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Abstract

Knowledge transfer is widely held to be a primary
mechanism that enables humans to quickly learn new
complex concepts when given only small training sets.
In this paper, we apply knowledge transfer to deep con-
volutional neural nets, which we argue are particularly
well suited for knowledge transfer. Our initial results
demonstrate that components of a trained deep convolu-
tional neural net can constructively transfer information
to another such net. Furthermore, this transfer is com-
pleted in such a way that one can envision creating a net
that could learn new concepts throughout its lifetime.

Introduction

For any inductive learner, it is necessary to select an appro-
priate bias. This allows sufficient generalization of a target
concept based upon a reasonably sized set of training ex-
amples. An insufficiently biased learner will have an overly
large hypothesis space to search and will be prone to over-
fitting. An overly biased learner will be able to learn only a
poor approximation of the true target concept. A good bias
will enable a learner to successfully acquire a concept with
fewer training examples and greater generality.

One bias that humans seem to have is that similar tasks
employ similar solutions. It is generally accepted that people
transfer knowledge acquired from previously learned tasks
to master new ones. This transfer enables us to acquire
new concepts quickly and accurately based on very few ex-
amples, because we have already learned to distinguish be-
tween relevant and irrelevant features.

There are several machine learning techniques that
attempt to transfer relevant knowledge. They in-
clude discriminability-based transfer (Pratt 1993), multi-
task learning (Caruana 1997), explanation based neu-
ral nets (Thrun 1995), knowledge based cascade correla-
tion (Schultz & Rivest 2000) and internal representation
learning (Baxter 2000).

In this paper, we examine knowledge transfer for deep
convolutional neural nets by using internal representation
learning. We show that when a generalized internal repre-
sentation has been achieved, new concepts can be learned
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with smaller training sets and nets with smaller capacities.
However, as the size of training set increases, net capacity
becomes more important relative to transferred knowledge.

Background & Related Work

For almost all image recognition problems, shift-invariance
and moderate insensitivity to both rotations and geometric
distortions are important biases. There are three basic ap-
proaches to creating these invariances in a neural net. These
approaches are:

1. Exhaustive training - give examples of all permutations of
the desired invariant parameter(s)

2. Pre-processing - pre-process all input to remove the in-
variant parameter(s)

3. Choosing a specific class of network architecture - create
a network that is insensitive to the invariant parameter(s)

Network architectures that restrict neurons to interact only
with local receptive fields from the layer beneath them, and
that require corresponding weights from all the receptive
fields of a given layer to be equal have been successfully
used for over 15 years to achieve these invariances (Bishop
1995).

This method is employed by Deep Convolutional Neural
Nets (DCNN’s) (LeCun et al. 1999). Although these nets
are usually referred to as just Convolutional Neural Nets,
we refer to them as Deep Convolutional Neural Nets, in or-
der to equally emphasize the use of a deep architecture as
well as locally receptive fields. Unlike the creators of this
architecture, our primary interest is knowledge transfer.

DCNN’s organize the neurons of a given layer into sev-
eral feature maps. The neurons composing a given feature
map will all share weights and common receptive fields.
Each such map may, therefore, be viewed as acting to de-
tect a given feature, wherever it occurs. Furthermore, at
higher layers of the net, feature maps may be regarded
as identifying the combinations of various low-level fea-
tures that compose more complex higher-level features. The
presence of feature maps as an architectural component of
DCNN'’s makes these nets an attractive candidate for knowl-
edge transfer, since these maps represent discrete, localiz-
able detectors for specific features that distinguish among
the various classes.



There are two standard types of layers found in a DCNN:
convolutional and sub-sampling layers. In the convolutional
layers (C-layers) of the net, each feature map is constructed
by calculating the convolution of one or more small learned
kernel over the feature maps of the previous layer, or over
the original input, when it constitutes the previous layer. Al-
though a single feature map may be connected to many fea-
ture maps of the prior level, it is connected to each by an
individual learned kernel. This results in a feature map that
will reflect the presence of a particular local feature, or lo-
cal combination of features, wherever they occur in maps in
the prior layer. It is this convolution of small kernels that
gives DCNNs an architecturally based bias for translational
invariance, which is useful for problems with strong local
correlations.

