take U as its value. More about possi- 
bilities and possibility distributions will be said at a later 
point in this paper. 

It is important to observe that in every instance fuzzy 
logic adds to the options which are available in classical 
logical systems. In this sense, fuzzy logic may be viewed 
as an extension of such systems rather than as a system 
of reasoning which is in conflict with the classical sys- 
tems. 

Before taking up the issue of knowledge representation 
in fuzzy logic, it will be helpful to take a brief look at 
some of the principal modes of reasoning in fuzzy logic. 
These are the following, with the understanding that the 
modes in question are not necessarily disjoint. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I )  Categorical Reasoning: In this mode of reasoning, 
the premises contain no fuzzy quantifiers and no fuzzy 
probabilities. A simple example of categorical reasoning 
is : 

Carol is slim 
Carol is very intelligent 

Carol is slim and very intelligent 

In the premises, slim and very intelligent are assumed to 
be fuzzy predicates. The fuzzy predicate in the conclu- 
sion, slim and very intelligent, is the conjunction of slim 
and very intelligent. 

Another example of categorical reasoning is: 

Mary is young 
John is much older than Mary 

John is (much older zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 young). 

where (much-older 0 young) represents the composition 
of the binary fuzzy predicate much-older with the unary 
fuzzy predicate young. More specifically, let a,&, older 

and ayoung denote the possibility distribution functions as- 
sociated with the fuzzy predicates much-older and young, 
respectively. Then, the possibility distribution function of 
John’s age may be expressed as [59] 

aAge(John)(U) = v ~ (  rmuchalder(U, v )  a y o u n g ( v )  

where V and A stand for max and min, respectively. 
2) Syllogistic Reasoning: In contrast to categorical 

reasoning, syllogistic reasoning relates to inference from 
premises containing fuzzy quantifiers [64], [ 1 11.  A simple 
example of syllogistic reasoning is the following: 

most Swedes are blond 
most blond Swedes are tall 

most2 Swedes are blond and tall 

where the fuzzy quantifier most is interpreted as a fuzzy 
proportion and most2 is the square of most in fuzzy arith- 
metic [24]. 

3) Dispositional Reasoning: In dispositional reason- 
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ing the premises are dispositions, that is, propositions 
which are preponderantly but necessarily always true [66]. 
An example of dispositional reasoning is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

heavy smoking is a leading cause zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof lung cancer 

to avoid lung cancer avoid heavy smoking 

Note that in this example the conclusion is a maxim which 
may be interpreted as a dispositional command. Another 
example of dispositional reasoning is: 

representation language for qualitative reasoning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 ,  [21, 
[381, [691. 

111. MEANING AND KNOWLEDGE REPRESENTATION 

In a general setting, knowledge may be viewed as a 
collection of propositions, e.g., 

Mary is young 
Pat is much taller than Mary 
overeating causes obesity 
most Swedes are blond 
tomatoes are red unless they are unripe 
usually high quality goes with high price 
ifpressure is high then volume is low 

usually the probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof failure is not very low 
usually the probability of failure is not very high 

(2 usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 1) the probability of failure is not very To constitute knowledge, a proposition must be under- 
stood. In this sense, meaning and knowledge are closely low and not very high 

In this example, usually is a fuzzy quantifier which is 
interpreted as a fuzzy proportion and 2 usually 8 1 is a 
fuzzy arithmetic expression whose value may be com- 
puted through the use of fuzzy arithmetic. ( 0 denotes the 
operation of subtraction in fuzzy arithmetic. ) It should be 
noted that the concept of usuality plays a key role in dis- 
positional reasoning [64], [66], and is the concept that 
links together the dispositional and syllogistic modes of 
reasoning. Furthermore, it underlies the theories of non- 
monotonic and default reasoning [33], [34], [35], [45]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4)  Qualitative Reasoning: In fuzzy logic, the term 
qualitative reasoning refers to a mode of reasoning in 
which the input-output relation of a system is expressed 
as a collection of fuzzy if-then rules in which the ante- 
cedents and consequents involve linguistic variables [58], 
[69]. In this sense, qualitative reasoning in fuzzy logic 
bears some similarity to-but is not coextensive with- 
qualitative reasoning in AI [6], [14], [29]. 

