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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour in the Graph Minors project.)

Significance:

Appears naturally in graph structure theory.

Polynomial or even linear algorithms for NP-hard problems on bounded

treewidth graphs.

Crucial tool for planar approximation schemes.

Useful for fixed-parameter tractability results.
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Treewidth

Tree decomposition: Vertices are arranged in a

tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag
containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree. h

dcb
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e f g

a, b, c g , hb, e, f

d , f , gb, c, f

c, d , f
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containing both of them.

2. For every vertex v , the bags containing v form
a connected subtree.
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treewidth: width of the best decomposition.
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MAX INDEPENDENT SET
and tree decompositions

Fact: Given a tree decomposition of width w , MAX INDEPENDENT SET can

be solved in time O(2w · n).

Bx : vertices appearing in node x .

Vx : vertices appearing in the subtree rooted
at x .

Define table M[x , S]: the maximum

weight of an independent set I ⊆ Vx with
I ∩ Bx = S .

Compute the tables in bottom-up order.

Size of each table is 2w+1.

b, e, f g , h

c, d , f

b, c, f d , f , g

a, b, c

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?
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Algorithms

Given a tree decomposition of width w , dynamic programming gives:

INDEPENDENT SET O(2w · n)

DOMINATING SET O(3w · n)

MAX CUT O(2w · n)

ODD CYCLE TRANSVERSAL O(3w · n)

q-COLORING (q ≥ 3) O(qw · n)

PARTITION INTO TRIANGLES O(2w · n)

[various authors]
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Given a tree decomposition of width w , dynamic programming gives:

INDEPENDENT SET O(2w · n)

DOMINATING SET O(3w · n)

MAX CUT O(2w · n)

ODD CYCLE TRANSVERSAL O(3w · n)

q-COLORING (q ≥ 3) O(qw · n)

PARTITION INTO TRIANGLES O(2w · n)

[various authors]

Question: Can we improve the base in any of these algorithms?

Supporting evidence: Running time matches the obvious DP table size. But...

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.7/20



Some history

DOMINATING SET

Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]
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Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]

HAMILTONIAN CYCLE

2n time [Held and Karp ’62]

1.657n (randomized) time [Björklund ’10]
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Some history

DOMINATING SET

Obvious approach: 9w [Telle and Proskurowski ’93]

More clever algorithm: 4w [Alber et al. ’02]

Even more clever algorithm: 3w [Rooij et al. ’09] using fast subset

convolution of [Björklund et al. ’07]

HAMILTONIAN CYCLE

2n time [Held and Karp ’62]

1.657n (randomized) time [Björklund ’10]

DIRECTED FEEDBACK VERTEX SET

Trivial 2n algorithm.

Nontrivial 1.9977n algorithm [Razgon ’07]
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SETH

Obviously, we need a hardness assumption.

P 6= NP is not sufficiently strong: even a O(2
√

w · n) algorithm seems to be
compatible with it.
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SETH

Obviously, we need a hardness assumption.

P 6= NP is not sufficiently strong: even a O(2
√

w · n) algorithm seems to be
compatible with it.

Strong Exponential Time Hypothesis (SETH):

sk = inf{δ | n-variable k-SAT can be solved in 2δn}

Conjecture: [Impagliazzo-Paturi ’01] sk → 1

We can use a somewhat weaker assumption:

No faster SAT:

Conjecture: n-variable m-clause SAT (with arbitrary clause
length) cannot be solved in time (2− ǫ)n · poly(m) for any ǫ > 0.
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Results

Main result: If the Strong Exponential Time Hypothesis (SETH) is true, then

given a tree decomposition of width w ,

INDEPENDENT SET (2 − ǫ)w · nO(1)

DOMINATING SET (3 − ǫ)w · nO(1)

MAX CUT cannot be (2 − ǫ)w · nO(1)

ODD CYCLE TRANSVERSAL solved in time (3 − ǫ)w · nO(1)

q-COLORING (q ≥ 3) (q − ǫ)w · nO(1)

PARTITION INTO TRIANGLES (2 − ǫ)w · nO(1)

The lower bounds match the known algorithms (up to the ǫ in the base).

