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Abstract. The integration of scalable performance analysis in parallel development tools is difficult. The potential size of data

sets and the need to compare results from multiple experiments presents a challenge to manage and process the information.

Simply to characterize the performance of parallel applications running on potentially hundreds of thousands of processor cores

requires new scalable analysis techniques. Furthermore, many exploratory analysis processes are repeatable and could be au-

tomated, but are now implemented as manual procedures. In this paper, we will discuss the current version of PerfExplorer,

a performance analysis framework which provides dimension reduction, clustering and correlation analysis of individual trails of

large dimensions, and can perform relative performance analysis between multiple application executions. PerfExplorer analysis

processes can be captured in the form of Python scripts, automating what would otherwise be time-consuming tasks. We will

give examples of large-scale analysis results, and discuss the future development of the framework, including the encoding and

processing of expert performance rules, and the increasing use of performance metadata.

Keywords: Parallel performance analysis, data mining, scalability, scripting, metadata, knowledge supported analysis

1. Introduction

Parallel applications running on high-end computer

systems manifest a complex combination of perfor-

mance phenomena, such as communication patterns,

work distributions and parametric study results. Tools

that analyze parallel performance attempt to observe

these phenomena in measurement datasets captured by

instrumentation of the source code with timers, or by

periodically sampling the program counter during run-

time. The resulting datasets are rich with information,

potentially relating multiple performance metrics to

performance variations and parameters specific to the

application-system experiment.

One common representation of performance data is

as performance profiles. Each profile represents an ag-

gregation of one metric as measured in one region of

code on one thread of execution, such as how many

floating point operations were executed, or how many

cache misses occurred. Analysis tools use this data to

identify behavior such as performance hot spots and ir-
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regular work distribution across threads of execution.

They can also calculate and display summary statistics,

such as average time (across threads) spent in one func-

tion, or correlate between the time spent in two or more

functions. While the results from current performance

tools are useful to trained analysis experts, next gener-

ation tools need to go beyond the display of summary

statistics and provide in-depth analysis and explanation

of performance results to the user.

The TAU Performance System [25] is a portable

profiling and tracing toolkit for performance analysis

of parallel programs written in Fortran, C, C++, Java,

and Python. Instrumentation and measurement tools

such as TAU can collect very detailed performance

data from parallel applications. The potential sizes of

datasets and the need to assimilate results from multi-

ple experiments makes it a challenge to both process

the information and discover and understand new in-

sights about performance. In order to perform analysis

on these large collections of performance experiment

data, we developed PerfExplorer [9], a framework for

parallel performance data mining and knowledge dis-

covery. The framework architecture enables the devel-

opment and integration of data mining operations that

can be applied to parallel performance profiles. Perf-

Explorer is built on a performance data management
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framework called PerfDMF [8], which provides a li-
brary to access the parallel profiles and save analysis
results in a relational database. PerfDMF includes sup-
port for nearly a dozen performance profile formats,
including TAU profiles. The application is integrated
with existing analysis toolkits (R [29], Weka [32]),
and provides for extensions using those toolkits. Both
PerfDMF and PerfExplorer are free, open-source tools
included in the TAU distribution.

A performance data mining framework should sup-
port both advanced analysis techniques as well as ex-
tensible meta analysis of performance results. The
use of process control for analysis scripting (see Sec-
tion 2.1), persistence and provenance mechanisms for
retaining analysis results and history (see Section 2.4),
metadata for encoding experiment context (see Sec-
tion 2.2), and support for reasoning about relation-
ships between performance characteristics and behav-
ior (see Section 2.3) all are important for productive
performance analytics. The framework must also be
concerned about how to interface with application de-
velopers in the performance discovery process. The
ability to engage in process programming (the ability
to capture analysis workflows), knowledge engineer-
ing (including the performance context and inference
rules which explain performance results), and results
management opens the framework tool set for creating
data mining environments specific to the developer’s
concerns.