A very simple example of qualitative reasoning is: 

volume is small ifpressure is high 
volume is large ifpressure is low 

volume is (w l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA high + w2 A large) ifpressure is me- 
dium 

where + should be interpreted as infix max; and 

wl = sup(high A medium) 

and 

w2 = sup(low A medium) 

are weighting coefficients which represent, respectively, 
the degrees to which the antecedents high and low match 
the input medium. In w l ,  the conjunction high A medium 
represents the intersection of the possibility distributions 
of high and low, and the supremum is taken over the do- 
main of high and medium. The same applies to w2. 

Qualitative reasoning underlies many of the applica- 
tions of fuzzy logic in the realms of control and systems 
analysis [48], [42], [50]. In this connection, it should be 
noted that fuzzy Prolog provides an effective knowledge 

interrelated. In fuzzy logic, meaning representation-and 
thus knowledge representation-is based on test-score se- 
mantics [60],  [65]. 

A basic idea underlying test-score semantics is that a 
proposition in a natural language may be viewed as a col- 
lection of elastic or, equivalently, fuzzy constraints. For 
example, the proposition Mary is tall represents an elastic 
constraint on the height of Mary. Similarly, the proposi- 
tion Jean is blonde represents an elastic constraint on the 
color of Jean’s hair. And, the proposition most tall men 
are not very agile represents an elastic constraint on the 
proportion of men who are not very agile among tall men. 

In more concrete terms, representing the meaning of a 
proposition p through the use of test-score semantics in- 
volves the following steps. 

1) Identification of the variables XI,  - , X, whose 
values are constrained by the proposition. Usually, these 
variables are implicit rather than explicit in p .  

2) Identification of the constraints C1, - * * , C,,, which 
are induced by p .  

3) Characterization of each constraint Ci by describing 
a testing procedure which associates with Ci a test score 
T~ representing the degree to which Ci is satisfied. Usually 
T~ is expressed as a number in the interval [ 0, 1 1. More 
generally, however, a test score may be a probability/pos- 
sibility distribution over the unit interval. 

* * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 7, 

into a smaller number of test scores * , Tk, which 
are represented as an overall vector test score r = ( T I ,  
. . .  , “7). In most cases k = 1, so that the overall test 
score is a scalar. We shall assume that this is the case 
unless an explicit statement to the contrary is made. 

It is important to note that, in test-score semantics, the 
meaning of p is represented not by the overall test score 
T but by the procedure which leads to it. Viewed in this 
perspective, test-score semantics may be regarded as a 
generalization of truth-conditional, possible-world, and 
model-theoretic semantics. However, by providing a 
computational framework for dealing with uncertainty and 
dispositionality-which the conventional semantical sys- 
tems disregard-test-score semantics achieves a much 
higher level of expressive power and thus provides a basis 

4) Aggregation of the partial test scores r l ,  
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for representing the meaning of a much wider variety of 
propositions in a natural language. 

In test-score semantics, the testing of the constraints 
induced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is performed on a collection of fuzzy rela- 
tions which constitute an explanatory database, or ED for 
short. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA basic assumption which is made about the ex- 
planatory database is that it is comprised of relations 
whose meaning is known to the addressee of the meaning- 
representation process. In an indirect way, then, the test- 
ing and aggregation procedures in test-score semantics 
may be viewed as a description of a process by which the 
meaning of p is composed from the meanings of the con- 
stituent relations in the explanatory database. It is this ex- 
planatory role of the relations in ED that motivates its 
description as an explanatory database. 

As will be seen in the sequel, in describing the testing 
procedures we need not concem ourselves with the actual 
entries in the constituent relations. Thus, in general, the 
description of a test involves only the frames of the con- 
stituent relations, that is, their names, their variables (or 
attributes), and the domain of each variable. 

As a simple illustration of the concept of a test proce- 
dure, consider the proposition p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Maria is young and 
attractive. The ED in this case will be assumed to consist 
of the following relations: 

ED 4 POPULATION [Name; Age; PAttractive] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ YOUNG [Age; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ]  ( 3 . 1 )  

in which + should be read as “and,” and stands for 
“denotes. ” 

The relation labeled POPULATION consists of a col- 
lection of triples whose first element is the name of an 
individual, whose second element is the age of that indi- 
vidual, and whose third element is the degree to which 
the individual in question is attractive. The relation 
YOUNG is a collection of pairs whose first element is a 
value of the variable Age and whose second element is the 
degree to which that value of Age satisfies the elastic con- 
straint characterized by the fuzzy predicate young. In ef- 
fect, this relation serves to calibrate the meaning of the 
fuzzy predicate young in a particular context by repre- 
senting its denotation as a fuzzy subset, YOUNG, of the 
interval [0, 1001. 