In the sub-sampling layers (S-layers), each feature map is
connected to exactly one feature map of the prior layer. A
kernel of the sub-sampling layers is not convolved over the
corresponding feature map of the prior layer. Instead, the in-
put feature map is divided into contiguous non-overlapping
tiles, which are the size of the kernel. Each sub-sampling
kernel contains two learnable parameters:

1. amultiplicative parameter, which multiples the sum of the
units in a given tile, and

2. an additive parameter, which is used as a bias.

This gives DCNN s a decreased sensitivity to minor rotations
and distortions of an image, which helps make them robust
with respect to unimportant variations.

Multi-Task Learning (MTL) involves simultaneously
training a net in several related tasks. It has been shown
to improve performance by allowing several tasks to share
information during training (Caruana 1997). Because the
architecture of DCNN’s forces the early layers to act as fea-
ture extractors, these nets should make good use of MTL,
because different tasks may require recognition of the same
features located in different parts of an image for different
classes. Furthermore, as the upper layers of the net are re-
quired to encode more instances from a set of classes (e.g.
specific characters from a set of all characters), they should
be learning internal representations of those classes, which
could provide an effective mechanism for dimensionality re-
duction.

With this in mind, it is convenient to view a DCNN as
possessing two halves - a lower half, which acts as a feature
extractor and an upper half, which combines the features to
produce a reduced dimension representation of the input im-
age. Once a DCNN has been trained to recognize a number
of specific classes from a set of related classes (i.e. charac-
ters, faces etc.) it should be possible to train to recognize
other related classes by only training weights in the upper
layers of the net. These upper layers will, in essence, be
solving a problem with significantly reduced dimensional-
ity. This will now give three main advantages:

1. Significantly faster training time, because the dimension-
ality of the problem domain has decreased

2. Better generalized accuracy with small training sets, since
some learning obtained from previous training sets is re-
tained.
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3. Smaller expected difference between the expected errors
of the training set and testing set, due to the decreased net
capacity.

Using weights from a trained neural net to seed
weights in an untrained net bears a marked similar-
ity to Discriminability-Based Transfer, first introduced by
Pratt (Pratt 1993). Pratt took a classical feed-forward neu-
ral net (i.e. 1 input layer, 1 hidden layer and 1 output layer)
and trained it to perform one task. Then, he used some of
the learned weights to seed a new net with the same archi-
tecture, which was trained in a new, related task. However,
direct transfer of all the original weights (i.e. literal transfer)
was found to be counter-productive.

In order to identify which neurons aided learning and
which ones hindered learning, Pratt looked at the response
of each hidden neuron to the training set for the new class.
Those neurons that provided significant information gain
(as measured by mutual information) about the class of the
various training inputs had their input weights transferred.
Those that did not had their input weights reset. All weights
between neurons of the hidden and output layers were reset.
This differs from our approach in that:

1. Claims were made only with respect to the speed of train-
ing, not the accuracy

2. We used the topology of a multi-layered net to help deter-
mine which weights should be transferred. So, there is no
need for Pratt’s pre-training processing

3. The nets used are classical feed-forward nets. Because
DCNN’s have feature maps distributed over many layers,
we can infer that feature maps closer to the input layer will
identify simple, low level features, while those deeper into
the net will detect progressively higher level features. So,
the lower the level of a feature map, the more likely it is
to be transferable

The method of Explanation Based Neural Nets (EBNN’s)
is very different than ours (Thrun 1995). It trains a single net
using training samples of the form (z, f(z), Vf(z)). The
pair (z, f(x)) corresponds to a standard supervised learning
training example. However, V f(x) is produced by a second
neural net, which has been trained to calculate a ’compara-
tor’ function.

A comparator function merely reports whether or not two
inputs are of the same class, but not to which class either
belongs, whereas the EBNN is being trained to recognize
when a given input is a member of a particular class. For
example, given two faces, the comparator net will recognize
whether or not the two faces are the same. However, the
EBNN is being trained to recognize whether or not the given
face belongs to a specific individual (e.g. Fred). Because
the comparator net provides information gleaned from other
related tasks, knowledge transfer is occurring. In order to
then incorporate this information, EBNN’s are trained using
TangentProp (Simard et al. 2001).

