Known and Chosen Key Differential Distinguishers for Block Ciphers

Josef Pieprzyk
joint work with
Ivica Nikolić, Przemysław Sokołowski, and Ron Steinfeld

ASK 2011, August 29-31, 2011

Outline

(1) Diferential Distinguishers For Block Ciphers
(2) Collisions For Cryptographic Hash Functions
(3) Conclusions

Block Ciphers

SP Network

Our results are focused on Substitution-Permutation Network (SPN) based designs.

Block Ciphers

SP Network

Our results are focused on Substitution-Permutation Network (SPN) based designs.

Example: Square

Differential Distinguishers

Distinguisher for a cipher

A Distinguisher \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an Ideal Cipher $\mathcal{I C}$ and the analysed block cipher E_{K}, and in polynomially bounded time decides which primitive is E_{K}, where K is an encryption key.

Differential Distinguishers

Distinguisher for a cipher

A Distinguisher \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an Ideal Cipher $\mathcal{I C}$ and the analysed block cipher E_{K}, and in polynomially bounded time decides which primitive is E_{K}, where K is an encryption key.

Differential Distinguishers

Based on construction of differential trails $\Delta_{P} \rightarrow \Delta^{\prime}$ for the block cipher E_{K}.

- Standard Differential Distinguisher - encryption key K is random,

Differential Distinguishers

Distinguisher for a cipher

A Distinguisher \mathcal{D} for a block cipher is a randomized algorithm interacting with two primitives: an Ideal Cipher $\mathcal{I C}$ and the analysed block cipher E_{K}, and in polynomially bounded time decides which primitive is E_{K}, where K is an encryption key.

Differential Distinguishers

Based on construction of differential trails $\Delta_{P} \rightarrow \Delta^{\prime}$ for the block cipher E_{K}.

- Standard Differential Distinguisher - encryption key K is random,
- Open-key Differential Distinguishers - encryption key K is known or chosen and we consider trails $\left(\Delta_{P}, \Delta_{K}\right) \rightarrow \Delta^{\prime}$, where $\Delta_{P}=P_{1} \oplus P_{2}, \Delta_{K}=K_{1} \oplus K_{2}$ for pairs of plain-texts P_{1}, P_{2} and keys K_{1}, K_{2} and $\Delta^{\prime}=E_{K_{1}}\left(P_{1}\right) \oplus E_{K_{2}}\left(P_{2}\right)$.

Why Open-key Model For Block Cipher?

Cryptographic Hash Function

A Cryptographic Hash Function $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is a transformation that maps arbitrary length input into fixed-length output and is designed to achieve certain security properties, such as: preimage resistance, second preimage resistance, collision resistance.

Why Open-key Model For Block Cipher?

Cryptographic Hash Function

A Cryptographic Hash Function $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is a transformation that maps arbitrary length input into fixed-length output and is designed to achieve certain security properties, such as: preimage resistance, second preimage resistance, collision resistance.

Merkle-Damgård structure

Hash Modes

Single Block

mode (1)	h^{\prime}
1	$E_{h}(m) \oplus m$
2	$E_{h}(h \oplus m) \oplus h \oplus m$
3	$E_{h}(m) \oplus h \oplus m$
4	$E_{h}(h \oplus m) \oplus m$
5	$E_{m}(h) \oplus h$
6	$E_{m}(h \oplus m) \oplus h \oplus m$
7	$E_{m}(h) \oplus h \oplus m$
8	$E_{m}(h \oplus m) \oplus h$
9	$E_{h \oplus m}(m) \oplus m$
10	$E_{h \oplus m}(h) \oplus h$
11	$E_{h \oplus m}(m) \oplus h$
12	$E_{h \oplus m}(h) \oplus m$

Double Block

mode	$\left(h^{\prime}, g^{\prime}\right)$				
A-DM	$h^{\prime}=E_{g, m}(h) \oplus h$				
	$g^{\prime}=E_{m, h}(\bar{g}) \oplus g$	$	$	T-DM	$h^{\prime}=E_{g, m}(h) \oplus h$
:---:	:---:				
	$g^{\prime}=E_{m, E_{g, m}(h)}(g) \oplus g$				
DBL	$h^{\prime}=E_{h \\| m}(g \oplus c) \oplus g \oplus c$				
	$g^{\prime}=E_{h \\| m}(g) \oplus g$				
	$h^{\prime}=\left(E_{h}(m) \oplus m\right)^{L}$				
MDC-2	$\\|\left(E_{g}(m) \oplus m\right)^{R}$ $g^{\prime}=\left(E_{g}(m) \oplus m\right)^{L}$				
$\\|\left(E_{h}(m) \oplus m\right)^{R}$					

Differential Trail

Example of a differential trail: Square

Rebound Attack

$\mathrm{H}_{b w} \rightarrow \mathrm{E}_{\mathrm{in}} \xrightarrow{ } \rightarrow \mathrm{H}_{\mathrm{fw}}$

