

 Int. J. Electronic Business, Vol. 6, No. 1, 2008 67

 Copyright © 2008 Inderscience Enterprises Ltd.

Knowledge sharing in a collaborative business
environment

Seema Degwekar* and Stanley Y.W. Su
Database Systems R&D Center,
Department of Computer and Information Science and Engineering,
University of Florida,
Gainesville, Florida, USA
Fax: +1-352-392-1220 E-mail: spd@cise.ufl.edu
E-mail: su@cise.ufl.edu
*Corresponding author

Abstract: In recent years, business organisations have perceived a growing
need to collaborate with one another to solve common problems and to stay
competitive. An important form of collaboration is sharing of human/
organisational knowledge. In this work, we use different types of business rules
and structures of these rules to capture multi-faceted business policies,
strategies, regulations, constraints, processes and operating procedures.
The occurrence of any event of interest to these organisations can initiate
the processing of multiple rules and rule structures. We present a rule
specification language and an event-triggered knowledge sharing system for the
specification and processing of distributed events, triggers, heterogeneous
business rules and rule structures in an enhanced web service infrastructure.

Keywords: business knowledge representation and sharing; rule language;
web services; event and rule processing; decision support; electronic business.

Reference to this paper should be made as follows: Degwekar, S. and
Su, S.Y.W. (2008) ‘Knowledge sharing in a collaborative business
environment’, Int. J. Electronic Business, Vol. 6, No. 1, pp.67–92.

Biographical notes: Seema Degwekar received her PhD in Computer
Engineering from the University of Florida in 2007. She obtained
her Bachelor’s Degree in Computer Engineering from the University of
Mumbai in 2000, and her Masters Degree in Computer Science from the
University of Florida in 2002. Her research areas include event and rule based
systems, knowledge management and sharing, distributed computing, indexing
large databases, web services, peer-to-peer systems, XML and web databases.

Stanley Y.W. Su is a Distinguished Professor Emeritus and Adjunct Professor
of the Department of Computer and Information Science and Engineering
at the University of Florida. He is an IEEE Fellow. He was the Director of the
Database Systems Research and Development Center, during 1977–2005 and
Distinguished Professor with the Computer and Information Sciences and
Engineering Department and the Electrical and Computer Engineering
Department since 2001. He received his PhD Degree in Computer Science from
the Computer Science Department, University of Wisconsin-Madison in 1968.
His research areas are database and knowledge base management, distributed
and parallel computing, collaborative systems, web services, semantic
modelling, e-government, e-business and e-learning.

 68 S. Degwekar and S.Y.W. Su

1 Introduction

To enable business organisations to compete in the global economy, they must tackle
complex problems in areas such as supply chain management, product design, planning
and manufacturing, business negotiation, etc. Along with sharing data resources, it would
be very useful to also share the multi-faceted business knowledge expressed in their
policies, constraints, regulations, processes and procedures. Such knowledge sharing will
enable collaborating businesses to learn from each other and will better equip them to
solve, not only the specific problem they currently work together on, but also similar
problems in the future.

Knowledge can be broadly classified as tacit or explicit (Nonaka and Takeuchi,
1995). The explicit multi-faceted knowledge we mentioned above can be specified
using any of the following three popular types of business rules (Loucopoulos and
Katsouli, 1992; Sowa, 2000) used in existing rule-based systems (Business Rules Group,
2000; Rouvellou et al., 2000): integrity constraints, logic-based derivation rules, and
action-oriented rules. Integrity constraint rules, used in database systems, ensure the
consistency of a database (Ullman, 1982). Logic rules are commonly used in expert
systems for decision-support (Ullman, 1988). Action-oriented rules (Widom and Ceri,
1996) are used in event–based systems (Buchmann et al., 2004; Carzaniga et al., 2000)
and production rule systems (Riley, 2006; Brownston et al., 1985). These different types
of rules can be used to capture business constraints, policies, and regulations.

Business processes and operating procedures encode a significant portion of
human/organisational knowledge. A process or procedure can consist of a set of activities
linked by conditional transitions in a structure that specifies their order and conditions of
execution (Hollingsworth, 1995). An activity performs some operations on the input data
to produce some output data. Such operations can check the validity of the input data, use
the input data to derive some other data, or modify/update the input data. Thus, each type
of activity can be represented using the above three types of rules. The relationship
between these activities can be captured using a rule structure to model an organisational
or inter-organisational process or procedure. Expressing organisational policies,
regulations, processes etc., as high-level declarative rule and rule structure specifications
is more desirable than implementing them in agent or application code because members
of the collaborating organisations can easily understand and/or modify them.

We define a collaboration federation as a number of autonomous business
organisations collaborating with one another to solve some common problems. They are
interested in sharing data and knowledge that are pertinent to solving the problems.
Organisations would notify each other whenever an event of importance occurs and share
the data associated with the occurrence of this event (i.e., event data). An event is
anything of interest and importance like a slip in the production schedule, withdrawal of a
product order, or a machine malfunction on the manufacturing floor. Along with these
event data, organisations can also share the data generated by the execution of relevant
knowledge rules triggered by the event occurrence. In this paper, we shall focus on this
event-triggered data and knowledge sharing among collaborating business organisations.

On receiving event data, an organisation processes applicable rules and rule
structures. A rule or rule structure, whose input data form a subset of the event data, is
considered applicable for processing. The data generated by this processing becomes part
of the event data. Thus, event data is a dynamic data set that continues to be added or
modified by the processing of applicable rules and rule structures. Each new version of

 Knowledge sharing in a collaborative business environment 69

event data is sent to all organisations that have applicable rules and rule structures for
another round of processing. This process would continue until no rules and rule
structures are applicable to the last version of event data. At this time, all collaborating
organisations would have processed all the applicable rules and rule structures and
received all the data that are relevant to the event occurrence. In order to achieve the
above distributed, event-triggered data sharing and rule processing, we need to have,
among other facilities like advanced user interfaces,

• a rule specification language for specifying different types of rules and rule
structures

• a mechanism to achieve the interoperation of heterogeneous, distributed rules and
rule structures

• an infrastructure for managing and processing distributed events, transmitting and
merging event data, and triggering the processing of rules and rule structures in a
uniform manner.

