Known and Chosen Key Differential Distinguishers for Block Ciphers

Josef Pieprzyk

joint work with Ivica Nikolić, Przemysław Sokołowski, and Ron Steinfeld

ASK 2011, August 29-31, 2011

2 Collisions For Cryptographic Hash Functions

Block Ciphers

SP Network

Our results are focused on **Substitution–Permutation Network** (SPN) based designs.

Block Ciphers

SP Network

Our results are focused on **Substitution–Permutation Network** (SPN) based designs.

Example: Square

Differential Distinguishers

Distinguisher for a cipher

A **Distinguisher** \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an **Ideal Cipher** \mathcal{IC} and **the analysed block cipher** E_K , and in polynomially bounded time decides which primitive is E_K , where K is an encryption key.

Differential Distinguishers

Distinguisher for a cipher

A **Distinguisher** \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an **Ideal Cipher** \mathcal{IC} and **the analysed block cipher** E_K , and in polynomially bounded time decides which primitive is E_K , where K is an encryption key.

Differential Distinguishers

Based on construction of differential trails $\Delta_P \to \Delta'$ for the block cipher E_K .

• Standard Differential Distinguisher — encryption key K is random,

Differential Distinguishers

Distinguisher for a cipher

A **Distinguisher** \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an **Ideal Cipher** \mathcal{IC} and **the analysed block cipher** E_K , and in polynomially bounded time decides which primitive is E_K , where K is an encryption key.

Differential Distinguishers

Based on construction of differential trails $\Delta_P \to \Delta'$ for the block cipher E_K .

- Standard Differential Distinguisher encryption key K is random,
- Open-key Differential Distinguishers encryption key K is known or chosen and we consider trails (Δ_P, Δ_K) → Δ',

where $\Delta_P = P_1 \oplus P_2$, $\Delta_K = K_1 \oplus K_2$ for pairs of plain-texts P_1 , P_2 and keys K_1 , K_2 and $\Delta' = E_{K_1}(P_1) \oplus E_{K_2}(P_2)$.

Why Open-key Model For Block Cipher?

Cryptographic Hash Function

A **Cryptographic Hash Function** $F : \{0,1\}^* \rightarrow \{0,1\}^n$ is a transformation that maps arbitrary length input into fixed-length output and is designed to achieve certain security properties, such as: **preimage resistance**, second preimage resistance, collision resistance.

Why Open-key Model For Block Cipher?

Cryptographic Hash Function

A **Cryptographic Hash Function** $F : \{0,1\}^* \rightarrow \{0,1\}^n$ is a transformation that maps arbitrary length input into fixed-length output and is designed to achieve certain security properties, such as: **preimage resistance**, second preimage resistance, collision resistance.

Merkle-Damgård structure

Hash Modes

Single Block

mode (<i>ı</i>)	h'
1	$E_h(m)\oplus m$
2	$E_h(h\oplus m)\oplus h\oplus m$
3	$E_h(m)\oplus h\oplus m$
4	$E_h(h\oplus m)\oplus m$
5	$E_m(h)\oplus h$
6	$E_m(h\oplus m)\oplus h\oplus m$
7	$E_m(h)\oplus h\oplus m$
8	$E_m(h\oplus m)\oplus h$
9	$E_{h\oplus m}(m)\oplus m$
10	$E_{h\oplus m}(h)\oplus h$
11	$E_{h\oplus m}(m)\oplus h$
12	$E_{h\oplus m}(h)\oplus m$

Double Block

mode	(<i>h</i> ′, <i>g</i> ′)
A-DM	$h' = E_{g,m}(h) \oplus h$
	$g' = E_{m,h}(\bar{g}) \oplus g$
T-DM	$h'=E_{\!\!\mathcal{g},m}(h)\oplus h$
	$g' = \mathcal{E}_{m,\mathcal{E}_{g,m}(h)}(g) \oplus g$
DBI	$h' = E_{h\parallel m}(g\oplus c)\oplus g\oplus c$
DBL	$g'= {\sf E}_{h\ m}(g)\oplus g$
	$h' = (E_h(m) \oplus m)^L$
MDC-2	$\parallel (E_g(m) \oplus m)^R$
	$g' = (E_g(m) \oplus m)^L$
	$\parallel (E_h(m) \oplus m)^R$

Differential Trail

Example of a differential trail: Square

Rebound Attack

Rebound Attack

Rebound Attack

Truncated differential trails

Crypton, Hierocript-3, Square

Example: Square

The total probability of the differential trail is 2^{-48} .