Rebound Attack

Rebound Attack

Results

Truncated differential trails

Crypton, Hierocript-3, Square

Example: Square

1
The total probability of the differential trail is 2^{-48}.

Results

Standard differential trail for 6.5 rounds of SAFER ++ for

 chosen-key distinguisher and 128 -bit key with probability 2^{-112}

Results

Lemma

Let D_{I}, D_{O} denote subsets of $\{0,1\}^{n}$, which are closed under \oplus, i.e. $x \oplus y \in D_{l}$ (respectively D_{O}) for $x, y \in D_{l}$ (resp. D_{O}). For any attacker making queries to a random n-bit permutation π and its inverse π^{-1}, the complexity (measured in expected number of oracle queries) of finding a pair of inputs (x, y), where $x \oplus y \in D_{l},\left|D_{l}\right|=2^{c_{l}}$, such that $\pi(x) \oplus \pi(y) \in D_{O},\left|D_{O}\right|=2^{c_{0}}$,

$$
A_{1} \cup A_{2}=B_{1} \cup \cdots \cup B_{4}=\{0,1\}^{n}
$$ is lower bounded as

$Q \geq \min \left(2^{\frac{n}{2}-2}, 2^{n-\left(c_{1}+c_{0}\right)-3}\right)$.

$$
\begin{aligned}
& \left|A_{1}\right|=\left|A_{2}\right|=\left|D_{1}\right| \\
& \left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\left|B_{4}\right|=\left|D_{O}\right|
\end{aligned}
$$

Results

Lemma

Let D_{I}, D_{O} denote subsets of $\{0,1\}^{n}$, which are closed under \oplus, i.e. $x \oplus y \in D_{l}$ (respectively D_{O}) for $x, y \in D_{l}$ (resp. D_{O}). For any attacker making queries to a random n-bit permutation π and its inverse π^{-1}, the complexity (measured in expected number of oracle queries) of finding a pair of inputs (x, y), where $x \oplus y \in D_{l},\left|D_{l}\right|=2^{c_{l}}$, such that $\pi(x) \oplus \pi(y) \in D_{O},\left|D_{O}\right|=2^{c_{O}}$, is lower bounded as
$Q \geq \min \left(2^{\frac{n}{2}-2}, 2^{n-\left(c_{1}+c_{0}\right)-3}\right)$.

$$
\begin{aligned}
& \left|A_{1}\right|=\left|A_{2}\right|=\left|D_{l}\right| \\
& \left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\left|B_{4}\right|=\left|D_{O}\right| \\
& A_{1} \cup A_{2}=B_{1} \cup \cdots \cup B_{4}=\{0,1\}^{n}
\end{aligned}
$$

Results

Lemma

Let D_{I}, D_{O} denote subsets of $\{0,1\}^{n}$, which are closed under \oplus, i.e. $x \oplus y \in D_{l}$ (respectively D_{O}) for $x, y \in D_{l}$ (resp. D_{O}). For any attacker making queries to a random n-bit permutation π and its inverse π^{-1}, the complexity (measured in expected number of oracle queries) of finding a pair of inputs (x, y), where $x \oplus y \in D_{l},\left|D_{l}\right|=2^{c_{l}}$, such that $\pi(x) \oplus \pi(y) \in D_{O},\left|D_{O}\right|=2^{c_{0}}$, is lower bounded as
$Q \geq \min \left(2^{\frac{n}{2}-2}, 2^{n-\left(c_{1}+c_{0}\right)-3}\right)$.

$$
\begin{aligned}
& \left|A_{1}\right|=\left|A_{2}\right|=\left|D_{1}\right| \\
& \left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\left|B_{4}\right|=\left|D_{O}\right|
\end{aligned}
$$

$$
A_{1} \cup A_{2}=B_{1} \cup \cdots \cup B_{4}=\{0,1\}^{n}
$$

Results

Lemma

Let D_{I}, D_{O} denote subsets of $\{0,1\}^{n}$, which are closed under \oplus, i.e. $x \oplus y \in D_{l}$ (respectively D_{O}) for $x, y \in D_{l}$ (resp. D_{O}). For any attacker making queries to a random n-bit permutation π and its inverse π^{-1}, the complexity (measured in expected number of oracle queries) of finding a pair of inputs (x, y), where $x \oplus y \in D_{l},\left|D_{l}\right|=2^{c_{l}}$, such that $\pi(x) \oplus \pi(y) \in D_{O},\left|D_{O}\right|=2^{c_{O}}$, is lower bounded as
$Q \geq \min \left(2^{\frac{n}{2}-2}, 2^{n-\left(c_{1}+c_{0}\right)-3}\right)$.