They form the focus of this paper.
To achieve the interoperability of heterogeneous business rules, one could

have used three types of rule engines to process the three different types of rules
and find a way to make the engines themselves interoperable. We believe this will result
in a very complex and inefficient system. Another approach taken in Bassiliades et al.
(2000) and Rosenberg and Dustdar (2005a) is to choose one knowledge representation
(e.g., Event-Condition-Action (ECA) rule) and convert the other two types of rules into
the chosen one so that they can all be processed by a single rule engine. One problem
with this approach is that the semantics of these rule types are quite different. It is not
always possible to convert one type of rule into another without some loss of meaning.
Also, most existing rule engines interpret rules at runtime resulting in an inefficient,
unscalable and centralised rule processing system. In our work, we use a compilation
approach by translating different types of rules and rule structures at the rule definition
time into code and wrapping the code as web services for their uniform registration,
discovery and invocation in a web service infrastructure.

The intended contributions of this paper are:

• To introduce an XML-based rule specification language for the specification and
exchange of multi-faceted business knowledge. The language has more expressive
power than existing rule markup languages because it can be used to specify
different types of rules and rule structures.

• To present an approach of processing heterogeneous rules and rule structures in a
distributed fashion without the use of different types of rule engines.

• To present an enhanced web service infrastructure and a distributed
event-trigger-rule-based system used for processing dynamic event data and
multi-faceted knowledge in a collaborative business environment. The rule set
introduced by the Business Rules Group (2000) is used to demonstrate the utility
of the rule language, processing strategy, infrastructure and system.

We acknowledge some existing systems and approaches that are related to our work in
three areas: rule markup languages, event- and rule-based systems, and rule
interoperability. Several recent efforts like SRML (Cover, 2001), BRML (Cover, 2002)

 70 S. Degwekar and S.Y.W. Su

and RuleML (The Rule Markup Initiative, 2000) are concerned with developing a rule
markup language for business applications. Of these, SRML and BRML address only
condition-action and derivation rules, respectively. RuleML is an ongoing effort that aims
to include all three types of rules. It has made significant progress in capturing derivation
rules. However, support for integrity constraints, ECA rules, and rule structures is still
lacking. Besides the ones mentioned above, there are many other efforts such as the
Semantic Web Rule Language (SWRL) (2003), which aims to extend the set of
axioms of the Web Ontology Language (2004) to include Horn-like (deductive) rules, the
Rule Language in OWL (2004), which allows the specification of deductive rules in
OWL and provides the facility for translating these rules into Java Expert System
Shell (JESS) rules, and the Agent-Object-Relationship Markup Language (AORML)
(Wagner, 2003), which represents the behaviour of business entities (business processes,
events, agents, claims, etc.) by means of reaction (or ECA) rules. All of the above
languages and systems support only one or two of the rule types we are interested in, and
offer no support for the notion of rule structure as defined in our language and system.
In Wagner et al. (2005), the authors define a rule language by means of MOF/UML
models. They present the abstract syntax of the language, but do not provide concrete
mappings to a corresponding DTD or XML Schema.

Event- and rule-based systems presented in Buchmann et al. (2004) and
Krishnamurthy and Rosenblum (1995) couple event notification with condition-action
rules alone. There are also many so-called active database systems, which use
only condition-action rules as surveyed in Widom and Ceri (1996). E-DEVICE
(Bassiliades et al., 2000) proposes an active knowledge based system to support the
processing of all three rule types in an active OODB system by mapping derivation rules
and integrity constraints into condition-action rules. However, the system offers no
support for integrity constraints. The system presented in Rosenberg and Dustdar (2005a)
provides a web service interface to heterogeneous rule engines, thereby providing a
uniform API to access each engine. This same system has also been used to demonstrate
rule integration in BPEL (Rosenberg and Dustdar, 2005b). Here, the authors focus on the
integration of business rules with web service composition. A process workflow is
augmented with pre- and post- activity rules that encapsulate business logic. Different
from this work, rule execution in our system is governed not only by explicit triggers that
link events to rules and rule structures, but also by implicit triggers determined by
examining whether the input data to a rule or rule structure are a subset of the event data.
Implicit triggers give our system the forward-chaining like behaviour which is not present
in the referenced system. Furthermore, rule execution in the referenced system is carried
out by individual engines interpretively, whereas we use a compilation approach. Support
for rule structures is lacking and it is also not clear how one rule engine can make use of
the results generated by another. W3C has established a Rule Interchange Format
working group (The Rule Interchange Format, 2005) to produce a framework or language
to translate rules between different systems. The purpose of this group is to enable rule
interoperability by allowing rules specified in one format to be processed by a different
rule engine. At the time of this writing, the RIF Core has been developed, which focuses
only on derivation rules. It is the working group’s aim to include integrity constraints as
well as ECA rules in the language.

 Knowledge sharing in a collaborative business environment 71

The rest of this paper is organised as follows. Section 2 explains the three types of
rules and rule structure. Section 3 presents the algorithms for converting rules and rule
structures into web services. Section 4 presents the architecture of our implemented
event-trigger-rule-based system and the strategy used to decompose and process a
structure of different types of rules in a web service infrastructure. Section 5 summarises
the paper.

2 Business rule definition language, rule structure and trigger

In this section, we present an XML-based rule language for knowledge specification
using the three types of rules and rule structures discussed above. To the best of our
knowledge, no single rule language published in existing literature specifies all three
types of rules and rule structures. We shall present the rule language first before we
present the algorithms for converting rules and rule structures into web services.
Rules and rule structures captured in XML are used for two purposes:

• translation to the corresponding web services for rule invocation

• knowledge exchange among collaborating organisations.

Each rule has the following characteristics: a name, a description, an optional state, and a
sharing attribute that indicates if the rule is local or can be shared with other
organisations. The rule state can be either active or suspended. Figure 1 shows the Rule
constructs that define a RuleBase in the XML format. The syntaxes of the three types of
rules are described in the following subsections.

Figure 1 XML syntax for a rule base

2.1 Integrity constraints

An integrity constraint (Ullman, 1982) ensures that changes made to the database do not
result in a loss of data consistency. For constraint specification, we adopt some syntactic
constructs of our earlier work on a Constraint Specification Language (Su et al., 2001),

 72 S. Degwekar and S.Y.W. Su

which was patterned after the Object Constraint Language (Warmer, 1998). Since we use
an object-oriented data model for modelling event data, constraints can be specified on an
object or on one or more of its attributes. Constraints can be classified into two types:
attribute constraint and inter-attribute constraint.