Standard differential trail for 6.5 rounds of SAFER++ for chosen-key distinguisher and 128-bit key with probability 2^{-112}

Lemma

$$\begin{aligned} |A_1| &= |A_2| = |D_I| \\ |B_1| &= |B_2| = |B_3| = |B_4| = |D_O| \\ A_1 \cup A_2 &= B_1 \cup \dots \cup B_4 = \{0, 1\}^n \end{aligned}$$

Lemma

$$\begin{aligned} |A_1| &= |A_2| = |D_I| \\ |B_1| &= |B_2| = |B_3| = |B_4| = |D_O| \\ A_1 \cup A_2 &= B_1 \cup \dots \cup B_4 = \{0, 1\}^n \end{aligned}$$

Lemma

$$\begin{aligned} |A_1| &= |A_2| = |D_l| \\ |B_1| &= |B_2| = |B_3| = |B_4| = |D_0| \\ A_1 \cup A_2 &= B_1 \cup \dots \cup B_4 = \{0, 1\}^n \end{aligned}$$

Lemma

$$\begin{aligned} |A_1| &= |A_2| = |D_I| \\ |B_1| &= |B_2| = |B_3| = |B_4| = |D_0| \\ A_1 \cup A_2 &= B_1 \cup \dots \cup B_4 = \{0, 1\}^n \end{aligned}$$

Cipher	Distinguisher	Rounds	Encryptions	Lower bound
Crypton	Known-key	7	2 ⁴⁸	2 ⁶¹
	Chosen-key	9	2 ⁴⁸	2 ⁶¹
Hierocrypt-3	Known-key	3.5	2 ⁴⁸	2 ⁶¹
	Chosen-key	4.5	2 ⁴⁸	2 ⁶¹
SAFER++	Known-key	6.5	2 ¹²⁰	2 ¹²⁸
	Chosen-key	6.5	2 ¹¹²	2 ¹²⁸
Square	Known-key	7	2 ⁴⁸	2 ⁶¹
	Chosen-key	8	2 ⁴⁸	2 ⁶¹
<i>n</i> -bit Feistel	Diff. attack	r	2 ^c	
with <i>k</i> -bit key	Known-key	r + 2	2 ^c	
	Chosen-key	$r + \lfloor \frac{2k}{n} \rfloor$	2 ^c	

Cryptographic Hash Function

Collisions

- Collisions for a fixed chaining value H_0 , the adversary tries to find two distinct messages M_1 , M_2 such that $f(H_0, M_1) = f(H_0, M_2)$.
- **2** Pseudo collisions for a message M, the adversary wishes to find two distinct chaining values H_1, H_2 such that $f(H_1, M) = f(H_2, M)$.
- Semi-free start collisions the adversary attempts to find two distinct messages M_1, M_2 and a chaining value H such that $f(H, M_1) = f(H, M_2)$.
- Free start collisions the adversary tries to find two distinct chaining values H₁, H₂, and two distinct messages M₁, M₂ such that f(H₁, M₁) = f(H₂, M₂).

Collisions For Cryptographic Hash Functions

Semi–Free Start Collision For $E_h(m) \oplus m$

Results: Hash Modes

mode	h'	plain-text	key	plain-text
(1)				and key
1	$E_h(m)\oplus m$	C, SFSC	PCª	FSC
2	$E_h(h\oplus m)\oplus h\oplus m$	C, SFSC	PC	PC, FSC
3	$E_h(m)\oplus h\oplus m$	C, SFSC	PC	FSC
4	$E_h(h\oplus m)\oplus m$	C, SFSC	PC	PC, FSC
5	$E_m(h)\oplus h$	PC	C ^a , SFSC ^a	FSC
6	$E_m(h\oplus m)\oplus h\oplus m$	PC	FSC	C, SFSC, FSC
7	$E_m(h) \oplus h \oplus m$	PC	C, SFSC	FSC
8	$E_m(h\oplus m)\oplus h$	PC	FSC	C, SFSC, FSC
9	$E_{h\oplus m}(m)\oplus m$	FSC	PCª	C, SFSC, FSC
10	$E_{h\oplus m}(h)\oplus h$	FSC	C ^a , SFSC ^a	PC, FSC
11	$E_{h\oplus m}(m)\oplus h$	FSC	PC	C, SFSC, FSC
12	$E_{h\oplus m}(h)\oplus m$	FSC	C, SFSC	C, PC, FSC

^aWhen key collisions exist in the cipher.

Results: Double Hash Modes

mode	(<i>h</i> ′, <i>g</i> ′)	plain-text	key	plain-text and key
A-DM	$egin{aligned} h' &= E_{g,m}(h) \oplus h \ g' &= E_{m,h}(ar{g}) \oplus g \end{aligned}$	FSC	C, SFSC	PC, FSC
T-DM	$egin{aligned} h' &= E_{g,m}(h) \oplus h \ g' &= E_{m,E_{g,m}(h)}(g) \oplus g \end{aligned}$	FSC	C, SFSC	PC, FSC
DBL	$h' = E_{h\parallel m}(g\oplus c)\oplus g\oplus c \ g' = E_{h\parallel m}(g)\oplus g$	PC	C, PC, SFSC, FSC	PC, FSC
MDC-2	$egin{aligned} h' &= (E_h(m) \oplus m)^L \ &\parallel (E_{\mathscr{G}}(m) \oplus m)^R \ g' &= (E_{\mathscr{G}}(m) \oplus m)^L \ &\parallel (E_h(m) \oplus m)^R \end{aligned}$	C, SFSC	PCª	FSC

^aWhen key collisions exist in the cipher.

Conclusions

Results

- We have presented differential distinguishers for Crypton, Hierocrypt-3, SAFER++, and Square,
- We have showed lower bound of constructing pair that follows a truncated trail in the case of a random permutation,
- We have examined the application of the differential trails in analysis of ciphers that are used for compression function constructions.

Open Problems

- The area of open-key distinguishers is largely unexplored,
- Finding similar distinguishers based on related-key differentials remains an open problem.

Questions