A recent use of a pure comparator function for recognition
or verification of a large number of categories was demon-
strated by Chopra et al. (Chopra, Hadsell, & LeCun 2005).
In this work, a siamese net was trained on a relatively small



number of faces to recognize whether a given pair of faces
were from the same person. This technique was then able to
correctly label pairs of faces, which came from people not
seen during training, as being same or different. The main
difference between this technique and ours is that whereas
ours concentrates on learning a robust internal representa-
tion, Chopra et. al. concentrate upon learning a similarity
metric. It is our hope that by concentrating on creating ro-
bust internal representations using progressively higher or-
der features, our technique will enable nets to transfer rele-
vant knowledge across a wider range of tasks.

Knowledge Based Cascade Correlation(KBCC) (Schultz
& Rivest 2000) is an extension of Fahlman &
Lebiere’s (Fahlman & Lebiere 1990) Cascade Correla-
tion. Of all the methods mentioned here, this is the only
one that allows the topology of a neural net to change as
learning occurs. The modification employed by KBCC is
to allow whole trained networks to be absorbed into the
developing net during training. Although our method does
not do this, it seems likely that feature maps generated in
one learning task could be profitably transferred to others.
So, a DCNN could present a rich source of sub-nets for
KBCC.

The approach of using a neural net to learn an internal rep-
resentation of each related class was employed by Bartlett
& Baxter (Baxter 2000). This is the most similar to our ap-
proach, since it depends upon the neural net to determine
which features should be extracted, reduces those features
to a relatively small dimensional space (as compared to the
original input) and then uses the resultant encoding to pro-
vide the solution to various boolean tasks (i.e. is the input
an example of class A, class B, class C etc.?).

The primary difference in our approach is that by using
a DCNN not only are some important biases built into the
net’s architecture, but also because many more distinct fea-
ture maps are used, it is possible to envision efficiently com-
bining our technique with KBCC to transfer knowledge even
further afield (e.g. character recognition would seem to in-
volve the ability to recognize outlines, line intersections, an-
gles etc. It is quite plausible that more general recognition
problems also make use of these abilities). By learning in-
ternal representations, Baxter & Bartlett (Bartlett & Bax-
ter 1998) report being able to reliably categorize characters
their net hadn’t been explicitly trained to recognize. An er-
ror rate of 7.5% was achieved on the 2618 characters that
their net had not been specifically trained to identify.

We have not yet duplicated this accomplishment. We be-
lieve this is primarily due to the fact that we used a smaller
number of classes to provide us with knowledge transfer.
Bartlett & Baxter (Bartlett & Baxter 1998) point out that
to truly learn an internal representation, one needs to be ex-
posed to many classes. For this reason, they chose to use
Japanese Kanji as an Optical Character Recognition (OCR)
test bed of his technique. Their net learned an internal repre-
sentation using 400 classes of characters. We used English
characters and learned an internal representation with only
20 classes of characters. Additionally, Baxter and Bartlett
exposed their net to the new characters during training, by
classifying them all as being ’other’ (i.e. not one of the
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400 training characters), we have not exposed our net in any
way to the new characters, prior to specifically attempting to
learn to recognize them. Nevertheless, we demonstrated sig-
nificant improvements in learning by using an internal repre-
sentation, particularly with very small training sets for new
classes.

Knowledge Transfer in DCNN’s

Our approach takes advantage of several architectural fea-
tures of DCNN’s. First, the feature maps of the various lev-
els represent neurons that can be functionally grouped to-
gether. This is because they may be considered as roughly
locating the same feature(s) in a given image. Second, the
layered structure would suggest that feature maps at the
lower levels of the net respond to simple features, whereas
maps at higher levels respond to higher-level features. By
the time the upper-most levels are reached, the feature maps
consist of a single unit indicating a particular combination
of features. These may reasonably be relied upon to provide
areduced dimension representation of the original image.

