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Knowledge Tracing: A Survey
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Australian National University

Humans’ ability to transfer knowledge through teaching is one of the essential aspects for human intelli-

gence. A human teacher can track the knowledge of students to customize the teaching on students’ needs.

With the rise of online education platforms, there is a similar need for machines to track the knowledge of

students and tailor their learning experience. This is known as the Knowledge Tracing (KT) problem in the

literature. Effectively solving the KT problem would unlock the potential of computer-aided education appli-

cations such as intelligent tutoring systems, curriculum learning, and learning materials’ recommendation.

Moreover, from a more general viewpoint, a student may represent any kind of intelligent agents including

both human and artificial agents. Thus, the potential of KT can be extended to any machine teaching ap-

plication scenarios which seek for customizing the learning experience for a student agent (i.e., a machine

learning model). In this paper, we provide a comprehensive survey for the KT literature. We cover a broad

range of methods starting from the early attempts to the recent state-of-the-art methods using deep learning,

while highlighting the theoretical aspects of models and the characteristics of benchmark datasets. Besides

these, we shed light on key modelling differences between closely related methods and summarize them in an

easy-to-understand format. Finally, we discuss current research gaps in the KT literature and possible future

research and application directions.
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1 INTRODUCTION

Teaching is a vital activity to facilitate transfer of knowledge. It is well-known that one key fac-
tor of teaching is the ability of human teachers to track the learning progress of their students.
This ability allows human teachers to adjust their teaching pace, materials, and methodology to
maximize the knowledge growth of each individual student. Over the past 30 years, a variety of
online education platforms such as Massive Open Online Courses (MOOCs) [114], intelligent
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Fig. 1. An example scenario for knowledge tracing in an Intelligent Tutoring System (ITS).

tutoring systems [90], and educational games [69] have emerged to complement and sometimes
completely replace conventional education systems. The COVID-19 pandemic, for example, has
challenged conventional classroom-based teaching and sped up digital transformation in educa-
tion systems. To alleviate the disruption of COVID-19, teachers and students around the world
had to rapidly adjust to an online education mode. However, while there is a pressing need for
teaching using computer technologies, technology-enhanced teaching has also posed new chal-
lenges. One of such challenges is to determine how to effectively track the learning progress of a
student through their online interaction with teaching materials – known as the Knowledge Trac-
ing (KT) problem [5, 6, 117]. Generally speaking, knowledge tracing aims to observe, represent,
and quantify a student’s knowledge state, e.g., the mastery level of skills underlying the teaching
materials.

To better understand the KT problem, let us consider the learning activity depicted in Figure 1.
The figure shows an interaction scenario between a student and an Intelligent Tutoring System
(ITS) in which the student is given a sequence of questions taken from a question set {q1,q2,q3,q4}
and asked to answer these questions. During the interaction, the ITS estimates the student’s knowl-
edge states over the skills {k1,k2,k3,k4} (e.g., math skills such as addition, subtraction, and multi-
plication) that are required to answer these questions. However, capturing a student’s knowledge
state is a challenging task due to several reasons:

• Each question might require more than one skill, which adds complexity to trace knowledge
states. For instance, as shown by the arrows going from skills to questions in Figure 1, ques-
tion q2 requires the skills {k1,k3}. It is worth noting that skill is also referred to as knowledge
component in some previous studies [65].
• Dependency among skills is another important factor to consider when tackling the KT

problem. For example, although q3 requires only skill k2, skills k1 and k4 are prerequisites

ACM Computing Surveys, Vol. 55, No. 11, Article 224. Publication date: February 2023.



Knowledge Tracing: A Survey 224:3

for skill k2 according to the dependency graph shown in Figure 1. Thus, the mastery level of
skills required by the question q3 should also consider k1 and k4, in addition to skill k2.
• A student’s forgetting behavior [29] may result in decaying their knowledge over skills. By

modeling forgetting features, skills can be ranked by their relevance to forgetting. For exam-
ple, the bottom of Figure 1 shows that skill k1 is least affected by forgetting when the latest
question q1 is reached, whereas skill k2 is the most affected one.

Historically, the notion of knowledge tracing was introduced by Anderson et al. in a technical
report [5] for cognitive modeling and intelligent tutoring in 1986, which was later published in
the Artificial Intelligence journal in 1990 [6]. Since then, many attempts have been made to design
machine learning models for solving the KT problem. Early attempts [27, 117] followed Bayesian
inference approaches, which usually relied on oversimplifying the model assumptions (e.g., as-
suming only one skill) to make the posterior computation tractable. Later, with the rise of classic
machine learning methods such as logistic regression models [123], another direction followed
by KT is to use parametric factor analysis approaches which trace a student’s knowledge states
and perform the answer prediction based on modeling a variety of factors [16, 17, 87], including:
(1) aspects about students such as prior knowledge, learning capacity, or learning rate; (2) aspects
about learning materials such as familiarity, number of previous practices, or difficulty; (3) aspects
about a learning environment itself such as the nature of the learning channel (paper- or computer-
based) and the temporal context of the practice time (within an examination period or a regular
study period). In addition to these, psychological studies about the learning behavior [77] and for-
getting behavior [52] of students have also suggested additional factors, such as the time lapse
between a student’s different interactions and the number of times on practicing learning materi-
als, to be considered when tracing knowledge states. It is worth noting that this direction of KT
is still active [34, 116] and is considered as an alternative to the recent state-of-the-art approaches
based on deep learning.

Motivated by breakthroughs achieved by deep learning techniques [61], deep learning KT mod-
els have emerged rapidly. Piech et al. [89] has pioneered this direction of research and revealed
the power of deep learning techniques for knowledge tracing. They proposed a model called Deep
Knowledge Tracing (DKT) which applies Recurrent Neural Networks (RNNs) [63] to capture
temporal dynamics in a sequence of interactions between questions and answers by a student,
and based on that, to predict the student’s answer for a new question. Empirical results showed
that DKT outperformed traditional KT models on several benchmark datasets. This attempt high-
lighted the potential of using deep learning models in addressing the KT problem. In recent years,
an increasing number of studies have exploited the development of deep learning KT models from
different perspectives, including:

• Memory structures. Inspired by memory-augmented neural networks [39, 74], deep learn-
ing KT models have been extended by augmenting more powerful memory structures, typ-
ically key-value memory, for capturing knowledge states dynamically at a finer granularity
such as the mastery level of each individual skill (e.g., [1, 131]).
• Attention mechanisms. Inspired by the Transformer architecture [115] and some further

developments in natural language processing applications, attention mechanisms have been
incorporated into deep learning KT models for capturing the relationships among questions
and their relevance to a student’s knowledge states (e.g., [22, 35, 81, 82, 102]).
• Graph representation learning. Inspired by the representational power of graph learning

techniques such as Graph Neural Networks [58, 94], deep learning KT models have been
equipped with graph learning techniques to leverage the rich structural information from
graphs that can flexibly model relationships among questions and skills (e.g., [80, 112, 126]).
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• Textual features. Question text may potentially contain a great wealth of information such
as skills required by questions, difficulty of questions, and relationships between questions.
Several deep learning KT models have leveraged textual features from question text for learn-
ing question representations and tracing a student’s knowledge states (e.g., [64, 104, 128]).
• Forgetting features. Motivated by the learning curve theory [77], a recent trend in devel-

oping deep learning KT models is to incorporate forgetting features so that a student’s for-
getting behavior can be taken into consideration for knowledge tracing (e.g., [3, 20, 79]).

These studies facilitate the translation of breakthroughs in deep learning techniques into the KT
domain. So far, deep learning KT models have achieved the state-of-the-art results on the majority
of benchmark datasets for knowledge tracing (a summary of the results obtained by different KT
models is presented in Table 7).

1.1 Contributions

This paper performs a detailed survey that summarizes, classifies, and analyzes KT methods both
from the traditional machine learning perspective and the recent deep learning perspective. It also
presents KT benchmark datasets and applications. The main contributions are as follows:

• We highlight the key categories of KT methods and compare their architectures over multiple
aspects including model design, knowledge state representation, assumptions for relation-
ships between questions and skills, and consideration of student’s forgetting behavior.
• We present the chronic evolution for each KT category and discuss how each method is

extended on the previous work.
• We summarize the characteristics of well-known KT datasets and compare the performance

of key KT methods on each dataset by consolidating results from the relevant literature.
• We discuss application areas of KT that are not well explored currently to help derive future

research directions in new venues.

Note that a recent KT survey has been presented by Liu et al. [65]. Despite their contributions to
the field, our survey differs in depth and topics covered. The most notable differences are the com-
prehensive coverage of KT models; an important discussion on the differences in representation
learning techniques related to key aspects of KT (such as knowledge state, forgetting behaviors,
and knowledge components); an in-depth coverage of the KT datasets used by the relevant litera-
ture highlighting their similarities and issues; and, an extensive report of the results obtained by
different KT models which allows future and accurate comparisons between them.

1.2 Survey Methodology

We follow a specific search criterion to select relevant articles in the KT literature for this survey.
Our criterion goes as follows. First, we curated two search queries that match with the majority
of KT methods over the last decade and executed them using the well-known scientific search
engines including Google scholar, IEEE explore, ScienceDirect, Springer Link, and ACM Digital
Library, i.e., (“[intitle:knowledge AND intitle:tracing]” and “[intitle:student* AND (intitle:modeling
OR intitle:predict*)]” ). Following that, we took the union of their results, which was around 3,000
articles, and reduced the volume of these initial search results by filtering out ones that were
published before 2017 to focus on the recent methods. This reduced the volume to 478 arti-
cles. Then, we sorted the results by multiple factors including novelty of the contribution (e.g.,
proposing a new technique versus extending an existent one), relevance of the contributions (i.e.,
whether or not KT is the main research problem addressed), quality of the publication venue, and
depth of evaluation (e.g., number of evaluated datasets, performing ablation study, and number of
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Fig. 2. Scope and structure of the survey.

comparison baselines). Finally, we took the top 80 articles of the sorted list to be included in this
survey. We further performed backward snowballing to find the historical methods using refer-
ences from the above included articles, and this process added around 45 additional papers into
the set of articles covered by this survey.

1.3 Scope and Structure

This paper surveys the knowledge tracing literature to answer the following research questions:

— [RQ1]: What are the key categories of KT methods in the literature and how they differ
from each other?

— [RQ2]: What are the datasets collected, pre-processed, and used for benchmarking KT tasks
in the literature?

— [RQ3]: What are the application areas that can benefit from the research in the field of KT?

— [RQ4]: What are the future research opportunities and challenges in the field of KT?