Note: For some problems, we can obtain stronger results by proving the same

lower bound with respect to pathwidth or feedback vertex number.
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Reductions

Suppose we have a reduction:

n-variable SAT instance ⇒
INDEPENDENT SET instance

of treewidth w ≤ c · n.

Then:

(2 − ǫ)c·n algorithm for SAT ⇐
(2 − ǫ)w · nO(1) algorithm for

INDEPENDENT SET

To get a (2 − ǫ)w lower bound, we need c ≤ 1.
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Reductions

Suppose we have a reduction:

n-variable SAT instance ⇒
INDEPENDENT SET instance

of treewidth w ≤ c · n.

Then:

(2 − ǫ)c·n algorithm for SAT ⇐
(2 − ǫ)w · nO(1) algorithm for

INDEPENDENT SET

To get a (2 − ǫ)w lower bound, we need c ≤ 1.

More generally: For any c , we get a (21/c − ǫ)w lower bound

⇒ To get a (3 − ǫ)w lower bound (e.g., for DOMINATING SET), we need
c ≤ log3 2 ≈ 0.631.

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.14/20



Textbook reduction

How large is the treewidth in the textbook reduction from SAT to

INDEPENDENT SET?

C1

x̄n

xn

x̄1

x1

C3C2
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Textbook reduction

How large is the treewidth in the textbook reduction from SAT to

INDEPENDENT SET?

C1

x̄n

xn

x̄1

x1

C3C2

Treewidth is about 2n, which gives a (2
1
2 − ǫ)w ≈ 1.41w lower bound.

We need treewidth ≤ n for the (2 − ǫ)w lower bound.
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New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

2m

n
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New reduction for
INDEPENDENT SET

n variables, m clauses ⇒ n paths of 2m vertices each

2 states per each variable ⇒ 2 possible states for each path

C1

n

2m

Clause gadgets check that every clause is satisfied.

Treewidth is only n + O(1).
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New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:
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New reduction for
DOMINATING SET

Now there are 3 possible optimal states for each path:

3m

p

p

p · n/q

Partition variables into n/q groups of size q = O(1). The 2q possibilities for a

group of variables are represented by a group of p paths, where 2q ≤ 3p, i.e.,
p = ⌈log3 2q⌉ ≈ 0.631q.

⇒ Treewidth is n · log3 2 and the (3 − ǫ)w bound follows.
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Decompositions?

We know that INDEPENDENT SET

Can be solved in time 2w · n if a tree decomposition of width w is given in
the input.

Cannot be solved in time (2 − ǫ)w · nO(1) for any ǫ > 0 even if a tree

decomposition of width w is given input.
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Decompositions?

We know that INDEPENDENT SET

Can be solved in time 2w · n if a tree decomposition of width w is given in
the input.

Cannot be solved in time (2 − ǫ)w · nO(1) for any ǫ > 0 even if a tree

decomposition of width w is given input.

What if the graph has treewidth w , but no tree decomposition is given in the
input?

Theorem: [Bodlaender ’96] Width w decomposition in time 2O(w3) · n.
Theorem: [Robertson and Seymour ’95] 4-approximation in time 33w · polyn.

Theorem: [Feige et al. ’05]
√

log w approximation in polynomial time.

To have a 2(1+o(1))w algorithm, we would need a (1+o(1)) approximation in time

2(1+o(1))w .
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Conclusions

Tight lower bounds for several basic problems on tree decompositions.

Are there other problems where we can show that there is no
(c − ǫ)k · nO(1) time algorithm (where k is something else than treewidth)?

Example: Can we solve STEINER TREE with k terminals in time
(2 − ǫ)k · nO(1)?

Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal – p.20/20



Conclusions

Tight lower bounds for several basic problems on tree decompositions.

Are there other problems where we can show that there is no
(c − ǫ)k · nO(1) time algorithm (where k is something else than treewidth)?

Example: Can we solve STEINER TREE with k terminals in time
(2 − ǫ)k · nO(1)?

Results are conditional on SETH.

If you believe SETH: our results are strong lower bounds.

If you don’t believe SETH: our results show that improving the

algorithms requires an improved general SAT algorithm, and hence not
a graph theory/treewidth related question.
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