$$
\begin{aligned}
& \left|A_{1}\right|=\left|A_{2}\right|=\left|D_{1}\right| \\
& \left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\left|B_{4}\right|=\left|D_{O}\right|
\end{aligned}
$$

$$
A_{1} \cup A_{2}=B_{1} \cup \cdots \cup B_{4}=\{0,1\}^{n}
$$

Results

Cipher	Distinguisher	Rounds	Encryptions	Lower bound
Crypton	Known-key	7	2^{48}	2^{61}
	Chosen-key	9	2^{48}	2^{61}
Hierocrypt-3	Known-key	3.5	2^{48}	2^{61}
	Chosen-key	4.5	2^{48}	2^{61}
SAFER++	Known-key	6.5	2^{120}	2^{128}
	Chosen-key	6.5	2^{112}	2^{128}
Square	Known-key	7	2^{48}	2^{61}
	Chosen-key	8	2^{48}	2^{61}
n-bit Feistel	Diff. attack	r	2^{c}	
with k-bit key	Known-key	$r+2$	2^{c}	
	Chosen-key	$r+\left\lfloor\frac{2 k}{n}\right\rfloor$	2^{c}	

Cryptographic Hash Function

Collisions

(1) Collisions - for a fixed chaining value H_{0}, the adversary tries to find two distinct messages M_{1}, M_{2} such that $f\left(H_{0}, M_{1}\right)=f\left(H_{0}, M_{2}\right)$.
(2) Pseudo collisions - for a message M, the adversary wishes to find two distinct chaining values H_{1}, H_{2} such that $f\left(H_{1}, M\right)=f\left(H_{2}, M\right)$.
(3) Semi-free start collisions - the adversary attempts to find two distinct messages M_{1}, M_{2} and a chaining value H such that $f\left(H, M_{1}\right)=f\left(H, M_{2}\right)$.
(4) Free start collisions - the adversary tries to find two distinct chaining values H_{1}, H_{2}, and two distinct messages M_{1}, M_{2} such that $f\left(H_{1}, M_{1}\right)=f\left(H_{2}, M_{2}\right)$.

Semi-Free Start Collision For $E_{h}(m) \oplus m$

Example: Square

Results: Hash Modes

mode (1)	h^{\prime}	plain-text	key	plain-text and key
1	$E_{h}(m) \oplus m$	C, SFSC	PC $^{\text {a }}$	FSC
2	$E_{h}(h \oplus m) \oplus h \oplus m$	C, SFSC	PC	PC, FSC
3	$E_{h}(m) \oplus h \oplus m$	C, SFSC	PC	FSC
4	$E_{h}(h \oplus m) \oplus m$	C, SFSC	PC	PC, FSC
5	$E_{m}(h) \oplus h$	PC	C $^{\text {a }}$, SFSC	FSC
6	$E_{m}(h \oplus m) \oplus h \oplus m$	PC	FSC	C, SFSC, FSC
7	$E_{m}(h) \oplus h \oplus m$	PC	C, SFSC	FSC
8	$E_{m}(h \oplus m) \oplus h$	PC	FSC	C, SFSC, FSC
9	$E_{h \oplus m}(m) \oplus m$	FSC	PC	C, SFSC, FSC
10	$E_{h \oplus m}(h) \oplus h$	FSC	Ca $^{\text {a }}$, SFSC	PC, FSC
11	$E_{h \oplus m}(m) \oplus h$	FSC	PC	C, SFSC, FSC
12	$E_{h \oplus m}(h) \oplus m$	FSC	C, SFSC	C, PC, FSC

[^0]
Results: Double Hash Modes

mode	$\left(h^{\prime}, g^{\prime}\right)$	plain-text	key	plain-text and key		
A-DM	$h^{\prime}=E_{g, m}(h) \oplus h$ $g^{\prime}=E_{m, h}(\bar{g}) \oplus g$	FSC	C, SFSC	PC, FSC		
T-DM	$h^{\prime}=E_{g, m}(h) \oplus h$ $g^{\prime}=E_{m, E_{g, m}(h)}(g) \oplus g$	FSC	C, SFSC	PC, FSC		
DBL	$h^{\prime}=E_{h \\| m}(g \oplus c) \oplus g \oplus c$ $g^{\prime}=E_{h \\| m}(g) \oplus g$	PC	C, PC, SFSC, FSC	PC, FSC		
MDC-2	$h^{\prime}=\left(E_{h}(m) \oplus m\right)^{L}$ $g^{\prime}=\left(E_{g}(m) \oplus m\right)^{R}$ $\left(E_{g}(m) \oplus m\right)^{L}$ $\\|\left(E_{h}(m) \oplus m\right)^{R}$	C, SFSC	PC $^{\text {a }}$	FSC		

${ }^{a}$ When key collisions exist in the cipher.

Conclusions

Results

- We have presented differential distinguishers for Crypton, Hierocrypt-3, SAFER++, and Square,
- We have showed lower bound of constructing pair that follows a truncated trail in the case of a random permutation,
- We have examined the application of the differential trails in analysis of ciphers that are used for compression function constructions.

Open Problems

(1) The area of open-key distinguishers is largely unexplored,
(2) Finding similar distinguishers based on related-key differentials remains an open problem.

Questions

[^0]: ${ }^{2}$ When key collisions exist in the cipher.