We have redesigned our integrated framework for
performing meta analysis to incorporate parallel per-
formance data, performance context metadata, expert
knowledge and intermediate analysis results. Methods
were required for correlating context metadata with
the performance data and the analysis results in order
to provide the capability to generate desired empirical
performance results from accurate suggestions on how
to improve performance. Constructing this framework
also required methods for encoding expert knowledge
to be included in the analysis of performance data
from parametric experiments. Knowledge about sub-
jects such as hardware configurations, libraries, com-
ponents, input data, algorithmic choices, runtime con-
figurations, compiler choices, and code changes will
augment direct performance measurements to make
additional analysis combinations possible.

The remainder of the article is as follows. We dis-
cuss our analysis approach for the framework and our
implementation in Section 2. We will present some re-
cent analysis examples which demonstrate some new
PerfExplorer features in Section 3, discuss related
work in Section 4 and present future work and con-
cluding remarks in Section 5.

2. PerfExplorer design

PerfExplorer [8] was originally designed as a Java

application for data mining multi-experiment par-

allel performance profiles. Its capabilities included

general statistical analysis of performance data, dimen-

sion reduction, clustering, and correlation of perfor-

mance data, and multi-experiment data query and man-

agement. These functions were provided by existing

analysis toolkits (R [29] and Weka [32]), and our pro-

file database system PerfDMF [8].

While PerfExplorer was a step forward in the ability

to automatically process complex statistical functions

on large amounts of multi-dimensional parallel perfor-

mance data, its functionality was limited in two re-

spects. First, the tool only allowed a user to select from

a limited number of analysis operations via a graphi-

cal user interface. Reliably repeatable and user config-

urable analysis processes were not possible. Second,

PerfExplorer only provided new visualizations and de-

scriptions of the data – it did not explain the perfor-

mance characteristics or behavior observed (i.e., meta

analysis). Scripting and support for retaining interme-

diate results helped to address the first shortcoming.

The second was more challenging.

For example, an analyst can determine that in a test

using 16 processors, application X spent 30% of its to-

tal execution time in function foo(), and that when

the number of processors is increased to 32, the per-

centage of time may go up, down, or stay the same, de-

pending on the purpose of the function. However, Perf-

Explorer did not have the capability to explain why the

change happened. The explanation may be as simple

as the fact that the input problem also doubled in size,

but without that contextual knowledge, no analysis tool

could be expected to come to any conclusions about

the cause of the performance change without resulting

to speculation.

As we discuss our enhancements to PerfExplorer,

we will consider two analysis cases: (1) we have col-

lected parallel performance data from multiple experi-

ments, and we wish to compare their performance, or

(2) we have collected performance data from one ex-

periment, and would like to compare the performance

between processes or threads of execution. Like other

tools, PerfExplorer could provide the means for an an-

alyst to determine which execution is the “best” and

which is the “worst”, and can even help the analyst in-

vestigate further into which regions of code are most

affected, and due to which metrics. However, there was

no explicit process control, which is required in or-
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der to perform repeated analysis procedures or non-
interactive analysis automation, nor was there higher-

level reasoning or analysis of the performance result
in order to explain what may have caused the per-
formance differences. In order to perform these types
of meta-analysis, several components are necessary to
meet the desired goals.

Figure 1 shows the redesigned PerfExplorer compo-
nents, and Fig. 2 shows the interaction between com-
ponents in the new PerfExplorer design. The perfor-
mance data and accompanying metadata, discussed in
Section 2.2, are stored in the PerfDMF database. Per-

formance data is used as input for statistical analy-
sis and data mining operations, as was the case in the
original version of PerfExplorer. The new design adds
the ability to make all intermediate analysis data and
final results persistent. Expert knowledge is incorpo-
rated into the analysis, and these new inputs allow
for higher-level analysis. The expert knowledge can
be application specific, machine specific, or just gen-
eral parallel computing knowledge. An inference en-
gine is added to combine the performance data, analy-
sis results, expert knowledge and execution metadata
into a performance characterization. The provenance

Fig. 1. The redesigned PerfExplorer components.