An attribute constraint is of the form

x θ n, or x in {n1, n2, …, na}

where x is an object or object attribute, n is a value from x’s domain, θ is one of the six
arithmetic comparison operators (>, ≥, <, ≤, =, ≠), and {n1, n2, …, na} represents a set of
enumerated values from x’s domain. Thus an attribute constraint specifies the allowed or
valid constant values of an object or object attribute. Examples of attribute constraints
are: a > 10, b in {2, 5, 9}, where a and b are object attributes.

An inter-attribute constraint is of the form

f1(x1, x2, …, xb) θ f2(y1, y2, …, yc), or P1α, P2α … αPd: –Q1α Q2α … αQe

where f1(x1, x2, …, xb) and f2(y1, y2, …, yc) are mathematical formulas relating the objects
or object attributes x1, x2, …, xb, and y1, y2, … yc, respectively. P1, P2, …, Pd and Q1,
Q2, …, Qe are expressions of the form f1(x1, x2, …, xb) θ f2(y1, y2, …, yc) connected
by the logical operator α in {Λ,V}. The sets {P1, P2, …, Pd} and {Q1, Q2, …, Qe} are
linked by an if-then relationship. If P1α P2α … αPd holds true, then Q1α Q2α … Qe must
also hold true. Based on the above definition, we split the inter-attribute constraints into
two sub-types: formula constraints and condition constraints.

The XML syntaxes (in diagram form) for attribute and inter-attribute constraints are
shown in Figure 2. The object or object attribute is represented by the element DataItem,
which is further described with name and type information. Since we generate web
services from such constraint specifications programmatically, we require the precise
name and type information as needed by the programming language used to implement
the web service. Element RelOp represents the arithmetic comparison operators,
element EnumOp represents the enumeration operators in or not in, and Value describes
constant values.

The formula constraints are represented by the element FormulaCons, whereas the
condition constraints are represented by the element CondCons. The functions f1 and f2 in
the formula constraints use the element Expr, which is explained below. The expressions
in condition constraints are described by the elements IfExpr, which represents an if
construct, and ThenExpr, which represents a then construct. An Expr element is
composed of one or more Term elements linked by mathematical operators. A Term can
be a single data item, a constant value, or an operation. An operation can take in zero or
more data items as input and produce zero or more data items as output. An IfExpr
element is composed of one or more Boolean expressions, modeled by BooleanExpr,
which in turn can be either a predicate expression (an expression that links two Expr
elements by a comparison operator), or a single term. Due to space limitations, we cannot
include the specification of Expr, BooleanExpr, Term, and other elements that complete
the rule language specification. Interested readers are referred to Rule Specification
Language Schemas (2005) for the complete XML schemas.

 Knowledge sharing in a collaborative business environment 73

Figure 2 XML syntax for attribute and inter-attribute constraints

2.2 Logic-based derivation rule

Logic-based derivation rules (Ullman, 1988), also known as inference rules or deductive
rules, assess a given premise to come to some conclusion. They can be expressed as

P → Q, or P ⇒ Q

which means that given the premise(s) P evaluate to true, the specified conclusion Q is
also determined to be true. Both P and Q can be complex Boolean expressions linked
with logical operators Λ and V, with the restriction that the expressions in Q be connected
only using the operator Λ. If V semantics are desired, we first obtain the set of
expressions {e1, e2, …, em) in Q, where m is the number of predicates in Q connected
by V. The original rule P → Q is then represented as m rules, r1, r2, …, rm, where
each ri has P as the premise and ei as the conclusion.

The derivation rule syntax is shown in Figure 3. It is derived in part from RuleML
(The Rule Markup Initiative, 2000). The implication is represented by the element
Implies, which consists of the Head and Body elements. The Head element contains one
or more Atom elements linked by the Λ operator. Each of these atoms specifies a new or
derived value for the indicated object or object attribute. The Body element consists of
one or more IfExpr elements linked by the logical operators Λ and V.

 74 S. Degwekar and S.Y.W. Su

Figure 3 XML syntax for a derivation rule

2.3 Action-oriented rule

Action-oriented rules are typically found in active database systems (Widom and Ceri,
1996). They are known as ECA rules or just event-action rules (Krishnamurthy and
Rosenblum, 1995). When an event specified by the event clause occurs, the ECA rule
checks for the truth value of the condition clause, and executes the action clause if the
condition clause is true.

The general format of the rule is thus

On E If C then execute A.

If we separate the event (E) from the Condition-Action (CA) part, we see that the
CA part is in fact an action-oriented rule. The event is used to indicate when to
perform the action-oriented rule. Also, it may be useful to specify the actions to be taken
when the condition expression evaluates to false. We can model this concept as two
complementary if-then rules

C1A, and C2B

where C1 = C2, and A and B are the respective action clauses. Another way would be to
represent both the if-then rules using a single if-then-else rule. In our earlier work, we
have used this format to define what we call a condition-action-alternative_action (CAA)
(Lee et al., 2001) rule. Thus, the format of the CAA rule is

If C then A else B

where C is the condition expression, and A, B are the action and alternative action
clauses, respectively. We use the above form of the action-oriented rule in this paper.

We present the syntax of the CAA rule in Figure 4. The condition clause is
represented using the Condition element, the action clause by the Action element and the
alternative-action clause by the AlternativeAction element, respectively.

The condition expression is composed of two parts – a guard clause and a condition
clause. The guard clause is optional. It can have an ordered list of expressions to be
evaluated in turn. If any expression is false, the entire rule is skipped, thereby serving as a
means of conditionally deactivating the rule. If both the guard clause and the condition
clause are true, then the action is taken. If the guard clause is true and the condition
clause is false, the alternative action is taken. The Action and AlternativeAction elements
consist of a set of operations.

 Knowledge sharing in a collaborative business environment 75

Figure 4 XML syntax for a CAA rule

Since we allow events and rules to be defined and published by different organisations,
we separate event (E) specifications from condition-action-and-alternative_action (CAA)
specifications. We allow organisations to use a trigger (to be discussed in Section 2.5) to
link an event to, not only a CAA rule, but also an integrity constraint or a derivation rule.
A trigger can also link an event to a structure of rules of different types. Thus, an event
occurrence can invoke an integrity constraint check, a derivation of new data, an
execution of a CAA rule, or a structure of these rules.