With this ED, the test procedure which computes the 
overall test score may be described as follows. 

1) Determine the age of Maria by reading the value of 
Age in POPULATION, with the variable Name bound to 
Maria. In symbols, this may be expressed as 

Age (Maria) = ,,,POPULATION [Name = Maria]. 

In this expression, we use the notation y R [ X  = a ]  to sig- 
nify that X is bound to a in R and the resulting relation is 
projected on Y, yielding the values of Y in the tuples in 
which X = a. 

2) Test the elastic constraint induced by the fuzzy 
predicate young: 

r1 = ,YOUNG[Age = Age(Maria)]. 

3)  Determine the degree to which Maria is attractive: 

7 2  = , POPULA TION [Name = Maria ] . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Compute the overall test score by aggregating the par- 
tial test scores r1  and r2. For this purpose, we shall use 
the min operator A as the aggregation operator, yielding 

= 71 A 71 (3 .2)  

which signifies that the overall test score is taken to be 
the smaller of the operands of A. The overall test score, 
as expressed by (3.2), represents the compatibility of p 

Maria is young and attractive with the data resident in 
the explanatory database. 

In testing the constituent relations in ED, it is helpful 
to have a collection of standardized translation rules for 
computing the test score of a combination of elastic con- 
straints C1, * - * , C, from the knowledge of the test scores 
of each constraint considered in isolation. For the most 
part, such rules are default rules in the sense that they are 
intended to be used in the absence of alternative rules sup- 
plied by the user. 

For purposes of knowledge representation, the princi- 
pal rules of this type are the following. 

I) Rules Pertaining to Modijication: If the test score 
for an elastic constraint C in a specified context is r ,  then 
in the same context the test score for 

(a)  not C i s  1 - r (negation) 
(b) very C is r2 (concentration) 
(c) more or less C is 

2) Rules Pertaining to Composition: If the test scores 
for elastic constraints C1 and C2 in a specified context are 
r1 and r2,  respectively, then in the same context the test 
score for 

(a )  C1 and C2 is r1 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 2  (conjunction), where A A min. 
(b)  C1 or C2 is r1 V r2 (disjunction), where V max. 
(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf Cl then C2 is 1 A ( 1  - r1 + r 2 )  (implication). 

3) Rules Pertaining to QuantGcation: The rules in 
question apply to propositions of the general form Q A S  
are B ’s, where Q is a fuzzy quantifier, e.g., most, many, 
several, few, etc., and A and B are fuzzy sets, e.g., tall 
men, intelligent men, etc. As was stated earlier, when the 
fuzzy quantifiers in a proposition are implied rather than 
explicit, their suppression may be placed in evidence by 
referring to the proposition as a disposition. In this sense, 
the proposition overeating causes obesity is a disposition 
which results from the suppression of the fuzzy quantifier 
most in the proposition most of those who overeat are 
obese. 

To make the concept of a fuzzy quantifier meaningful, 
it is necessary to define a way of counting the number of 
elements in a fuzzy set or, equivalently, to determine its 
cardinality. 

There are several ways in which this can be done [60], 
[9], [52]. For our purposes, it will suffice to employ the 
concept of a sigma-count, which is defined as follows. 

(dflusion). 
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Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF be a fuzzy subset of U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= { u l ,  
symbolically as 

* * , U ,  } expressed 

F = P I / U ,  + * + p,/u, = C,LL,/u, 

or, more simply, as 

F = piu1 + * + + P,U, 

in which the term p , / u , ,  i = 1, , n signifies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  
is the grade of membership of U ,  in F, and the plus sign 
represents the union. 

The sigma-count of F is defined as the arithmetic sum 
of the p,, i.e., 

CCount(F) 4 Z i p z ,  i = 1, * * * 7 1 2  

with the understanding that the sum may be rounded, if 
need be, to the nearest integer. Furthermore, one may 
stipulate that the terms whose grade of membership falls 
below a specified threshold be excluded from the sum- 
mation. The purpose of such an exclusion is to avoid a 
situation in which a large number of terms with low grades 
of membership become count-equivalent to a small num- 
ber of terms with high membership. 

