
Known Algorithms on Graphs of Bounded
Treewidth are Probably Optimal

Dániel Marx

Humboldt-Universität zu Berlin

Joint work with

Daniel Lokshtanov Saket Saurabh

ACM-SIAM Symposium on Discrete Algorithms (SODA 2011) – Jan 24, 2011
Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.1/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.2/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.2/20



Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour in the Graph Minors project.)

Significance:

Appears naturally in graph structure theory.

Polynomial or even linear algorithms for NP-hard problems on bounded

treewidth graphs.

Crucial tool for planar approximation schemes.

Useful for fixed-parameter tractability results.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.3/20



Treewidth

Tree decomposition: Vertices are arranged in a

tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree. h

dcb

a

e f g

a, b, c g , hb, e, f

d , f , gb, c, f

c, d , f

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.4/20



Treewidth

Tree decomposition: Vertices are arranged in a

tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree. h

dcb

a

e f g

b, c, f

g , ha, b, c

c, d , f

d , f , g

b, e, f

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.4/20



Treewidth

Tree decomposition: Vertices are arranged in a

tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree.

Width of decomposition: largest bag size −1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest

h

dcb

a

e f g

b, c, f

g , ha, b, c

c, d , f

d , f , g

b, e, f

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.4/20



Treewidth

Tree decomposition: Vertices are arranged in a

tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree.

Width of decomposition: largest bag size −1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest

h

dcb

a

e f g

c, d , f

g , hb, e, fa, b, c

d , f , gb, c, f

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.4/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.5/20



MAX INDEPENDENT SET
and tree decompositions

Fact: Given a tree decomposition of width w , MAX INDEPENDENT SET can

be solved in time O(2w · n).

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted
at x .

Define table M[x , S]: the maximum

weight of an independent set I ⊆ Vx with
I ∩ Bx = S .

Compute the tables in bottom-up order.

Size of each table is 2w+1.

b, e, f g , h

c, d , f

b, c, f d , f , g

a, b, c

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.6/20



Algorithms

Given a tree decomposition of width w , dynamic programming gives:

INDEPENDENT SET O(2w · n)

DOMINATING SET O(3w · n)

MAX CUT O(2w · n)

ODD CYCLE TRANSVERSAL O(3w · n)

q-COLORING (q ≥ 3) O(qw · n)

PARTITION INTO TRIANGLES O(2w · n)

[various authors]

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.7/20



Algorithms

Given a tree decomposition of width w , dynamic programming gives:

INDEPENDENT SET O(2w · n)

DOMINATING SET O(3w · n)

MAX CUT O(2w · n)

ODD CYCLE TRANSVERSAL O(3w · n)

q-COLORING (q ≥ 3) O(qw · n)

PARTITION INTO TRIANGLES O(2w · n)

[various authors]

Question: Can we improve the base in any of these algorithms?

Supporting evidence: Running time matches the obvious DP table size. But...

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.7/20



Some history

DOMINATING SET

Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.8/20



Some history

DOMINATING SET

Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]

HAMILTONIAN CYCLE

2n time [Held and Karp ’62]

1.657n (randomized) time [Björklund ’10]

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.8/20



Some history

DOMINATING SET

Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]

HAMILTONIAN CYCLE

2n time [Held and Karp ’62]

1.657n (randomized) time [Björklund ’10]

DIRECTED FEEDBACK VERTEX SET

Trivial 2n algorithm.

Nontrivial 1.9977n algorithm [Razgon ’07]

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.8/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.9/20



SETH

Obviously, we need a hardness assumption.

P 6= NP is not sufficiently strong: even a O(2
√

w · n) algorithm seems to be
compatible with it.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.10/20



SETH

Obviously, we need a hardness assumption.

P 6= NP is not sufficiently strong: even a O(2
√

w · n) algorithm seems to be
compatible with it.

Strong Exponential Time Hypothesis (SETH):

sk = inf{δ | n-variable k-SAT can be solved in 2δn}

Conjecture: [Impagliazzo-Paturi ’01] sk → 1

We can use a somewhat weaker assumption:

No faster SAT:

Conjecture: n-variable m-clause SAT (with arbitrary clause
length) cannot be solved in time (2− ǫ)n · poly(m) for any ǫ > 0.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.10/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.11/20



Results

Main result: If the Strong Exponential Time Hypothesis (SETH) is true, then

given a tree decomposition of width w ,

INDEPENDENT SET (2 − ǫ)w · nO(1)

DOMINATING SET (3 − ǫ)w · nO(1)

MAX CUT cannot be (2 − ǫ)w · nO(1)

ODD CYCLE TRANSVERSAL solved in time (3 − ǫ)w · nO(1)

q-COLORING (q ≥ 3) (q − ǫ)w · nO(1)

PARTITION INTO TRIANGLES (2 − ǫ)w · nO(1)

The lower bounds match the known algorithms (up to the ǫ in the base).

Note: For some problems, we can obtain stronger results by proving the same

lower bound with respect to pathwidth or feedback vertex number.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.12/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.13/20



Reductions

Suppose we have a reduction:

n-variable SAT instance ⇒
INDEPENDENT SET instance

of treewidth w ≤ c · n.