2.4 Rule structure

When a specific event occurs, an organisation may have different types of rules that need
to be executed in a specific order to carry out a procedure or process. It is very natural to
model such a procedure or process by specifying the structural relationships between
individual rules. We capture these relationships in a rule structure introduced in our
earlier work (Lee et al., 2001).

In an organisational process, a rule r may be required to execute before another rule s,
thus establishing a direct link between r and s. Similarly, a rule r may be required to
execute before multiple rules s1, s2, …, sm, m > 1, which can then be processed in parallel.
In this case, r is connected to s1, s2, …, sm in a split construct. A rule s may be required to
wait for all of a given set of rules r1, r2, …, rn, n > 1 to finish before it can start its own
execution.

In this case, r1, r2, …, rn are connected to s in an and-join construct. Also, s may be
required to wait for not all but a subset of the rules r1, r2, …, rn, n > 1 to finish execution.
This establishes an or-join relationship between r1, r2, …, rn and s. In each type of
relationship, the rule(s) that governs(govern) the execution of other rules is(are) termed
predecessor(s), and the rule(s) that executes(execute) after the predecessor(s) is(are)
termed successor(s).

A rule structure can now be defined as a directed graph with different types of
rules as nodes, which are connected by link, split, and-join, and or-join
constructs.

The syntax of a rule structure is given in Figure 5. A rule structure is represented using
the RuleStruc element at the root. A rule structure is composed of one or more
substructures (RuleSubStruc), each of which represents one of the relationships discussed
above. The predecessors and successors in each rule path are expressed using the
elements Predecessor (rule r in a link or split), Predecessors (rules r1, r2, …, rn in a join),

 76 S. Degwekar and S.Y.W. Su

Successor (rule s in a link or join), or Successors (rules s1, s2, …, sm in a split). Num
represents the number of rules s may be required to wait for in an or-join relationship.

Figure 5 XML syntax for a rule structure

2.5 Trigger

A trigger specifies a number of alternative events that will trigger the processing of a
single rule or a structure of rules. Just like events and rules, triggers can be explicitly
defined by collaborating organisations that are different from those that defined events,
rules and rule structures. In this case, the organisation that contains the rule or rule
structure becomes an implicit subscriber of the event. Triggers can also be automatically
generated by the system to link a distributed event to a distributed rule or rule structure,
if the event data (or part of it) can provide the input data needed for processing the rule or
rule structure. In this case, the rule or rule structure is said to be applicable to the event.

We stress the importance of allowing collaborating organisations to independently
define events, rules, rule structures and triggers in a distributed, collaborative
environment because it gives the flexibility and power to express and enforce
policies, regulations, constraints, procedures and processes that are important to achieve
inter-organisational sharing and collaboration.

3 Heterogeneous rules as web services

3.1 Creating a web service

Figure 6 outlines the general algorithm for web service synthesis. It takes as
input a specification of rules in XML that conforms to the rule definition language
introduced in Section 2. Each rule is translated to code and wrapped as a web service.

 Knowledge sharing in a collaborative business environment 77

The algorithm invokes appropriate handler methods to create the source code for the
rule (steps 3–5) depending on its type. Depending on the application framework, we need
to create specific configuration files required for successful compilation and deployment
of a web service (steps 6–8). To facilitate discovery of a web service using UDDI (2001),
we also publish the web service to a private UDDI registry (step 9).

Figure 6 Algorithm for web service synthesis

3.2 Mechanisms for converting different types of rules

3.2.1 Integrity constraints

Each integrity constraint rule is represented as a web service with the operation/method
check(…). The algorithm determines the type of the constraint and generates the
appropriate program statements for check(…), details of which are given in Figure 7.
The method check(…) examines the supplied input data and returns a Boolean value
which is true if the specified constraint is satisfied and false otherwise. Specific cases to
handle comparison operators, enumeration operators, formula constraints and condition
constraints are shown in the algorithm. All data items referenced in the constraint rule
constitute the input to check(…).

If the constraint type is an attribute constraint, the rule code checks if the relationship
specified by the comparison or the enumeration operator holds. If the constraint
is an inter-attribute constraint of the formula constraint subtype, the algorithm first
generates code for the expressions on the left hand side and the right hand side as
lExprCode and rExprCode, respectively. The method check(…) then determines
if the expression represented by lExprCode is related to the one represented
by rExprCode as specified by op, where op is the comparison operator used. For a
condition constraint, the algorithm generates code for the if-part and the then-part as
ifPartCode and thenPartCode, respectively. The method check(…) then determines if
ifPartCode is true. If so, it determines if thenPartCode also holds true. Each of these code
statements for the integrity constraint web service is captured in the list stmts.

After all the constraints have been examined, a service interface file is created.
The name and type information from the parameter name and type lists is used to create
the operation check(…). Next, a service implementation file is created. Each code
statement from the list stmts is written to the file.

 78 S. Degwekar and S.Y.W. Su

Figure 7 Algorithm for an integrity constraint

3.2.2 Derivation rules

Each derivation rule is translated to a web service with the operation/method implies(…).
This method examines the input data to determine if the body of the implication is true.
If so, it returns the new data specified in the head of the implication. Figure 8 shows the
algorithm for creating the method.

 Knowledge sharing in a collaborative business environment 79

Figure 8 Algorithm for derivation rules

The input parameters to the method implies(…) are the data items required by the body of
the implication and the data items referenced in the ‘value’ part of the head. The body
contains one or more Boolean expressions linked by logical operators and and or.
The getBodyVal(…) function translates the implication body into program statements.
Each Boolean expression in the implication body makes use of the function
getExprCode(…) from Figure 7 to generate the code for the expression. The head of the
implication contains one or more Atom elements linked by the and operator. Each of
these elements contains a derived data item and the corresponding value. This value can
be a constant value or another data item. The function getHeadMap(…) constructs a
hashmap named headVal, which contains the new data as a (name, value) pair indexed by
name. If the body evaluates to true, the output contains each pair in headVal, otherwise it
is null.

A service interface file is created using information from paramNames and
paramTypes. A service implementation file is basically an if-then block. The expression
in the if statement is the implication body and the expression in the then statement is the
implication head. The statements in the then block transfer each (data item, value) pair

 80 S. Degwekar and S.Y.W. Su

from headVal into map. At runtime, if the body is true, map will contain the new data
values, otherwise it will be empty.