In the rest of the article, we address each of these research questions in detail, as illustrated
in Figure 2. We answer RQ1 in Section 2 by presenting a categorization of KT methods and dis-
cussing the characteristics, limitations, and assumptions of each category. After that, in Section 3,
we conduct a comprehensive analysis on the datasets in terms of data collection, pre-processing,
characteristics, and the ground truth information, which answers RQ2. For RQ3, we discuss several
types of KT applications in Section 4, particularly in relating to how KT techniques can enhance
students’ personalized learning experience and performance. Finally, we explore future research
directions for KT which may enrich the field of study and provide a broad understanding of op-
portunities and limitations of existing KT methods with respect to RQ4 in Section 5. The article is
concluded in Section 6.
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Fig. 3. An overview of traditional knowledge tracing models.

2 CATEGORIZATION OF KNOWLEDGE TRACING MODELS

This section introduces a comprehensive categorization for the KT models according to the related
works found in the literature. Generally speaking, there are two broad categories: (1) Traditional
Knowledge Tracing Models; and (2) Deep Learning Knowledge Tracing Models. Table 5 summarizes
the main characteristics of different KT models across these two broad categories.

2.1 Traditional Knowledge Tracing Models

Traditionally, there are two popular lines of research for knowledge tracing: the Bayesian Knowl-
edge Tracing and the Factor Analysis Models. Figure 3 provides an overview for major traditional
knowledge tracing models that have been developed in the KT literature.

2.1.1 Bayesian Knowledge Tracing. Bayesian Knowledge Tracing (BKT) was motivated by
the concepts of mastery learning [24]. Mastery learning assumes that all students can practise on
a skill such that it may lead to mastery of that skill if two conditions are satisfied: (a) knowledge
is appropriately described as a hierarchy of skills; and (b) learning experiences are structured to
ensure that students master skills lower than those higher in the hierarchy [25].

BKT models often use a probabilistic graphical model such as Hidden Markov Model [27] and
Bayesian Belief Network [117] to trace students’ changing knowledge states as they practise skills.
Central to these models is the Bayes’ theorem that, for two events A and B, the following holds:

p (A|B) =
p (B |A)p (A)

p (B)
. (1)

In what follows we discuss the standard Bayesian approaches and their variations.

• Standard BKT Model
The first BKT model was introduced by Corbett and Anderson in 1994 [25]. The proposed
model associates a skill with a binary knowledge state: {unlearned, learned }. This model only
considers transitions from the unlearned state to the learned state, overlooking the forgetting
theory (i.e., the probability of transition from a learned state to an unlearned state is always
zero). Additionally, note that a student may make a mistake while in a learned state or guess
correctly in an unlearned state. We refer to this model as the standard BKT model from now
on. Table 1 summarizes the main parameters for the BKT model.
There are two types of variables in the standard BKT model: (1) the Binary latent variables
which represent the knowledge states of a given student (i.e., a single variable per skill
indicating learned state and unlearned state); and (2) the Binary observed variables which
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Table 1. Four Types of Model Parameters used in BKT

Parameter Description

p (L0) Probability of skill mastery by a student before learning

p (T ) Probability of transition from an unlearned state to a learned state

p (S ) Probability of slipping by a student in a learned state

p (G ) Probability of guessing correctly by a student in an unlearned state

Fig. 4. Comparing the model architectures between (a) BKT and (b) DBKT, where latent variables for skills

at the time step t are denoted as kt
i and their correspondingly observed variables for answers at the time

step t are denoted as yt
i .

represent how students attempt questions (i.e., a variable per question indicating whether a
question is answered correctly or not).
Figure 4 shows four types of model parameters in the standard BKT model. For each skill,
there is one set of four corresponding parameters. At each time step n ≥ 1, the model esti-
mates the probability p (Ln ) of skill mastery by a student by:

p (Ln ) = Posterior (Ln−1) + (1 − Posterior (Ln−1)) ∗ p (T ), (2)

where Posterior(Ln−1) is the posterior probability of being in a learned state given the ob-
servation to the n-th attempt by a student, calculated as:

Posterior (Ln−1)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p (Ln−1) ∗ (1 − p (S ))

p (Ln−1) ∗ (1 − p (S )) + (1 − p (Ln−1)) ∗ p (G )
if the n-th attempt is correct;

p (Ln−1) ∗ p (S )

p (Ln−1) ∗ p (S ) + (1 − p (Ln−1)) ∗ (1 − p (G ))
otherwise.
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Table 2. Model Parameters of Individualized BKT Models

Parameter
[25] [85] [62] [129] [56]

skill student skill student skill student skill student skill student

p (L0) � � � � - � � � � -

p (T ) � � � - - � � � � -

p (S ) � � � - - � � - � �
p (G ) � � � - - � � - � �

Hence, the probability of a student to correctly answer a question at each time step n is the
sum of the probability of either mastering the skill but making a “slip” or not mastering the
skill but making a correct “guess”, as formulated by:

p (Ln ) ∗ (1 − p (S )) + (1 − p (Ln )) ∗ p (G ) (3)

Figure 4(a) shows the standard BKT model with one skill node k . Starting with the prior
probability p (L0) of skill mastery, the latent variable for skill k is transitioned from one time
step t − 1 to the next time step t based on the probability p (T ). The corresponding observed
variable y represents the answer node, i.e., how a student attempts questions that require
skill k , which is based on the probabilities p (G ) and p (S ).

• Individualized BKT Model
One limitation of the standard BKT model is that it has no model parameters specific to
students. All students are assumed to have the same prior knowledge and the same learn-
ing rate for any skill. As a result, the standard BKT model may underestimate the learn-
ing performance for above-average students, but overestimate the learning performance for
below-average students [25].
To alleviate this limitation, several attempts [25, 56, 62, 85, 129] have been made to extend the
standard BKT model by introducing student-specific parameters. Corbett and Anderson [25]
considered to add individual weights for each student, one weight corresponding to each of
the four parameter types in the standard BKT model. Pardos and Heffernan [85] focused
on individualizing the prior probability of skill mastery p (L0) heuristically for each student.
Lee and Brunskill [62] also individualized the four parameter types in the standard BKT
model for students; nonetheless, the combined effects of skill-specific and student-specific
parameters were unexplored. Yudelson et al. [129] introduced an approach for individual-
izing BKT models that account for student differences with respect to two types of model
parameters, the prior probability of skill mastery p (L0) and the probability of transition p (T ).
The idea was to first define student-specific parameters and skill-specific parameters. Then,
the gradients were explicitly computed in terms of both student-specific and skill-specific
parameters. The underlying Hidden Markov Model remains unchanged. It turns out that
adding student-specific parameter for p (T ) is more beneficial for the model accuracy than
adding student-specific parameter for p (L0). Later, Khajah et al. [56] proposed to extend the
standard BKT model by personalizing the guess and slip probabilities p (G ) and p (S ) based
on student ability and problem difficulty.

Compared to the standard BKT model, the individualized models can provide better cor-
relation between actual and expected accuracy among students, leading to more effective
decisions or improving the accuracy of predicting student performance. Table 2 summarizes
the skill- and student-specific parameters used in the individualized BKT models.

ACM Computing Surveys, Vol. 55, No. 11, Article 224. Publication date: February 2023.
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• Dynamic BKT Model
In the early years, the BKT models assumed that each question requires only one skill and
different skills are independent from each other [25, 62, 85, 129]. Thus, these models cannot
handle questions that require multiple skills, nor represent relationships between different
skills. To address this limitation, Käser et al. [54] proposed to jointly model multiple skills
and dependencies between different skills using Dynamic Bayesian Network (DBN). They
aimed to capture prerequisite skill hierarchies within a single model, e.g., one skill is con-
ditionally dependent on another skill if the former is a prerequisite for mastering the latter.
Similar to the standard BKT model, DBN considers the same two types of variables: binary
latent variables and binary observed variables.

At each time step, a latent variable for each skill is associated with an observed variable.
A forget probability p (F ) is introduced, in addition to the four types of model parameters
{p (L0),p (T ),p (S ),p (G )} in the standard BKT model. Dependencies between different skills
are learnt as weights w of a log-linear model. Let f : X × O → Rd denote a mapping
from a latent space X and an observed space O to d-dimensional feature vectors, and c be a
normalizing constant. The objective of the log-linear model is to find the model parameters
{p (L0),p (T ),p (S ),p (G ),p (F ),w} that maximize the likelihood of the joint probability of xi ∈
X and yi ∈ O as formulated below:

L(w) =
∑

i

ln�
�
∑

xi

exp (wᵀ f (xi ,yi ) − c )�
	
.

Figure 4(b) shows the Dynamic Bayesian Network (DBKT) with three skill nodes (de-
noted as k1, k2 and k3). As indicated by the directed arrows, the latent variable for skill k2

depends on the latent variable for skill k1, and the latent variable for skill k1 depends on the
latent variable for skill k3. Further, at each time step t , latent variables for skills depend on
their latent variables in the previous time step t − 1, while yi is the corresponding observed
answer nodes.

2.1.2 Factor Analysis Models. Factor analysis models are theoretically supported by the Item
Response Theory (IRT) [30], which has played a large role in educational assessment and mea-
surement. The key idea is to estimate student performance by learning a function, usually a logistic
function, based on various factors in a population of students who solve a set of problems. It is
important to note that, although an item in the original IRT corresponds to a question involving a
single skill, later works in this line have been generalized to considering an item that may involve
multiple skills. The mapping between items and skills is often represented in the form of Q-matrix,
i.e., an entry qjk in a Q-matrix is 1 if an item j involves a skill k ; or 0, otherwise. Q-matrix is com-
monly assumed as the side information.

• Item Response Theory (IRT)
The history of IRT can be traced back to Thurston’s pioneering work in the 1920s [71] and
several other works in the 1950s and 1960s [7, 13, 40, 72]. IRT is built upon the following
assumptions: (a) The probability that a student correctly answers an item can be formulated
as an item response function based on the parameters of the student and the item; (b) The
item response function monotonically increases with respect to the ability θi of a student i;
and (c) For a student with the ability θi , items are considered conditionally independent.
The Rasch model [92] is often referred to as the simplest IRT model, in which the item re-
sponse function is defined by a one-parameter logistic regression (1PL) model. Let L (·) be a
logistic function. By taking into account a difficulty parameter bj that models the difficulty
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of an item j, the probability pi j that a student i correctly answers an item j is defined as:

pi j = L (θi − bj ) =
exp (θi−bj )

1 + exp (θi−bj )
. (4)

Several multiple parameter logistic regression models have also been developed for IRT, e.g.,
a four-parameter logistic (4PL) model introduced by Barton and Lord [9]:

pi j = c j + (dj − c j )L (aj (θi − bj )) = c j + (dj − c j )
expaj (θi−bj )

1 + expaj (θi−bj )
, (5)

whereaj is a discrimination parameter to model how well an item j can differentiate students,
c j is a guessing parameter to model the effect of guessing, and dj is a slipping parameter to
model the effect of careless errors.

