
UCRL-CONF-209845

Knowledge Representation
Issues in Semantic Graphs for
Relationship Detection

M. Barthelemy, E. Chow, T. Eliassi-Rad

February 18, 2005

2005 AAAI Spring Symposium on AI Technologies for
Homeland Security
Palo Alto, CA, United States
March 21, 2005 through March 23, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Knowledge Representation Issues in Semantic Graphs for Relationship Detection∗

Marc Barthélemy†
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Abstract

An important task for Homeland Security is the predic-
tion of threat vulnerabilities, such as through the detec-
tion of relationships between seemingly disjoint enti-
ties. A structure used for this task is a semantic graph,
also known as a relational data graph or an attributed
relational graph. These graphs encode relationships
as typed links between a pair of typed nodes. Indeed,
semantic graphs are very similar to semantic networks
used in AI. The node and link types are related through
an ontology graph (also known as a schema). Fur-
thermore, each node has a set of attributes associated
with it (e.g., “age” may be an attribute of a node of
type “person”). Unfortunately, the selection of types
and attributes for both nodes and links depends on hu-
man expertise and is somewhat subjective and even ar-
bitrary. This subjectiveness introduces biases into any
algorithm that operates on semantic graphs. Here, we
raise some knowledge representation issues for seman-
tic graphs and provide some possible solutions using re-
cently developed ideas in the field of complex networks.
In particular, we use the concept of transitivity to eval-
uate the relevance of individual links in the semantic
graph for detecting relationships. We also propose new
statistical measures for semantic graphs and illustrate
these semantic measures on graphs constructed from
movies and terrorism data.

Introduction
A semantic graph is a network of heterogeneous nodes and
links. In contrast to the usual mathematical description of a
graph, semantic graphs have different types of nodes, and in
general, different types of links. Also called attributed rela-
tional graphs (Coffman, Greenblatt, & Marcus 2004) and re-
lational data graphs (used in the knowledge discovery liter-
ature), it is clear that the power of these graphs lies not only
in their structure but also in the semantic information that re-
sides on their nodes and links. Examples of semantic graphs
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include citation networks where the nodes do not simply
consist of papers, but also consist of authors, institutions,
journals, and conferences. Another example is the Internet
Movie Database where the nodes may be persons (actors,
directors, etc.), movies, studios, and awards, among others.
In Homeland Security, these graphs are used in a variety of
information analysis tasks (Jensen, Rattigan, & Blau 2003;
Coffman, Greenblatt, & Marcus 2004; Popp et al. 2004;
Kolda et al. 2004). In particular, such graphs may be used
for predicting threat vulnerabilities.

Data for semantic graphs come from relations parsed from
text documents and/or data from relational databases. Our
motivation for this work comes from our experience in con-
structing semantic graphs from two sources of data—movies
data and terrorism data—to be discussed at the end of this
paper. In both these cases, we were faced with a wide va-
riety of choices: what are the node types, what are the link
types, and how do these choices affect the algorithms that
we intend to use on these graphs?

Several types of algorithms operating on semantic graphs
are of interest to us. For example, to determine the na-
ture of a possible relationship between two entities, a sub-
graph consisting of the shortest paths (or another metric)
between two nodes in the semantic graph may be con-
structed and examined (Faloutsos, McCurley, & Tomkins
2004). We refer to this process as relationship detection.
Fast algorithms based on heuristic search (which improve
on breadth-first search or bi-directional search) are avail-
able for this task, which either use or do not use the se-
mantic information in the graph (Eliassi-Rad & Chow 2004;
Chow 2004). These algorithms, however, depend on know-
ing which links (or link types) in the semantic graph are use-
ful for detecting relationships. For example, two people who
share a connection to “San Francisco” because they were
born there are unlikely to have any real-life connection. One
of the goals of this paper is to present automatic algorithms
for determining which are useful links for relationship de-
tection, as well as present concepts to help answer related
questions.