Fig. 2. PerfExplorer components and their interactions.
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# create a rulebase for processing

ruleHarness = RuleHarness.useGlobalRules("rules/GeneralRules.drl")

# load a trial

trial = TrialMeanResult(Utilities.getTrial("gtc", "jaguar", "512"))

# calculate the derived metric

fpOps = "PAPI_FP_INS"

time = "P_WALL_CLOCK_TIME"

oper = DeriveMetricOperation.DIVIDE

operator = DeriveMetricOperation(trial, fpOps, time, oper)

derived = operator.processData().get(0)

# compare values to average for application

mainEvent = trial.getMainEvent()

for event in derived.getEvents():

MeanEventFact.compareEventToMain(derived, mainEvent, derived, event)

# process the rules

ruleHarness.processRules()

Fig. 3. Sample Jython script.

of the analysis result is stored with the result, along

with all intermediary data, using object persistence.

The whole process is contained within a process con-

trol framework, which provides user control over the

performance characterization process.

2.1. Process control

One of the key aspects of the new PerfExplorer de-

sign is the requirement for process control. While user

interfaces and data visualization are useful for interac-

tive data exploration, the user will need the ability to

control the analysis process as a discrete set of opera-

tions.

There are several types of parametric study com-

monly seen in the parallel performance literature:

application benchmarking, machine benchmarking,

application performance testing and workload charac-

terization. For each of these studies, application per-

formance data is collected while varying one or more

configuration parameters. Usually, the data collection

process is automated, to prevent errors or omissions.

In each of these studies, the analysis process can and

should be automated in order to prevent analysis mis-

takes and to streamline the analysis processing.

In order to chain analysis operations together in a

repeatable framework, PerfExplorer required an exten-

sion mechanism for creating higher-order analysis pro-

cedures. One way of doing this is through a script-

ing interface, such as Jython [20], a full Python inter-

preter written in Java. Because PerfExplorer is a Java

application, all of the application objects are available

to the script interface, but we limit the access to a

smaller subset API. With the interface, it is straightfor-

ward to derive new metrics, perform analysis, and au-

tomate the processing of performance data. An exam-

ple script is shown in Fig. 3. This simple example loads

some general purpose inference rules, loads a trial from

PerfDMF, derives floating point operations per second,

and then compares each event’s exclusive value with

the inclusive value of main before processing the rules,

where an event is defined as any instrumented code re-

gion.

2.2. Collecting and integrating metadata

Performance instrumentation and measurement

tools such as TAU [25] collect context metadata along

with the application performance data. This metadata

contains potentially useful information about the build

environment, runtime environment, configuration set-

tings, input and output data, and hardware config-

uration. Metadata examples which are automatically

collected by the profiling provided by TAU include

fields such as processor speed, node hostname, and

cache size. By integrating these fields into the analy-

sis process, the analysis framework can reason about

potential causes for performance failures.

The TAU instrumentation and measurement toolkit

provides three ways to acquire metadata for analysis:

• The default behavior for the TAU measurement

toolkit is to collect common hardware and soft-

ware metadata from the runtime environment,

such as processor speed, memory size, cache size,

operating system version, etc. Table 1 shows ex-

amples of metadata fields which are automatically

collected by the profiling provided by TAU. It
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Table 1

Default TAU metadata field examples

Field Example

CPU cores 4

CPU MHz 2660.006

CPU type Intel(R) Xeon(R) CPU X5355 @ 2.66 GHz

CPU vendor GenuineIntel

CWD /home/joeuser/tau2/examples/NPB2.3/bin

Cache size 4096 kB

Executable /home/joeuser/tau2/examples/NPB2.3/bin/lu.C.16

Hostname garuda.cs.uoregon.edu

Local time 2007-03-29T16:06:08-07:00

Memory size 8,155,912 kB

Node name garuda.cs.uoregon.edu

OS machine x86_64

OS name Linux

OS release 2.6.18.1_ktau_1.7.9_pctr

OS version #2 SMP Mon Mar 26 17:36:14 PDT 2007

TAU architecture x86_64

TAU config -fortran=intel -cc=icc -c++=icpc -mpi . . .