3.2.3 CAA rules

Each CAA rule is translated to a web service with the operation/method perform(…).
If the guard clause evaluates to true, this method examines the input data to see if the
condition is satisfied. If so, the operations specified in the action clause are executed, and
the output of those operations is returned, otherwise the operations specified in the
alternative_action clause are executed and the output of those operations is returned.
Figure 9 gives the algorithm for creating the method perform(…).

Figure 9 Algorithm for CAA rules

 Knowledge sharing in a collaborative business environment 81

Figure 9 Algorithm for CAA rules (continued)

The input parameters to the rule are the data items referenced in the condition clause, and
the data items specified as input to the operations in the action and alternative_action
clauses. The output data from the operations in the action clause are added to the
hashmap actionData, and the output data from the operations in the alternative_action
clause are added to the hashmap altActionData. Both these maps contain (name, value)
pairs, indexed by name. The function getConditionCode(…) translates the condition
clause to program statements. Similarly, the functions getActionCode(…) and
getAltActionCode(…) translate the action and alternative_action clauses to code,
respectively. The output of the method perform(…) is a hashmap named map, which
contains the result of the operations performed by the rule. At runtime, either the action
or the alternative_action clause is executed, and map contains the corresponding output.

The function getActionCode(…) is shown in some detail in Figure 9.
getAltActionCode(…) is very similar and is not shown separately. An action
(or alternative_action) clause consists of a list of operations to be executed. The function
translates each operation to program statements of the form output = operation name
(input), or operation name (input) depending upon whether the operation contains return
parameters or not. These calls are of course, web service calls. In case the operation
returns multiple data items, we create an output class that captures all of these data items
as the class’ data members. All such program statements are stored in the array actionVal
(or altActionVal), which is returned. Service interface and implementation files are
constructed in a manner similar to that for derivation rules.

3.3 Mechanism for a rule structure

A rule structure links rules together in a directed acyclic graph as explained in Section 2.
It is defined and published as a web service just like any other rule. We require the
following condition to be met to generate the web service for a rule structure.

Each of the rules in a rule structure must have already been defined and
published as a web service before the rule structure is defined.

 82 S. Degwekar and S.Y.W. Su

Each rule structure is represented as a web service with the operation/method execute(…).
Figure 10 shows the algorithm for creating execute(…). This method takes in all the input
data items required by all the rules in the structure, and returns the output data items
produced by all these rules. The objective of the method is to invoke the rules in the order
specified by the structure. To facilitate this, it creates invoker threads for each rule in the
structure. The algorithm to create such an invoker thread (createInvokerThread(…)) is
also shown in the figure.

Figure 10 Algorithm for rule structure

 Knowledge sharing in a collaborative business environment 83

Figure 10 Algorithm for rule structure (continued)

The algorithm rsHandler(…) breaks down the given rule structure into substructures.
Each substructure contains a link, a split, an and-join, or an or-join relationship between
two or more rules. The algorithm generates invoker threads for every distinct rule in the
substructure. Depending on the substructure type, one of the four handler functions is

 84 S. Degwekar and S.Y.W. Su

called. Each of these handler functions is responsible for generating code that will cause
the rule execution in the manner specified by the corresponding substructure type.
The method execute(…) is then constructed by putting together code generated by each of
the handler routines. The method execute(…) maintains an array toBeExecuted to keep
track of those rules that have yet to begin execution.

linkHandler(…) generates program statements to ensure that a successor rule r2 is
executed only after the predecessor rule r1 has finished execution as follows. First, the
code creates an invoker thread object for r1. If this is a newly created thread, r1 is
included in toBeExecuted, if not already put in, and the thread for r1 is started. Once this
rule has finished execution, it copies the output items from r1 to the rule structure’s
member variables, and removes r1 from toBeExecuted. It creates an invoker thread for r2,
and puts it in toBeExecuted if this is a newly created thread. Once r1 finishes execution, r2
is allowed to proceed. Once r2 has finished execution, it is removed from toBeExecuted,
and its output copied to member variables. Similarly, splitHandler(…) generates code to
invoke the successor rules only after the predecessor rule has been executed,
andJoinHandler(…) generates code to execute the successor rule only after all the
predecessor rules have been executed, and orJoinHandler(…) generates code to execute
the successor rule only after the specified number of predecessor rules have been
executed. The algorithms for splitHandler and orJoinHandler are included in Figure 10.

4 System architecture and rule processing

4.1 System architecture

The distributed event- and rule-based system has a peer-to-peer server architecture
shown in Figure 11. All organisations have identical subsystems installed at their sites.
Each collaborating site creates and manages its own events, rules, rules structures and
triggers, but their specifications are registered/published at the host site of a collaboration
federation. The host maintains a repository of these specifications.

Figure 11 System architecture

 Knowledge sharing in a collaborative business environment 85

The rule server component at each site stores and manages the web services generated for
the rules and rule structures defined at that site. These web services are registered at the
web service registry (WSRegistry) of the host site. The event server component is
responsible for storing information about events defined at that particular site and the
information about event subscribers. A collaborating site can specify a trigger linking a
distributed event to a rule or rule structure, thus becoming an explicit subscriber of that
event. This information is stored by the event server in a local database. Triggers can be
automatically and dynamically generated by the system if the event data schema
associated with an event occurrence is a superset of the input data schema of a rule or
rule structure. In this case, the site that has the rule or rule structure becomes an implicit
subscriber of the event. Both explicit and implicit subscribers will be notified upon the
occurrence of an event. Distributed rules and rule structures are invoked and processed by
replicas of the rule server. An event server at any site can serve as the coordinator for a
particular knowledge sharing session initiated by an event occurrence at that site.
It handles the aggregation of the dynamic event data sets associated with the event
occurrence.

We have implemented the algorithms for converting knowledge rules to web services
in Java, with the Sun Java System Application Server Platform Edition 9 as our
application server. The event and rule servers have been implemented using the
Enterprise JavaBeans 2.1 framework. To facilitate easy and efficient lookup, we publish
the deployed web service to our private UDDI registry using the UDDI4J API.
This registry makes use of the Apache jUDDI project to communicate with a MySQL
database that stores the web service information. The MySQL database is also used by
the event server to store the event and trigger information. We use a private registry
instead of a publicly available UDDI-based registry for two reasons. By eliminating
clutter typically found in a business registry, we speed-up registry look up. Also, a
private registry provides some level of security, as it is available only to the organisations
participating in a collaboration federation.