This implies that when a DCNN has been trained to iden-
tify several classes from a set of classes (i.e. several char-
acters from the set of all characters), a new DCNN can be
trained to identify another subset of that same (or possibly
just a similar) set of classes, using the already trained lower
layers of the first net to initialize itself. If those lower lay-
ers are treated as fixed, the smaller capacity of the net be-
ing trained will result a smaller expected difference between
the testing an training errors. Furthermore, by fixing the
weights of the transferred neurons, one can begin to think
about having a net that was trained to recognize members of
one subset of classes, being further trained to recognize an
additional subset of classes. In effect, this net could continue
to learn new concepts, either by learning new combinations
of existing feature maps or by the judicious introduction of
new feature maps.

Our experiments represent an initial effort to determine
the extent to which we can transfer knowledge between
DCNN’s in this fashion.

Experiments

Our experiments used the LeNet5 style architecture (LeCun
et al. 1999), which has already been successfully used for
OCR. The main difference between our net, shown in Fig-
ure 1, and LeNet5 is that our last layer is a combination of
LeNet5’s F6 and Output layer. It consists of 20 units instead
of 10 and is referred to as F6.

The dataset used was the NIST Special Database 19,
which contains 62 classes of handwritten characters corre-
sponding to ’0’-’9’, ’A’-’Z’ and ’a’-’7’.

The net was initially trained to recognize a set of 20 char-
acters. The entire net was trained on a set of 20 characters
using 400 samples of each. Each character was assigned a
20 bit random vector. The random bit assignment provides
a greater distance between target vectors than a standard ’1
of N’ encoding. The resultant net was trained and achieved
an accuracy of 94.38% on this training set. This net will be
referred to as the ’source’ net, since it will be the source of



Convolutional Layer (C5)
120 Feature Maps
Each i connected to ALL 54 Feature Maps
1XI

Convolutonal Layer (C3)
16Feature Maps

Convolutonal Layer (C1)
6 Feature Maps

Original lmage 2828

32K32

Subsampling Layer (52)
6 Feature Maps
14X14

Subsampling Layer (54)
16 Feature Maps
515

Qutput Layer
All 20 output unts

connected to each C5 Unit

Figure 1: Architecture of our net, which is a slightly mod-
ified version of LeNet5 (LeCun et al. 1999). It should be
noted that the ’feature maps’ in layers C5 & F6 are 1 neu-
ron x 1 neuron, which means they could with equal accuracy
be considered as traditional neurons in a non-weight sharing
feed-forward neural net

our transferred knowledge. Frequently, much larger train-
ing sets are used to obtain near perfect accuracy (Simard,
Steinkraus, & Platt 2003). However, for our purposes, this
accuracy was deemed sufficient and perhaps even more ap-
propriate than near perfect, since we wouldn’t want to "over-
transfer’ knowledge.

Next, we attempted to use some of the acquired knowl-
edge to aid in learning to recognize a new set of 20 charac-
ters. These new characters were also assigned 20 bit random
target vectors. Then, the weights from the bottom n layers
of the source net were copied over to the new net, where
0 < n < 5. Transferred weights were kept fixed and not
allowed to change during training. To find the best choice
for n, we ran a series of experiments beginning withn = 5
and culminating with n = 0 . This last scenario, of course,
corresponds to the absence of any knowledge transfer. Were
we to have tried allowing n = 6, that would correspond to
transferring all the weights from the source net and not al-
lowing any training. For obvious reasons, we did not do this.

The performance of each net was evaluated using a testing
set comprised of 1,000 characters. We ran 5 learning trials
for each value of n. Additionally, we experimented with
training sets of 1, 5, 10, 20 and 40 samples/class. Results
are shown in figures 2-5.

As each layer is released to be retrained, more free param-
eters become available, thus increasing the capacity of the
net. However, the increase in free parameters is very sharply
spiked at the 5th layer of the net. In fact, this is where more
than 90% of the net’s free parameters lie. The number of
free parameters for each layer is shown in table 1.