UTC time 2007-03-29T23:06:08Z

Username joeuser

should be easy to see how fields such as CPU

MHz, cache size or memory size would be useful

in explaining the differences between executions.

In addition, on specialized hardware such as the

IBM BlueGene/L or BlueGene/P systems, there

are additional system calls which can provide de-

tailed information about the hardware and the log-

ical mapping of the processes to physical nodes.

• The TAU instrumentation API has a method,

TAU_METADATA(), which the application ana-

lyst can insert into the code. This is the primary

way for an end user to collect metadata about

their application. The method takes two parame-

ters, a name and a value. Any data of interest can

be inserted into the metadata to be used later in

the analysis. Input variables, runtime configura-

tion settings, application arguments, and domain

decompositions can be specified by the user.

• The PerfDMF data importer can take an optional

XML file with metadata fields which contain

name/value pairs to be included in the perfor-

mance metadata. The schema is very simple, and

does not require special XML processing libraries

to generate. Information relating to the build en-

vironment, compiler options, input files, batch

system, allocated hardware, or anything else that

might assist the performance analysis can be in-

cluded in this XML file.

2.3. Inference engine

In order to provide the type of higher-level reasoning

and meta-analysis we require in our design, we have

integrated a JSR-94 [27] compliant rule engine, JBoss

Rules [21]. The selection of an inference engine and

processing rules allows another method of flexible con-

trol of the process, and also provides the possibility of

developing a domain specific language to express the

analysis.

As mentioned in Section 2.1, there are several types

of parametric study commonly seen in the parallel

performance literature. In the example of a scalabil-

ity study, the number of processors used and the in-

put problem size is varied, and empirical performance

results are compared with expected results, based on

baseline comparisons. In each of these parametric stud-

ies, we have identified eight common categories of pa-

rameters, listed in Table 2, along with example para-

meters for each category and an example of a known

assumption, or expert knowledge, about a parameter in

that category that could be helpful in analyzing the per-

formance of an experiment.

As an example, the first category includes differ-

ences between architectures, such as when porting an

application, or performing an application benchmark-

ing study on more than one architecture. Parameters

such as CPU type and speed, the amount of cores per

CPU, the number of CPUs per node, etc. all repre-

sent useful information when comparing two or more

architectures. In order to utilize this information, per-

formance assumptions can be made in the analysis

process which will help guide the analysis. For exam-

ple, consider an application executed with the same

configuration on two different machines. If the meta-

data shows that the only difference between the two

machines is the speed of the CPU, then the analysis

should correlate the performance differences between

the two executions to the differences in speed. As an-

other example, suppose that we can identify a region

of code as inherently sequential. Any scalability analy-

sis of this region could then assume that there will be

no expected improvement by increasing the number of

processors, and will not flag this section as a perfor-

mance bottleneck. While these are overly simplified

examples, they illustrate the potential utility that expert

knowledge about an execution can provide to the per-

formance analysis. Some expert knowledge would be

specific to the analysis task at hand, while other exam-

ples would be reusable across many if not all paramet-

ric studies.
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Table 2

Parametric categories and corresponding example assumptions in those categories

Category Parameter examples Possible assumptions

Machines Processor speed/type, memory size, number of cores CPU A faster than CPU B

Components MPI implementation, linear algebra library, runtime compo-

nent

Component A faster than B

Input Problem size, input data, problem decomposition Smaller problem means faster execution, vice-versa

Algorithms FFT vs. DFT Algorithm A faster than B for problem > X

Configurations Number of processors, runtime parameters, number of itera-

tions

More processors means faster execution, vice-versa

Compiler Compiler choice, compiler options, pre-compiler usage, code

transformations

Execution time: -O0 � -O1 � -O2 � -O3 � -fast

Code relationships Call order, send–receive partners, concurrency, functionality Code region has expected concurrency of X