Then:

(2 − ǫ)c·n algorithm for SAT ⇐
(2 − ǫ)w · nO(1) algorithm for

INDEPENDENT SET

To get a (2 − ǫ)w lower bound, we need c ≤ 1.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.14/20



Reductions

Suppose we have a reduction:

n-variable SAT instance ⇒
INDEPENDENT SET instance

of treewidth w ≤ c · n.

Then:

(2 − ǫ)c·n algorithm for SAT ⇐
(2 − ǫ)w · nO(1) algorithm for

INDEPENDENT SET

To get a (2 − ǫ)w lower bound, we need c ≤ 1.

More generally: For any c , we get a (21/c − ǫ)w lower bound

⇒ To get a (3 − ǫ)w lower bound (e.g., for DOMINATING SET), we need
c ≤ log3 2 ≈ 0.631.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.14/20



Textbook reduction

How large is the treewidth in the textbook reduction from SAT to

INDEPENDENT SET?

C1

x̄n

xn

x̄1

x1

C3C2

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.15/20



Textbook reduction

How large is the treewidth in the textbook reduction from SAT to

INDEPENDENT SET?

C1

x̄n

xn

x̄1

x1

C3C2

Treewidth is about 2n, which gives a (2
1
2 − ǫ)w ≈ 1.41w lower bound.

We need treewidth ≤ n for the (2 − ǫ)w lower bound.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.15/20



New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

2m

n

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.16/20



New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

2m

n

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.16/20



New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

C1

n

2m

Clause gadgets check that every clause is satisfied.

Treewidth is only n + O(1).

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.16/20



New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

C1 C2

2m

n

Clause gadgets check that every clause is satisfied.

Treewidth is only n + O(1).

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.16/20



New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

C3C2C1

n

2m

Clause gadgets check that every clause is satisfied.

Treewidth is only n + O(1).

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.16/20



New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.17/20



New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.17/20



New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

3m

p

p

p · n/q

Partition variables into n/q groups of size q = O(1). The 2q possibilities for a

group of variables are represented by a group of p paths, where 2q ≤ 3p, i.e.,
p = ⌈log3 2q⌉ ≈ 0.631q.

⇒ Treewidth is n · log3 2 and the (3 − ǫ)w bound follows.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.17/20



New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

C1

3m

p

p

p · n/q

Partition variables into n/q groups of size q = O(1). The 2q possibilities for a

group of variables are represented by a group of p paths, where 2q ≤ 3p, i.e.,
p = ⌈log3 2q⌉ ≈ 0.631q.

⇒ Treewidth is n · log3 2 and the (3 − ǫ)w bound follows.
Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.17/20



New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

C1 C2

p

p

3m

p · n/q

Partition variables into n/q groups of size q = O(1). The 2q possibilities for a
group of variables are represented by a group of p paths, where 2q ≤ 3p, i.e.,

p = ⌈log3 2q⌉ ≈ 0.631q.

⇒ Treewidth is n · log3 2 and the (3 − ǫ)w bound follows.
Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.17/20



Known Algorithms on
Graphs of Bounded

Treewidth are
Probably Optimal

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.18/20



Decompositions?

We know that INDEPENDENT SET

Can be solved in time 2w · n if a tree decomposition of width w is given in
the input.

Cannot be solved in time (2 − ǫ)w · nO(1) for any ǫ > 0 even if a tree

decomposition of width w is given input.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.19/20



Decompositions?

We know that INDEPENDENT SET

Can be solved in time 2w · n if a tree decomposition of width w is given in
the input.

Cannot be solved in time (2 − ǫ)w · nO(1) for any ǫ > 0 even if a tree

decomposition of width w is given input.

What if the graph has treewidth w , but no tree decomposition is given in the
input?

Theorem: [Bodlaender ’96] Width w decomposition in time 2O(w3) · n.
Theorem: [Robertson and Seymour ’95] 4-approximation in time 33w · polyn.

Theorem: [Feige et al. ’05]
√

log w approximation in polynomial time.

To have a 2(1+o(1))w algorithm, we would need a (1+o(1)) approximation in time

2(1+o(1))w .

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.19/20



Conclusions

Tight lower bounds for several basic problems on tree decompositions.

Are there other problems where we can show that there is no
(c − ǫ)k · nO(1) time algorithm (where k is something else than treewidth)?

Example: Can we solve STEINER TREE with k terminals in time
(2 − ǫ)k · nO(1)?

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.20/20



Conclusions

Tight lower bounds for several basic problems on tree decompositions.

Are there other problems where we can show that there is no
(c − ǫ)k · nO(1) time algorithm (where k is something else than treewidth)?

Example: Can we solve STEINER TREE with k terminals in time
(2 − ǫ)k · nO(1)?

Results are conditional on SETH.

If you believe SETH: our results are strong lower bounds.

If you don’t believe SETH: our results show that improving the

algorithms requires an improved general SAT algorithm, and hence not
a graph theory/treewidth related question.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.20/20


	
	Treewidth
	Treewidth
	
	probname {Max Independent Set}\ and tree decompositions
	Algorithms
	Some history
	
	SETH
	
	Results
	
	Reductions
	Textbook reduction
	New reduction for \probname {Independent Set}
	New reduction for \	extup {DOMINATING SET}
	
	Decompositions?
	Conclusions