4.2 Event-triggered processing of rules

We now use an example scenario to describe the event-triggered processing of distributed
rules and rule structures, and explain how a rule structure is decomposed and processed.

4.2.1 Distributed rule and rule structure processing

In their first white paper (Business Rules Group, 2000), the Business Rules Group has
provided a set of business rules for the operation of a fictitious car rental company named
EU-Rent, which has 1000 branches in towns in different countries. Each branch may wish
to share some data and knowledge specifications with the other branches to achieve
better management of the company as a whole. Thus, each branch is a collaborating site
in the collaboration federation of the EU-Rent company. Although this is not a real-world
inter-organisational setting, it suffices to serve our purpose due to the following reasons.
First, the rule set has been independently constructed and published for academic use by
a well-known group. Second, each of the rules in the rule set belongs to one of the three
different rule types processed by our system. Third, as can be seen from the rule set,
managing the activities of multiple branches requires the interoperation of different rule
types captured in rule structures.

 86 S. Degwekar and S.Y.W. Su

We have used our rule specification language to define EU-Rent’s rules and rule
structures, and convert and register them as web services. There are a total of 46 rules,
of which 29 are CAA rules, 13 are integrity constraint rules and 4 are derivation rules.
There are 9 rule structures discernible from the rule set. Each of these rules and rule
structures took about 6–7 s to be converted, compiled, deployed and published as a web
service on a Windows XP machine with an Intel Pentium 4 processor and 1 GB RAM.
The major component of the total time required for web service creation is in the
deployment, and publication activities. On average, the compilation takes a few ms for a
rule or rule structure, whereas the deployment takes about 5–6 s, and the publication an
additional 0.5–1 s.

To demonstrate the event-triggered processing of distributed rules and rule structures,
we use the scenario depicted in Figure 12. A customer approaches a local branch
Branch1 with the request for a car rental. Branch1 is unable to satisfy his/her request.
It posts an event RemoteRentalRequest and the event data in XML format (ED1) is sent
to all subscribing branches (denoted as step 1 in the figure). The event data contains the
branch identifier (bID), the customer license number (lno), the pickup date (pd) and
dropoff date (dd), the make (mk), the model (mdl) and the group or class (grp) of the car
requested. Assume that Branch2, Branch5 and Branch8 are branches that have applicable
rules. Each branch has a local set of rules that need to be processed when the
RemoteRentalRequest event occurs. Let us consider in some detail the rules to be
executed at Branch2, which has defined a trigger linking the event to the rule structure
RS2, but no trigger that links the event to the applicable rule CAA2.3.

Figure 12 Event-triggered processing of distributed rules and rule structures in a collaboration
federation

 Knowledge sharing in a collaborative business environment 87

CAA2.3 is a rule that determines if a customer is eligible for a loyalty incentive scheme at
the branch. If the customer has made four or more rental reservations at that branch,
he/she is eligible and can receive free rentals or upgrades. This rule is invoked (shown by
a dotted line in the figure) by the rule server because the rule input data, the customer’s
license number (lno), is a subset of the event data and a trigger is automatically generated
by the system to link the event to the rule. In this scenario, we assume the customer is not
eligible, and hence CAA2.3 generates no output. The capability to invoke applicable rules
even though no triggers are explicitly specified by users is a very important feature of the
system because some collaborating organisation may publish only shareable rules and
rule structures without specifying any trigger.

Now let us consider the rule structure RS2. A customer may be blacklisted
due to earlier problems with payments and returns. The branch must not serve such a
customer, so the first rule in RS2 checks that the customer is not blacklisted by means of
the integrity constraint rule IC2.1. This constraint rule checks if the customer license
number is not in the list of blacklisted customers. The input to this rule is the customer’s
license number (lno), and the output is a data item of type Boolean, with the same
name as the constraint’s name having a true/false value to indicate whether the
constraint was satisfied or not. The result of this check is written to the event data file as
the new data item ic2.1 (shown in bold face). Next, the derivation rule DR2.1 and
condition-action-alternative_action rule CAA2.1 are executed. If no group is specified for
the car requested, DR2.1 assigns the default car group A to the request. The input to this
rule is the requested car group (grp), and the output is the default car group A, if the input
car group is null. In this scenario, the event data file did not mention any car group,
so DR2.1 supplies the default car group A. If the make and the model have been specified
for the car request, CAA2.1 checks if Branch2 has an available car with the same make
and model. The input to this rule is the make (mk), model (mdl), pickup date (pd), and
drop-off date (dd). The output contains the details of an available car. In this scenario,
we assume that CAA2.1 cannot find an available car. Once both these rules have been
executed, rule CAA2.2 is invoked. If CAA2.1 cannot find an available car, CAA2.2 checks
if there is an available car in the specified group, which could be the group in the event
data or the default group assigned by DR2.1. The input is thus the car group (grp), the
pick-up date (pd), and the drop-off date (dd). The output items of CAA2.2 are the make
and model details of an available car. After CAA2.2 has finished execution, the integrity
constraint rule IC2.2 is invoked to check to make sure that the quota for the group has not
been exceeded. At each stage, new data added to the event data file are shown in bold
face in the figure.

From the above scenario, we see that an event occurrence can lead to the processing
of individual rules as well as rule structures. The data generated by rule CAA2.3 and the
rule structure RS2 are added to the event data file. Thus, the event data file now contains
new data resulting from the application of the local rules at Branch2. This data is returned
to Branch1. Branch1 receives the updated event data from Branch2 (ED2), Branch5
(ED5), and Branch8 (ED8) (denoted as step 2 in the figure). It then merges this data and
sends out the new version to all branches (not shown in the figure) that have rules and
rules structures applicable to the new version. Thus a second round of event data
distribution is initiated. The process will continue until no rules and rule structures are
applicable to the last version of event data. At this time, all involved branches would
have received the final version of the event data, which can be used for their local
decision-support and problem solving. The implemented prototype system runs on

 88 S. Degwekar and S.Y.W. Su

multiple computers. The above scenario takes a total of 2 s for the requesting branch to
send out its event data file to remote branches and for the remote branches to invoke the
applicable rules and send the updated event data file back to the requesting branch.