Code changes Code change between revisions Newer code expected to be faster

rule "Poor L2 Hit rate"

when

// there is a L2 Cache hit rate lower than the average L2 Cache Hit rate

f : MeanEventFact (

m : metric == "((PAPI_L1_TCM-PAPI_L2_TCM)/PAPI_L1_TCM)",

b : betterWorse == MeanEventFact.WORSE,

s : severity > 0.10,

e : eventName,

a : mainValue,

v : eventValue )

then

System.out.println("The event " + e + " has a lower than average L2 hit rate.");

System.out.println("\tAverage L2 hit rate: " + a + ", Event L2 hit rate: " + v);

System.out.println("\tPercentage of total runtime: " + f.getPercentage(s));

end

Fig. 4. Sample JBoss Rules rule.

An example rule is shown in Fig. 4. This example

rule will fire for any and all events which have a lower

than average L2 cache hit rate, and also account for at

least 10% of the total run time. In this example, the

conclusion is output to the user, but the rules can also

fire other scripts, or request operations from the Perf-

Explorer API directly. Facts which result in the execu-

tion of rules can be asserted in PerfExplorer operations

directly, or facts can be asserted by the scripts.

2.4. Provenance and data persistence

In order to rationalize analysis decisions, any ex-

planation needs to include the data provenance, or the

full chain of evidence and handling from raw data to

synthesized analysis result. The new PerfExplorer de-

sign will include the ability to make all intermediate

analysis data persistent, not just the final summariza-

tion. The provenance of the analysis result is stored

with the results and all intermediary data, using object

persistence [22]. Any scientific endeavor is considered

to be of “good provenance” when it is adequately doc-

umented in order to allow reproducibility. For parallel

performance analysis, this includes all raw data, analy-

sis methods and parameters, intermediate results and

inferred conclusions.

3. Analysis examples

3.1. S3D

S3D [2] is a multi-institution collaborative effort

with the goal of creating a terascale parallel imple-

mentation of a turbulent reacting flow solver. S3D uses

direct numerical simulation (DNS) to model combus-

tion science which produces high-fidelity observations

of the micro-physics found in turbulent reacting flows

as well as the reduced model descriptions needed in

macro-scale simulations of engineering-level systems.
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The examples described here were run on Jaguar [19],

the hybrid Cray XT3/XT4 system at Oak Ridge Na-

tional Laboratory (ORNL).

During scalability tests (from 1 to 12,000 proces-

sors) of S3D instrumented with TAU, it was observed

that as the number of processors exceeded 1728, the

amount of time spent in communication began to grow

significantly, and MPI_Wait() in particular com-

posed a significant portion of the overall run time (ap-

proximately 20%). By clustering the performance data

in PerfExplorer, it was observed that there were two

natural clusters in the data. The first cluster consisted

of a majority of the processes, and these nodes spent

less time in main computation loops, but a long time

in MPI_Wait(). The other cluster of processes spent

slightly more time in main computation loops, and far

less time in MPI_Wait().

By automatically collecting the MPI host names

with the TAU metadata collection, we were able to de-

termine, at runtime, the names of the nodes on which

the processes ran. The node IDs were stored in the

metadata with the performance data. In the case of a

6400 process run, as shown in Fig. 5, there were again

two clusters, with 228 processes in one cluster having

very low MPI_Wait() times (about 40 s), and the

remainder of the processes in one cluster having very

high MPI_Wait() times (over 400 s). The metadata

was then manually correlated with information about

the hardware characteristics of each node, identified

the slower nodes as XT3 nodes, and the faster nodes

as XT4 nodes. There are two primary differences be-

tween the XT3 and XT4 partitions. The XT3 nodes

have slower DDR-400 memory (5986 MB/s) than the

XT4 nodes’ DDR2-667 memory (7147 MB/s), and the

XT3 partition has a slower interconnection network

(1109 MB/s vs. 2022 MB/s). Because the applica-

tion is memory intensive, the slower memory modules

have a greater effect on the overall runtime, causing

the XT3 nodes to take longer to process, and subse-

quently causing the XT4 nodes to spend more time in

MPI_Wait().