IRT has been extended in many different directions. Wilson et al. [122] proposed Hierarchi-
cal IRT (HIRT) and Temporal IRT (TIRT). HIRT exploits structure among questions by
assuming that related questions (i.e., questions sharing similar skills) have difficulty parame-
ters drawn from the same distribution. Different questions might vary in difficulty, but ques-
tions for trivial skills tend to be easier while ones for difficult skills tend to be harder. TIRT
models each parameter in the logistic model (e.g., 4PL) as a time-varying stochastic process
such as a Wiener random process [108]. Zhou et al. [132] proposed the Educational context-
aware Cognitive Diagnosis (ECD) model that builds on the IRT theory through combin-
ing a student’s educational context features (e.g., gender or parents’ educational level) with
exercise answering features using a two-stage hierarchical attentive architecture. Zhuang
et al. [134] proposed a question recommendation framework for enhancing a student’s pro-
ficiency level, named Neural Computerized Adaptive Testing (NCAT), which consists of
two components: a question selection agent following a Q-learning setup [121] and an IRT-
based knowledge tracing model [120] for answer prediction. The NCAT framework firstly
selects a support set (i.e., a train mini-batch of question-answer samples) that is used to
train the IRT-based knowledge tracing model, then uses a query set (i.e., a test mini-batch)
to evaluate the performance of the model, and generates the reward signal for the question
selection agent as the inverse of the prediction error on the query set.

• Additive Factor Model (AFM)
The Additive Factor Model [17], originated from Learning Factors Analysis (LFA) [16], is a
logistic regression model under four assumptions: (1) the prior knowledge of students may
vary; (2) students learn at the same rate; (3) some skills are more likely to be known than
others; and (4) some skills are easier to be learnt than others. In this model, a difficulty
parameter βk and a learning rate parameter γk are assigned for each skill k , respectively.

The key idea of AFM is that the probability of answering an item correctly by a student is
proportional to an additive combination of the ability of the student, the difficulty of skills
involved in the item, and the amount of learning gained from each attempt. Let K (j ) be the
set of skills involved in an item j, which can be obtained from a Q-matrix, and Tik be the
number of times that a student i has attempted on an item involving a skill k . AFM defines
the probability of answering an item correctly by a student i on an item j as:

pi j = L�
�
θi +

∑

k ∈K (j )

(βk + γkTik )�
	
. (6)
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• Performance Factor Analysis (PFA)
Performance Factor Analysis (PFA) [87] overcomes the limitation of AFM which ignores
the evidence of learning in the successful and unsuccessful attempts on items by a student.

The key idea of PFA is to discard the parameter θi used in the previous models and instead
count for success and unsuccessful attempts separately. PFA has three parameters for each
skill, including: (1) βk is for the difficulty of a skill k ; (2) γ S

k
is for the effect of learning a skill

k after successful attempts; and, (3) γ F
k

is for the effect of learning a skill k after unsuccessful

attempts. Conceptually, γ S
k

and γ F
k

reflect the learning rate for a skill k when being applied
successfully and unsuccessfully.

Let T S
ik

and T F
ik

be the number of successful attempts and the number of unsuccessful at-
tempts made by a student i on a skill k , respectively. Then PFA calculates the probability
that a student i correctly answers an item j as:

pi j = L�
�
∑

k ∈K (j )

(
βk + γ

S
kT

S
ik + γ

T
k T

F
ik

) �
	
. (7)

• Knowledge Tracing Machine (KTM)
Knowledge Tracing Machine (KTM) was recently proposed by Vie and Hisashi [116],
which generalizes Factorization Machine (FM) [107, 109] for student modeling.

KTM allows to consider an arbitrary number of factors about students, items, skills, success-
ful and unsuccessful attempts, or extra information about the learning environment, such
as using a mobile or a laptop. For a number N of factors, we denote all factors involved in
an event by a sparse vector x of length N such that xk > 0 if a factor k ∈ [1,N ] is involved
in the event; or 0, otherwise. Then KTM estimates the probability pi j of a correct answer on
an item j by a student i with an event involving x as follows:

pi j = L �

�

N∑

k=1

wkxk +
∑

1�k<l�N

xkxl 〈vk ,vl 〉 + μ��
	

(8)

where μ is a global bias, and each factor k is modeled by both a weight wk ∈ R and an em-
bedding vector vk ∈ Rd for some dimension d . The first term models the logistic regression
of all factors and the second term models pairwise interactions between different factors.
When L is a logistic function, KTM includes IRT, AFM and PFA as special cases [116].

Wenbin et al. [34] extended the KTM model through their Knowledge Tracing Machine by
modeling cognitive item Difficulty and Learning and Forgetting (KTM-DLF) model by
adding factors related to the forgetting behavior of students. They represented the forgetting
by time lapse since the last successful attempt for the involved skills.

2.1.3 Discussion. Both Bayesian knowledge tracing and factor analysis models have strengths
and weaknesses. We discuss their connections and differences from three aspects: model parame-
ters, model inference, and temporal analysis.

• Model parameters: Most recent models in BKT and FAM have taken into account both
student- and skill-specific model parameters. Early BKT models were primarily centered on
the four parameters: prior learning parameter p (L0), learning rate parameter p (T ), guess pa-
rameter p (G ), and slip parameter p (S ) [25] and their student-specific variants. These early
BKT models usually assume that there is no forgetting parameter. Only some recent works
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have incorporated the forgetting parameter [54]. For factor analysis models, most of them
have been developed with similar or more flexible model parameters than BKT models. Par-
ticularly, recent works such as KTM [116] consider a wide range of factors, enabling a flexible
way to incorporate the side information into student modelling.

• Model inference: To keep the Bayesian inference tractable, BKT models typically assume
a first-order Markov chain when making inference based on a sequence of past question-
answering history, i.e., only considering the most recent observation. This assumption how-
ever limits their ability to model complex dynamics on student learning behaviors. Some
recent dynamic BKT models such as DBN [54] are often computationally intractable, and
thus they trade off predication accuracy for computational efficiency. On the other hand,
factor analysis models usually do not explicitly make inferences on knowledge states of a
student (e.g., decide whether a student has achieved a certain level of skill mastery by trac-
ing knowledge states). Instead, they target to maximize other model parameters such as the
learning rate.

• Temporal analysis: BKT models essentially deal with a sequence prediction problem based
on the history of student learning. In contrast, factor analysis models do not consider the or-
der of questions in which a student’s answers are observed. For example, given two questions
and their corresponding answers from a student, whether one question is answered before
the other is not important for factor analysis models. Nonetheless, by incorporating extra
temporal features of student learning behaviors, factor analysis models can be enhanced to
analyze temporal aspects of student learning.

A number of attempts have been made to leverage the best from both worlds of Bayesian knowl-
edge tracing and factor analysis models. For example, [47, 56, 57] extended the IRT using the
Bayesian inference to customize the estimation of question difficulty based on observations of
each student. Further work has been done through incorporating factors that reflect the character-
istics of individual students [27, 85], or the characteristics of specific items of assessment within
skills [86].

2.2 Deep Learning Knowledge Tracing Models

Inspired by the success of deep learning [37, 38, 61, 96, 105], recent researches on knowledge
tracing have applied deep learning techniques. Figure 5 presents a taxonomy of deep learning
knowledge tracing models.

2.2.1 Sequence Modeling for Knowledge Tracing. A knowledge tracing task is typically modeled
as a sequence prediction problem from a machine learning perspective. Let Q = {q1, . . . ,q |Q | } be
the set of all distinct questions in a dataset. Each qi ∈ Q may have a different level of difficulty,
which is not explicitly provided. When a student interacts with the questions in Q , a sequence of
interactions X = 〈x1,x2, . . . ,xt−1〉 undertaken by the student can be observed, where xi = (qi ,yi )
consisting of a question qi and answer yi ∈ {0, 1}. yi = 0 means that qi is incorrectly answered
and yi = 1 means that qi is correctly answered.

Definition 2.1. Given a sequence of interactionsX that contains the previous question answering
of a student, the knowledge tracing problem is to predict the probability pt of correctly answering
a new question qt at the time step t by the student, i.e., pt = (yt = 1|qt ,X ).

Deep Knowledge Tracing (DKT) [89] pioneered the use of deep learning for knowledge trac-
ing. It employs Recurrent Neural Network (RNN) [63] and a Long Short Term Memory
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Fig. 5. A taxonomy of deep learning knowledge tracing models.

(LSTM) [45] to predicate the probability of correctly answering a question at each time step. A
sequence of hidden states 〈h1,h2, . . . ,hn〉 is computed which encodes the sequence information
obtained from previous interactions. At each time step t , the model calculates the hidden state ht

and the student’s response pt as follows:

ht = Tanh(Whxxt +Whhht−1 + bh ) (9)

pt = σ (Whyht + bp ) (10)

where the Tanh(ui ) = (eui − e−ui )/(eui + e−ui ) and σ (ui ) = 1/(1 + e−ui ) are activation functions,
Whx ,Whh andWhy are weight matrices, and bh and bp are bias vectors.

Despite the promising performance, DKT has several limitations. First, it assumes only one hid-
den KC (i.e., a skill) in a student’s knowledge state ht . Second, it cannot model the relationships
among multiple KCs. Third, it assumes that all questions are equally likely related to each other,
which may not hold in many scenarios as some questions may be more relevant to each other than
the remainder of the sequence. Thus, various attempts have been made on extending DKT with
the aim of enhancing the model capacity for tackling the KT problem. Below, we review the related
work in the following areas of extension.

A number of KT models have extended DKT [89] to address its limitations. For example, Xiong
et al. [125] proposed Extended-Deep Knowledge Tracing that extends DKT by adding auxiliary stu-
dent features such as previous knowledge, question answering rates and time spent on learning
and practice; and, exercise features, such as textual information, question difficulty, skill hierar-
chies and skill dependencies. A variant of DKT, called (DKT+) [127], was proposed to augment the
original DKT loss function with two additional regularization terms to address the limitations in
DKT’s ability to reconstruct an answer input and reduce inconsistency of answer prediction for
questions sharing similar KCs. Minn et al. [75] proposed an extension of DKT, named Deep Knowl-
edge Tracing with Dynamic Student Classification (DKT-DSC), that uses K-means to cluster
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Fig. 6. A comparison of the model architecture design between (a) DKVMN and (b) SKVMN.

student profiles into groups based on their performance over the KCs and dynamically update the
current cluster information over time while the performance changes.