In the past few years, a new field called complex networks
(see, e.g., Albert & Barabasi (2002) and Newman (2003))
has emerged to study the structure of real-world networks.
Statistical tools for characterizing graphs and networks have
been developed, with the impetus of understanding the re-



lationship between the structure and function of networks.
Computer techniques have allowed these statistical measure-
ments to be performed on very large real-world networks.
In this paper we generalize some of these techniques in or-
der to apply them to semantic graphs. For example, some
types of nodes in semantic graphs can be connected to many
other types of nodes, but generally have few actual links.
We quantify this concept and hypothesize that nodes such as
these are not useful for relationship detection. In addition,
the concept of transitivity in social network analysis (called
clustering coefficient in the complex networks literature) is
useful for determining which are useful links for relationship
detection.

In the following, we begin by describing semantic graphs
and ontologies. We then use the concept of transitivity for
evaluating links and link types for relationship detection. An
important aspect of this paper is a presentation of new statis-
tical measures for semantic graphs, as well as issues related
to the scale (level of detail) of semantic graphs. Examples
of semantic graphs for movies and terrorism data are given
near the end of the paper.

Semantic Graphs and Ontologies
A semantic graph consists of nodes and directed links, with
each node having a type (e.g., movie). The set of types is
usually small compared to the number of nodes. Each node
is also labeled with one or more attributes identifying the
specific node (e.g., Shrek) or gives additional information
about that node (e.g., gross income). Links may also have
types, for example, the (person → movie) link may be of
type “acted-in,” or “directed.” (In this case, multigraphs, or
graphs that may have multiple links between the same pair of
nodes, are possible.) In some semantic graphs, the meaning
of a link between any two nodes is clear (although differ-
ent between different pairs of node types), and no link types
need to be defined. Finally, links may also have attributes.
For additional details, see Sowa (1984).

Depending on the types of nodes and links and on the
available information, certain relations can or cannot exist.
The set of relations that can exist in a given semantic graph
can be described by an auxiliary graph called an ontology,
or a schema (Jensen & Neville 2002). More often, an ontol-
ogy graph is created first by defining the types of relations
that the semantic graph will encode. A small example of
an ontology is given in Figure 1, showing three node types:
person, meeting and city.

Special links in an ontology graph could describe is-a and
part-of relationships among node types. This is a node type
hierarchy that will be briefly mentioned when we discuss the
scale of semantic graphs.

Transitivity for Evaluating Nodes and Edges
Consider a node “San Francisco” of type “city” in a seman-
tic graph, and suppose we have a database of people which
includes city of birth among the data fields. A node “Alice”
of type “person” may be linked to the node “San Francisco”
if Alice was born in San Francisco. Other nodes linked to
node San Francisco imply a relationship to San Francisco

person

lives inattends

takes place in
Meeting City

knows another

Figure 1: A small ontology consisting of three node types.

and in turn their relation to Alice. However, it is not clear
that such relationships give useful information about Alice
since most entities a short graph distance away from “Alice”
will have no real-life connection to Alice.

On the other hand, people born in a city such as “Tikrit,”
may have a much higher likelihood of knowing each other,
that is, it may be important in this case to be able to associate
two people through their city of birth. Instead of using a
human with potential biases to evaluate nodes and links, an
automatic procedure is desirable for objectively determining
which nodes and links should be used in the semantic graph
for relationship detection.

Another example is nodes of type “date.” Dates could
represent birthdates, dates of meetings, etc. For example,
a node for a person born on 9-11-2001 may be linked to
a node labeled “9-11-2001.” However, two events sharing a
date rarely predicts that two events are related. Our bias is to
treat dates as attributes of nodes, rather than as its own node
(with the type “date”). Topologically, a “date” node may
be connected to many other types of nodes, but generally
each date node is connected to only a small number of other
nodes. This may be an unbiased indication that a date is not
useful for relationship detection.