In order to remove this last manual step to corre-

lating application performance with hardware charac-

teristics, we needed more information about the nodes

than was available from the metadata. By using the

nodeinfo utility available from the batch system, we

were able to collect information about each node in the

allocation, including the memory speed and intercon-

nect speed, which directly identify the XT3 and XT4

nodes in the full machine. Using a python script, the

nodeinfo data was formatted as XML, and loaded

with the performance data using the third method out-

lined in Section 2.2. A PerfExplorer script was writ-

ten which loaded the trial data, extracted the five most

Fig. 5. S3D cluster analysis. The figure on the left shows the difference in (averaged mean) execution behavior between the two clusters of

processes. The figure on the right shows a virtual topology of the MPI processes, showing the locations of the clustered processes. The grey

processes ran on XT3 nodes, and the black processes ran on XT4 nodes.
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time consuming code regions and correlated the event

performance with the metadata fields for each thread

of execution. An inference rule was used to identify

the code regions which had an effectively inverse cor-

relation between run time and both memory speed and

interconnect speed.

Running S3D on an XT4-only configuration yielded

roughly a 12% time to solution reduction over the

hybrid configuration, primarily by reducing MPI_

Wait() times from an average of 390 s down to 104 s.

If this application is to be run on a heterogeneous con-

figuration of this machine or any other, load balanc-

ing should be integrated which takes into consideration

the computational capacity of each respective proces-

sor. The use of metadata would also be important for

this optimization.

3.2. GTC

The Gyrokinetic Toroidal Code (GTC) [5] is a

particle-in-cell physics simulation which has the pri-

mary goal of modeling the turbulence between parti-

cles in the high energy plasma of a fusion reactor. Scal-

ability studies of the original large-scale parallel im-

plementation of GTC (there are now a small number of

parallel implementations, as the development has frag-

mented) show that the application scales very well –

in fact, it scales at a better than linear rate. However,

discussions with the application developers revealed

that it had been observed that the application gradually

slows down as it executes [31] – each successive iter-

ation of the simulation takes more time than the previ-

ous iteration.

In order to measure this behavior, the application

was auto-instrumented with TAU, and manual instru-

mentation was added to the main iteration loop to

capture dynamic phase information. The application

was executed on 64 processors of the Cray XT3/XT4

system at ORNL for 100 iterations, and the perfor-

mance data was loaded into PerfDMF. A simple analy-

sis script was constructed in order to examine the dy-

namic phases in the execution. The script was used to

load the performance data, extract the dynamic phases

from the profile, calculate derived metrics (L1 and L2

cache hit ratios, FLOPs), calculate basic statistics for

each phase, and graph the resulting data as a time se-

ries showing average, minimum and maximum values

for each iteration.

As shown in Fig. 6, during a 100 iteration simula-

tion, each successive iteration takes slightly more time

than the previous iteration. Over the course of the test

simulation, the last iteration takes nearly one second
longer than the first iteration. As a minor observation,
every fourth iteration results in a significant increase in
execution time. Hardware counters revealed that the L2
cache hit-to-access ratio decreases from 0.92 to 0.86
(L1 cache hit-to-access ratios also decrease, but to a
lesser extent). Subsequently, the GFLOPs per proces-
sor rate decreases from 1.120 to 0.979. Further analy-
sis of the routines called from the main loop show that
the decrease in execution is limited to two routines,
CHARGEI and PUSHI. In the CHARGEI routine, each
particle in a region of the physical subdomain applies
a charge to up to four cells, and in the PUSHI rou-
tines, the particle locations are updated by the respec-
tive cells after the forces are calculated. The increase
in time every fourth iteration is due to a diagnostic call,
which happens every ndiag iterations, an input para-
meter captured as metadata.