So, when only the top level has not been retained, the net
can only train with 4.6% of the free parameters normally
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Figure 2: Comparison of learning curves showing accuracy
vs. number of retained levels for various numbers of sam-
ples per class in the training set. Curves show, from top to
bottom, results for 40, 20, 10, 5 and 1 sample per class. Each
point represents the average of 5 trials on a testing set with
1,000 character samples.
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Figure 3: Comparison of learning curves showing accuracy
vs. number of retained levels for 1 sample per class in the
training set. Curves show minimum accuracy, average ac-
curacy and maximum accuracy obtained over 5 trials on a
testing set with 1,000 character samples
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Figure 4: Comparison of learning curves showing accuracy
vs. number of retained levels for 10 samples per class in
the training set. Curves show minimum accuracy, average
accuracy and maximum accuracy obtained over 5 trials on a
testing set with 1,000 character samples
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Figure 5: Comparison of learning curves showing accuracy
vs. number of retained levels for 40 samples per class in
the training set. Curves show minimum accuracy, average
accuracy and maximum accuracy obtained over 5 trials on a
testing set with 1,000 character samples
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Layer Free
Parameters

Cl 156

S2 12

C3 1,516

S4 32

C5 48,120

Fo6 2,420

| Total | 52,256 |

Table 1: Number of free paramters at each layer of our net

available to it. When the top 2 levels are being retrained the
net has 96.7% of its free parameters available for training.

Discussion & Analysis

The main process being shown in Fig. 2 is a trade-off be-
tween increased net capacity, as reflected by fewer retained
levels/free parameters, and increased knowledge transfer as
reflected by more retained levels. As more information is
available to the net through increased training set size, the
importance of transferred knowledge decreases and having
sufficient capacity to learn the details of the new classes in-
creases.

By observing the change in shape of the learning curves, it
is possible to get a qualitative feel of this effect. The shapes
of the learning curves for 1 sample/class, 10 samples/class
and 40 samples/class may be seen in greater detail in Figs. 3-
5. The minimum, average and maximum accuracy obtained
over each 5 trial run is shown to illustrate the relatively
slight variance that was observed. These figures highlight
the way in which each layer contributes to the transfer of
knowledge from the source net. Furthermore, they empha-
size the changing shape of the learning curve as the increase
in training set size makes net capacity more important rela-
tive to transferred knowledge. This, however, may be taken
with equal justification to be an indicator of the quality of
the knowledge transferred. It seems likely that if the source
net had learned either a larger set of classes, then the benefit
of knowledge transfer would be greater and persist for even
larger training sets. Perhaps a different set of classes, which
in some sense spanned the set of classes better, would also
give improved results.

It is interesting to observe how much of an advantage is
obtained merely by retaining just the bottom four levels. Al-
though these levels contain only 3.3% of the weights used
by the net, their transfer leads to marked improvements in
the accuracy of the net.

One may observe in Fig. 2, that when levels C1-C5 are
retained, the net doesn’t seem to have sufficient capacity
to learn appreciably more information than is contained in
about 10 samples. This implies that when attempting knowl-
edge transfer between two DCNN’s, slightly more flexibility
in choosing which weights should be retrained could be ben-
eficial. For instance, perhaps, one could retrain only some
of the feature maps at a given level, rather than all or none.
This would enable us to have a partially transferred layer



between the fully transferred and fully trained layers, which
could help fine tune the balance between transferred knowl-
edge and net capacity.

Lastly, one might also consider letting retraining take
place with the transferred feature maps. This would un-
doubtedly give better results than were obtained, however,
part of what we wanted to see was how much could be
learned, without forgetting previously acquired concepts.
One can now envision a particular sub-net being shared
among several nets, each of which has been trained for dif-
ferent tasks.

Conclusions & Future Work

Our results show that for small training sets there is a clear
advantage to favoring knowledge transfer over net capacity
in both accuracy of learning and in effort required to learn.

What remains to be investigated is how quickly this
trade-off changes as the number of classes that contribute
to knowledge transfer increases. Bartlett & Baxter’s re-
sults (Bartlett & Baxter 1998) strongly suggest that ulti-
mately knowledge transfer will achieve accuracy compara-
ble to the best achievable for full capacity nets with large
training sets.

We plan to investigate methods of optimizing this trade-
off, by allowing some feature maps at a given level to re-
train. It should be possible adapt saliency, as in Optimal
Brain Damage (LeCun et al. 1990), or to adapt mutual infor-
mation, as in DBT (Pratt 1993), to determine which feature
maps should be transferred and which should be retrained.

Finally, we will investigate techniques to select an optimal
set of classes for knowledge transfer.
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