The transitivity concept
The concept of link transitivity is useful to address some
of the above issues. If a node i has a link to node j and
node j has a link to node k, then a measure of transitivity in
the network is the probability that node i has a link to node
k. In social networks and many other networks categorized
as small-world networks, this probability is high. This is
natural in social networks because a friend of a friend is also
a friend in proportion that is much higher than in a random
network. In general, we refer to j as a neighbor of i if i and
j are directly connected in a graph. Also, we refer to the
degree of a node as the number of neighbors it has.

The concept of transitivity is quantified as follows. The
clustering coefficient of a node, denoted by C(i), is a mea-
sure of the connectedness between the neighbors of the
node. Let ki denote the degree of node i, and let Ei denote
the number of links between the ki neighbors. Then, for an
undirected graph, the quantity (Watts & Strogatz 1998)

C(i) =
Ei

ki(ki − 1)/2
(1)



is the ratio of the number of links between a node’s neigh-
bors to the number of links that can exist. We define C(i)
to be 0 when ki is 0 or 1. When C(i) is averaged over all
nodes in the graph, we have the clustering coefficient for a
graph. Note that high average clustering coefficient does not
imply the existence of clusters or communities (subgraphs
that are internally more highly connected than externally) in
the graph.

Relevance of a node
We consider the problem of determining whether a node in
a semantic graph (e.g., “San Francisco” in a previous exam-
ple) is useful for relationship detection. Consider a node i
which has links to many other nodes. For now, we assume
the links are of all the same type. To evaluate whether or not
i is useful for relationship detection, we examine whether
or not the neighbors of i are actually related in the semantic
graph with high frequency. Whether or not two neighbors
are related is decided by whether or not a link exists be-
tween the two neighbors. (A weaker condition if this does
not hold is whether the two neighbors are linked via a third
node which is already deemed a useful node for relationship
detection.) This leads to the use of the clustering coefficient
defined in Equation (1) to measure the relevance of a node i
with degree greater than 1. The equation can be generalized
so that Ei counts links with the weaker condition described
above. A threshold τ is needed and if C(i) > τ then i is a
useful node. If i is not a useful node, all the links involving i
should not be used for relationship detection and could be re-
moved from the semantic graph. If these links are removed,
i could be made an attribute of the nodes that i originally
linked to, in order not to lose any information.

The above can be generalized for semantic graphs when
i is linked via many different types of links. In this case,
instead of a count of relationships involving pairs of neigh-
bors of i, a matrix M(t1, t2) is used instead. Here M(t1, t2)
counts the number of relationships between pairs of neigh-
bors (a, b), where a is linked to i via type t1 and b is linked
to i via type t2. Small entries in this matrix gives pairs of
link types (associated with i) that should not be traversed in
relationship detection.

Relevance of a link
The relevance of an existing or potential relationship be-
tween two nodes a and b can be evaluated by how many
neighbors they have in common. More precisely a relevance
measure may be defined as

S(a, b) =
|N(a, b)|

|T (a, b)|
(2)

where

N(a, b) = {w | w is linked to a and b, w 6= a,w 6= b}

and

T (a, b) = {w | w is linked to a or b, w 6= a,w 6= b}

with |T (a, b)| = deg(a) + deg(b) − |N(a, b)| where deg(a)
is the degree of a. We have 0 ≤ S(a, b) ≤ 1 with large val-
ues of this relevance measure indicating a strong relationship

α

γβ

δ

Figure 2: A particular ontology for which neighbors of α of
type δ can never be connected to neighbors of type β or γ.

between a and b supported by a high proportion of common
neighbors. This quantity is similar to the clustering coeffi-
cient and can be generalized to involve neighbors w farther
from a and b.

There are many applications of this relevance measure.
For example, pairs of nodes with no existing link can be
evaluated to check if a latent link might exist. In another ex-
ample, the relevance measure can be computed for all links
of a given type. A low average of this relevance measure in-
dicates that the given link type is not useful for relationship
detection; there is not a strong relation between nodes inci-
dent on a link with the given type. A high relevance measure
for a link when the average relevance measure for the link
type is low (and vice-versa) indicates an outlier that may be
interesting to investigate. This relevance measure must be
used carefully, however, since it uses links that it assumes
confers bona fide relationships.