2.2.2 Memory-Augmented Knowledge Tracing Models. To trace complex KCs learned by stu-
dents, several works have extended DKT by augmenting an external memory structure, inspired
by memory-augmented neural networks [39]. In particular, following Key-Value Memory Net-
work (KVMN) [74], a key-value memory has been employed to represent knowledge state, which
has more representational power than a hidden variable used in DKT. Such a key-value memory
consists of two matrices: key and value. The key matrix stores the representations of KCs and
the value matrix stores the student’s mastery level of each KC. Below, we discuss two popular
key-value memory networks for knowledge tracing.

• Dynamic Key-Value Memory Network (DKVMN)
Dynamic Key-Value Memory Network (DKVMN) [131] has augmented DKT with two
memory matrices: key and value. To trace how the knowledge state of a student evolves over
time, unlike KVMN in which both key and value matrices are static [74], DKVMN designs
the value matrix to be dynamic while keeping the key matrix to be static.

Figure 6(a) shows the model architecture of DKVMN, where M
k ∈ RN×dk is the key matrix

and M
v
t ∈ RN×dv is the value matrix at the time step t . It is assumed that there are N latent

KCs underlying all questions in a learning task. For a question qt at the time step t , a corre-
lation weightwt is computed, which represents the correlation between the question qt and
the underlying latent KCs stored in the key matrix M

k . The model first retrieves a student’s
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Table 3. A Comparison of Attentive Knowledge Tracing Models

KT Model Forgetting-Aware Text-Aware Attention Mechanism

SAKT [81] × × Multi-head self-attention
AKT [35] � × Monotonic attention
SAINT [22] × × Multi-head self-attention
SAINT+ [102] � × Multi-head self-attention
RKT [82] � � Relational multi-head self-attention
CKT [101] × × Dot-product attention
CoKT [68] × × Collaborative multi-head self-attention

knowledge state with regard to the question qt from the value matrix M
v
t , calculated as:

rt =

N∑

i=1

wt (i )Mv
t (i ). (11)

Then, the student’s response for the question qt is predicted based on the retrieved knowl-
edge state. After the student answers the question qt , the value matrix is updated to reflect
the knowledge growth of the student after working on qt .

• Sequential Key-Value Memory Network (SKVMN)
Sequential Key-Value Memory Network (SKVMN) [1] aimed to address a limitation in
DKT and DKVMN that KCs required by answering the past questions in a sequence are not
necessarily relevant to KCs required by answering the current question. Thus, SKVMN em-
ploys a modified LSTM for sequential modeling, called Hop-LSTM, while remaining the same
key-value memory structure and loss function as in DKVMN. Different from the standard
LSTM, Hop-LSTM can explicitly capture sequential dependencies among questions in a se-
quence of interactions, and update the knowledge state of a student based on their responses
to relevant questions.

Figure 6(b) shows the model architecture of SKVMN. More precisely, two LSTM cells in Hop-
LSTM are connected only if the input question of one LSTM cell is sequentially dependent on
the input question of the other LSTM cell. This means that Hop-LSTM has the capability of
hopping across the LSTM cells when their input questions are irrelevant to the current ques-
tion qt . Thus, it enables to capture long-term dependencies among questions that require
similar KCs.

2.2.3 Attentive Knowledge Tracing Models. Following the Transformer architecture [115], sev-
eral works [22, 35, 81, 82, 102] have attempted to incorporate an attention mechanism into KT
models. Although the attention mechanisms introduced by these works vary, their key ideas are
similar, i.e., to learn the attention weights of questions in a sequence of interactions in a way that
can reflect the relative importance of these questions for predicting the probability of correctly
answering the next question. This mitigates one limitation of DKT that treats all questions in a
sequence of interactions equally important. In what follows, we discuss the main attentive knowl-
edge tracing models. Table 3 briefly summarizes these models.

• Self-Attentive Knowledge Tracing (SAKT)
Self-Attentive Knowledge Tracing (SAKT) [81] was the first to add an attention mech-
anism into the KT models. It uses the scaled dot-product attention mechanism proposed
by Vaswani et al. [115] to learn attention matrices using multiple attention heads. Specifi-
cally, each attention matrix contains relative weights from a representative subspace, which
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indicate the importance of questions in the past interactions for predicting a student’s an-
swer to the current question. Then, attention matrices from different representative sub-
spaces are sent to a feed forward network for predicating student performance.

• Attentive Knowledge Tracing (AKT)
Attentive Knowledge Tracing (AKT) was proposed by Ghosh, Heffernan, and Lan [35].
AKT differs from SAKT in its attention mechanism called monotonic attention (i.e., a mod-
ified, monotonic version of the scaled dot-product attention mechanism [115]) that can re-
duce attention weights for questions in a sequence of interactions proportional to their time
distance in an exponential decay rate. The exponential weight decay is meant to consider the
forgetting effect in a student’s memory over time. In addition, an embedding representation
was proposed to take into account a parameter for controlling how far a question deviates
from a knowledge component it involves by following the Rasch model [92].

• Separated Self-AttentIve Neural Knowledge Tracing (SAINT)
Separated Self-AttentIve Neural Knowledge Tracing (SAINT), proposed by Choi
et al. [22], differs from AKT and SAKT in the way that it has further applied a encoder-
decoder model along with the scaled dot-product attention mechanism as in the original ar-
chitecture of Transformer [115]. Specifically, SAINT separates a sequence of interactions by
a student into a question embedding sequence and a response embedding sequence, which are
then sent to the encoder and the decoder as input, respectively. The encoder and decoder
are combinations of multi-head attention networks with the scaled dot-product attention
mechanism [115].

Recently, SAINT was extended by adding two time-related features into a response embed-
ding sequence: elapsed time for the time taken by a student to answer each question, and lag
time for the time interval between two consecutive learning interactions. This variant was
named as the SAINT+ model [102].

• Relation-Aware Self-Attention for Knowledge Tracing (RKT)
Relation-Aware Self-Attention for Knowledge Tracing (RKT) was proposed by Pandey
and Srivastava [82]. Similar to SAKT and SAINT, RKT employs the scaled dot-product atten-
tion mechanism proposed by Vaswani et al. [115] to learn attention weights using multiple
attention heads. However, it differs from the other attention-based KT models; RKT com-
bines attention weights with relation coefficients, which are obtained from exercise relation
modeling and forgetting behavior modeling. For the exercise relation modeling, it leverages
the text information of questions (e.g., a question’s textual information) to represent ques-
tions and estimate the relation between questions in a sequence of past interactions. For the
forgetting behavior modeling, similar to AKT, RKT considers an exponential decay to count
for a student’s forgetting behavior over time.

• Convolutional Knowledge Tracing (CKT)
Shen et al. [101] proposed the CKT model that combines attention with 1-D convolutional
networks [59] for predicting correct answers. In addition to the past question-answering
sequence, the CKT model considers a student’s individualized skills represented as the
historical relevant performance and the overall concept performance. The former uses a
masked-attention between the latest question and each previous question in the answer
sequence to extract a mastery score, while the latter extracts the mastery level on the
learning concepts level by getting the percentage of the correctly answered questions for
each defined concept. During answer prediction, the CKT combines individualized features
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Table 4. A Comparison of Graph-based Knowledge Tracing Models

KT Model
Graph

Assumption
Node Edge

GKT [80] KC KC-KC relation One KC per question
GIKT [126] Question or KC Question-KC relation Many KC per question
SKT [112] KC KC-KC multiple relations One KC per question
PEBG [67] Question or KC Question-KC relation Many KC per question

with embeddings from the answer sequence using a linear gating mechanism, and applies
1-D convolution operations to extract the final input representation for answer prediction.

• Collaborative Knowledge Tracing (CoKT)
Collaborative Knowledge Tracing (CoKT) [68] borrowed the idea of collaborative filtering
from the recommendation literature in order to consider knowledge states of peer students
in predicting the answer probability of a given student. The authors empirically showed that
fusing the intra-state (extracted from the previous answer history) and inter-state (extracted
from knowledge states from peer students) features could enhance the answer prediction
performance for students with a short answer history. The model estimates a peer’s similar-
ity score by deploying the BM25 [93] string similarity function between the string-encoded
question answering sequences and projects embedding vectors representing the inter-state
from similar peers using a multi-head self-attention mechanism [115]. Similarly, the previ-
ous answer history of a student is embedded using a multi-head self-attention to represent
the intra-state and is combined with the intra-state to get the final answer prediction.

2.2.4 Graph-Based Knowledge Tracing Models. In KT tasks, various relational structures often
exist, for example, similarity of KCs, dependency between KCs, and correspondence between ques-
tions and their KCs. To capture such relational structures for better addressing the KT problem, a
recent trend is to explore the power of graph representation learning techniques such as Graph
Neural Network (GNN). Table 4 briefly summarizes several main graph-based knowledge tracing
models and we discuss each of them separately.

• Graph-based Knowledge Tracing (GKT)
Graph-based Knowledge Tracing (GKT), proposed by Nakagawa, Iwasawa, and Matsuo
[80], attempted to incorporate a graph where nodes represent KCs and edges represent the
dependency relation between KCs for a relational inductive bias. They reformulated the KT
problem as a time series node-level classification problem and solved it using standard graph
learning techniques such as message-passing GNNs [95]. Since such a graph is not explicitly
given in KT tasks, the authors proposed two approaches to construct such graphs from a se-
quence of interactions by a student: (1) Statistics-based approach to construct a graph based
on statistics such as how many times one KC was answered after another KC was answered;
and (2) Learning-based approach to learn a graph with the performance optimization in an
end-to-end manner.

• Graph-based Interaction Knowledge Tracing (GIKT)
Graph-based Interaction Knowledge Tracing (GIKT), proposed by Yang et al. [126],
leverages the relation between questions and KCs, represented as a graph to learn useful
embedding for answer prediction. Different from GKT which implicitly assumes that each
question corresponds to one KC, GIKT assumes that one KC may be related to many
questions and one question may correspond to more than one KC. Thus, GIKT can use
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a GNN to aggregate the embeddings of questions and KCs based on their relation in the
graph, and sends the embedding of each question in a sequence of interactions to an RNN
model to predict a student’s answer for the next question.

• Structure-based Knowledge Tracing (SKT)
Structure-based Knowledge Tracing (SKT) was proposed by Tong et al. [112] which
aimed to capture multiple relations among KCs such as similarity relation and prerequisites
relation. Similar to GKT, SKT also assumes that each question corresponds to one KC.
However, instead of a single relation between KCs as captured in GKT, SKT exploits
multiple relations between KCs. Further, SKT supports information propagation to jointly
model the temporal and spatial effects when summarizing graph data. These two kinds of
graph embeddings are combined at each time step and fed to a recurrent model to predict
the correct answer by a student.

