
Knowledge representation in process engineering

Franz Baader and Ulrike Sattler
RWTH Aachen, (baader,uli}@cantor.informatik.rwth-aachen.de

Abstract

In process engineering, as in many other
application domains, the domain spe-
cific knowledge is far too complex to
be described entirely using description
logics. Hence this knowledge is often
stored using an object-oriented system,
which, because of its high expressive-
ness, provides only weak inference ser-
vices. In particular, the process engi-
neers at RWTH Aachen have developed
a frame-like language for describing pro-
cess models. In this paper, we investi-
gate how the powerful inference services
provided by a DL system can support
the users of this frame-based system. In
addition, we consider extensions of de-
scription languages that are necessary
to represent the relevant process engi-
neering knowledge.

The application domain
Process engineering is concerned with the design
and operation of chemical processes that take
place in large chemical plants. This engineering
task includes activities like deciding on an ap-
propriate flowsheet structure (e.g. configuration
of reaction and separation systems), mathemat-
ical modeling and simulation of the process be-
havior (e.g. stating mathematical equations and
performing numerical simulations), sizing of com-
ponents (like reactors, heat exchangers etc.)
well as budgeting and engineering economics.

These highly complex tasks can be supported
by building computer models of the chemical
plants and processes, using appropriate software
tools such CAD, decision support systems and
numerical tools. Rather than designing each new
model from scratch, one wants a system that of-

fers standard building blocks that can easily be
put together. Standard building blocks [Mar-
quardt, 1994; Bogusch&Marquardt, 1995] are
objects representing

¯ material entities such as reactors, pipes, con-
trol and cooling units,

¯ models of these devices such as device-,
environment-, and connection-models,

¯ interfaces between these models and so-
called implementations describing their be-
haviour,

¯ symbolic equations specifying these imple-
mentations and variables occuring in these
equations, which are related to each other
as specified in the interfaces.

Since there is a great variety of different build-
ing blocks, they must be stored in an appropriate
database. Since process engineering is a quickly
evolving field, the number of standard building
blocks increases constantly. Hence it must be
possible to define new building blocks in a com-
fortable way.

The process engineers at the RWTH Aachen
we are cooperating with have developed a frame-
like language for describing these standard build-
ing blocks, [Bogusch& Marquardt, 1995; Mar-
quardt, 1994]. This language allows to group
building blocks into classes, and to order the
classes in an is-a/specialization-of hierarchy. It
should be noted that this hierarchy is explic-
itly given by the person defining the classes (the
knowledge engineer), and not automatically in-
ferred from the definition of the class.

As the complexity of the database increases,
navigation in the class hierarchy becomes diffi-
cult, and modifying or extending the hierarchy
becomes dangerous. More precisely, the knowl-
edge engineer is faced with the following prob-

- 74 -

From: AAAI Technical Report WS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

lems:

1. Finding an old class: If the knowledge engi-
neer does not know the exact name or even
definition of the class (s)he is looking for,
navigation in the class hierarchy is difficult,
especially in those parts of the database not
often used by the knowledge engineer.

2. Defining a new class: There is no support
for finding the appropriate place in the hier-
archy at which the new class should be in-
serted. This is left to the intuition of the
knowledge engineer.

Often, (s)he may know that A is a subclass
of B, but might be uncertain whether the
database already contains a more specific
subclass B~ of B such that A is also a sub-
class of B~. Because of this uncertainty it
often happens that the hierarchy becomes
broader than necessary.

On the other hand, the definition of the new
class might be inconsistent, have unintended
consequences, or may not be consistent with
the place in the hierarchy at which the new
class is inserted.

3. Distributed modeling: If the class hierarchy
is built by different persons simultaneously,
then there is a high probability that several
classes (with different names) describe the
same type of building block in syntactically
different terms. This does not only blow up
the size of the database; it is also a source
for misunderstanding and errors.