It must also be recognized that a low relevance measure
for an individual link does not imply that the link is unim-
portant. On the contrary, the notion of the “strength of weak
ties” (Granovetter 1973) suggests that these links are criti-
cal in some sense. It is when almost all links of the same
type have low relevance measure (and this link type is not a
“secretly knows” b) that this link type should not be used in
relationship detection.

Generalization of clustering coefficient for
semantic graphs
The clustering coefficient defined earlier has little meaning
for semantic graphs as it mixes different types of nodes and
it does not include the constraints imposed by the ontology.
To illustrate this, consider the ontology for a semantic graph
given by Figure 2. In this case, a node of type α can be con-
nected to types β, γ and δ, but a neighbor of type δ can never
be connected to neighbors of type β or γ. In order to avoid
unrealistically small values of the clustering coefficient we
thus have to divide by the number of links actually allowed
by the ontology and obtain

C(i;α) =
Ei

E(i;α)
(3)

where E(i;α) denotes the maximum number of links al-
lowed by the ontology.

Statistical Measures for Semantic Graphs
Along with clustering coefficient, two other relevant graph
properties that have been developed for standard (non-
semantic) graphs are distributions of node degree (number



of neighbors of a node) and average path length between any
two nodes in the graph. Together, these three graph proper-
ties can be useful for studying the properties of a semantic
graph for representing knowledge.

Many real-world networks have high clustering coeffi-
cient, much higher than O(1/n) for random graphs, where
n is the number of nodes in the graph. We believe that prop-
erly constructed semantic graphs must also have moderately
high clustering coefficients. Low values of clustering coef-
ficient may indicate that the linkage information in the se-
mantic graph is incomplete. Very high values of clustering
coefficient may also indicate a poorly constructed seman-
tic graph where all the nodes are very highly linked to each
other (the limit is a fully connected graph), indicating little
discrimination in how the nodes are connected.

The average path length, `, in a semantic graph must also
not be too small (which is also associated with very high
clustering coefficients). When the average path length is
small, almost all nodes are approximately the same graph
distance from each other, giving little discriminatory ability
to path-length based algorithms for detecting relationships.

For example, an ontology graph may contain a node (e.g.,
a node of type “provenance”) to which every other node in
the ontology is linked. In this case, the maximum shortest
path length length in the ontology graph is 2, which also
suggests that the average path length in the semantic graph
is small. It may be useful to identify nodes or links in the
ontology graph that dramatically shorten the average path
length. These nodes and links are potentially not useful for
relationship detection.

The connectivity distribution P (k) is of interest for se-
mantic graphs, particularly the existence of nodes with very
high degree, as in the case of scale-free networks (Barabasi
& Albert 1999; Amaral et al. 2000). In a relationship detec-
tion path search, paths through very high degree nodes are
deemed less informative (Faloutsos, McCurley, & Tomkins
2004). For example, in a social network, two people who
know a popular person are less likely to know each other;
the linkages to the popular person should be disregarded in
the relationship detection search since they may confer erro-
neous relationships.

It is believed that power-law connectivity distributions
arise when there is little or no cost involved in the forma-
tion of links in the network (Amaral et al. 2000). Without
this property, no nodes would be able to acquire a very large
number of links. This may suggest that a graph with power-
law degree distribution may contain many weak linkages.
However, these weak linkages cannot be disregarded; Cf.
strength of weak ties, mentioned above.

For semantic graphs, we showed above how to extend the
concept of clustering coefficient. In the next subsections, we
expand the potential usefulness of other concepts for seman-
tic graphs.