• Pre-training Embeddings via Bipartite Graph (PEBG)
Pre-training Embeddings via Bipartite Graph (PEBG) [67] presented a method for
obtaining pre-trained exercise embeddings so as to improve the accuracy of knowledge trac-
ing. In KT tasks, explicit exercise-KC relations and implicit exercise similarity as well as KC
similarity often exist simultaneously. To capture all these relations in exercise embeddings,
the authors represent them together with exercise difficulties as a bipartite graph. Then,
they fuse these features in the defined bipartite graph to obtain the pre-trained exercise
embeddings. Their experiments have indicated that the obtained exercise embeddings can
significantly improve the performance of some KT models, such as DKT [89].

2.2.5 Text-Aware Knowledge Tracing Models. Until now, the deep KT models that we have dis-
cussed mainly focused on a student’s interactions with questions in a sequence to predict the
probability of correctly answering the latest question by the student. Yet, they did not consider
much about the textual features of questions themselves. Text-aware KT models are motivated by
leveraging the textual features of questions to enhance the performance in tackling the KT tasks.

• Exercise-Enhanced Recurrent Neural Network (EERNN)
Exercise-Enhanced Recurrent Neural Network (EERNN) was proposed by Su et al. [104],
which is a text-aware KT model to predict the probability of correctly answering a given
question. The model uses a bi-directional LSTM module to extract the representation (i.e.,
a vector) of each question from the question’s text and then trace a student’s knowledge
states by combining it with the representations of the previously answered questions using
another LSTM module. Two variants of EERNN were developed: EERNNM and EERNNA.
The EERNNM variant assumes that a sequence of interactions satisfies the Markov property,
i.e., the answer prediction for the next question only depends on the latest observed knowl-
edge state; thus, it only considers the last hidden state. The EERNNA variant considers all
the previous knowledge states and combines them through an attention mechanism.

Later, Yin et al. [128] has further extended the work by Su et al. [104] through leveraging
a pre-training task to learn question representations. The authors followed a masked lan-
guage model (MLM) objective [73] and showed that this pre-training step could further
enhance the model’s performance compared to the original model.

• Exercise-Aware Knowledge Tracing (EKT)
Exercise-Aware Knowledge Tracing (EKT) [64] extends EERNN to incorporate the infor-
mation of multiple KCs during answer prediction, where a student’s knowledge state is rep-
resented by a knowledge state matrix, rather than a knowledge state vector. Specifically,
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the model uses a memory network for quantifying how much each question can affect the
mastery of a student on multiple KCs during a sequence of interactions by the student.

• Adaptable Knowledge Tracing (AdaptKT)
Cheng et al. [21] addressed the problem of transfer learning across KT domains aiming to
transfer a trained KT model on the source domain to operate on a target domain while
preserving its performance. Their proposed method works on the textual data of ques-
tions through learning a question embedding using a deep auto-encoder architecture that is
trained on questions from both domains, and then training a KT model on the source domain
while regularizing it to minimize the mean discrepancy [110] between the knowledge states
in both domains. The final layer is randomly reinitialized while keeping the weights of the
earlier layers frozen to train on the target domain.

In addition to the above text-aware KT models, other types of KT models such as Relation-Aware
Self-Attention for Knowledge Tracing (RKT) [82] and Hierarchical Graph Knowledge Trac-
ing (HGKT) [111] also extract features from the textual information of questions for learning
question representations in their models.

2.2.6 Forgetting-Aware Knowledge Tracing Models. Learning psychological studies [52, 88, 98]
showed that forgetting is an important aspect to consider for an accurate estimation of a student’s
knowledge state. This is because the knowledge mastery level of a student tends to decline with an
exponential rate over time since the last practice of the relevant questions. From an experimental
psychology perspective, Hermann Ebbinghaus [29, 78] studied forces that affect memory retention,
leading to formulate what is currently known as the learning curve theory [77]. Two effects that
are reflecting these forces on memory retention are the forgetting effect and the learning effect.

Modeling the forgetting effect is one of the major challenges that the KT literature has aimed
at tackling. Traditional KT models have attempted to incorporate forgetting behavior by adding
features such as the number of past trials or the lag time from the previous interaction [55, 88,
91, 99]. In recent years, several deep learning KT models have been developed to take a student’s
forgetting behavior into consideration during tracing knowledge states.

• Deep Knowledge Tracing (DKT) + Forgetting
Nagatani et al. [79] proposed to extend the Deep Knowledge Tracing (DKT) model [89]
by adding sequence-related forgetting features. These features include: (1) the number of
times a student answers questions with the same KC till the current point of time; (2) the
time lapse since the last interaction on a question with the same KC; and (3) the time lapse
since the last interaction on a question regardless of its relating KC. The first feature reflects
the learning effect while the other two features reflect the forgetting effect. Different from
the previous traditional KT models that use forgetting features only with regard to questions
with the same KC [55, 88, 91, 99], this work considers a student’s interactions in the whole
sequence so as to model more complex forgetting behavior.

• Knowledge Proficiency Tracing (KPT)
Knowledge Proficiency Tracing (KPT) was proposed by Chen et al. [20], which is a prob-
abilistic matrix factorization model that leverages prior information for knowledge tracing.
Specifically, two kinds of priors have been considered in this model: (1) question priors: the
model uses a Q-matrix which was marked by experts to depict the relationship between
questions and KCs for generating question representations; and (2) student priors: the model
captures the changes in a student’s knowledge state over time by jointly applying both
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learning curve and forgetting curve theories. The learning and forgetting factors are de-
signed based on the assumption that a student’s current knowledge state is mainly influ-
enced by two underlying reasons: (a) the more exercises she does, the higher level of related
knowledge state she will get; and (b) the more the time passes, the more knowledge she will
forget.

To further improve the predictive performance, an improved version of KPT, called Exercise-
correlated Knowledge Proficiency Tracing (EKPT) [48] was later developed, which incor-
porates the connectivity among questions over knowledge concepts into the probabilistic
modeling.

• HawkesKT
Inspired by the Hawkes process [43], Wang et al. [118] proposed HawkesKT, a model that
uses point process to adaptively model temporal cross-effects in KT. It assumes that the
mastery of a KC by a student is not only affected by previous interactions on questions of
the same KC, but also interactions on the other questions (cross-effects). Further, the model
assumes that cross effects caused by different previous interactions may also have different
temporal evolutions on the mastery of different KCs. Although cross effects all decay with
time, their decay rates differ from each other because some KCs may be easier to forget than
the others.

• Deep Graph Memory Network (DGMN)
Deep Graph Memory Network (DGMN) [3] is a hybrid KT model that combines graph
neural networks with memory for forgetting aware knowledge tracing. The model aims
at modeling the forgetting behavior over a KC space, which has the advantage to capture
indirect relationships between questions. DGMN builds a dynamic graph from a knowledge
state memory to capture relationships across KCs. Given a sequence of interactions, DGMN
uses an attention mechanism to associate questions to their relevant KCs. Then, it calculates
forgetting features over the sequence, and fuses question embedding, KC graph embedding,
and forgetting features using a gating mechanism. The gating output is used to predict the
probability of answering the next question correctly.

• Learning Process-consistent Knowledge Tracing (LPKT)
The LPKT model [100] considers the learning gain of a student during the answer prediction.
The learning gain is defined as the change on a knowledge state across a time interval since
the last answered question and integrate the time interval lapse between answering ques-
tions into the embedding representation of the exercise sequence. The LPKT model consists
of three sequential memory cells: (1) a learning progress gate that projects an embedding for
the latest exercise in the sequence considering its tag, time to answer and time lapse before
answering it, (2) a forgetting gate that gets the latest two learning progress embeddings and
projects an output representing the forgetting effect, and (3) a prediction cell that considers
the forgetting output and the latest question tag embedding to predict the correct answer.

2.2.7 Discussion. Deep learning KT models have demonstrated their great potential in solving
the KT problem. Below, we discuss several key aspects that are crucial for being considered in their
designs.

• Knowledge state: One fundamental assumption underlying each deep learning KT model
is whether a knowledge state is considered over a single KC or multiple KCs. Accordingly,
modeling a student’s knowledge states based on the mastery level of KCs by the student is
an important task in designing the deep learning KT models. Generally, from early works
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such as DKT which uses a hidden state to model knowledge states over a single KC, to later
works by memory-augmented KT models (e.g., DKVMN and SKVMN) and by text-aware KT
models (e.g., EKT) which use matrices to model knowledge states over multiple KCs, a trend
in deep learning KT models is to develop a mechanism that is expressive for dynamically
capturing knowledge state representations over complex KCs.

• KC dependencies: In a KT task, each question is assumed to associate with a single KC
or multiple KCs, which is often provided as a prior knowledge such as Q-matrix. One main
challenge faced by deep learning KT models is to discover the dependencies among different
KCs, for example, one KC requires several other KCs as the prerequisite skills. To address this
challenge, two lines of research have been explored in the KT literature, including: (1) using
an attention mechanism to learn how questions are related to each other in terms of their
required KCs; and (2) using a graph-based learning model such as graph neural networks to
learn the relationships between KCs or between questions according to their required KCs.

• Feature augmentation: To improve the model performance on KT tasks, additional fea-
tures such as temporal features relating to forgetting behavior and textual features relating
to question texts have been leveraged by a number of deep learning KT models in recent
years. On one hand, augmenting additional features can usually lead to more accurate pre-
diction on student learning performance; on the other hand, the augmentation of such ad-
ditional features depends on their availability in databases, thus limiting their applicability
within specific KT applications.

3 KNOWLEDGE TRACING DATASETS

This section presents an overview of the benchmark datasets used in the literature to support the
evaluation of KT models. All publicly available datasets were downloaded, inspected, and relevant
information reported. Table 6 lists the datasets and provides the general information such as stu-
dent interactions, the number of questions, and data availability. More details about the datasets
are presented below.

3.1 ASSISTments Datasets

The ASSISTments datasets [32, 84] contain longitudinal data collected from the free online tutoring
ASSISTment platform.1 Table 7 shows that the ASSISTments datasets are the most popular datasets
used to benchmark KT models and the ones containing the most questions in total.

These datasets are composed of grade school math exercises sampled from the Massachusetts
Comprehensive Assessment System (MCAS)2 containing different types of questions, such as
multiple choice, text, and open-ended questions. There are different versions of the ASSISTments
datasets with data collected in different periods. Details about each version is presented below.