4.2.2 Decomposition of rule structure

We use Figure 12 to present the technique used to decompose a rule structure into
substructures for processing. A rule structure is a directed graph, in which rules (nodes)
can be interconnected by link, split, and-join and or-join constructs (edges). An XML
document however, organises its constituent elements in a tree structure. Each of the four
structural constructs, when considered independently, can be represented using a tree
(by means of the predecessor-successor relationships), but the combination of these
constructs that forms a particular rule structure may not always be a tree, as can be seen
from rule structures RS2 and RS5 in Figure 12. It is worth noting that if we break a rule
structure into substructures, where each represents a single structural relationship
between two or more rules, each substructure is a tree, and can now be represented using
XML. This does result in the same rule being referred at a maximum of two times, first
when describing the relationship where this rule is a successor, and the next when
describing the relationship where this rule is a predecessor. Rules that have no
predecessors or successors still appear only once in the representation.

For a given rule structure, substructures are generated as we move from the top to the
bottom of the graph. At each level, we follow a left-to-right order to generate
substructures. Taking RS2 of Figure 12 as an example, the first substructure generated
would be the split construct with IC2.1 as the predecessor rule and DR2.1, CAA2.1 as the
successor rules. The second substructure would be the and-join with DR2.1 and CAA2.1
as the predecessor rules and CAA2.2 as the successor rule. The third substructure would
be the link with CAA2.2 as the predecessor rule and IC2.2 as the successor rule.

Decomposing a complicated rule structure into simpler substructures also facilitates
its maintenance. Inserting a new relationship into an existing rule structure document
requires only creating the appropriate substructure and inserting it into the correct
position in the document. Similarly, deleting or modifying a structural relationship needs
to address only the substructure that represents that relationship, without affecting other
parts of the rule structure document.

4.3 Discussion

In this section, we consider some issues related to our system and highlight the
approaches we have taken or are taking to resolve them. Some future tasks are also
identified.

Distributed rules may form a cycle that causes a non-termination problem. Also, they
may be inconsistent or conflicting. One possible approach is to analyse the published
rules for contradictions, inconsistencies, and cyclic conditions (Baralis et al., 1998).
However, due to the dynamic and independent nature of the rules in a collaboration
federation, this strategy does not seem to be suitable. We have investigated both cycle
avoidance and cycle detection and resolution strategies. So far, the most promising
approach is the following. The host rule server determines possible rule cycles based on
rule input and output characteristics. During runtime, the coordinating site monitors the
executed rules to determine if a possible cyclic path is being followed. If a rule that has

 Knowledge sharing in a collaborative business environment 89

already been executed once, is deemed to be applicable for the next round, it is
deactivated from executing again, thus preventing a possibly non-terminating execution.

Inconsistencies and conflicts during rule execution in a collaboration federation may
reflect differing expert opinions. However, there may be some rules to resolve these
inconsistencies and conflicts. When an event coordinator determines that a particular data
item has two or more values given by different sites, it checks with the host site to
determine if there is a global resolution policy in place for that data item. If so, this policy
is applied and the resolved value of the data item is used (e.g., by taking the average or
minimum or maximum value). If not, all of the values are tagged with their site
identifiers and are sent to all sites that contain applicable rules. Each site may have a
local resolution policy in place to determine the resolved value. This resolved value is
then used by any applicable global or local rules. In the absence of either a global or a
local resolution rule, all relevant organisations will be informed of the detected
inconsistency or conflict.

In a collaboration federation, since events, rules, and triggers can be defined by
different collaborating organisations, it is very likely that there will be discrepancies in
the terminologies used. People searching for registered events and web services need
some form of common ontology to resolve these discrepancies. We are investigating the
use of the OWL language to define an ontology for a particular application domain in a
collaboration federation. Thus, the host site in the system architecture will also
incorporate an ontology database to map the terms used in event, rule and trigger
specifications to concepts and concept associations defined in the domain ontology.
The site will also use an ontology manager to resolve discrepancies and identify
similarities between the specified terms, and to facilitate search.

The notion of transaction is an important research issue. Each time an event
occurs, multiple rounds of event data transmission and distributed rule processing can
take place. They should be treated as a single transaction. In distributed databases, the
focus is on maintaining data integrity, and hence a transaction commits only if all
of its sub-transactions commit. In a collaborative e-business environment, the focus is on
sharing as much knowledge associated with an event as possible. It may not be desirable
to stop the rule processing if one site aborts because other sites may still produce useful
data. The traditional ACID properties of transaction need to be re-examined and defined
for an event-triggered, knowledge-sharing system like ours. Another important issue to
be addressed is the specification and enforcement of trust and security in a collaborative
e-business environment. This issue is out of the scope of this paper. In our previous work
(Yang et al., 2002, 2005), we have introduced a trust agreement specification language
and a trust-based security model for establishing inter-organisational security policies that
govern the interaction, coordination, collaboration, and resource sharing of collaborating
organisations. Interested readers are encouraged to look up these references.

The system architecture allows organisations to join a collaboration federation by
installing the developed software and tools at their network sites. It is highly expandable
and scalable because more computational power can be added as more shareable
knowledge and more collaborating organisations are added to the federation. Also, since
the system components are implemented as servers, multiple collaboration federations
can be accommodated: i.e., an organisation can be a member of multiple federations and
its servers can process different event data sets concurrently in multiple threads.
However, as the number of organisations in a federation increases, the number of
federations grows, and the number of event occurrences of different event types

 90 S. Degwekar and S.Y.W. Su

increases, the performance of the entire network can deteriorate with a centralised host.
For scalability, event types may have to be categorised and managed by multiple hosts.

Our approach assumes that organisations can specify data conditions for each rule in
a precise manner and data provided by collaborating organisations are 100% correct.
However, in some real-world situations, this may be an optimistic assumption.
For example, an organisation may only be able to say with a certain degree of certainty
that if some data conditions are met, a certain action should be performed. Also, the data
provided by an organisation may be incomplete, inexact and conflicting. These data
anomalies will affect what rule conditions are satisfied, what new data are generated and
what operations are processed. This is a potential area of future work and we are
interested in investigating the approach of defining and evaluating rules probabilistically.

5 Summary

In this paper, we presented our idea of managing dynamic event data and sharing
multi-faceted knowledge among organisations that form a collaboration federation.
Different aspects of knowledge are specified in different types of rules, rule structures,
and triggers, which link events of interest to distributed rules and rule structures.
The interoperation of distributed events, rules, rule structures and triggers for supporting
decision-making is the main concern of this research. The approach taken for
achieving their interoperation is to translate rules and rule structures into code and
wrap them as web services for their discovery, invocation and interoperation in
a web service infrastructure in a uniform manner. Event data are transmitted to
collaborating sites that contain applicable rules and rule structures. The architecture of an
event-trigger-rule-based system implementing the above ideas is described. Several R&D
issues and techniques for transmitting event data and processing distributed rules are also
discussed.