The relative sigma-count, denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC Count ( F / G  ), 
may be interpreted as the proportion of elements of F 
which are in G. More explicitly, 

CCount(F f l  G )  
C Count( G )  

CCount(F/G) = 

where F fl G, the intersection of F and G, is defined by 

p F f l G ( U )  = p F ( U )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA p G ( u ) ,  E 

Thus, in terms of the membership functions of F and G ,  
the relative sigma-count of F in G is given by 

The concept of a relative sigma-count provides a basis 
for interpreting the meaning of propositions of the form 
Q A’s are B’s, e.g., most young men are healthy. More 
specifically, if the focal variable (i.e., the constrained 
variable) in the proposition in question is taken to be the 
proportion of B ’s in A ’s, then the corresponding transla- 
tion rule may be expressed as 

Q A S  are B S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 CCount(B/A) is Q. 

As an illustration, consider the proposition p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA over 
the past few years Naomi earned far more than most of 
her close friends. In this case, we shall assume that the 
constituent relations in the explanatory database are: 

ED A INCOME [Name; Amount; Year] + 
FRIEND [Name; p] + 
FEW [Number; p] + 
FAR.MORE [Incomel; Income2; p] + 
MOST [Proportion; p]. 

Note that some of these relations are explicit in p ;  some 
are not; and that most of the constituent words in p do not 
appear in ED. 

In what follows, we shall describe the process by which 
the meaning of p may be composed from the meaning of 
the constituent relations in ED. Basically, this process is 

a test procedure which tests, scores, and aggregates the 
elastic constraints which are induced by p .  

1) Find Naomi’s income, IN,, in Year,, i = 1, 2,  3 ,  
. . .  , counting backward from present. In symbols, 

IN, AmountINCOMEIName = Naomi; Year = Year,] 

which signifies that Name is bound to Naomi, Year to 
Year,, and the resulting relation is projected on the do- 
main of the attribute Amount, yielding the value of Amount 
corresponding to the values assigned to the attributes 
Name and Year. 

2) Test the constraint induced by FEW, 

p, A ,FEW [Year =  ear,] 

which signifies that the variable Year is bound to Year, 
and the corresponding value of p is read by projecting on 
the domain of p. 

3) Compute Naomi’s total income during the past few 
years: 

TIN C,p,IN, 

in which the p,  play the role of weighting coefficients. 
Thus, we are tacitly assuming that the total income earned 
by Naomi during a fuzzily specified interval of time is 
obtained by weighting Naomi’s income in year Year, by 
the degree to which Year, satisfies the constraint induced 
by FEW and summing the weighted incomes. 

4) Compute the total income of each Name, (other than 
Naomi) during the past few years: 

TIName, = C, p ,  IName,, 

where IName,, is the income of Name, in Year,. 
5) Find the fuzzy set of individuals in relation to whom 

Naomi earned far more. The grade of membership of 
Name, in this set is given by 

pFM(Name,) = ,FAR.MORE[Incomel 

= TIN Income2 = TIName,] 

6) Find the fuzzy set of close friends of Naomi by in- 
tensifying [59] the relation FRIEND: 

CF b CLOSE.FRIEND A 2~~~~~ 

which implies that 

pCF(Name,) = (,FRIEND[Name = N ~ m e , ] ) ~  

where the expression 

, FRIEND [ Name = Name,] 

represents p F (  Name,), that is, the grade of membership 
of Name, in the set of Naomi’s friends. 

7) Count the number of close friends of Naomi. On 
denoting the count in question by C Count ( CF ), we have: 
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8) Find the intersection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFM with CF. The grade of where Name,AgePOPULATION denotes the projection of 
POPULATION on the attributes Name and Age. 

2 )  For each Name,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, * * * , K,  in 

membership of Name, in the intersection is given by 

pFMnCF(NameI) = pFM(Name l )  A pcF(Namel) F.POPuLAT]ON, find the age of Name,: 
where the min operator A signifies that the intersection is 
defined as the conjunction of its operands. A, & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAge F.POPULATI0N [Name = Name,]. 

9) Compute the sigma-count of FM n CF: 

ECount(FM n C F )  = C,pFM(Name,) A pcF(Name,). 

3 )  For each Name,, find the degree to which Name, is 
young: 

a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ,YOUNG[Age = A,] 10) Compute the relative sigma-count of FM in CF, 
i.e. 9 the propofiion of individuals in FM cF who are where (y, may be interpreted as the grade of membership 

of Name, in the fuzzy set YW of young women. 