• ASSISTments2009: This dataset was collected during the school year 2009−2010 and, when
first released, contained a total of 525, 535 interactions (i.e., student responses to questions
in the dataset), including duplicates, as discussed in [125]. The latest updated version of this
dataset contains 346, 860 interactions given by 4, 217 students to a total of 26, 688 distinct
questions and 123 KCs. We note that only two thirds of the questions (17, 751) are annotated
with KCs. Questions without assigned KCs are annotated with ‘NA’ (not available) or have
no assigned value (‘null’) whereas all other questions are annotated with up to four KCs.

1https://www.assistments.org/.
2https://www.doe.mass.edu/mcas/testitems.html.
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Table 5. A Summary of Descriptive Characteristics of Main Knowledge Tracing Models

KT Model Learning Model
Knowledge Component

Knowledge State Forgetting
Single Multiple

BKT [25]
DBN [54]

HMM/BN
DBN

�
-

-
�

Binary scalar
Binary vector

×
×

IRT [40]
HIRT [122]
TIRT [122]
LFA [16]
AFM [17]
PFA [87]

KTM [116]
KTM-DLF [34]

LR
LR
LR
LR
LR
LR
FM
FM

�
�
�
�
�
�
-
-

-
-
-
-
-
-
�
�

Real-valued vector
Real-valued vector
Real-valued vector
Real-valued vector
Real-valued vector
Real-valued vector
Real-valued vector
Real-valued vector

×
×
×
×
×
×
×
�

DKT [89]
DKT+ [127]

DKT-DSC [75]

RNN/LSTM
RNN/LSTM
RNN/LSTM

�
�
�

-
-
-

Hidden state (vector)
Hidden state (vector)
Hidden state (vector)

×
�
×

DKVMN [131]
SKVMN [1]

KVMN
LSTM+KVMN

-
-

�
�

Key-value memory (matrix)
Key-value memory (matrix)

×
×

SAKT [81]
AKT [35]

SAINT [22]
SAINT+ [102]

RKT [82]
CKT [101]
CoKT [68]

FFN+MSA
FFN+MSA

FFN+ED+MSA
FFN+ED+MSA

FFN+MSA
1-D(CNN)
FFN+MSA

-
-
-
-
-
-
-

�
�
�
�
�
�
�

Attentive embedding (matrix)
Attentive embedding (vector)
Attentive embedding (matrix)
Attentive embedding (matrix)
Attentive embedding (vector)
Attentive embedding (vector)
Attentive embedding (matrix)

×
�
×
�
�
×
×

GKT [80]
GIKT [126]
SKT [112]
PEBG [67]

GNN
GNN/RNN

GNN
RNN/LSTM

-
-
-

�
�
�

Vector
Vector
Vector

Hidden state (vector)

×
×
×
×

EERNN [104]
EKT [64]

AdaptKT [21]

RNN/LSTM
AM/LSTM
ED/LSTM

�
-
-

-
�
�

Hidden state (vector)
Attentive embedding (matrix)

Hidden state (vector)

×
×
×

DKT+forget [79]
KPT [20, 48]

HawkesKT [118]
DGMN [3]
LPKT [100]

RNN/LSTM
FM
FM

GCN/KVMN
RNN/LSTM

�
-
-
-
-

-
�
�
�
�

Hidden state (vector)
Real-valued vector
Real-valued vector

Key-value memory (matrix)
Hidden state (vector)

�
�
�
�
�

Despite the popularity of this dataset, its original version is not reliable as discussed in [131]
and the updated ‘skill-builder’3 version is preferred as it fixes data modeling issues and re-
moves duplicated records. It is also noteworthy to mention that results obtained with the
different versions of this dataset (or with duplicated records) are often reported in the liter-
ature but they should not be directly compared to other approaches [122].

• ASSISTments2012:4 This is the largest version of the ASSISTments datasets consisting of
data collected for one year (from Sept. 2012 to Oct. 2013). Despite the ASSISTments team
reporting that the dataset contains approximately 10 million ‘exercises’, the available dataset
consists of 179, 999 distinct questions answered by 46, 674 students resulting in 6, 123, 270
interactions. We note that the vast majority (126, 908) of the questions do not have any of
the 265 KCs associated with them. The lack of questions annotated with KCs may explain
the overall lower performance of the KT models when applied to this dataset (see Table 6).

3https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
4https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect.
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Table 6. Dataset Statistics

Dataset #Questions #Students #Interactions #KCs
Public

available

ASSISTments2009 26, 688 4, 217 346, 860 123 Yes
ASSISTments2012 179, 999 46, 674 6, 123, 270 265 Yes
ASSISTments2015 100 19, 917 708, 631 - Yes
ASSISTChall 3, 162 1, 709 942, 816 102 Yes

STATICS2011 1, 224 335 361, 092 80 No

Junyi Academy 722 247, 606 25, 925, 992 41 Yes

Simulated-5 (Synthetic) 50 4, 000 200, 000 5 Yes

Algebra 2005-2006 1, 084 575 813, 661 112 Yes
Algebra 2006-2007 90, 831 1, 840 2, 289, 726 523 Yes
Bridge to Algebra 19, 258 1, 146 3, 686, 871 493 Yes

EdNet-KT1 13, 169 784, 309 95, 293, 926 188 Yes
EdNet-KT2 13, 169 297, 444 56, 360, 602 188 Yes
EdNet-KT3 13, 169 297, 915 89, 270, 654 293 Yes
EdNet-KT4 13, 169 297, 915 131, 441, 538 293 Yes

• ASSISTments2015:5 This dataset contains 708, 631 student interactions with the ASSIST-
ments platform in the year 2015 produced by 19, 917 students answering 100 distinct ques-
tions. The dataset contains only four attributes: (i) the questions’ identifiers; (ii) the identifier
of the student who answered the questions; (iii) an attribute indicating the correctness of the
answer given by each student; and (iv) a log attribute where a temporal sequence of the an-
swers given by the students can be inferred.
Unlike previous versions of the ASSISTments datasets, no metadata and no KC are provided.
Another difference between this and previous datasets is related to the average number of re-
sponses given to each question. This dataset has an average of 7, 086.31 answers per question
whereas the 2009 and 2012 versions have 12.99 and 34.01, respectively.

• ASSISTment Challenge (ASSISTChall):6 Released in 2017, the full ASSISTment Challenge
dataset contains data from 2004–2005 and 2005–2006 academic years. It contains 3, 162 dis-
tinct questions answered by 1, 709 students over 102 KCs resulting in 942, 816 interactions.
On average, this dataset has 298.17 answers per question, placing it second in terms of the
answer per question ratio (only lower than the ASSISTments2015 dataset). As part of a data
mining competition, this dataset contains the most descriptive information among the AS-
SISTments datasets.

3.2 STATICS2011 Dataset

This dataset is available upon request and contains students’ interactions with questions related
to the Engineering Statics course7 taught at the Carnegie Mellon University during Fall 2011 [60].

The original dataset contains 361, 092 interactions, 335 students, and 1, 224 questions. In the KT
literature, this dataset is often preprocessed [131], resulting in 1, 223 distinct questions answered
by 333 students over 80 KCs. After preprocessing, the number of students’ interactions is almost

5https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data.
6https://sites.google.com/view/assistmentsdatamining.
7https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.
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halved to 189, 297. This preprocessing was justified due to the large number of interactions without
information on whether the questions have been correctly answered. The preprocessing considers
the concatenation of the attributes ‘problem name’ and ‘step name’ and only the interactions with
a valid first attempt. On average, this dataset has 568.45 answers per question.

3.3 Junyi Academy Dataset

This dataset8 was collected between November 2010 and March 2015 from the Junyi Academy [19],
an e-learning platform in Taiwan. The original dataset contains 25, 925, 992 interactions, 247, 606
students, 722 distinct questions, and 41 KCs covering a number of topics in math. However, consid-
ering the same preprocessing step made in the previous datasets (i.e., students interactions with
no hints given to help solve the questions and only students who have attempted each question
once), the number of interactions drops to 21, 571, 469 (∼17%), 220, 441 (∼11%) students, and 716
(<1%) distinct questions. Finally, on average, this dataset has 97.85 answers per question.

Although this dataset has been commonly used in the KT literature, the performance reported in
some of the works cannot be directly compared. This is because these works use different subsets
or preprocessing techniques [1, 82, 112]. Further, note that an updated version of the Junyi dataset
is available in Kaggle9 with data collected from August 2018 to August 2019. This dataset contains
11, 468, 379 interactions, 25, 649 students, and 1, 701 distinct questions where no hints were given
and students have attempted each question only once.

3.4 Simulated-5 (Synthetic) Dataset

This synthetic dataset was proposed by Piech et al. [89], which simulates virtual students to answer
the same sequence of questions over a set of KCs in a controlled environment.10 The dataset is
divided into two subsets, including training and testing. Each subset contains 50 distinct questions
associated with a single KC and a difficulty level. In total, each question is answered by 4, 000
virtual students resulting in 200, 000 interactions. The classic Item Response Theory [33] was used
to create the interactions and simulate students learning over time [89, 127]. This dataset provides
a standard format and does not require preprocessing steps such as removing duplicates or steps
to infer a sequence of questions answered by a student, potentially allowing direct comparison
between different KT models.

3.5 KDDcup Dataset

This dataset was presented at the KDDcup 2010 Educational Data Mining challenge11 [103] and
contains 13–14 year old students’ responses to Algebra questions from 2005 to 2007 extracted from
the intelligent tutoring system called “The Cognitive Tutors” developed by Carnegie Learning Inc.
in the US. The dataset is split into three subsets described in what follows.

• Algebra 2005-2006: Considering both training and test data, collected between August 2005
and June 2006, this dataset contains 1, 084 distinct questions answered by 575 students result-
ing in 813, 661 interactions. Unlike other datasets, each question is divided into sub-questions
totaling 210, 136 sub-items. On average, there are 750.60 answers per question. The total
number of distinct KCs is 112 and each sub-question is associated with one or more KCs. As
in previous datasets, the total number of interactions drops to 57.8%, the number of students
roughly remains the same (574) and the number of sub-items is reduced to 130, 256 if the

8https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198.
9https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy/tasks.
10https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic.
11https://pslcdatashop.web.cmu.edu/KDDCup.
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data is preprocessed removing sub-items with no KCs assigned, interactions where students
used any hints and questions with two or more attempts.

• Algebra 2006-2007: This subset contains 2, 289, 726 interactions generated by 1, 840 stu-
dents answering 90, 831 distinct questions with a total of 577, 119 sub-items classified by
one or more of the 523 KCs. On average, there are 49.36 answers per question. Similarly
to the Algebra 2005-2006 dataset, the number of interactions drops to 1, 567, 072, the num-
ber of students falls to 1, 813 and the number of questions and sub-items reduce to 89, 877
and 470, 187, respectively, after the data preprocessing step. After inspecting this subset, we
found that the timestamps provided are incorrect. This may affect the prediction of KT ap-
proaches and may explain the low adoption of this subset in comparison to the others.