References
Baralis, E., Ceri, S. and Paraboschi, S. (1998) ‘Compile-time and runtime analysis of

active behaviors’, IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 3,
pp.353–370.

Bassiliades, N., Vlahavas, I. and Elmagarmid, A. (2000) ‘E-DEVICE: an extensible active
knowledge base system with multiple rule type support’, IEEE Transactions on Knowledge
and Data Engineering, Vol. 2, No. 5, pp.824–844.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985) Programming Expert Systems in OPS5:
An Introduction to Rule-Based Programming, Addison-Wesley, Reading, MA.

Buchmann, A., Bornhövd, C., Cilia, M., Fiege, L., Gartner, F., Liebig, C.,
Meixner, M. and Mühl, G. (2004) ‘DREAM: distributed reliable event-based application
management’, in Levene, M. and Poulovassilis, A. (Eds.): Web Dynamics Adapting to Change
in Content, Size, Topology and Use, Springer-Verlag, Germany, pp.319–352.

Business Rules Group (2000) Defining Business Rules – What are They Really?, Final Report,
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf

Carzaniga, A., Rosenblum, D. and Wolf, A. (2000) ‘Achieving scalability and expressiveness in an
internet-scale event notification service’, Proceedings of the Nineteenth ACM Symposium on
Principles of Distributed Computing (PODC ‘00), Oregon, USA, pp.219–227.

Cover, R. (Ed.) (2000) Simple Rule Markup Language, http://xml.coverpages.org/srml.html

 Knowledge sharing in a collaborative business environment 91

Cover, R (Ed.) (2002) Business Rules Markup Language, http://xml.coverpages.org/
brml.html

Hollingsworth, D. (1995) The Workflow Reference Model, Document Number TC00-1003,
Workflow Management Coalition, http://www.wfmc.org/standards/docs/tc003v11.pdf

Krishnamurthy, B. and Rosenblum, D.S. (1995) ‘Yeast: a general purpose event-action system’,
IEEE Transactions on Software Engineering, Vol. 21, No. 10, pp.845–857.

Lee, M., Su, S.Y.W. and Lam, H. (2001) ‘A web-based knowledge network for supporting
emerging internet applications’, WWW Journal, Vol. 4, Nos. 1–2, pp.121–140.

Loucopoulos, P. and Katsouli, E. (1992) ‘Modelling business rules in an office environment’,
ACM SIGOIS Bulletin, Vol. 13, No. 2, pp.28–37.

Nonaka, I. and Takeuchi, H. (1995) The Knowledge Creating Company, Oxford University Press,
New York, NY.

Riley, G. (2006) C Language Integrated Production System, http://www.ghg.net/clips/CLIPS.html
Rosenberg, F. and Dustdar, S. (2005a) ‘Business rules integration in BPEL – a service-oriented

approach’, Proceedings of the 7th International IEEE Conference on E-Commerce
Technology, Germany, July, pp.476–479.

Rosenberg, F. and Dustdar, S. (2005b) ‘Towards a distributed service-oriented business rules
system’, Proceedings of the IEEE Third European Conference on Web Services, Sweden,
November, pp.14–24.

Rouvellou, I., Degenaro, L., Chan, H., Rasmus, K., Grosof, B.N., Ehnebuske, D. and McKee, B.
(2000) ‘Combining different business rules technologies: a rationalization’, Proceedings of the
OOPSLA 2000 Workshop on Best-practices in Business Rule Design and Implementation,
Minnesota, USA.

Rule Language in OWL (ROWL) (2004) http://www.cs.cmu.edu/~sadeh/MyCampusMirror/
ROWL/ROWL.html

Rule Specification Language Schemas (2005) http://www.cise.ufl.edu/~spd/RuleBase.xsd,
http://www.cise.ufl.edu/~spd/RuleStruc.xsd

Semantic Web Rule Language (2003) http://www.daml.org/2003/11/swrl/
Sowa, J. (2000) Knowledge Representation: Logical, Philosophical and Computational

Foundations, Brooks Cole, Pacific Grove, CA.
Su, S.Y.W., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., Liu, Y., Pluempitiwiriyawej, C.,

Lee, M. and Lam, H. (2001) ‘An internet-based negotiation server for e-commerce’,
VLDB Journal, Vol. 10, No. 1, pp.72–90.

The Rule Interchange Format (2005) W3C Working Group, http://www.w3.org/2005/rules/
The Rule Markup Initiative (2000) http://www.ruleml.org
UDDI (2001) http://www.uddi.org
Ullman, J. (1982) Principles of Database Systems, 2nd ed., Computer Science Press, Rockville,

MD.
Ullman, J. (1988) Principles of Database and Knowledge-Base Systems, Vols. I–II, Computer

Science Press, Rockville, MD.
Wagner, G. (2003) ‘The agent-object-relationship metamodel: towards a unified view of state and

behavior’, Inf. Syst., Vol. 28, No. 5, pp.475–504.
Wagner, G., Damasio, C. and Lukichev, S. (2005) First-Version Rule Markup Languages,

REWERSE IST 506779, Deliverable I1-D3-1.
Warmer, J. and Kleppe, A. (1998) The Object Constraint Language: Precise Modeling with UML,

Addison-Wesley Longman, Boston, MA.
Web Ontology Language (OWL) (2004) http://www.w3.org/TR/owl-features/

 92 S. Degwekar and S.Y.W. Su

Widom, J. and Ceri, S. (1996) Active Database Systems, Triggers and Rules for Advanced
Database Processing, Morgan Kaufmann, San Mateo, CA.

Yang, S., Lam, H. and Su, S.Y.W. (2002) ‘Trust-based security model and enforcement mechanism
for web service technology’, Proceedings of the Third VLDB Workshop on Technologies for
E-Services, Hong Kong, China, pp.151–160.

Yang, S., Su, S.Y.W. and Lam, H. (2005) ‘A non-repudiation message protocol for e-commerce’,
International Journal of Business Process Integration and Management, Vol. 1, No. 1,
pp.34–42.