The rSle of the DL system

In order to avoid some of these problems, we in-
tend to provide the database with an interface to
a description logic system. In principle, the DL
system maintains a TBox that contains concept
definitions that are obtained from the class def-
initions of the frame language. Since the frame
system does not have a strict formal semantics,
and since it provides means like methods, trig-
gers, etc., which cannot be expressed in descrip-
tion logics, these concept definitions can only be
approximations of the class definitions. What we
require, however, is that the concept hierarchy
computed by the DL system coincides with the
class hierarchy of the frame system. This is ac-
complished by an interaction with the knowledge
engineer. Whenever (s)he defines a new class,
the corresponding concept is classified in the al-
ready existing concept hierarchy. If its place in

this taxonomy differs from the place at which the
knowledge engineer has put the class, then (s)he
is notified, and there are two different ways to
overcome the problem:

¯ either (s)he reconsiders her/his decision.
This happens if the knowledge engineer no-
tices that the class definition was incorrect.

¯ or the concept is modified such that classifi-
cation puts it at the right place. This hap-
pens if the class definition was correct, but
the corresponding concept does not reflect
the class definition entirely due to the re-
stricted expressive power of the description
language.

Navigation can now be supported as follows: The
knowledge engineer describes--possibly in an in-
complete way--the class (s)he is looking for, and
then the description logic interface computes the
most specific classes subsumed by this descrip-
tion. A closer look at these classes might then
reveal how to specialize the description, and the
process of going down in the hierarchy can be
continued until an appropriate concept is found.
The definition of new classes can be supported
since the subsumption test of the DL system can
compute all equivalent concepts, and then the
knowledge engineer can decide whether the newly
defined class is redundant or whether its defini-
tion must be modified. In addition, the concept
descriptions can be tested for unsatisfiability, and
the knowledge engineer can be warned whenever
unsatisfiability is detected.

The reason for using a DL system in
this context was, on the one hand, that
this type of knowledge representation lan-
guages is rather similar to frame-like lan-
guages. On the other hand, DL systems are
equipped with subsumption algorithms neces-
sary for providing the envisioned modeling sup-
port, as outlined above. In the last decade,
a great variety of different description log-
ics has been investigated [Levesque & Brachman,
1987; Nebel, 1988; Schmidt-Schauss, 1989; Patel-
Schneider, 1989; Hollunder et al., 1990; Donini
et al., 1991; Baader&Hanschke, 1993; De
Giacomo&Lenzerini, 1994; Calvanese et al.,
1995]. However, the adequate representation of
standard building blocks for models in process
engineering requires additional expressive power.

Language extensions
The main concern is here to provide appropri-
ate means for describing the structure of chem-

- 75 -

ical plants, of the process models, of equations,
etc. For this reason, we have investigated part-
whole relations (for the vertical representation of
structure), and more expressive number restric-
tions (which can be used to describe horizontal
relationships).

Part-whole relations: Since the plants to be
modeled are very complex, one should be able
both to decompose and to aggregate devices and
connections occurring in the plants. A modeling
tool should thus be able to support top-down and
bottom-up modeling along a sufficiently large
number of decomposition levels, or, even better,
along any (finite) number of decomposition lev-
els.

In order to represent composite objects cor-
rectly, the inference algorithms of the DL sys-
tem must take the special properties of part-
whole relations into account. As in other applica-
tions [Gerstl& Pribbenow, 1993; Franconi, 1994;
Artale et al., 1994; Pribbenow, 1995], we were
thus confronted with the question

¯ which types of part-whole relations are
needed for the appropriate representation
of the complex objects in our application.
It turned out that objects are decomposed
with respect to the component-composite,
segment-entity, and member-collection rela-
tion, each of them a specialization of the gen-
eral part-whole relation. Roughly speaking,
parts with respect to the member-collection
relation are not coupled with each other
and are of the same kind, whereas compo-
nents are coupled with each other in a rather
arbitrary way and may be of quite differ-
ent kinds; finally, segments are of a similar
kind, but coupled with each other. Since the
knowledge engineer might want to refer to a
part, not knowing on which level of decom-
position it can be found and with respect to
which specific part-whole relation it is ob-
tained, the general transitive part-whole re-
lation must also be available.

¯ how these relations interact. If, in the
intuition of the knowledge engineer, the
segment-entity relation is transitive, then it
must be represented as a transitive role. But
what about a component a of a segment b of
a whole c: is a also a component of c? Ques-
tions concerning these interactions are not
yet completely answered, but without an ap-

propriate solution, composite objects cannot
be handled appropriately.