A second script for this problem was also developed,
which loaded the performance data, extracted the top
ten time consuming code regions, derived the L1, L2
and FLOPs metrics, and then compared each code re-
gion to the overall performance of the application. An
inference rule was constructed which identified code
regions which had lower than average cache hit ra-
tios. The combination of this script and rule identified
the same code functions, CHARGEI and PUSHI, as
having poor cache behavior. Another script possibility,
which was not explored, would be to correlate the it-
eration number with the performance of each code re-
gion. We would expect to see that the reduced cache
hit ratios would be identified as correlated with the it-
eration number.

Discussions with other performance analysis experts
on the project revealed that the CHARGEI and PUSHI
routines have good spatial locality when referencing
the particles, however over time, they have poor tem-
poral locality when referencing the grid cells. As a re-
sult, access to the grid cells becomes random over time.
Further analysis is necessary to determine whether the
expense of re-ordering the particles at the beginning
of an iteration could be amortized over a number of
iterations, and whether this added cost would yield a
benefit in the execution time. While it appears that
the performance degradation levels out after roughly
30 iterations, it should be pointed out that a full run of
this simulation is at least 10,000 iterations, and as the
5000 iteration execution shows in Fig. 6(d), the per-
formance continues to degrade. Assuming a 10,000 it-
eration execution would take an estimated 20 h to
complete on the Cray XT3/XT4, potentially 2.5 h of
computation time per processor could be saved by im-
proving the cache hit ratios.
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Fig. 6. GTC phase analysis. (a) Shows the increase in runtime for each successive iteration, over 100 iterations. (b) Shows the decrease in L2 hit ratio, from 0.92 to 0.86. (c) Shows the decrease

in GFLOPs from 1.120 to 0.979. (d) Shows the larger trend when GTC is run for 5000 iterations, each data point representing an aggregation of 100 iterations.
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4. Related work

Hercule [13–15] is a parallel performance diagnosis

tool which uses the expert system CLIPS to process

computational model-centric rules which can diagnose

common performance problems. Hercule’s rules de-

fine symptoms of known parallel application prob-

lems, such as load imbalance, insufficient paralleliza-

tion, etc., and encodes possible solutions for correcting

these known problems. Hercule takes as input the ap-

plication’s parallel model, and diagnoses known prob-

lems from the input data and the application model

assumptions. Hercule analyzes event trace files, not

profiles.

EXPERT [26], from the KOJAK [12] project, is

an automatic event-trace analysis tool for MPI and

OpenMP applications. It searches the traces for execu-

tion patterns indicating low performance and quanti-

fies them according to their severity. The patterns target

both problems resulting from inefficient communica-

tion and synchronization as well as from low CPU and

memory performance. Unlike our proposed approach,

EXPERT searches for known problems, rather than fo-

cusing on characterization and new problem discov-

ery. Also, the performance data analyzed is trace data.

CUBE [33] is a graphical browser suitable for dis-

playing a wide variety of performance measurements

for parallel programs including MPI and OpenMP

applications, and is the primary analysis viewer for

SCALASCA [7], a parallel implementation of the

EXPERT trace analysis methods. CUBE implements

Performance Algebra [11], a technique for performing

difference, merge and aggregation operations on par-

allel performance profile data. While CUBE provides

a powerful interface for visualization and exploratory

analysis of the differences between two performance

data sets, there is no mechanism for linking the perfor-

mance behavior to the performance context, and pro-

viding the user with a meaningful explanation of why

the performance differs between the two profiles.

Paradyn [18] utilizes the Performance Consultant

[11] and Distributed Performance Consultant [23] for

run-time and offline discovery of known performance

problems. The latest version of the Performance Con-

sultant uses historical performance data to help guide

bottleneck detection. While the Performance Consul-

tant does include contextual information about the run-

time environment to help explain performance dif-

ferences, there does not appear to be a mechanism

for including additional expert knowledge about the

application, such as data or event relationships. And

like the aforementioned tools, the Performance Con-

sultant’s strength is in diagnosing known performance

problems, rather than general performance characteri-

zation.

KappaPi [3,4] (knowledge-based automatic parallel

program analyzer for performance improvement) and

KappaPI2 [10] are tools which use trace files from

PVM and MPI applications, detect known performance

bottlenecks, and determine causes by applying infer-

ence rules. The causes are then related back to the

source code and suggest recommendations to the user.