• Bridge to Algebra: This subset contains 3, 686, 871 interactions collected between Novem-
ber 2006 and June 2007 generated by 1, 146 students, 19, 258 distinct questions divided into
207, 790 sub-items classified by one or more of the 493 KCs. After preprocessing, the total
number of interactions is almost halved (1, 721, 987), the number of questions drops (18, 715)
slightly whereas the number of items is reduced to 123, 778 (∼40%) and the number of stu-
dents remains almost the same (1, 145).

3.6 EdNet Dataset

EdNet12 is a hierarchical dataset composed of four subsets identified by the ids: ‘KT1’, ‘KT2’,
‘KT3’, and ‘KT4’, each containing different types of student activities. ‘KT1’, for example, contains
question-response pairs similar to other datasets. The main difference is that some questions in
this dataset are organized in bundles (a set of questions that must be completed altogether). This
dataset contains over 95, 293, 926 interactions, 13, 169 questions, 784, 309 students, and 188 KCs.

Unlike the other datasets, ‘KT2’ contains the actions of the users during question-solving activi-
ties. For example, it records the final submission and student decision-making (alternating choices)
before submitting the final answer. This subset has 56, 360, 602 interactions and 297, 444 students.
Besides the actions in ‘KT1’ and ‘KT2’, ‘KT3’ subset includes information about how students inter-
act with learning activities to answer a question (e.g., watch a lecture). This subset contains more
KCs (293), interactions (89, 270, 654) and students (297, 915). Finally, ‘KT4’ is the most complete
subset containing every action recorded by the EdNet system, including students’ purchases (e.g.,
course purchases). This subset contains 131, 441, 538 interactions in total.

Overall, the EdNet dataset series incrementally provides information into student activities and
behaviors. The dataset was collected over two years from the intelligent online tutoring platform
named Riid TUTOR13 dedicated to practicing English for international communication (TOEIC)
assessment [23] in South Korea. The variety of recorded behaviors and the large size of data points
are unique aspects of this dataset.

3.7 Considerations

Table 7 presents the results obtained by several KT models using the aforementioned datasets. The
results are reported using the AUC-ROC curve—a traditional performance measurement for binary
classification models. The probabilistic receiver operating characteristic (ROC) curve plots the
true positive rate (TPR) against the false positive rate (FPR) while the area under the curve
(AUC) reports how well a KT model can distinguish between correct and incorrect answers. The

12https://github.com/riiid/ednet.
13https://company.riiid.co/en/product.
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AUC-ROC ranges from 0 to 1, where 0.5 indicates an uninformative classifier (random guesses)
and 1 a perfect classifier.

It is important to note that the results cannot be directly compared if experimental settings are
not standardized. As discussed in [122], the results obtained without removing duplicate interac-
tions (preprocessing steps) may be inaccurate and appear elevated. The existence of duplicates is
also acknowledged in the KDDcup dataset.14 We reported in the previous sections the raw num-
ber of interactions, students, KCs, and so on, and whenever different, the total after removing
duplicates and discarding noise data.

The lack of accurate and descriptive information about each of the attributes in the datasets
also hinders experiments. An example is in the ASSISTments datasets where terminology used is
confusing15 or lacking.16 This may explain the different AUC values reported to the same approach
and dataset pairs presented in Table 7.

The sequence of students’ interactions is also an important component of a KT task that is
affected by the quality of the datasets. Due to noise in the data (e.g., incorrect timestamps, null
values, etc.), the sequence of interactions may not be correctly extracted from the datasets which
may accordingly impact the performance of the proposed KT models. For example, after inspecting
the datasets, we identified timestamp errors in the Algebra 2006 − 2007, which may justify its low
adoption in comparison to the other two Algebra datasets.

The fact that the benchmark datasets are often used for multiple tasks other than the KT problem
hinders the correct use and interpretation of the datasets in the KT context. The works in [35, 75, 81,
118, 126, 127, 131], for example, report different numbers of knowledge components for the same
datasets and the work in [35] discusses how different experimental settings (association between
KC and questions) may impact the reported results. The data model and the file format chosen
to represent the datasets may also contribute to misinterpretation of the data. For example, the
data is often extracted from relational databases and stored in comma-separated values (CSV),
compressing information in a single attribute using non-standard characters, e.g., the KDDcup
dataset uses double tilde characters to assign multiple KCs to a question. Given the hierarchical
and relational nature of the data, XML and JSON are more suitable and explicit formats.

Another critical aspect is the lack of more diverse datasets. The existing public datasets are often
from a specific domain (mainly math) and a specific region (e.g., the ASSISTment datasets from the
US, and EdNet, the most recent publicly available dataset, from South Korea). Most of the datasets
do not provide demographic information, and therefore gender-based, or other similar predictions
cannot be performed.

Finally, the benchmark datasets have been updated over the years, and the version used by the
KT models is not readily identifiable, which can compromise their direct comparison. A version
control mechanism for the publicly available datasets would help keep track of every change made
to a dataset over time and allows for consistent and comparable results.

4 KNOWLEDGE TRACING APPLICATIONS

This section explores possible application areas that can benefit from KT models. We broadly divide
the KT application areas into the following four categories: (i) Educational Recommender Systems;
(ii) Learning Provision and Quality Assurance; (iii) Student Engagement via Interactive Learning;
and (iv) Learning to Teach. We first introduce each application area. Then we discuss the conditions
required by methods in different KT categories and their suitable application scenarios.

14https://pslcdatashop.web.cmu.edu/KDDCup/FAQ/.
15https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect.
16https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data.

ACM Computing Surveys, Vol. 55, No. 11, Article 224. Publication date: February 2023.

https://pslcdatashop.web.cmu.edu/KDDCup/FAQ/
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data


224:28 G. Abdelrahman et al.

4.1 Educational Recommender Systems

An application area of KT that comes directly to mind is online education systems where the
main objective is to provide effective learning experience for their students. Tracing the knowl-
edge state of a student would facilitate to tailor students’ learning experience according to their
capabilities and skills. This can be achieved through recommending learning materials (e.g., lec-
tures, labs, and/or exercises) based on the learnt knowledge state of a student. Thus, the aim of
such online education systems is twofold: (1) to estimate the knowledge state of a student using
a KT model; and (2) to recommend learning materials conditioned on the knowledge state using
a recommendation model [14]. Below are some examples of applications that have been recently
studied. A graph-based recommendation method has been proposed by Chanaa and Faddouli [18]
to aid an educational instructor to segment students into groups based on their knowledge states
and recommend the most appropriate kinds of exercises for each group. More specifically, the in-
structor first selects a specific knowledge component (KC), and then, the model constructs a
dynamic knowledge graph based on historical practice information that includes student knowl-
edge vectors as nodes and uses edges for representing their mastery level similarities around the
selected KC. Such a graph is clustered into node groups and for each group a shared embedding is
constructed using GNNs to get the final recommendations. Cai et al. [15] followed an interactive
recommendation approach in which a reinforcement learning recommender agent selects learn-
ing materials to recommend based on a reward signal calculated from the progress in a knowledge
state estimated by a KT model. Huang et al. [49] proposed an interactive educational video recom-
mender model that follows a multi-objective setup of rewards. The authors designed three reward
functions to reflect three main aspects in online education systems including a reviewing reward
function for recommending videos about KCs that a student did not perform well previously, a
smoothing reward function for recommending videos with a gradual difficulty to understand, and
an engagement reward function for recommending videos about KCs a student started to master
recently. The recommender agent followed a reinforcement learning design with a state estimated
by a DKT variant model, an action for the video id to recommend, and a combined reward by using
a weighted sum of the three reward functions.

4.2 Learning Provision and Quality Assurance

Another potential application area is to provision a learning curriculum (e.g., an ordered list of top-
ics to study) for a specific subject based on the knowledge state of a student. One direction [25, 97]
in this application area follows a semi-automated approach in which an instructor would conduct
simulations using a KT model trained on the historical exercise records of students to identify a
suitable curriculum of learning materials for a course to maximize the knowledge gain of students.
Another direction [83] uses KT models to assess the effectiveness of a course structure in achiev-
ing its targeted objectives by assessing the impact of each module (i.e., a collection of learning
materials) on the knowledge growth of students. Recently, deep KT models have been adopted in
this direction to provide quality assurance for the course design [66]. The authors used a DKT
model [89] to trace the progress in the knowledge state of a student after taking a specific course
module, and then, an actor-critic reinforcement learning agent [41] considers the knowledge state
across different course modules and their predefined relationships (i.e., prerequisites) and takes
an action to select the next module to work on for the student to maximize their knowledge gain
in achieving course objectives. Following this approach, the structure of a course could adapt dy-
namically to a student’s needs and skills instead of having one fixed structure that does not fit all
students.
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4.3 Student Engagement via Interactive Learning

Interactive education aims at making the learning process more exciting and engaging through de-
livering knowledge components into a gaming shell. Cognitive studies [44] showed that students
can easily gain new knowledge components and be able to spend more time on learning if the
learning materials were delivered in an engaging manner such as gaming. This is due to the na-
ture of the human mind that was mainly designed for learning by real-world practices that usually
come as a form of an interactive experience (i.e., state, action, and rewards). Thus, an educational
game can provide similar experiences that better align with our natural learning capabilities than
the conventional ways (e.g., textbooks and lectures). Long and Aleven [70] evaluated the effect of
educational games in comparison to conventional online tutoring systems through a study that in-
volved two groups of students: one group was learning on an educational game for math equation
solving and the other group was learning using a non-interactive system that presents math con-
cepts in a conventional manner through demonstrative examples and exercises. The study found
that the group using the educational game was more engaged to continue the learning process
in comparison to the other group. Another study [4] focused on the effect of mobile educational
games on the learning progress for elementary school kids. The authors divided the student into
two groups: one used mobile educational games to review and practice math concepts taught at
school and another group practiced the math concepts using conventional text exercises. The study
concluded that students with access to the mobile educational games were performing better in
retaining the math concepts in comparison to the other group. These findings demonstrate the
great potential of education games as a promising application area for KT models.