Extension of node degree
Even in the simple case of connectivity, a given value k of
the connectivity of a node of type α has no real meaning for
semantic graphs. Indeed, as shown in Figure 3 the topologi-
cal connectivity in both cases is k = 4 but the meaning of it

α α

β

βββ β

γ

γ
β

Figure 3: Two examples for which the α-type node has topo-
logical connectivity k = 4 but with a different meaning in
each case, Cf. Jensen & Neville (2002).

is very different in each case.
In the first case, the environment is very homogeneous

while it is not in the second case. Another complexity comes
from the fact that the number of β-type nodes can be very
large thus inducing a bias in the connectivity of the other
nodes.

The ontology implies that each node of type α can be con-
nected to a certain number, k0

α, of other types. In the seman-
tic graph, we have a total number of nodes n =

∑

α nα and
we denote the nodes by i = 1, . . . , n. The type of a node is
given by the function t(i). We denote by kαβ(i) the num-
ber of neighbors of type β of a node i of type α. The usual
topological connectivity of the node i (which is of type α) is
then given by

kα(i) =
∑

β

kαβ(i). (4)

Using this quantity, we can define the average connectivity
of type α which is just the average over all nodes with type
α as

kα =
1

nα

∑

i, t(i)=α

kα(i). (5)

If we want to compare the different types relative to their
connectivity, it is important to remember that some types can
be connected to many others (such as persons which can be
linked to others persons, cities, meeting, jobs, etc.) while
other types are only linked to one type (such as a conference
which takes place only at one location). In order to compare
the different types we thus have to rescale by the number
of different neighbor types they can have according to the
ontology:

mα =
kα

k0
α

. (6)

This quantity indicates the average number of neighbors
per type. This quantity however does not tell us if there are
large connectivity fluctuations or if in contrast all nodes of a
given type have essentially the same connectivity. We thus
have to measure the connectivity variance per type which is
calculated using the second moment

k2
α =

1

nα

∑

i, t(i)=α

k2
α(i) (7)

with the dispersion per type given by

σk
α =

[k2
α − (kα)2]1/2

k0
α

. (8)



Another possible way to characterize the connectivity dis-
tribution per type is to plot the connectivity distribution.
However, the dispersion around the average is already a
first indication of the nature of the connections for differ-
ent types. For some cases, the fluctuations will be small,
while for others it can fluctuate greatly (such as the number
of persons a person knows).

Disparity of connected types
The above quantities tell us the expected number of connec-
tions of a node of a given type to another type but not the
correlations between different types. Indeed, a type α can
preferentially link to a type β while it could be in principle
also be linked to other types (as given by the ontology).

We thus quantify the disparity (or affinity) of each type to
link to other types. In order to do this we use a convenient
quantity—denoted by Y2—which was introduced in another
context (Derrida & Flyvbjerg 1987; Barthélemy, Gondran,
& Guichard 2003). In order to understand the meaning of
this quantity let us consider an object that is broken into a
number N of parts, each part having a weight wi. By con-
struction

∑

i wi = 1 and Y2 is given in this case by

Y2 =
∑

i

[wi]
2. (9)

If all parts have the same weight wI ∼ 1/N then Y2 ∼ 1/N
is small (for large N ). In contrast, if we have w1 = 1/2
and the rest is small implying wi6=1 ∼ 1/2(N − 1) then
we obtain Y2 ∼ 1/4. This simple example can be easily
generalized to more complicated situations and shows that a
small value of Y2 indicates a large number of relevant parts
while a larger value (typically of order 1/m where m is of
order unity) indicates the dominance of a few parts.

We now apply this idea to the number of types to quantify
the disparity of a node or the affinity of a type. The quantity
Y2 is first defined for a given node i of type α

Y2(i;α) =
∑

β

[

kαβ(i)

kα(i)

]2

. (10)

In order to get results with statistical significance, we aver-
age this quantity over all nodes of the same type and we also
compute its dispersion σY

α :

Y 2(α) =
1

nα

∑

i, t(i)=α

Y2(i;α), (11)

σY
α =

[

Y 2
2 (α) − (Y 2(α))2

]1/2

. (12)

These results must however be weighted by the fact that
some types are more numerous than others which could be a
reason why they appear more often than others. For a given
node α, we denote by V(α) the set of types which can be
connected to α as given by the ontology. If a node has k
neighbors, and if these neighbors are picked at random in
the set of different nodes with population nβ , we then obtain
a disparity given by