¯ which additional properties concerning the
part-whole relation are relevant in the ap-
plication. For example, the existence of a
certain part can be essential for the proper
definition of the whole, in contrast to other
parts being optional; a part can be exclu-
sive in the sense that it might be a part of
at most one object, without the possibility
to be shared by other objects; a part can be
functional for an object in that this object
does no longer work correctly if this part is
broken; and many other important proper-
ties are conceivable. The appropriate rep-
resentation of these properties can be quite
useful: it allows, for example, to find out
whether all essential parts are specified; if
this is not the case, the knowledge engineer
can be informed, and the missing parts can
be determined.

Since at least the general part-whole relation
is transitive, the DL system used in this applica-
tion must be able to handle some kind of transi-
tive relations. Hence, an interesting question is
in which ways transitive relations can be included
into description languages and how to design ap-
propriate inference algorithms. In [Sattler, 1996],
three different extensions of the description lan-
guage ¢4~ by transitivity have been investigated.

Number restrictions: As in many other ap-
plications, objects in our application are often
characterized by the number of other objects to
which they are related via a certain relation. For
example, we want to describe devices having at
least 7 inputs or devices having exactly 5 outputs.
In description logics, this kind of knowledge can
be expressed using number restrictions, as in

(device N (_~ 7 input)),
(device Fl (---- 5 output)).

This traditional type of number restrictions
has rather weak expressive power: the roles oc-
curring in them are atomic, and one can only
use fixed numbers (and not variables ranging over
numbers). To overcome this deficit, we have in-
vestigated various more expressive number re-
strictions.

In [Baader&Sattler, 1996a], we have intro-
duced so-called symbolic number restrictions,
which allow for variables, and can thus be used

- 76 -

to describe concepts like devices having the same
number of inputs and outputs, as in

(device n (= input) n (= output)),

or devices having less inputs than each of their
parts have, as in

(device n (= a input) n (Vp rt.(> input))),

where a is interpreted as some nonnegative in-
teger. The following example reveals a certain
ambiguity:

device n (Vpart.(= input) n (= output)))

It describes devices where each part has the same
number of inputs and outputs. However, it de-
pends on the reading whether different parts can
have different numbers of inputs or not. To over-
come this ambiguity, we introduced explicit exis-
tential quantification of numerical variables (de-
noted by $ a) to distinguish between (1) a device
where for each of its parts the number of its in-
puts equals the number of its outputs and (2)
device where all parts have the same number of
inputs and outputs:

device
(Vpart.($ o~.(= input) [7 (= O(OUtpUt))) (1)

device r]
(¢ .(Vpart.(=a input) n (= output)))

Unfortunately, it turned out that the basic in-
ference problems, such as satisfiability and sub-
sumption, are undecidable if this kind of number
restrictions is allowed in an unrestricted way. For
a restricted language, we have shown that satis-
fiability is decidable.

Another interesting extension is to allow for
complex roles in number restrictions. For exam-
ple, we are interested in describing devices that
have at most 7 parts that are components of their
components, as in

devicen(_< 7 has-componentohas-component),

or we want to describe a device that is controlled
by the same control unit as all the devices it is
connected to:

device N
(= 1 control-by U connect-toocontrol-by).

In these examples, complex roles are built using
the operators composition and union of roles.

Other interesting operators are intersection
and inversion of roles. Intersection can be used to
express, for example, that a devices has at least
2 bidirectional connections:

device [3 (> 2 input N output).

Inversion comes in if we need the role part-of
beside the role has-part. In [Baader & Sattler,
1996b], it is shown which types of complex roles
lead to undecidable inference problems, and for
which types of complex roles subsumption and
satisfiability remain decidable.

Outlook

This paper describes work in progress. From
our cooperation with process engineers, we have
learned that the system services provided by DL
systems appear to be very useful for their appli-
cation: a description logics based browser could
support the engineers in building and maintain-
ing their frame-based database. Before building
this browser, we have investigated which expres-
sive power is needed to describe relevant prop-
erties of objects occuring in this application. It
turned out that transitivity and expressive num-
ber restrictions play an important r61e in this
application. However, we have not yet made a
final decision as to which particular description
logic is "most appropriate". We need to find a
compromise between necessary expressive power
and acceptable computational complexity. In the
near future, such a description language will be
fixed and we will test whether the support DL
systems can provide in this application is really
as high as we expect.