ULATION, find the age of Name,: 

in CF: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a ECount(FM n C F )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) For each Name,, i = 1 ,  - * , k ,  in M.POP- 

E Count ( CF ) ' P =  

11) Test the constraint induced by MOST: 
Bi 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  POPULA TION [Name = Namei], 

r 4 ,MOST[Proportion = p ]  

which expresses the overall test score and thus represents 
the compatibility of p with the explanatory database. 

In application to the representation of dispositional 
knowledge, the first step in the representation of the 
meaning of a disposition involves the process of explici- 
tation, that is, making explicit the implicit quantifiers. As 

a simple example, consider the disposition 

5 )  For each Name,, find the degree to which Name, is 
young: 

6,  2 ,YOUNG[Age = B,] 

where 6i may be interpreted as the grade Of membership 
set yM Of young men. 
find the degree to which Name, likes 

Of 

Name, : 

in the 
6, For each 

d 4 young men like young women Pi j  k ,LIKE[Namel = Name,; Name2 = Namej] 

which may be interpreted as the proposition with the understanding that Pi j  may be interpreted as the 
grade of membership of Namej in the fuzzy set WL, of 
women whom Name, likes. 

Namej and Namej is young: 

p most young men like mostly young women. 

The candidate ED for p is assumed to consist of the 7, For each Namej find the degree to which likes 
following relations: 

y.. 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc y .  A 0.. ED POPULATION[Name; Sex; Age] i- 'I J 11' 

LIKE[NameI; Name 2; p ]  i- 
MOST(Proportion; p ] ,  

Note: As in previous examples, we employ the aggre- 
gation operator min ( A )  to represent the effect of con- 

Namej in the intersection of the fuzzy sets WLi and YW. 

among the women whom Name, likes: 

in which in LIKE is the degree to which Name] likes junction. In effect, is the grade of membership of 
Name2. 

p with the semantically equivalent proposition 
To represent the meaning ofp, it is expedient to replace 8, Compute the sigma-count Of young women 

q 4 most young men are P p i  A c Count ( YW/WL,) 

where P is the fuzzy dispositional predicate 

P likes mostly young women. 

In this way, the representation of the meaning of p is de- 
composed into two simpler problems, namely, the repre- 
sentation of the meaning of P, and the representation of 
the meaning of q knowing the meaning of P .  

The meaning of P is represented by the following test 
procedure. 

1) Divide POPULATION into the population of 
males, M. POPULATION, and population of females, 
F. POPULATION: 

M .  POPULATION Name,Age POPULATION [ Sex = Male] 

- E Count ( YW n WL,) 
- 

E Count ( WLi) 

9) Test the constraint induced by MOST: 

r, & ,MOST[Proportion = p i ] .  

This test score, then, represents the degree to which 
Namei has the property expressed by the predicate 

F. POPULA TION P 42 likes mostly young women. 

Continuing the test procedure, we have the following A - - N ~ ~ ~ , A ~ ~ P O P U L A T I O N [ S ~ ~  = Female] 
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10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACompute the relative sigma-count of men who have 

property P among young men: 

C Count ( P I  YM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 

CCount(P n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY M )  

C Count ( YM ) 

1 1 )  Test the constraint induced by MOST: 

r = ,MOST[Proportion = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ] .  

This test score represents the overall test score for the 
disposition young men like young women. 

IV. THE CONCEPT OF A CANONICAL FORM AND ITS 
APPLICATION TO THE REPRESENTATION OF MEANING 

When the meaning of a proposition p is represented as 
a test procedure, it may be hard to discern in the descrip- 
tion of the procedure the underlying structure of the pro- 
cess through which the meaning of p is constructed from 
the meanings of the constituent relations in the explana- 
tory database. 

A concept which makes it easier to perceive the logical 
structure of p ,  and thus to develop a better understanding 
of the meaning representation process, is that of a ca- 
nonical form of p ,  abbreviated as cf( p )  [ 6 0 ] ,  [ 6 5 ] .  