Performance assertions [30] have been developed

to confirm that the empirical performance data of an

application or code region meets or exceeds that of

the expected performance. By using the assertions, the

programmer can relate expected performance results to

variables in the application, the execution configura-

tion (i.e. number of processors) and pre-evaluated vari-

ables (i.e. peak FLOPS for this machine). This tech-

nique allows users to encode their performance expec-

tations for regions of code, confirm these expectations

with empirical data, and even make runtime decisions

about component selection based on this data. The use

of performance assertions requires extensive annota-

tion of source code, and requires the application de-

veloper’s experience and intuition in knowing where

to insert the assertions, and what kind of performance

result to expect.

JavaPSL [6] is a Java Performance Specification

Language, designed to be used to specify techniques

for searching for known performance problems such

as poor scaling, load imbalance, and communication

overhead. The specification language could be useful

in the application of search heuristics in a particular

diagnosis process, and represents a good example of

the type of low-level analysis whose results could be

used in conjunction with expert knowledge and context

metadata to suggest the causes of performance phe-

nomena.

Directly relevant to PerfDMF are the projects that

utilize a performance database as a component of a

performance analysis system, particularly for multi-

experiment performance analysis. The SIEVE

(Spreadsheet-base Interactive Event Visualization En-

vironment) system [24] showed the benefit of a sim-

ple table-based structuring of performance data cou-

pled with a programmable analysis engine. More

sophisticated performance data models, such as found

in Paradyn [18] and CUBE [26], allow a richer analysis

algebra to be applied to multi-experiment performance

information.
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HPCToolkit [16] is able to merge data from multi-

ple performance experiments in a database that is cor-

related with the program source and hyperlinked for

analysis and viewing with the HPCView [17] tool. Per-

formance data manipulated by HPCView can come

from any source, as long as the profile data can be

translated or saved directly to a standard, profile-like

input format. The toolkit provides a interactive inter-

face that allows the user to define expressions to com-

pute derived metrics as functions of the measured data

and of previously-computed derived metrics.

The Prophesy system [28] successfully applies a

performance database to manage multi-dimensional

performance information for parallel analysis and

modeling. The database is a core component of the

system, implemented using relational DBMS technol-

ogy and storing detailed information from the Proph-

esy measurement system and performance modeling

processes. Prophesy also uses some statistical analy-

sis methods to do application performance analysis and

prediction.

The primary inspiration for the data mining aspect

of PerfExplorer is the research by Ahn and Vetter [1].

Those authors chose to use several multivariate sta-

tistical analysis techniques to analyze parallel perfor-

mance behavior. The types of analysis they performed

included cluster analysis and F-ratio, factor analysis,

and principal component analysis. They showed how

hardware counters could be used to analyze the perfor-

mance of multiprocessor parallel machines.

5. Future work and concluding remarks

In this paper, we have discussed the new design

and implementation of PerfExplorer, including com-

ponents for scripting, metadata encoding, expert rules,

provenance and data persistence. In our examples, we

have discussed how features such as metadata encod-

ing and scripting aid in the analysis process. Develop-

ment of general purpose, application and machine spe-

cific inference rules is ongoing. In the future, we hope

that PerfExplorer will be distributed with an extensive

library of analysis scripts, and accompanying inference

rules. However, the real strength of the framework is

the ability for users to customize the analysis to fit

the task at hand. While the metadata support in Perf-

Explorer allows for some manual correlation between

contextual information and performance results, more

extensive analysis rules to interpret the results with re-

spect to the contextual information would aid us in

our long term goal of a performance tool which would

summarize performance results and link them back to

the actual causes, which are essentially the context

metadata relating to the application, platform, algo-

rithm, and known related parallel performance prob-

lems. Encoding this knowledge form that our per-

formance tool can use is instrumental in developing

new analysis techniques that capture more information

about the experiment than simply the raw performance

data.
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