References

[Artale et al., 1994] A. Artale, F. Cesarini,
E. Grazzini, F. Pippolini, and G. Soda. Mod-
elling composition in a terminological language
environment. In Workshop Notes of the ECAI
Workshop on Parts and Wholes: Conceptual
Part-Whole Relations and Formal Mereology,
pages 93-101, Amsterdam, 1994.

[Baader & Hanschke, 1993]
F. Baader and P. Hanschke. Extensions of
concept languages for a mechanical engineer-
ing application. In Proe. of the 16th Ger-
man AI-Conference, GWAI-92, volume 671
of LNCS, pages 132-143, Bonn, Deutschland,
1993. Springer-Verlag.

- 77 -

[Baader & Sattler, 1996a] F. Baader and U. Sat-
tler. Description logics with symbolic number
restrictions. In W. Wahlster, editor, Proc. of
ECAI-96. John Wiley & Sons Ltd, 1996.

[Baader & Sattler, 1996b] F. Baader and U. Sat-
tler. Number restrictions on complex roles in
description logics. In Proc. ofKR-96. M. Kauf-
mann, Los Altos, 1996. To appear.

[Bogusch & Marquardt, 1995] R. Bogusch and
W. Marquardt. A formal representation of pro-
cess model equations. Computers and Chemi-
cal Engineering, 19:211-216, 1995.

[Calvanese et al., 1995] D. Calvanese, G. De Gi-
acomo, and M. Lenzerini. Structured objects:
Modeling and reasoning. In Proc. of DOOD-
95, volume 1013 of LNCS, pages 229-246,
1995.

[De Giacomo & Lenzerini, 1994] G. De Giacomo
and M. Lenzerini. Concept language with
number restrictions and fixpoints, and its rela-
tionship with mu-calculus. In Proc. of ECAI-

94, 1994.

[Donini et al., 1991] F. Donini, M. Lenzerini,
D. Nardi, and W. Nutt. The complexity of
concept languages. In Proc. of KR-91, Boston
(USA), 1991.

[Franconi, 1994] E. Franconi. A treatment of
plurals and plural quantifications based on a
theory of collections. Minds and Machines,
3(4):453-474, November 1994.

[Gerstl & Pribbenow, 1993] P. Gerstl
and S. Pribbenow. Midwinters, end games and
bodyparts. In N. Guarino and R. Poli, editors,
International Workshop on Formal Ontology-
93, pages 251-260, 1993.

[Hollunder et al., 1990] B. Hollunder, W. Nutt,
and M. Schmidt-Schauss. Subsumption algo-
rithms for concept description languages. In
ECAI-90, Pitman Publishing, London, 1990.

[Levesque & Brachman, 1987] H. Levesque and
R. J. Brachman. Expressiveness and tractabil-
ity in knowledge representation and reasoning.
Computational Intelligence, 3:78-93, 1987.

[Marquardt, 1994] W. Marquardt. Trends in
computer-aided process modeling. In Proc. of
ICPSE ’94, pages 1-24, Kyongju, Korea, 1994.

[Nebel, 1988] B. Nebel. Computational complex-
ity of terminological reasoning in BACK. Ar-
tificial Intelligence, 34(3):371-383, 1988.

[Patel-Schneider, 1989] P. F. Patel-Schneider.
Undecidability of subsumption in NIKL. AIJ,
39:263-272, 1989.

[Pribbenow, 1995] S. Pribbenow. Modeling
physical objects: Reasoning about (different
kinds of) parts. In Time, Space, and Move-
ment Workshop 95, Bonas, France, 1995.

[Sattler, 1996] U. Sattler. The complexity of con-
cept languages with different kinds of transi-
tive roles. In G. GSrz and S. HSlldobler, edi-
tors, 20. Deutsche Jahrestagung flit Kiinstliche
Intelligenz, volume 1137 of LNAL Springer-
Verlag, 1996.

[Schmidt-Schauss, 1989] M. Schmidt-Schauss.
Subsumption in KL-ONE is undecidable. In
Proc. of KR-S9, pages 421-431, Boston (USA),
1989.

- 78 -