The concept of a canonical form relates to the basic idea 
which underlies test-score semantics, namely, that a prop- 
osition may be viewed as a system of elastic constraints 
whose domain is a collection of relations in the explana- 
tory database. Equivalently, let XI, * , X ,  be a collec- 
tion of variables which are constrained by p .  Then, the 
canonical form of p may be expressed as 

c f ( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 X i s  F ( 4 . 1 )  

where X = (XI, * * * , X u )  is the constrained variable 
which is usually implicit in p ,  and F is a fuzzy relation, 
likewise implicit in p ,  which plays the role of an elastic 
(or fuzzy) constraint on X .  The relation between p and its 
canonical form will be expressed as 

p - + X i s F  ( 4 . 2 )  

signifying that the canonical form may be viewed as a 
representation of the meaning of p .  

In general, the constrained variable X in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf( p )  is not 
uniquely determined by p ,  and is dependent on the focus 
of attention in the meaning-representation process. To 
place this in evidence, we shall refer to X as the focal 
variable. 

As a simple illustration, consider the proposition 

p b Anne has blue eyes. (4.3) 

In this case, the focal variable may be expressed as 

X A Color (Eyes (Anne))  
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and the elastic constraint is represented by the fuzzy re- 
lation BLUE, Thus, we can write 

p -+ Color(Eyes(Anne)) is BLUE. ( 4 . 4 )  

As an additional illustration, consider the proposition 

p A Brian is much taller than Mildred. ( 4 . 5 )  

Here, the focal variable has two components, X = ( X I ,  
X ,  ) , where 

X ,  = Height(Brian) 

X ,  = Height (Mildred ); 

and the elastic constraint is characterized by the fuzzy re- 
lation MUCH. TALLER [ Heightl ; Height2; p ] ,  in which 
p is the degree to which Heightl is much taller than 
Height2. In this case, we have 

p + (Height (Brian),  Height (Mildred )) 

is MUCH. TALLER. ( 4 . 6 )  

In terms of the possibility distribution of X ,  the ca- 
nonical form of p may be interpreted as the assignment of 
F to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII,. Thus, we may write 

p -+ X i s  F -+ IIx = F ( 4 . 7 )  

IIx = F ( 4 . 8 )  

in which the equation 

is termed the possibility assignment equation [ 6 0 ] .  In ef- 
fect, this equation signifies that the canonical form cf( p )  

X is F implies that 

Poss {x = U >  = pF(u),  U E U ( 4 . 9 )  

where pF is the membership function of F. It is in this 
sense that F,  acting as an elastic constraint on X ,  restricts 
the possible values which X can take in U. An important 
implication of this observation is that a proposition p may 
be interpreted as an implicit assignment statement which 
characterizes the possibility distribution of the focal vari- 
able in p .  

As an illustration, consider the disposition 

d A overeating causes obesity ( 4 . 1 0 )  

which upon explicitation becomes 

p A most of those who overeat are obese. ( 4 . 1 1 )  

If the focal variable in this case is chosen to be the rel- 
ative sigma-count of those who are obese among those 
who overeat, the canonical form of p becomes 

C Count( OBESEIOVEREAT) is MOST ( 4 . 1 2 )  

which in virtue of (4 .9)  implies that 

POSS ( c Count ( OBESE/ OVEREAT) = U ] = pMOST( U )  

( 4 . 1 3 )  

where pMosT is the membership function of MOST. What 
is important to note is that (4 .13)  is equivalent to the as- 
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sertion that the overall test score for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is expressed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApMOST(CCount(OBESE/OVEREAT)) (4.14) 

in which OBESE, OVEREAT, and MOST play the roles of 
the constituent relations in ED. 

It is of interest to observe that the notion of a semantic 
network may be viewed as a special case of the concept 
of a canonical form. As a simple illustration, consider the 
proposition 

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Richard gave Cindy a red pin. (4.15) 

As a semantic network, this proposition may be repre- 
sented in the standard form: 

Agent (GIVE ) = Richard 

Recipient ( GIVE ) = Cindy 

Time( GIVE ) = Past 

Object(GIVE) = Pin 

Color(Pin) = Red. (4.16) 

Now, if we identify X ,  with Agent( GIVE ), X ,  with Re- 
cipient ( GIVE ), etc., the semantic network representation 
(4.16) may be regarded as a canonical form in which X = 

X I  = Richard 

X ,  = Cindy 

X ,  is Past 

X,  is Pin 

X ,  is Red. (4.17) 
More generally, since any semantic network may be ex- 
pressed as a collection of triples of the form (Object, At- 
tribute, Attribute Value), it can be transformed at once 
into a canonical form. However, since a canonical form 
has a much greater expressive power than a semantic net- 
work, it may be difficult to transform a canonical form 
into a semantic network. 