Y r
2 =

∑

β∈V(α)

[nβ

n

]2

. (13)

Again, this quantity will be very small if all types are uni-
formly present in the semantic graph Y r

2 ∼ 1/N (where
N is the total number of different types) and if it is of or-
der unity then essentially a few types are over-represented.
In order to take these heterogeneities into account it is thus
necessary to rescale Y2(α) by Y r

2 and to form the factor

R(α) =
Y2(α)

Y r
2

(14)

and its corresponding dispersion,

σR
α =

σY
α

Y r
2

. (15)

A large value (larger than one) of R(α) indicates that type
α preferentially links to a small number of types and that its
neighbor types V(α) are diverse in number. If R ¿ 1, the
type α may still be preferentially connected to a small set of
types but the diversity of the numbers of each neighbor type
is small.

The dispersion σR(α) indicates whether the behavior as
described by the average value R(α) is typical, or if in con-
trast there is large diversity among the nodes of type α.

Other usual quantities that are measured in order to char-
acterize a large network can also be generalized without any
difficulty. For example, degree distributions should be ex-
amined by type of node. In a semantic graph, the overall
degree distribution may not be meaningful, but the degree
distribution for a specific node type may be power-law, etc.
As a further example, the average path length generalizes to
become a matrix `αβ where α indicates the source node of
the shortest paths while β is the target node. This matrix will
in general have entries with very different values.

Scale in Semantic Graphs
Given a knowledge base of relational data, the choice of on-
tology depends on what information needs to be captured
in the semantic graph, and how easily certain information
needs to be retrieved. The level of detail (or scale) chosen
for the ontology (choice of node and link types) will have a
direct impact on the properties of the corresponding seman-
tic graph.

In the simplest ontology, we have nodes of only one type.
In the example of the movies database, this ontology is a
simple network of actors without any types and two actors
are connected if they played in the same movie. At the next
finer scale, we have actors and movies as node types. In
this case, the ontology is an actor connected to a movie if
he played in that movie. This is a special case of a seman-
tic graph which is a bipartite network (two types of nodes,
with links only between the two types). Coarser models
lose some of the information present in finer models but can
be useful for large-scale computations, such as multi-level
search techniques.

At the finest scale of a terrorist network, we may have
nodes of type “Religious Terrorist Organization” and “Polit-
ical Terrorist Organization.” A coarser model may aggregate
nodes of these two types into a new type, “Terrorist Organi-
zation” (or the aggregation may occur directly if a type hier-
archy is available). Depending on what information needs to



be preserved, it may or may not be important to distinguish
between these two node types at the structural level of the
semantic graph.

We note that in Homeland Security tasks, data analysis
more often involves searching for outliers rather than com-
monplace patterns. Thus it is essential that the fine scale
data is retained and the coarse scale data is used appropri-
ately (for example, as an aid in managing and processing
large-scale data).

Effect of scale on statistical measures
Here we simply illustrate the effect of scale on the cluster-
ing coefficient. We consider a random bipartite graph with
Poisson distributed numbers of both movies per actor (with
average µ) and actors per movie (with average ν). We sup-
pose that we have nA actors and nM movies and the fact that
each link connects an actor to a movie imposes the constraint

µ

nA
=

ν

nM
. (16)

This model can be considered as a “null” model since
there are no particular correlations here. If one computes
the clustering coefficient of the one-mode projection of this
network, one obtains (Newman, Strogatz, & Watts 2001)

C =
1

µ + 1
. (17)

This quantity is finite even in the limit of very large networks
nA,M → ∞. This is in contrast with the usual random net-
work for which

C ∼
1

n
(18)

where n is the number of nodes. At this stage the conclu-
sion is that the actor network is very clustered and different
from a random network with no correlations. This is how-
ever clearly an incorrect statement since the existence of a
large clustering coefficient here is a consequence of the net-
work construction procedure.