Central to the effectiveness of an educational game is to assess the knowledge progress of
a player and adjust the gaming experience accordingly. This might include adjusting the diffi-
culty of challenges, opening new part(s) in a game, or the competency of a computer opponent.
Kantharaju et al. [53] proposed a KT model that could detect when a player attempts a specific skill
in an educational game and quantify their knowledge state across different states, so the game ex-
perience could be focused on challenging skills for each player. Cui et al. [26] used the BKT [117]
model to trace the knowledge state of fifth-grade elementary school students in Canada during a
science gaming assessment. The authors were not only able to effectively predict the final score of
a student based on their partial observations from the game assessment, but also identify pitfalls
in the game design and assumptions that tend not to work as expected by the designer in terms
of assessing dedicated skills. Hooshyar et al. [46] proposed a method that tackles the problem of
predicting a player’s skill proficiency in education games over multiple tasks with overlapping
demonstrations between skills. The authors investigated deep knowledge tracing using different
sequence models including LSTMs, RNNs, and CNNs while decomposing temporal dynamics us-
ing a moving fixed-size time window. Their results showed that the CNN variant outperformed
others with classification accuracy of 85% on average. Recently, several studies have shown that
psycho-physiological signals could provide vital cues on the current engagement state of a stu-
dent, especially in virtual learning sessions [12, 113]. These studies use recent advancements in
computer vision to detect facial expressions and body poses with a web camera attached to a stu-
dent’s computer for estimating an engagement score. We note that such signals could work as
an effective auxiliary source of information for knowledge tracing models besides the question
answering history to better estimate the knowledge state of a student.

4.4 Learning to Teach

Going beyond the conventional assumption of a human student in a KT setting opens the door
to a wide range of application areas. Virtual students, such as intelligent agents which adopt a
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reinforcement learning setup or machine learning models, can be treated in a similar way as real-
life students who are in need to learn a set of skills in different machine learning tasks. For example,
this can be a deep neural network model that needs to master a skill of classifying different class
labels (e.g., cats, dogs, furniture, etc.) in an image classification task or a reinforcement learning
agent aiming at mastering different skills in an Atari game. Curriculum learning (CL) [11] aims
at learning a curriculum of tasks to enable a student agent from mastering a set of skills. A CL pol-
icy would imply a statistical distribution on learning tasks that gradually drive the student agent
towards convergence. Another relevant paradigm is machine teaching (MT) [133] which aims at
minimizing the teaching cost represented by the size of training samples drawn from training data
in a machine learning scenario. In MT, there are two models being included: the teacher model and
the student model. The former targets to sample training data for the latter to learn an optimal
parameter set θ ∗ the minimizes the loss function in the task. Learning to teach (L2T) [31, 124]
targeted customizing the learning process for a student agent/model through optimizing three
main aspects including training data sampling, neural architecture design, and loss function de-
sign. In L2T, a teacher agent follows a reinforcement learning approach to optimize a teaching
policy that handles one or more of the three aspects previously mentioned. It can be observed
that a shared characteristic across these different attempts to enhance the conventional machine
learning procedure is the need to trace the knowledge state of a student model. Thus, there is a
significant potential for KT models to contribute in this application area by tracing the knowl-
edge state of a student model during training procedure. The output of the KT model would form
the input/state of a teacher model that aims at customizing the training procedure to speedup
the student model’s convergence. Knowledge Augmented Data Teaching (KADT) [2] aims at
improving a data teaching strategy of a student ML model by tracking its knowledge progress
across multiple knowledge components in a learning task. The KADT method includes a knowl-
edge tracking model to dynamically capture the knowledge progression of the student model in
terms of latent knowledge components. The authors develop an attention-pooling mechanism to
extract knowledge representations of the student model with respect to class labels, which enables
the development of a data-teaching strategy on significant training samples. The authors evaluated
the performance of the KADT method on four different machine learning tasks including knowl-
edge tracing, sentiment analysis, movie recommendation, and image classification. Results com-
pared to the state-of-the-art machine teaching methods have been empirically proven that KADT
consistently outperforms the others in all tasks.

4.5 Discussion

We have introduced different categories for KT methods in Section 2, yet it is essential to under-
stand the assumptions underlying each of them when choosing KT methods for applications. Thus,
in the following, we discuss the impact of design assumptions for each KT category on applications
such training data and computational resources.

Starting with traditional KT methods such as BKT and its variants [117], we note that these
traditional KT methods have a simplified view of the KT problem including assuming the knowl-
edge state to be a binary random variable or having a single KC for each question, which is mainly
to keep the posterior computation tractable. IRT and factor analysis methods [30] assume prior
learning ability information for each student to be available in addition to an exercise answering
history, and this limits their usage in scenarios where such information is missing such as cold-start
ones. Accordingly, these methods are more suitable for simple application scenarios that deal with
primitive skills (e.g., early learning problems) and do not include multiple KCs in the learning pro-
cess. Nonetheless, these methods require less computational overhead in comparison to advanced
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categories (e.g., deep KT methods) and are self-explainable through the learned state space transi-
tion probabilities.

The early work of deep KT methods [89] primarily uses conventional neural sequence models
such as RNN or LSTM cells, which limits their ability to model multiple KC relationships and long-
term dependencies in a exercise answering sequence. Thus, these deep sequence KT methods are
suitable for application scenarios were the number of involved KCs is limited and exercise answer-
ing sequences are relatively short. Memory-augmented deep KT methods overcome the limitations
of these deep sequence KT category by facilitating to model multiple KC relationships and longer
sequence dependencies via a memory mechanism, yet this comes with an additional memory cost
to store memory structures. As a result, this category is suitable where memory and computa-
tional resources are available. Attention KT methods provide another alternative for modelling
long-term dependencies in an exercise answering sequence with a significant computational over-
head to execute self-attention computation in quadratic time. This overhead is further magnified
when using multiple attention heads. The added performance value of this category is justifiable
given the need to deal with long-term dependencies with multiple KC relationships and the avail-
ability of extended computing resources such as multiple GPU units that could distribute attention
head computations in parallel. Graph-based KT methods have the capacity to capture complicated
question and KC relationships, yet, the majority of these methods assumes that graph data exists
in prior, which however cannot be guaranteed in many real-world application scenarios. There are
automated techniques [80] being studied to learn graph structure directly from exercise answering
sequences with an additional computational cost. Finally, text-aware deep KT methods assume the
existence of text data for questions and KC tags in order to learn an effective embeddings. Never-
theless, some KT datasets do not provide text tags for questions and/or KCs, which will limit the
usage of these methods in such application scenarios.

5 KNOWLEDGE TRACING FUTURE RESEARCH DIRECTIONS

Despite the promising results achieved by state-of-the-art KT models, limitations and gaps of cur-
rent approaches and available datasets open up several opportunities for future research.

Multimodal and informative representation learning & datasets. The choice of data repre-
sentation directly impacts the performance of any machine learning model [10]. KT models tend
to learn embedding representations for questions and KCs from abstract formats such as one-hot
encoding; however, some data in the description of a question such as images and mathematical
equations that can lead to more informative embedding representations, are overlooked, either by
the proposed models or by the available datasets. This opens up research directions through the
following questions: (1) What information data can be used to improve the performance of KT
models? (2) How to represent such data for the KT tasks? (3) How to create a dataset for the KT
tasks that enables a more informative embedding representation learning? The Exercise-aware
Knowledge Tracing (EKT) approach proposed by Liu et al. [64] is a recent attempt to learn richer
embedding representations, taking into account textual context and relationships between ques-
tions. However, despite previous efforts, the representations of multimodal and domain-specific
data such as mathematical equations and code snippets remain mostly unexplored in the literature
resulting in low-informative representation learning for KT models. Fusing signals from multiple
feature spaces may enable better representation learning in addition to mitigating noise in data [8].

Self-supervised learning in knowledge tracing. Although supervised learning has led to ad-
vances in different areas, it still has a major drawback: the need for large, high-quality labeled data
for training. Self-supervised learning (SSL) [76, 130], on the other hand, has proven to be effec-
tive in several areas (e.g., natural language processing [28] and computer vision [36]) learning from
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unlabeled data. SSL often adopts similarity ranking loss functions (e.g., contrastive loss [119]) in a
process called pre-training or pretext task [76] to automatically generate labels. Such pre-trained
models can thus be transferred to a downstream task to train in a supervised learning manner
with a limited amount of labeled data. Along with SSL, therefore, further contributions to the KT
field can be made, for example, by creating pre-trained models (e.g., using existing pre-trained
language and computer vision models) to generate informative representations for KT; and inves-
tigating how it can mitigate limited training of students’ activities in cases of a cold-start scenario
or skewed participation data.

Interactive knowledge tracing. Most KT models adopt a passive approach of observing question
answering response history to estimate students’ knowledge states; however, interactive methods,
driven by question answering response behavior, are still unexplored. Interactive methods are par-
ticularly useful in cold start scenarios where an interactive approach can reveal students’ knowl-
edge states by directly asking questions related to different KCs. Thus, another potential future
work is to develop optimized question sampling policies to enhance the performance of KT mod-
els in, but not limited to, cold start scenarios. Reinforcement Learning (RL) [106] approaches
are a possible natural choice given its maximal rewarding scheme.

Last but not least, considering that KT involves human knowledge and learning, transparency
in the logic and results obtained by KT models would benefit educational stakeholders and pro-
cesses. This leads us to investigating eXplainable Artificial Intelligence (XAI), as seen in other
research fields such as [50, 51]. Potential research avenues include the development of techniques
to understand and explain the prediction process in KT models; and how algorithmic decisions
make impacts on learning processes, course design, instructor performance, the quality of learn-
ing materials, and student engagement. Promising research to explain deep learning models has
been carried out using knowledge distillation [42] to understand and explain predictions in other
models.

6 CONCLUSION

In this work, we presented a comprehensive survey for knowledge tracing. We identified four
research questions to guide our survey agenda. To answer the first question, we proposed a cate-
gorization that divides knowledge tracing methods into two broad categories including traditional
methods covering Bayesian and factor model approaches, and deep learning methods covering
recent state-of-the-art techniques including recurrent, memory, attention, and graph approaches.
For each category, we highlighted the main characteristics including assumptions, governing fac-
tors for applications, and their strengths and weaknesses. The second question targeted the iden-
tification of existent knowledge tracing datasets, their characteristics, and the latest performance
results on each of them. In answering this question, we proposed a comprehensive review for the
key datasets utilized by the knowledge tracing literature along with the main characteristics of
each dataset. Moreover, we summarized all the reported performance results on each dataset in
one table to provide a holistic view of the recent state. The third question aimed at identifying the
possible application areas for knowledge tracing methods and how could they benefit other related
fields. To approach this question, we identified four application areas and thoroughly discussed
each of them to elaborate the potential of knowledge tracing methods. Our fourth research ques-
tion was about the possible future research directions in the knowledge tracing field. We answered
this question by exploring three directions for future research including: (1) the use of multimodal
information to enhance the situation awareness of knowledge tracing models, (2) self-supervised
learning techniques to harness the potential of unlabeled data and deal with limited training data
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scenarios, and (3) interactive and explainable techniques for knowledge tracing that could provide
a better visibility of predictions and recommendations coming from knowledge tracing models.
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