V. INFERENCE 
The concept of a canonical form provides a convenient 

framework for representing the rules of inference in fuzzy 
logic. Since the main concern of this paper is with knowl- 
edge representation rather than with inference, our dis- 
cussion of the rules of inference in fuzzy logic in this sec- 
tion has the format of a summary. 

In the so-called categorical rules of inference, the 
premises are assumed to be in the canonical form X is A 
or the conditional canonical form X is A if Y is B ,  where 
A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB are fuzzy predicates (or relations). In the syllo- 
gistic rules, the premises are expressed as Q A’s are B’s, 
where Q is a fuzzy quantifier and A and B are fuzzy pred- 
icates (or relations). 

The rules in question are the following. 

Categorical rules 

X ,  Y,  Z,  

( X , ,  - * * , and 

- * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4? variables taking values in U ,  V ,  W, 
. . .  

Examples 

X A Age (Mary), Y 9 Distance ( P I ,  P2 ) 
A,  B,  C ,  * - 
Examples 

A 

Entailment rule 

X is A 

fuzzy predicates (relations) 

small, B &i much larger 

A C B --* ~ A ( u )  I ~ B ( u ) ,  U E U 

X is B 

Example 

Mary is very young 
veryyoung C young 

Mary is young 

Conjunction rule 

X is A 
X is B 

X i s  A n B -+ p A n ~ ( u )  = p A ( u )  A P B ( U )  

n = intersection (conjunction) 

Example 

pressure is not very high 
pressure is not very low 

pressure is not very high and not very low 

Disjunction rule 

X i s  A 
or X is B 

x i s  A U B --t P A U B ( U )  = PA(u) v PB(u) 

U = union (disjunction) 

Projection rule 

( X ,  Y )  is R 

Example 

( X ,  Y )  is close to (3 ,  2 )  

X is close to 3 

Compositional rule 

( X ,  Y )  is R -+ binary predicate 
Y i s B  
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Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X is much larger than Y 
Y is large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~ 

X is much larger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 large 

Negation rule 

not ( X  is A )  

X i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 A -+ p P A ( u )  = 1 - p A ( u )  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA negation 

Ex amp 1 e 

not (Mary is young) 

x2 is 2smaLl 

It should be noted that the use of the canonical form in 
these rules stands in sharp contrast to the way in which 
the rules of inference are expressed in classical logic. The 
advantage of the canonical form is that it places in evi- 
dence that inference in fuzzy logic may be interpreted as 

Given a characterization of the dependence of Z on X 
and Y in this form, one can employ the compositional rule 
of inference to compute the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ given the values 
of X and Y. This is what underlies the Togai-Watanbe 
fuzzy logic chip [50] and the operation of fuzzy logic con- 
trollers in industrial process control [48]. 

In general, the applications of fuzzy logic in systems 
and process control fall into two categories. First, there 
are those applications in which, in comparison to tradi- 
tional methods, fuzzy logic control offers the advantage 
of greater simplicity, greater robustness, and lower cost. 
The cement kiln control pioneered by the F. L. Smidth 
Company falls into this category. 

Second, are the applications in which the traditional 
methods provide no solution. The self-parking fuzzy car 
conceived by Sugeno [48] is a prime example of what hu- 
mans can do so easily and is so difficult to emulate by the 
traditional approaches to systems control. 

Syllogistic Rules: In its generic form, a fuzzy syllo- 
gism may be expressed as the inference schema 

Q,A’s are B’s 

Q2C’s are D’s 

Q3 E’s are F’s 

in which A ,  B,  C ,  D ,  E,  and Fare  interrelated fuzzy pred- 
icates and Q,,  Q2, and Q3 are fuzzy quantifiers. 

The interrelations between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  B,  C,  D,  E ,  and F pro- 
vide a basis for a classification of fuzzy syllogisms. The 
more important of these syllogisms are the following. 

a) Intersection/Product Syllogism: 

C = A A B ,  E = A ,  F = C A  D. 

b) Chaining Syllogism: 

C = B, E = A ,  F = D. 

a propagation of elastic constraints. This point of view is Consequent Conjunction Syllogism: 
particularly useful in the applications of fuzzy logic to 
control and decision analysis (Proc. of the 2nd IFSA Con- A = C = E,  F = B A  D. 
gress, 1987; Proc. of the International Workshop, Iizuka, 
1988). d) Consequent Disjunction Syllogism: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As was pointed out already, it is the qualitative mode 
of reasoning that plays a key role in the applications of 
fuzzy logic to control ._ In such applications, the input- 
output relations are expressed as collections of fuzzy if- 
then rules [32]. 