Examples
Movies data
The “Movies” test data at the UCI KDD Archive contains
information about movies, persons (actors, directors, etc.),
studios, awards, etc. The data was originally compiled by
Gio Wiederhold (Stanford University). We used this data to
construct an ontology and semantic graph to express most
of the information in the dataset. Figure 4 shows the on-
tology graph that we developed. In the figure, the mean-
ing of most of the links is obvious. However, the person-
person link implies married-to, lived-with, or some other
non-professional relationship; the person-studio link implies
founded; the movie-movie link implies sequel-to. We note
that the data is very incomplete.

In this ontology, the best meaning of the node Role is un-
clear. For example, are two actors linked to the same Role
node in the semantic graph if they played the role of Villain
in two different movies? Alternatively, a role node in the se-
mantic graph may only link to actors playing a given role in
a single movie. We arbitrarily chose the former in our case.

8
Distributor

1
Person

2
Movie

3
Award

4
Country

5
Studio

6
Genre

7
Role

Figure 4: Movies ontology.

A related question, which is structurally similar but se-
mantically different is the following. Should two actors who
win a Best Actor award be linked to the same Award node
in the semantic graph? In this case we did not choose this
interpretation since it seems that awards are individual enti-
ties, whereas roles are not.

Table 1 summarizes the node types, frequencies, and other
statistical measures for the movies semantic graph. The re-
sults show high dispersion of average connectivity per type,
for all types. Further, the disparity of connected types is not
particularly different from a random model. These indicate a
relatively well-constructed semantic graph; there are no par-
ticular correlations (given the numbers of each node type)
and thus the information content in the graph is high. The
results will be very different for the terrorism data.

In the semantic graph, the nodes with the largest cluster-
ing coefficients depend on whether the types of the nodes
are considered. In the standard case where the types are not
considered, the node Maurice Barrymore has high cluster-
ing coefficient; the node is connected to Georgiana Drew
Barrymore, Lionel Barrymore, Ethel Barrymore, etc., all of
which are connected to each other. If node types are consid-
ered, then it is not important that neighbors of a node are not
linked if they are not permitted to be linked according to the
ontology. Now nodes that were missed with the above mea-
sure may have high clustering coefficient, e.g., the movie
Dogma (perhaps due to the idiosyncrasies of the incomplete
data).

In the semantic graph, the link between Columbia Pic-
tures and drama (genre) has the most number of common
neighbors (710). However, when the link relevance mea-
sure (Equation (2)) is used, which accounts for the num-
ber of links a node has, the link between Bud Abbott and
Lou Costello is found (30 common neighbors). (We also
found re-releases of movies under a new name in this pro-
cess.) Further, a semantic version of relevance can be de-
fined, which considers only the links that are allowed by the
semantic graph. In this case, the link between Tokuma Stu-
dio and docu-drama is found. (Tokuma is linked to drama
and the movie Carences; docu-drama is linked to Carences
and Miramax; and Miramax is linked to drama.)

We also computed the average relevance per link type
for the semantic graph. First, the link types of least fre-



Node Type nα mα σk

α
R(α) σR

α

1 Person 21504 0.872 2.383 1.836 0.663

2 Movie 11540 1.131 0.816 1.299 0.644

3 Award 6734 2.579 10.201 0.905 0.144

4 Country 19 222.509 582.572 1.812 0.364

5 Studio 1075 1.948 9.534 1.241 0.408

6 Genre 39 77.803 160.060 0.512 0.154

7 Role 115 25.561 64.164 0.924 0.028

8 Distributor 16 206.156 356.043 0.782 0.165

Table 1: Node types and statistics for the movies data: fre-
quency of node type nα, average connectivity per type mα

and its dispersion σk
α, disparity of connected types R(α) and

its dispersion σR
α . The results show high dispersion of aver-

age connectivity per type, for all types. Further, the disparity
of connected types is not particularly different from a ran-
dom model.