For example, if X and Yare input variables and Z is the 

A = C = E ,  F = B V D. 

e) Antemdent Conjunction Syllogism: 

B = D = F, E = A A  C. 

f )  Antecedent Disjunction Syllogism: 
output variable, the relation between X, Y, and Z may be 
expressed as 

B = D = F, E = A V  C. 

Z i s  C1 if X i s  A ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYis B ,  In the context of expert systems, these and related syllo- 
gisms provide a set of inference rules for combining evi- 

Z is C, if X i s  A, and Y is B, dence through conjunction, disjunction, and chaining 

One of the basic problems in fuzzy syllogistic reasoning Z i s  C, if X i s  A, and Y is B, 

is the following: given A ,  B,  C,  D ,  E ,  and F ,  find the 
maximally specific (i.e., most restrictive) fuzzy quantifier 
Q3 such that the proposition Q3E’s are F’s is entailed by 
the premises. In the case of a), b), and c), this leads to 
the following syllogisms. 

1621 * 

where C ; ,  A ; ,  and Bi, i = 1 ,  * 

their respective universes of discourse. For example, 
* , n are fuzzy subsets of 

Z is small if X is large and Y is medium 
Z is not large i f X  is very small and Y is not large 
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Intersection/Product Syllogism: 

Q I A S  are B S  

Q2(A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand B)’s are C’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( Q ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€3 Q2)A’s are ( B  and C ) s  

where Q is a fuzzy quantifier which is defined by the in- 
equalities 

0 8 ( Q i  €3 Q2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI QI 8 Q2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4) 

in which 8 ,  8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  and 0 are the operations of V (max), 
A (min), + , and - in fuzzy arithmetic. (5 .1  ) 

where €3 denotes the product in fuzzy arithmetic [24]. It 
should be noted that (5.1) may be viewed as an analog of 
the basic probabilistic identity 

An illustration of (5.3) is provided by the example 

most stdents are Young 

most students are single 

A concrete example of the intersection/product syllogism 
is the following: 

most students are young 

most young students are single 

most2 students are young and single ( 5 . 2 )  

where most2 denotes the product of the fuzzy quantifier 
most with itself. 

Chaining Syllogism: 

QIA’s are B’s 

Q2B’s are C s  

( Q ,  €3 & ) A s  are C’s 

This syllogism may be viewed as a special case of the 
intersection product syllogism. It results when B C A and 
Q, and Q2 are monotone increasing, that is, IQ, = Q,,  
and r Q 2  = Q2, where r e ,  should be read as at least 
Q , .  A simple example of the chaining syllogism is the 
following : 

most students are undergraduates 

most undergraduates are single 

most’ students are single 

Note that undergraduates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC students and that in the con- 
clusion F = single, rather than young and single, as in 
(5.2). 

Consequent Conjunction Syllogism: The consequent 
conjunction syllogism is an example of a basic syllogism 
which is not a derivative of the intersection/product syl- 
logism. Its statement may be expressed as follows: 

QIAS are B’s 

Q2A’s are C s  

Q A’s are ( B  and C ) s  (5.3) 

~ 

Q students are single and young 

where 

2most 8 1 I Q I most. 

This expression for Q follows from (5.4) by noting that 

most 64 most = most 

and 

0 64 (2most 0 1)  = 2most 0 1. 

The three basic syllogisms stated above are merely ex- 
amples of a collection of fuzzy syllogisms which may be 
developed and employed for purposes of inference from 
common sense knowledge. In addition to its application 
to common sense reasoning, fuzzy syllogistic reasoning 
may serve to provide a basis for combining uncertain evi- 
dence in expert systems [62]. 

VI. CONCLUDING REMARKS 

One of the basic aims of fuzzy logic is to provide a 
computational framework for knowledge representation 
and inference in an environment of uncertainty and im- 
precision. In such environments, fuzzy logic is effective 
when the solutions need not be precise and/or it is ac- 
ceptable for a conclusion to have a dispositional rather 
than categorical validity. The importance of fuzzy logic 
derives from the fact that there are many real world ap- 
plications which fit these conditions, especially in the 
realm of knowledge-based systems for decision-making 
and control. 
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