Type nα Type nα

1 Nation 92 31 Shooting 445
2 GeographicalRegion 85 32 Bombing 323
3 City 555 33 HostageTaking 14
4 Building 10 34 IncendDeviceAttack 18
5 Combustion 0 35 Lynching 3
6 Destruction 0 36 SuicideBombing 107
7 Device 0 37 CarBombing 114
8 GeographicArea 3 38 Arson 15
9 Government 1 39 HandgrenadeAttack 38

10 GovernmentPerson 2 40 Hijacking 15
11 Group 1 41 RocketMissileAttack 14
12 Hole 1 42 KnifeAttack 53
13 Human 6 43 ChemicalAttack 9
14 JoiningAnOrg 0 44 LetterBombAttack 10
15 Killing 0 45 Stoning 3
16 OccupationalRole 3 46 VehicleAttack 7
17 Region 0 47 MortarAttack 8
18 SocialRole 1 48 Vandalism 4
19 StationaryArtifact 1 49 Other 5
20 UnilateralGetting 0 50 Number 120
21 Vehicle 1 51 Continent 2
22 ViolentContest 1 52 GeneralStructure 6
23 Weapon 0 53 Month 12
24 Proposition 0 54 GeneralBuilding 2
25 BinaryPredicate 0 55 GeneralHuman 2
26 ForeignTerrOrg 28 56 Airbase 2
27 ReligiousOrg 0 57 Airport 3
28 TerroristOrg 53 58 State 4
29 Infiltration 8 59 Railway 1
30 Kidnapping 155

Table 2: Node types and their frequencies, nα, for the ter-
rorism data.

quency were Person-founded-Studio and Studio-located-in-
Country. However, the links with lowest average relevance
per link were Movie-shot-in-Country and Award-awarded-
in-Country. As mentioned, these latter links may by least
useful for automatic relationship detection.

Terrorism data
Relational data about world-wide terrorist events is avail-
able,1 as well as ontologies describing the organization of
this data (Niles & Pease 2001). From this data we con-
structed an ontology and semantic graph. The 59 node types
are shown in Table 2. The ontology is shown in Figure 5
as an adjacency matrix. The semantic graph contains 2366
nodes.

Figures 6 and 7 plot the average number of neighbors per
type and the disparity of connected types, respectively. Er-

1Data available at http://ontology.teknowledge.com.
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Figure 5: Adjacency matrix for the terrorism ontology. The
matrix is used to determine which node types are allowed to
link to a given type.
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Figure 6: Terrorism data: average number of neighbors per
type, mα. Each error bar is of length σk

α on each side of the
average.
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Figure 7: Terrorism data: disparity of connected types,
R(α). Each error bar is of length σR

α on each side.



ror bars are used to show the dispersion of the quantities.
We consider that frequencies of 50 or more in this data set
are statistically significant. Thus, we consider types 1, 2, 3,
28, 30, 31, 32, 36, 37 42, and 50. For all these types, the
average number of neighbors per type is small. The types,
however, can be separated by their disparity. Types 1, 2, 3,
28, and 50 have high disparity, i.e., they are connected to
many different types. This is consistent with nodes of types
1, 2, and 3 being of type “location,” nodes of type 28 being
of type “terrorist organization,” and nodes of type 50 being
of type “number.” The remaining types are types of attacks
and are not particularly correlated with any other node types
(given the numbers of each node type). We note in this case
that semantically similar node types have similar values of
mα and R(α).

Conclusion
This paper reveals some of the knowledge representation is-
sues associated with semantic graphs. Ideas from the field
of complex networks have been applied and generalized to
semantic graphs. For example, transitivity may be used to
determine the relevance of edge types for relationship detec-
tion.

We have defined several measures for statistically charac-
terizing node types. These quantities take into account the
ontology which specifies the permitted connections in the
semantic graph. Many other important measures can be de-
fined, such as correlations with attribute values (Jensen &
Neville 2002), which was not covered in this paper. These
and other tools can be useful to help design ontologies and
semantic graphs for knowledge representation.
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